# ADJUNCTION FOR PURELY LOG TERMINAL PAIRS 

OSAMU FUJINO

## 1. On DLT-BLOW-UPS

The following theorem supplements [ET], Theorem 1.21 (Dlt blow-ups, I)] and [ET], Theorem 1.27 (Dlt blow-ups, II)]. It is well known for algebraic varieties and may be useful for some geometric applications. Since we are working in the complex analytic setting, the formulation is slightly complicated. We note that $(X, \Delta)$ is not assumed to be $\log$ canonical in [ $\mathbb{E} \mathbb{Z}$, Theorem 1.27]. On the other hand, $(X, \Delta)$ is $\log$ canonical in Theorem [D..

Theorem 1.1 (Dlt blow-ups, III). Let $(X, \Delta)$ be a log canonical pair. Let $\pi: X \rightarrow Y$ be a projective morphism of complex analytic spaces and let $W$ be a Stein compact subset of $Y$ such that $\Gamma\left(W, \mathcal{O}_{Y}\right)$ is noetherian. Let $f: Z \rightarrow X$ be a projective bimeromorphic morphism from a smooth variety $Z$ such that $\operatorname{Exc}(f)$, the exceptional locus of $f$, is a simple normal crossing divisor on $Z$. We further assume that the support of $\operatorname{Exc}(f)+f_{*}^{-1} \Delta$ is a simple normal crossing divisor on $Z$. Let $\mathcal{E}$ be a subset of the $f$-exceptional divisors $\left\{E_{j}\right\}$ satisfying the following two conditions.
(i) If $a\left(E_{j}, X, \Delta\right)=-1$, then $E_{j} \in \mathcal{E}$.
(ii) If $E_{j} \in \mathcal{E}$, then $a\left(E_{j}, X, \Delta\right) \leq 0$.

Then, after shrinking $Y$ around $W$ suitably, we can construct the commutative diagram

such that
(1) $f^{\prime}$ is a projective bimeromorphic morphism,
(2) $\phi$ extracts no divisors,
(3) $\phi$ is an isomorphism at general points of $E_{j}$ with $E_{j} \in \mathcal{E}$, and
(4) $\phi$ contracts every $f$-exceptional divisor $E_{j}$ with $E_{j} \notin \mathcal{E}$.

Furthermore, we put

$$
\Delta_{Z^{\prime}}:=f_{*}^{\prime-1} \Delta-\sum_{E_{j} \in \mathcal{E}} a\left(E_{j}, X, \Delta\right) \phi_{*} E_{j} .
$$

Date: 2023/5/7, version 0.02 .
2010 Mathematics Subject Classification. Primary 14E30; Secondary 32C15.
Key words and phrases. dlt blow-ups, minimal model program, complex analytic singularities, adjunction, inversion of adjunction, kawamata log terminal pairs, purely log terminal pairs, discrepancy coefficients.

This note will be contained in [ $\mathrm{F}^{-}$]].

Then we have:
(5) $Z^{\prime}$ is $\mathbb{Q}$-factorial over $W$ and $\left(Z^{\prime}, \Delta_{Z^{\prime}}\right)$ is divisorial log terminal such that $K_{Z^{\prime}}+$ $\Delta_{Z^{\prime}}=f^{\prime *}\left(K_{X}+\Delta\right)$ holds.

The proof of Theorem $\mathbb{I D}$ is an easy application of the minimal model program for projective morphisms of complex analytic spaces established in [FT]. We prove Theorem I. 1 here for the sake of completeness.

Proof of Theorem [.]. By [FT, Lemma 2.16], we can always take an open neighborhood $U$ of $W$ and a Stein compact subset $W^{\prime}$ of $Y$ such that $U \subset W^{\prime}$ and that $\Gamma\left(W^{\prime}, \mathcal{O}_{Y}\right)$ is noetherian. As usual, throughout this proof, we will freely shrink $Y$ suitably without mentioning it explicitly. Let $A$ be a general $\pi$-ample $\mathbb{Q}$-divisor on $X$ with $A \cdot C>2 \operatorname{dim} X$ for every projective curve $C$ on $X$ such that $\pi(C)$ is a point. Let $\varepsilon$ be a sufficiently small positive number. We put

$$
d\left(E_{j}\right)=\left\{\begin{array}{lll}
-a\left(E_{j}, X, \Delta\right) & \text { if } \quad E_{j} \in \mathcal{E} \\
\max \left\{-a\left(E_{j}, X, \Delta\right)+\varepsilon, 0\right\} & \text { if } & E_{j} \notin \mathcal{E}
\end{array}\right.
$$

Then we set

$$
\Theta:=f_{*}^{-1} \Delta+\sum d\left(E_{j}\right) E_{j} .
$$

By definition, we have

$$
K_{Z}+\Theta=f^{*}\left(K_{X}+\Delta\right)+\sum_{E_{j} \notin \mathcal{E}}\left(d\left(E_{j}\right)+a\left(E_{j}, X, \Delta\right)\right) E_{j} .
$$

Note that $F:=\sum_{E_{j} \notin \mathcal{E}}\left(d\left(E_{j}\right)+a\left(E_{j}, X, \Delta\right)\right) E_{j}$ is effective and $f$-exceptional by construction. Since the support of $\Theta$ is a simple normal crossing divisor and the coefficients of $\Theta$ are in $[0,1],(Z, \Theta)$ is a divisorial log terminal pair. We take a general $(\pi \circ f)$-ample $\mathbb{Q}$-divisor $H$ on $Z$ such that $K_{Z}+\Theta+f^{*} A+H$ is nef over $Y$. We run a $\left(K_{Z}+\Theta+f^{*} A\right)$ minimal model program over $Y$ around $W^{\prime}$ with scaling of $H$. We note that by [F1], Lemma 9.4] this minimal model program can be seen as a $\left(K_{Z}+\Theta\right)$-minimal model program over $X$. Then we obtain a sequence of flips and divisorial contractions over $X$ starting from $\left(Z_{0}, \Theta_{0}\right):=(Z, \Theta)$ :

$$
\left(Z_{0}, \Theta_{0}\right) \xrightarrow{\phi_{0}}\left(Z_{1}, \Theta_{1}\right) \xrightarrow{\phi_{1}} \cdots \xrightarrow{\phi_{i-1}}\left(Z_{i}, \Theta_{i}\right) \xrightarrow{\phi_{i}},
$$

where $\Theta_{i+1}:=\left(\phi_{i}\right)_{*} \Theta_{i}, H_{i+1}:=\left(\phi_{i}\right)_{*} H_{i}$, and $F_{i+1}:=\left(\phi_{i}\right)_{*} F_{i}$, for every $i$, and a sequence of real numbers

$$
1 \geq \lambda_{0} \geq \lambda_{1} \geq \cdots \geq \lambda_{i} \geq \cdots \geq 0
$$

such that $K_{Z_{i}}+\Theta_{i}+f_{i}^{*} A+\lambda_{i} H_{i}$ is nef over $W^{\prime}$, where $f_{i}: Z_{i} \rightarrow X$ for every $i$. It is obvious that $\left(Z_{i}, \Theta_{i}\right)$ is divisorial log terminal and $Z_{i}$ is $\mathbb{Q}$-factorial over $W^{\prime}$. If $\phi_{i}$ is a divisorial contraction, then $\phi_{i}$ contracts an irreducible component of $F_{i}$ since $F_{i}$ is effective. By [FT, Lemma 13.7] and its proof, we can check that $K_{Z_{m}}+\Theta_{m}$ is in $\operatorname{Mov}\left(Z_{m} / X ; \pi^{-1}\left(W^{\prime}\right)\right)$ for some $m$. By applying the negativity lemma (see [ $\left.\mathcal{F}\right]$, Lemma 4.6]) to $f_{m}: Z_{m} \rightarrow X$, we can check that $F_{m}$ is zero on $\left(\pi \circ f_{m}\right)^{-1}(U)$. Although $Z_{m}$ is $\mathbb{Q}$-factorial over $W^{\prime}$, it is not necessarily $\mathbb{Q}$-factorial over $W$. If $Z_{m}$ is $\mathbb{Q}$-factorial over $W$, then we put $\left(Z^{\prime}, \Delta_{Z^{\prime}}\right):=\left(Z_{m}, \Theta_{m}\right)$. If $Z_{m}$ is not $\mathbb{Q}$-factorial over $W$, then we take a small projective $\mathbb{Q}$-factorialization $\psi: Z^{\prime} \rightarrow Z_{m}$ by [ $\mathbb{F 1 ]}$, Theorem 1.24]. We put $\left(Z^{\prime}, \Delta_{Z^{\prime}}\right):=\left(Z^{\prime}, \psi^{*} \Theta_{m}\right)$. Then the pair $\left(Z^{\prime}, \Delta_{Z^{\prime}}\right)$ is a divisorial log terminal pair such that $Z^{\prime}$ is $\mathbb{Q}$-factorial over $W$. By construction, we see that the induced bimeromorphic map
$\phi: Z \rightarrow Z^{\prime}$ contracts $F$ and is an isomorphism in codimension one outside the support of $F$. Hence, $f^{\prime}: Z^{\prime} \rightarrow X$ satisfies all the desired properties.

## 2. Adjunction for purely log terminal pairs

In this section, we will see that a precise version of adjunction holds for purely log terminal pairs. It is an application of Theorem I.D. This result is also well known for algebraic varieties.

Let $X$ be a normal complex variety and let $S+B$ be an effective $\mathbb{R}$-divisor on $X$ such that $K_{X}+S+B$ is $\mathbb{R}$-Cartier, $S$ is reduced and irreducible, and $S$ and $B$ have no common irreducible components. Let $\nu: S^{\nu} \rightarrow S$ be the normalization with $K_{S^{\nu}}+B_{S^{\nu}}=$ $\nu^{*}\left(K_{X}+S+B\right)$. By the inversion of adjunction for log canonicity, we know that ( $S^{\nu}, B_{S^{\nu}}$ ) is $\log$ canonical if and only if $(X, S+B)$ is $\log$ canonical in a neighborhood of $S$. For the details, see $[\mathrm{F} 2]$. By the connectedness lemma of Shokurov-Kollár, we know that $\left(S^{\nu}, B_{S^{\nu}}\right)$ is kawamata $\log$ terminal if and only if $(X, S+B)$ is purely $\log$ terminal in a neighborhood of $S$. We note that the connectedness lemma of Shokurov-Kollár is an easy consequence of the Kawamata-Viehweg vanishing theorem for projective bimeromorphic morphisms of complex analytic spaces. We also note that if $(X, S+B)$ is purely $\log$ terminal in a neighborhood of $S$ then $S$ is always normal. We do not prove these results here since the proof for algebraic varieties works with only suitable modifications.

From now on, we assume that $(X, S+B)$ is purely $\log$ terminal and put $K_{S}+B_{S}:=$ $\left.\left(K_{X}+S+B\right)\right|_{S}$ by adjunction. Let $W$ be a compact subset of $X$. Let $E$ be a divisor over some open neighborhood $U_{E}$ of $W$. Then we put

$$
a(E, X, S+B)_{W}:=a\left(E, U_{E},\left.S\right|_{U_{E}}+\left.B\right|_{U_{E}}\right)
$$

In this situation,

$$
\text { discrep }(\text { center } \cap S \neq \emptyset, X, S+B)_{W}
$$

denotes the infimum of $a(E, X, S+B)_{W}$, where $E$ runs through all divisors over some open neighborhood of $W$ which is exceptional and whose center has non-empty intersection with $S \cap W$. Similarly,

$$
\text { totaldicrep }\left(S, B_{S}\right)_{W \cap S}
$$

denotes the infimum of $a\left(F, S, B_{S}\right)_{W \cap S}$, where $F$ runs through all divisors over some open neighborhood of $W \cap S$.

Theorem 2.1 (Adjunction for purely $\log$ terminal pairs). Let $(X, S+B)$ be a purely log terminal pair such that $\lfloor S+B\rfloor=S$ is irreducible. Let $W$ be a Stein compact subset of $X$ such that $\Gamma\left(W, \mathcal{O}_{X}\right)$ is noetherian. Then

$$
\text { totaldicrep }\left(S, B_{S}\right)_{W \cap S}=\operatorname{discrep}(\text { center } \cap S \neq \emptyset, X, S+B)_{W}
$$

holds.
Before we prove Theorem [2.1], we explain the reason why we adopted the above formulation in Theorem [...].

Remark 2.2. We put $X:=\mathbb{C}$. Let $\left\{P_{n}\right\}_{n \in \mathbb{Z}_{>0}}$ be a set of mutually distinct discrete points of $X$. We consider the following divisor

$$
\Delta:=\sum_{n \in \mathbb{Z}_{>0}} \frac{n-1}{n} P_{n} .
$$

Then the pair $(X, \Delta)$ is kawamata log terminal. We note that

$$
a\left(P_{n}, X, \Delta\right)=-\frac{n-1}{n}
$$

Hence, we have $\inf _{n \in \mathbb{Z}_{>0}}\left\{a\left(P_{n}, X, \Delta\right)\right\}=-1$. This implies that the discrepancy of $(X, \Delta)$

$$
\operatorname{discrep}(X, \Delta):=\inf _{E}\{a(E, X, \Delta) \mid E \text { is an exceptional divisor over } X\}
$$

and the total discrepancy of $(X, \Delta)$

$$
\text { totaldicrep }(X, \Delta):=\inf _{E}\{a(E, X, \Delta) \mid E \text { is a divisor over } X\}
$$

do not work well when $X$ is a non-compact complex analytic space.
Let us prove Theorem [2].
Proof of Theorem [2.]. After shrinking $X$ around $W$ suitably, we can take a projective bimeromorphic morphism $g: Z \rightarrow X$ from a smooth complex variety $Z$ such that $\operatorname{Exc}(g)$ and the support of $\operatorname{Exc}(g)+g_{*}^{-1}(S+B)$ are simple normal crossing divisors on $Z$. By this resolution $g: Z \rightarrow X$ and the basic properties of discrepancy coefficients, we can easily check that the inequality

$$
\text { totaldicrep }\left(S, B_{S}\right)_{W \cap S} \geq \operatorname{discrep}(\text { center } \cap S \neq \emptyset, X, S+B)_{W}
$$

holds. Hence it is sufficient to prove the opposite inequality. Since $(X, S+B)$ is purely log terminal, there exists a small projective morphism $\pi: X^{\prime} \rightarrow X$ such that $X^{\prime}$ is $\mathbb{Q}$-factorial over $W$. We put $S^{\prime}:=\pi_{*}^{-1} S$ and $B^{\prime}:=\pi_{*}^{-1} B$. We may assume that $g: Z \rightarrow X$ factors through $X^{\prime}$ and there exists a divisor $E$ on $Z$ such that

$$
a(E, X, S+B)_{W}=\operatorname{discrep}(\text { center } \cap S=\emptyset, X, S+B)_{W}
$$

and that the center of $E$ has non-empty intersection with $S \cap W$. We put $\mathcal{E}:=\{E\}$ and apply Theorem t. to $Z \rightarrow X^{\prime} \rightarrow X$ and $W$. Then we get the following commutative diagram

satisfying the properties in Theorem [.]. Since $X^{\prime}$ is $\mathbb{Q}$-factorial over $W$, the exceptional locus $\operatorname{Exc}\left(f^{\prime}\right)$ of $f^{\prime}$ is a divisor after shrinking $X$ around $W$ suitably. Hence $\operatorname{Exc}\left(f^{\prime}\right)=$ $E^{\prime}:=\phi_{*} E$ holds. This implies that $E^{\prime} \cap S_{Z^{\prime}} \neq \emptyset$, where $S_{Z^{\prime}}$ is the strict transform of $S$ on $Z^{\prime}$. We note that $S_{Z^{\prime}}$ is normal since ( $Z^{\prime}, S_{Z^{\prime}}$ ) is divisorial log terminal. We also note that $E^{\prime} \cap S_{Z^{\prime}}$ is a divisor on $S_{Z^{\prime}}$ over some open neighborhood of $W$ since $Z^{\prime}$ is $\mathbb{Q}$-factorial over $W$ by construction. Note that

$$
K_{Z^{\prime}}+S_{Z^{\prime}}+B_{Z^{\prime}}-a(E, X, S+B)_{W} E^{\prime}=g^{\prime *}\left(K_{X}+S+B\right)
$$

holds, where $B_{Z^{\prime}}$ is the strict transform of $B$ on $Z^{\prime}$. By adjunction, we can easily see that totaldicrep $\left(S, B_{S}\right)_{W \cap S} \leq a(E, X, S+B)_{W}$ holds since $E^{\prime} \cap S_{Z^{\prime}} \neq \emptyset$ is a divisor on $S_{Z^{\prime}}$ over some open neighborhood of $W$. Hence we get the desired inequality. We finish the proof.

Acknowledgments. The author was partially supported by JSPS KAKENHI Grant Numbers JP19H01787, JP20H00111, JP21H00974, JP21H04994.

## References

[F1] O. Fujino, Minimal model program for projective morphisms between complex analytic spaces, preprint (2022). arXiv:2201.11315 [math.AG]
[F2] O. Fujino, On inversion of adjunction for log canonicity, preprint (2023).
Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: fujino@math.kyoto-u.ac.jp

