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Abstract. We establish a relative spannedness for log canonical pairs, which is a general-
ization of the basepoint-freeness for varieties with log-terminal singularities by Andreatta–
Wísniewski. Moreover, we establish a generalization for quasi-log canonical pairs.

Contents

1. Introduction 1
2. Preliminaries 3
2.1. Basic definitions 3
2.2. Fujita’s ∆-genera 5
2.3. Quasi-log schemes 5
3. Three lemmas for quasi-log schemes 8
4. Proof of Theorem 1.6 11
5. Proof of Theorem 1.1 14
6. Generalizations for quasi-log canonical pairs 17
References 21

1. Introduction

The main purpose of this paper is to establish the following relative spannedness for log
canonical pairs.

Theorem 1.1 (Relative spannedness for log canonical pairs, see [1, Theorem, Remark
3.1.2, and Theorem 5.1]). Let (X,∆) be a log canonical pair and let f : X → Y be a
projective surjective morphism onto a variety Y such that −(KX + ∆) is f -ample. Let
L be a Cartier divisor on X. Assume that KX + ∆ + rL is relatively numerically trivial
over Y for some positive real number r. Let F be a fiber of f . Then the dimension of
every positive-dimensional irreducible component of F is ≥ r− 1. We further assume that
dimF < r + 1. Then f ∗f∗OX(L) → OX(L) is surjective at every point of F .

As an easy consequence of Theorem 1.1, we have:

Corollary 1.2 (see [11, Theorem 1]). Let (X,∆) be a log canonical pair with dimX = n
and let f : X → Y be a projective morphism onto a variety Y . Let L be an f -ample Cartier
divisor on X. Then KX+∆+(n+1)L is f -nef. Moreover, if dimY ≥ 1, then KX+∆+nL
is f -nef.

By Theorem 1.1, we can quickly recover the basepoint-freeness obtained by Andreatta
and Wísniewski in [1].
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Corollary 1.3 (Relative spannedness for kawamata log terminal pairs, see [1, Theorem,
Remark 3.1.2, and Theorem 5.1]). In Theorem 1.1, we further assume that (X,∆) is
kawamata log terminal and that dimX = dimY . Then the dimension of every positive-
dimensional irreducible component of F is ≥ ⌊r⌋. Moreover, if dimF ≤ r + 1, then
f ∗f∗OX(L) → OX(L) is surjective at every point of F .

The following easy example shows that the estimates on the lower bound of the dimension
of the fiber are sharp.

Example 1.4. Let Y be a smooth variety with dimY = n. Let f : X → Y be a blow-up at
a smooth point of Y and let E ≃ Pn−1 be the f -exceptional divisor on X. In this situation,
L := −E is an f -ample Cartier divisor on X. We put ∆ = E. Then we obtain that (X,∆)
is log canonical and is not kawamata log terminal and that KX +∆+ nL = f ∗KY holds.

The following example shows that the assumption dimF < r + 1 in Theorem 1.1 is
sharp.

Example 1.5. Let S be a Del Pezzo surface of degree one, that is, (−KS)
2 = 1. We can

easily check that dimC H
0(S,OS(−KS)) = 2 and that Bs| −KS| is a point. In particular,

| −KS| is not basepoint-free. We take a positive integer m such that

Φ|−mKS | : S ↪→ PN

is a projectively normal embedding. Let Y ⊂ AN+1 be the cone over S. Then Y has only
kawamata log terminal singularities. Let f : X → Y be the blow-up at the vertex P ∈ Y
and let F ≃ S be the exceptional divisor of f . We put ∆ = F . Then X is smooth, (X,∆)
is log canonical and is not kawamata log terminal, and −(KX + ∆) is f -ample. We put
L = −(KX +∆). Then KX +∆+ rL with r = 1 is obviously relatively numerically trivial
over Y . We note that dimF = dimS = 2 = r + 1. By adjunction, we have L|F = −KF .
Since F ≃ S, |L|F | is not basepoint-free. This implies that

f ∗f∗OX(L) → OX(L)

is not surjective at some point of F .

The original proof of Theorem 1.1 and Corollary 1.3 for varieties with only kawamata
log terminal singularities in [1] is based on Kollár’s modified basepoint-freeness method
in [12]. Although Kollár’s method was already generalized for log canonical pairs and
quasi-log canonical pairs (see [2] and [6]), we do not use it in this paper. Our proof of
Theorem 1.1 and Corollary 1.3 heavily depends on the following basepoint-free theorem
for projective quasi-log schemes.

Theorem 1.6 (Spannedness for projective quasi-log schemes). Let [X,ω] be a projective
quasi-log scheme and let X−∞ denote the non-qlc locus of [X,ω]. We assume dim(X \
X−∞) = n. Let L be an ample line bundle on X such that ω + rL is numerically trivial
with r > n−1. We further assume that |L|X−∞| is basepoint-free. Then the complete linear
system |L| is basepoint-free.

We prove Theorem 1.6 by the theory of quasi-log schemes with the aid of Fujita’s theory
of ∆-genera (see [10]). Then Theorem 1.1 will be proved with an inductive argument via
Theorem 1.6.

We can further generalize Theorem 1.1 for quasi-log canonical pairs. The precise state-
ment is as follows:

Theorem 1.7 (Relative spannedness for quasi-log canonical pairs). Let [X,ω] be a quasi-
log canonical pair and let φ : X → W be a projective surjective morphism onto a scheme
W such that −ω is φ-ample. Let L be a line bundle on X. Assume that ω+rL is relatively
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numerically trivial over W for some positive real number r. Let F be a fiber of f . Then
the dimension of every positive-dimensional irreducible component of F is ≥ r − 1. We
further assume that dimF < r + 1. Then φ∗φ∗L → L is surjective at every point of F .

As a corollary of Theorem 1.7, we have the following generalization of Corollary 1.2.

Corollary 1.8. Let [X,ω] be a quasi-log canonical pair with dimX = n and let φ : X → W
be a projective morphism onto a scheme W . Let L be a φ-ample line bundle on X. Then
ω + (n + 1)L is φ-nef. We further assume that X is irreducible and dimW ≥ 1. Then
ω + nL is φ-nef.

Since every quasi-projective semi-log canonical pair naturally becomes a quasi-log canon-
ical pair by [5, Theorem 1.1], we can apply Theorem 1.7 and Corollary 1.8 to semi-log
canonical pairs.

We briefly explain the organization of this paper. In Section 2, we collect some ba-
sic definitions and quickly recall Fujita’s theory of ∆-genera and the theory of quasi-log
schemes. In Section 3, we explain three useful lemmas for quasi-log schemes for the reader’s
convenience. In Section 4, we give a detailed proof of Theorem 1.6. It is a combination of
Fujita’s theory of ∆-genera and the theory of quasi-log schemes. In Section 5, we prove
Theorem 1.1. Our proof is different from Kollár’s modified basepoint-freeness method in
[12] and is new. It uses the framework of quasi-log schemes. In Section 6, we treat Theo-
rem 1.7, which is a generalization of Theorem 1.1. The idea of the proof of Theorem 1.7 is
completely the same as that of the proof of Theorem 1.1. However, the proof of Theorem
1.7 is harder than that of Theorem 1.1.

Acknowledgments. The author was partly supported by JSPS KAKENHI Grant Num-
bers JP16H03925, JP16H06337. He thanks Kento Fujita, Haidong Liu, and Keisuke
Miyamoto very much for pointing out some mistakes in a preliminary version of this
paper. He thanks Kento Fujita for informing him of [1] when he was writing [9] with
Keisuke Miyamoto. Finally, he would like to thank the referee for some useful comments
and suggestions.

We will work over C, the complex number field, throughout this paper. In this paper,
a scheme means a separated scheme of finite type over C. A variety means an integral
scheme, that is, an integral separated scheme of finite type over C. We will use the theory
of quasi-log schemes discussed in [7, Chapter 6].

2. Preliminaries

In this section, we collect some basic definitions of the minimal model program and the
theory of quasi-log schemes. For the details, see [4] and [7]. We also mention Fujita’s
∆-genera (see [10]), which will play a crucial role in this paper.

2.1. Basic definitions. Let us recall singularities of pairs and some related definitions.

Definition 2.1. Let X be a variety and let E be a prime divisor on Y for some birational
morphism f : Y → X from a normal variety Y . Then E is called a divisor over X.

Definition 2.2 (Singularities of pairs). A normal pair (X,∆) consists of a normal variety
X and an R-divisor ∆ on X such that KX+∆ is R-Cartier. Let f : Y → X be a projective
birational morphism from a normal variety Y . Then we can write

KY = f ∗(KX +∆) +
∑
E

a(E,X,∆)E
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with

f∗

(∑
E

a(E,X,∆)E

)
= −∆,

where E runs over prime divisors on Y . We call a(E,X,∆) the discrepancy of E with
respect to (X,∆). Note that we can define the discrepancy a(E,X,∆) for any prime divisor
E over X by taking a suitable resolution of singularities of X. If a(E,X,∆) ≥ −1 (resp. >
−1) for every prime divisor E over X, then (X,∆) is called sub log canonical (resp. sub
kawamata log terminal). We further assume that ∆ is effective. Then (X,∆) is called
log canonical and kawamata log terminal if it is sub log canonical and sub kawamata log
terminal, respectively. We simply say that X has only kawamata log terminal singularities
when (X, 0) is a kawamata log terminal pair.

Let (X,∆) be a normal pair. If there exist a projective birational morphism f : Y → X
from a normal variety Y and a prime divisor E on Y such that (X,∆) is sub log canonical
in a neighborhood of the generic point of f(E) and that a(E,X,∆) = −1, then f(E) is
called a log canonical center of (X,∆).

Definition 2.3 (Operations for R-divisors). Let V be an equidimensional reduced scheme.
An R-divisor D on V is a finite formal sum

l∑
i=1

diDi,

where Di is an irreducible reduced closed subscheme of V of pure codimension one with
Di ̸= Dj for i ̸= j and di is a real number for every i. We put

D<1 =
∑
di<1

diDi, D=1 =
∑
di=1

Di, and D>1 =
∑
di>1

diDi.

For every real number x, ⌈x⌉ is the integer defined by x ≤ ⌈x⌉ < x+ 1. Then we put

⌈D⌉ =
l∑

i=1

⌈di⌉Di and ⌊D⌋ = −⌈−D⌉.

Definition 2.4 (Non-lc ideals and non-lc loci, see [3] and [4, Section 7]). Let (X,∆) be a
normal pair such that ∆ is effective and let f : Y → X be a resolution of singularities with

KY +∆Y = f ∗(KX +∆)

such that Supp∆Y is a simple normal crossing divisor on Y . We put

JNLC(X,∆) := f∗OY (−⌊∆Y ⌋+∆=1
Y )

= f∗OY (⌈−(∆<1
Y )⌉ − ⌊∆>1

Y ⌋)

and call it the non-lc ideal sheaf associated to the pair (X,∆). We can check that
JNLC(X,∆) is a well-defined ideal sheaf on X. The closed subscheme Nlc(X,∆) defined
by JNLC(X,∆) is called the non-lc locus of (X,∆). Note that (X,∆) is log canonical if
and only if JNLC(X,∆) = OX .

Definition 2.5 (∼R and ≡). Let B1 and B2 be R-Cartier divisors on a scheme X. Then
B1 ∼R B2 means that B1 is R-linearly equivalent to B2, that is, B1−B2 is a finite R-linear
combination of principal Cartier divisors. Let f : X → Y be a proper morphism between
schemes. Then B1 ≡Y B2 means that B1 is relatively numerically equivalent to B2 over
Y . When Y is a point, we simply write B1 ≡ B2 to denote B1 ≡Y B2 and say that B1 is
numerically equivalent to B2.
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2.2. Fujita’s ∆-genera. Let us quickly explain Fujita’s theory of ∆-genera, which will
play a crucial role in this paper. We start with the definition of base loci.

Definition 2.6 (Base loci). Let f : X → Y be a proper morphism between schemes and
let L be a Cartier divisor on X. Then Bsf |L| denotes the support of

Coker (f ∗f∗OX(L) → OX(L))

and is called the relative base locus of |L|. If Y is a point, then we simply write Bs|L| to
denote Bsf |L|. We can define Bsf |L| and Bs|L| for every line bundle L on X in the same
way.

Let us recall the definition of Fujita’s ∆-genera. In this paper, we define ∆(V, L) only
when L is ample for simplicity. For the general case, see Fujita’s original definition in [10].

Definition 2.7 (Fujita’s ∆-genera, see [10, Definition 1.4]). Let V be a projective variety
and let L be an ample Cartier divisor on V . Then the ∆-genus of (V, L) is defined to be

∆(V, L) = dimV + LdimV − dimC H
0(V,OV (L)).

We can define ∆(V,L) for every ample line bundle L in the same way.

The following famous theorem by Takao Fujita is one of the main ingredients of this
paper. We recommend the interested reader to see Fujita’s original statement (see [10,
Theorem 1.9]), which is more general than Theorem 2.8.

Theorem 2.8 (Fujita, see [10, Theorem 1.9]). Let V be a projective variety and let L be
an ample Cartier divisor on V . Then the following inequality

dimBs|L| < ∆(V, L)

holds, where dim ∅ is defined to be −∞. In particular, if ∆(V, L) = 0, then the complete
linear system |L| is basepoint-free. Of course, the same statement holds for ample line
bundles L.

2.3. Quasi-log schemes. The notion of quasi-log schemes was first introduced by Florin
Ambro in order to establish the cone and contraction theorem for (X,∆), where X is a
normal variety and ∆ is an effective R-divisor on X such that KX +∆ is R-Cartier. Here
we use the formulation in [7, Chapter 6], which is slightly different from Ambro’s original
one. We recommend the interested reader to see [8, Appendix A] for the difference between
our definition of quasi-log schemes and Ambro’s one.

In order to define quasi-log schemes, we need the notion of globally embedded simple
normal crossing pairs.

Definition 2.9 (Globally embedded simple normal crossing pairs, see [7, Definition 6.2.1]).
Let Y be a simple normal crossing divisor on a smooth variety M and let D be an R-divisor
on M such that Supp(D+ Y ) is a simple normal crossing divisor on M and that D and Y
have no common irreducible components. We put BY = D|Y and consider the pair (Y,BY ).
We call (Y,BY ) a globally embedded simple normal crossing pair and M the ambient space
of (Y,BY ). A stratum of (Y,BY ) is a log canonical center of (M,Y +D) that is contained
in Y .

Let us recall the definition of quasi-log schemes.

Definition 2.10 (Quasi-log schemes, see [7, Definition 6.2.2]). A quasi-log scheme is a
schemeX endowed with an R-Cartier divisor (or R-line bundle) ω onX, a closed subscheme
X−∞ ⊊ X, and a finite collection {C} of reduced and irreducible subschemes of X such
that there is a proper morphism f : (Y,BY ) → X from a globally embedded simple normal
crossing pair satisfying the following properties:
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(1) f ∗ω ∼R KY +BY .
(2) The natural map OX → f∗OY (⌈−(B<1

Y )⌉) induces an isomorphism

IX−∞
≃−→ f∗OY (⌈−(B<1

Y )⌉ − ⌊B>1
Y ⌋),

where IX−∞ is the defining ideal sheaf of X−∞.
(3) The collection of reduced and irreducible subschemes {C} coincides with the images

of the strata of (Y,BY ) that are not included in X−∞.

We simply write [X,ω] to denote the above data(
X,ω, f : (Y,BY ) → X

)
if there is no risk of confusion. The reduced and irreducible subschemes C are called the
qlc strata of [X,ω], X−∞ is called the non-qlc locus of [X,ω], and f : (Y,BY ) → X is called
a quasi-log resolution of [X,ω]. We sometimes use Nqlc(X,ω) to denote X−∞. If a qlc
stratum C of [X,ω] is not an irreducible component of X, then it is called a qlc center of
[X,ω].

Remark 2.11. By restricting the isomorphism

IX−∞
≃−→ f∗OY (⌈−(B<1

Y )⌉ − ⌊B>1
Y ⌋)

in Definition 2.10 to the Zariski open set U = X \X−∞, we have

OU
≃−→ f∗Of−1(U)(⌈−(B<1

Y )⌉).

This implies that

OU
≃−→ f∗Of−1(U)

holds since ⌈−(B<1
Y )⌉ is effective. Hence, f : f−1(U) → U is surjective and has connected

fibers. Note that a qlc stratum C of [X,ω] is the image of some stratum of (Y,BY ) that
is not included in X−∞. Therefore, X is the union of {C} and X−∞. In particular, any
irreducible component of X that is not included in X−∞ is a qlc stratum of [X,ω].

Definition 2.12 (Quasi-log canonical pairs, see [7, Definition 6.2.9]). Let

(X,ω, f : (Y,BY ) → X)

be a quasi-log scheme. If X−∞ = ∅, then it is called a quasi-log canonical pair.

The most important result in the theory of quasi-log scheme is adjunction and the
following vanishing theorem. We will repeatedly use Theorem 2.13 in this paper. The
proof of Theorem 2.13 in [7] heavily depends on the theory of mixed Hodge structures on
cohomology with compact support (see [7, Chapter 5]).

Theorem 2.13 (see [7, Theorem 6.3.5]). Let [X,ω] be a quasi-log scheme and let X ′ be
the union of X−∞ with a (possibly empty) union of some qlc strata of [X,ω]. Then we have
the following properties.

(i) (Adjunction). Assume that X ′ ̸= X−∞. Then X ′ is a quasi-log scheme with ω′ =
ω|X′ and X ′

−∞ = X−∞. Moreover, the qlc strata of [X ′, ω′] are exactly the qlc strata
of [X,ω] that are included in X ′.

(ii) (Vanishing theorem). Assume that π : X → S is a proper morphism between
schemes. Let L be a Cartier divisor on X such that L − ω is ample over S with
respect to [X,ω]. Then Riπ∗(IX′ ⊗ OX(L)) = 0 for every i > 0, where IX′ is the
defining ideal sheaf of X ′ on X.

We quickly explain the main idea of the proof of Theorem 2.13 (i) for the reader’s
convenience. For the details, see [7, Theorem 6.3.5].
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Idea of Proof of Theorem 2.13 (i). By definition, X ′ is the union of X−∞ with a union
of some qlc strata of [X,ω] set theoretically. We assume that X ′ ̸= X−∞ holds. By [7,
Proposition 6.3.1], we may assume that the union of all strata of (Y,BY ) mapped to X ′

by f , which is denoted by Y ′, is a union of some irreducible components of Y . We put
Y ′′ = Y − Y ′, KY ′′ + BY ′′ = (KY + BY )|Y ′′ , and KY ′ + BY ′ = (KY + BY )|Y ′ . We set
f ′′ = f |Y ′′ and f ′ = f |Y ′ . Then we claim that

(X ′, ω′, f ′ : (Y ′, BY ′) → X ′)

becomes a quasi-log scheme satisfying the desired properties. Let us consider the following
short exact sequence:

0 → OY ′′(⌈−(B<1
Y ′′)⌉ − ⌊B>1

Y ′′⌋ − Y ′|Y ′′) → OY (⌈−(B<1
Y )⌉ − ⌊B>1

Y ⌋)
→ OY ′(⌈−(B<1

Y ′ )⌉ − ⌊B>1
Y ′ ⌋) → 0,

which is induced by

0 → OY ′′(−Y ′|Y ′′) → OY → OY ′ → 0.

We take the associated long exact sequence. Then we can check that the connecting
homomorphism

δ : f ′
∗OY ′(⌈−(B<1

Y ′ )⌉ − ⌊B>1
Y ′ ⌋) → R1f ′′

∗OY ′′(⌈−(B<1
Y ′′)⌉ − ⌊B>1

Y ′′⌋ − Y ′|Y ′′)

is zero by using a generalization of Kollár’s torsion-freeness based on the theory of mixed
Hodge structures on cohomology with compact support (see [7, Chapter 5]). We put

IX′ := f ′′
∗OY ′′(⌈−(B<1

Y ′′)⌉ − ⌊B>1
Y ′′⌋ − Y ′|Y ′′),

which is an ideal sheaf on X since IX′ ⊂ IX−∞ , and define a scheme structure on X ′ by
IX′ . Then we obtain the following big commutative diagram:

0

��

0

��
0 // f ′′

∗OY ′′(⌈−(B<1
Y ′′)⌉ − ⌊B>1

Y ′′⌋ − Y ′|Y ′′)
= //

��

IX′

��
0 // f∗OY (⌈−(B<1

Y )⌉ − ⌊B>1
Y ⌋) = IX−∞

//

��

OX

��

// OX−∞
// 0

0 // f ′
∗OY ′(⌈−(B<1

Y ′ )⌉ − ⌊B>1
Y ′ ⌋) = IX′

−∞

��

// OX′

��

// OX′
−∞

// 0

0 0

by the above arguments. More precisely, by the above big commutative diagram,

IX′
−∞

= f ′
∗OY ′(⌈−(B<1

Y ′ )⌉ − ⌊B>1
Y ′ ⌋)

is an ideal sheaf on X ′ such that OX/IX−∞ = OX′/IX′
−∞

. Thus we obtain that

(X ′, ω′, f ′ : (Y ′, BY ′) → X ′)

is a quasi-log scheme satisfying the desired properties. □

The following example is very important. It shows that we can treat log canonical pairs
as quasi-log canonical pairs.
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Example 2.14 ([7, 6.4.1]). Let (X,∆) be a normal pair such that ∆ is effective. Let
f : Y → X be a resolution of singularities such that

KY +BY = f ∗(KX +∆)

and that SuppBY is a simple normal crossing divisor on Y . We put ω = KX + ∆. Then
KY + BY ∼R f ∗ω holds. Since ∆ is effective, ⌈−(B<1

Y )⌉ is effective and f -exceptional.
Therefore, the natural map

OX → f∗OY (⌈−(B<1
Y )⌉)

is an isomorphism. We put

IX−∞ := JNLC(X,∆) = f∗OY (⌈−(B<1
Y )⌉ − ⌊B>1

Y ⌋),
where JNLC(X,∆) is the non-lc ideal sheaf associated to (X,∆) in Definition 2.4. We put
M = Y ×C and D = BY ×C. Then (Y,BY ) ≃ (Y ×{0}, BY ×{0}) is a globally embedded
simple normal crossing pair. Thus

(X,ω, f : (Y,BY ) → X)

becomes a quasi-log scheme. By construction, (X,∆) is log canonical if and only if [X,ω]
is quasi-log canonical. We note that C is a log canonical center of (X,∆) if and only if C
is a qlc center of [X,ω]. We also note that X itself is a qlc stratum of [X,ω].
LetX ′ be the union ofX−∞ with a union of some qlc centers of [X,ω]. IfX ′ ̸= X−∞, then

[X ′, ω|X′ ] naturally becomes a quasi-log scheme by adjunction (see Theorem 2.13 (i) and
[7, Theorem 6.3.5 (i)]). When X−∞ = ∅, equivalently, (X,∆) is log canonical, we see that
[X ′, ω|X′ ] is quasi-log canonical. By construction, X ′ is not necessarily equidimensional
and is a highly singular reducible and reduced scheme.

For the basic properties of quasi-log schemes, see [7, Chapter 6].

3. Three lemmas for quasi-log schemes

In this section, we will explain three useful lemmas for quasi-log schemes for the reader’s
convenience. They are essentially contained in [7, Chapter 6] or easily follow from the
arguments in [7, Chapter 6].

Let us start with the following easy lemma, which is almost obvious by definition.

Lemma 3.1. Let

(X,ω, f : (Y,BY ) → X)

be a quasi-log canonical pair and let B be an effective R-Cartier divisor on X. Assume
that (Y,BY + f ∗B) is a globally embedded simple normal crossing pair. Then

(X,ω +B, f : (Y,BY + f ∗B) → X)

is a quasi-log scheme. Of course, [X,ω+B] is quasi-log canonical if and only if BY + f ∗B
is a subboundary R-divisor on Y , that is, (BY + f ∗B)>1 = 0.

Proof. By definition, KY +BY ∼R f ∗ω. Therefore, KY +BY +f ∗B ∼R f ∗(ω+B) obviously
holds true. Since [X,ω] is a quasi-log canonical pair, the natural map

OX → f∗OY (⌈−(B<1
Y )⌉)

is an isomorphism. Since it factors through f∗OY , we have

(3.1) OX
≃−→ f∗OY

≃−→ f∗OY (⌈−(B<1
Y )⌉).

We note that

0 ≤ ⌈−(BY + f ∗B)<1⌉ ≤ ⌈−(B<1
Y )⌉.
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Therefore, we obtain

OX
≃−→ f∗OY

≃−→ f∗OY (⌈−(BY + f ∗B)<1⌉) ≃−→ f∗OY (⌈−(B<1
Y )⌉).

Thus, we get a nonzero coherent ideal sheaf

INqlc(X,ω+B) := f∗OY (⌈−(BY + f ∗B)<1⌉ − ⌊(BY + f ∗B)>1⌋),
which defines a closed subscheme Nqlc(X,ω + B). Let W be a reduced and irreducible
subscheme of X. We say that W is a qlc stratum of [X,ω + B] if W is not included in
Nqlc(X,ω +B) and is the f -image of some stratum of (Y,BY + f ∗B). Then

(X,ω +B, f : (Y,BY + f ∗B) → X)

is a quasi-log scheme. By construction, [X,ω + B] is a quasi-log canonical pair if and
only if (BY + f ∗B)>1 = 0. Note that (X,ω +B, f : (Y,BY + f ∗B) → X) coincides with
(X,ω, f : (Y,BY ) → X) outside SuppB. □
The next lemma is similar to the previous one. However, the proof is not so obvious

because we need the argument in the proof of adjunction (see Theorem 2.13 (i)).

Lemma 3.2. Let

(X,ω, f : (Y,BY ) → X)

be a quasi-log scheme and let B be an effective R-Cartier divisor on X. Let X ′ be the
union of Nqlc(X,ω) and all qlc centers of [X,ω] contained in SuppB. Assume that the
union of all strata of (Y,BY ) mapped to X ′ by f , which is denoted by Y ′, is a union of
some irreducible components of Y . We put Y ′′ = Y − Y ′, KY ′′ + BY ′′ = (KY + BY )|Y ′′,
and f ′′ = f |Y ′′. We further assume that

(Y ′′, BY ′′ + (f ′′)∗B)

is a globally embedded simple normal crossing pair. Then

(X,ω +B, f ′′ : (Y ′′, BY ′′ + (f ′′)∗B) → X)

is a quasi-log scheme.

Proof. Since KY + BY ∼R f ∗ω, we have KY ′′ + BY ′′ ∼R (f ′′)∗ω. Therefore, KY ′′ + BY ′′ +
(f ′′)∗B ∼R (f ′′)∗(ω+B) holds true. By the proof of adjunction (see Theorem 2.13 (i) and
[7, Theorem 6.3.5 (i)]), we have

IX′ = f ′′
∗OX′′(⌈−(B<1

Y ′′)⌉ − ⌊B>1
Y ′′⌋ − Y ′|Y ′′),

where IX′ is the defining ideal sheaf of X ′ on X. Note that the following key inequality

⌈−(BY ′′ + (f ′′)∗B)<1⌉ − ⌊(BY ′′ + (f ′′)∗B)>1⌋ ≤ ⌈−(B<1
Y ′′)⌉ − ⌊B>1

Y ′′⌋ − Y ′|Y ′′

holds. Therefore, we put

INqlc(X,ω+B) := f ′′
∗OY ′′(⌈−(BY ′′ + (f ′′)∗B)<1⌉ − ⌊(BY ′′ + (f ′′)∗B)>1⌋) ⊂ IX′ ⊂ OX

and define a closed subscheme Nqlc(X,ω +B) of X by INqlc(X,ω+B). Then

(X,ω +B, f ′′ : (Y ′′, BY ′′ + (f ′′)∗B) → X)

is a quasi-log scheme. Let W be a reduced and irreducible subscheme of X. As usual, we
say that W is a qlc stratum of [X,ω + B] when W is not contained in Nqlc(X,ω + B)
and is the f ′′-image of some stratum of (Y ′′, BY ′′ + (f ′′)∗B). By construction, we have
X ′ ⊂ Nqlc(X,ω + B). We note that (X,ω +B, f ′′ : (Y ′′, BY ′′ + (f ′′)∗B) → X) coincides
with (X,ω, f : (Y,BY ) → X) outside SuppB. □
The final lemma is easy but very useful. We often use it without mentioning it explicitly.
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Lemma 3.3 (Bertini-type theorem). Let [X,ω] be a quasi-log scheme and let Λ be a free
linear system on X. If D is a general member of Λ, then [X,ω + cD] becomes a quasi-log
scheme with Nqlc(X,ω + cD) = Nqlc(X,ω) for every 0 ≤ c ≤ 1.
More precisely, there exists a proper morphism f : (Y,BY ) → X from a globally embedded

simple normal crossing pair (Y,BY ) such that (Y,BY + f ∗D) is a globally embedded simple
normal crossing pair and that

(X,ω + cD, f : (Y,BY + f ∗cD) → X)

is a quasi-log scheme with Nqlc(X,ω + cD) = Nqlc(X,ω) for every 0 ≤ c ≤ 1.
When c = 1, every irreducible component D† of D is a qlc center of

(X,ω +D, f : (Y,BY + f ∗D) → X) .

Therefore, by adjunction, [D′, (ω+D)|D′ ] is a quasi-log scheme, where D′ = D†∪Nqlc(X,ω).

Proof. Let f : (Y,BY ) → X be a quasi-log resolution of [X,ω]. Let ν : Y ν → Y be the
normalization of Y with KY ν +Θ = ν∗(KY +BY ) as usual. If D is a general member of Λ,
then ν∗f ∗D is smooth, ν∗f ∗D and Θ have no common components, and Supp(ν∗f ∗D+Θ)
is a simple normal crossing divisor on Y ν . By taking some blow-ups along irreducible
components of f ∗D repeatedly (see [7, Lemma 5.8.8]), we may further assume that (Y,BY +
f ∗D) is a globally embedded simple normal crossing pair (see [7, Proposition 6.3.1]). Since

⌊(BY + f ∗cD)>1⌋ = ⌊B>1
Y ⌋ and 0 ≤ ⌈−(BY + f ∗cD)<1⌉ = ⌈−(B<1

Y )⌉
hold for every 0 ≤ c ≤ 1, we obtain that the following equality

f∗OY (⌈−(BY + f ∗cD)<1⌉ − ⌊(BY + f ∗cD)>1⌋) = f∗OY (⌈−(B<1
Y )⌉ − ⌊B>1

Y ⌋).
holds true for every 0 ≤ c ≤ 1. Therefore, we obtain that

(X,ω + cD, f : (Y,BY + f ∗cD) → X)

is a quasi-log scheme with Nqlc(X,ω + cD) = Nqlc(X,ω) for every 0 ≤ c ≤ 1. By
construction, the quasi-log scheme structure of [X,ω + cD] is independent of c outside
SuppD. It is obvious that every irreducible component D† of D is a qlc center of [X,ω+D].
Therefore, by adjunction (see Theorem 2.13 (i)), we obtain the desired statement. □
In order to explain how to make new quasi-log scheme structures, let us treat the fol-

lowing proposition.

Proposition 3.4. Let [X,ω] be a quasi-log scheme and let L be a Cartier divisor on X
such that Bs|L| contains no qlc strata of [X,ω] and that Bs|L| is disjoint from X−∞. If D
is a general member of |L|. Then there exists 0 < c ≤ 1 such that [X,ω + cD] becomes a
quasi-log scheme with Nqlc(X,ω + cD) = Nqlc(X,ω) and that there exists a qlc center C
of [X,ω + cD] with C ∩ Bs|L| ̸= ∅.

Proof. Let f : (Y,BY ) → X be a quasi-log resolution of [X,ω]. Since D is a general
member of |L|, Bs|L| contains no qlc strata of [X,ω], and Bs|L| ∩ X−∞ = ∅, f ∗D is a
well-defined Cartier divisor on Y . We note that [X,ω + cD] becomes a quasi-log scheme
with Nqlc(X,ω + cD) = Nqlc(X,ω) outside Bs|L| for every 0 ≤ c ≤ 1 by Lemma 3.3.
By taking a suitable birational modification of the ambient space M of (Y,BY ) (see [7,

Proposition 6.3.1]), we may assume that

(Y, f ∗D + SuppBY )

is a globally embedded simple normal crossing pair. We may further assume that f ∗D and
SuppBY have no common components outside f−1 Bs|L| and that f ∗D is reduced outside
f−1 Bs|L|.

We put
c = sup{t ∈ R | (tf ∗D +BY )

>1 = 0 holds over X \X−∞}.
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Then we have:

Claim. We have 0 < c ≤ 1.

Proof of Claim. By replacing X with X \X−∞, we may assume that X−∞ = ∅. Therefore,
the natural map

OX → f∗OY (⌈−(B<1
Y )⌉)

is an isomorphism. Since B>1
Y = 0 by X−∞ = ∅, the inequality 0 < c is obvious because D

is a general member of |L| and Bs|L| contains no qlc strata of [X,ω]. We assume that the
inequality c > 1 holds. Then the natural map

OX → f∗OY (⌈−(B<1
Y )⌉)

factors through OX(D), that is, we have:

OX ↪→ OX(D) → f∗OY (⌈−(B<1
Y )⌉).

This is a contradiction. Hence we get the desired inequality c ≤ 1. □

We consider

(X,ω + cD, f : (Y,BY + cf ∗D) → X) .

It is obvious that f ∗(ω+ cD) ∼R KY +BY + cf ∗D holds since f ∗ω ∼R KY +BY . We note
that

0 ≤ ⌈−(BY + cf ∗D)<1⌉ ≤ ⌈−(B<1
Y )⌉

obviously holds and that

⌈−(BY + cf ∗D)<1⌉ − ⌊(BY + cf ∗D)>1⌋ = ⌈−(B<1
Y )⌉ − ⌊B>1

Y ⌋

holds over a neighborhood of X−∞. Therefore,

(X,ω + cD, f : (Y,BY + cf ∗D) → X) .

is a quasi-log scheme with Nqlc(X,ω + cD) = Nqlc(X,ω).
If c = 1, then we see that every irreducible component D† of SuppD with D† ̸⊂ X−∞ is

a qlc center of [X,ω +D] by the proof of Claim. Therefore, we can find a qlc center C of
[X,ω +D] with C ∩ Bs|L| ̸= ∅.
If c < 1, then we can find an irreducible component G of (cf ∗D + BY )

=1 such that
f(G)∩Bs|L| ̸= ∅ by construction. Thus C := f(G) is a desired qlc center of [X,ω+cD]. □

4. Proof of Theorem 1.6

In this section, we will prove Theorem 1.6, which may look artificial but is very useful.

Let us start with an easy lemma, which follows from Fujita’s theory of ∆-genera (see
[10]).

Lemma 4.1. Let [X,ω] be a projective quasi-log canonical pair such that X is irreducible
with n = dimX ≥ 1. Let L be an ample Cartier divisor on X such that ω+ rL ≡ 0. Then
the inequality r ≤ n+1 holds. We further assume that r > n−1 holds. Then the complete
linear system |L| is basepoint-free.

Proof. Let us consider

χ(t) := χ(X,OX(tL)) =
n∑

i=0

(−1)i dimC H
i(X,OX(tL)).

Since L is ample, χ(t) is a nontrivial polynomial with degχ(t) = dimX = n.
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Step 1. In this step, we will prove that r ≤ n+ 1.
We assume that r > n+ 1 holds. Then

H i(X,OX(tL)) = 0

for i > 0 and t ∈ Z with t ≥ −(n + 1) since tL − ω ≡ (t + r)L is ample for t ≥ −(n + 1)
(see Theorem 2.13 (ii)). On the other hand,

H0(X,OX(tL)) = 0

for t < 0 since L is ample. Therefore, we have χ(t) = 0 for t = −1, . . . ,−(n + 1). This
implies that χ(t) ≡ 0 holds. This is a contradiction. Hence we obtain the desired inequality
r ≤ n+ 1.

Step 2. In this step, we will prove that |L| is basepoint-free under the assumption that
r > n− 1 holds.

As in Step 1, we have χ(t) = 0 for t = −1, . . . ,−(n− 1) since r > n− 1 by assumption.
Therefore, we get

χ(X,OX(tL)) =
1

n!
(αt+ β)(t+ 1) · · · (t+ n− 1)

for some rational numbers α and β. It is well known that α = Ln. We note that

χ(X,OX) = dimC H
0(X,OX) = 1.

Therefore, β = n holds. Hence we obtain

dimCH
0(X,OX(L)) = Ln + n.

This implies that
∆(X,L) = Ln + n− dimC H

0(X,OX(L)) = 0

holds. Thus we obtain that |L| is basepoint-free by Theorem 2.8 (see also [10, Corollary
1.10]).

We obtained all the desired statements. □
The following example shows that the assumption r > n− 1 in Lemma 4.1 is sharp.

Example 4.2. Let X be a Del Pezzo surface of degree one. We put L = −KX . Then
KX + rL = 0 with r = 1 holds. We note that r = 1 = 2− 1 = dimX − 1 holds. It is easy
to check that |L| = | −KX | is not basepoint-free.

We can prove the following corollary.

Corollary 4.3. Let [X,ω] be a projective quasi-log canonical pair. Note that X may be
reducible. Let L be an ample Cartier divisor on X such that ω + rL ≡ 0 with r > n − 1,
where n = dimX. Then the complete linear system |L| is basepoint-free.

Proof. Let Xi be any irreducible component of X. Since Xi is a qlc stratum of [X,ω],
[Xi, ω|Xi

] is a quasi-log canonical pair by adjunction (see Theorem 2.13 (i)). If dimXi = 0,
then |L|Xi

| is obviously basepoint-free. When dimXi > 0, the complete linear system
|L|Xi

| is basepoint-free by Lemma 4.1 because ω|Xi
+ rL|Xi

≡ 0 with r > dimXi−1. Since
L− ω ≡ (r+ 1)L is ample, we have H1(X, IXi

⊗OX(L)) = 0 by Theorem 2.13 (ii), where
IXi

is the defining ideal sheaf of Xi on X. Therefore the restriction map

H0(X,OX(L)) → H0(Xi,OXi
(L))

is surjective. This implies that |L| is basepoint-free. □
Let us prove Theorem 1.6.

Proof of Theorem 1.6. We divide the proof into several small steps.
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Step 1. If dim(X \X−∞) = 0, then the statement is obvious. From now on, we assume
n ≥ 1 and use induction on dim(X \X−∞). Therefore, we assume that the statement holds
true when dim(X \X−∞) < n.

Step 2. Let C be a qlc stratum of [X,ω]. We put X ′ = C ∪X−∞. Then, by adjunction
(see Theorem 2.13 (i)), [X ′, ω|X′ ] is a quasi-log scheme. Note that ω|X′ + rL|X′ ≡ 0
holds. Let IX′ be the defining ideal sheaf of X ′ on X. By Theorem 2.13 (ii), we have
H1(X, IX′ ⊗ L) = 0 since L − ω ≡ (r + 1)L is ample. Therefore, the natural restriction
map

(4.1) H0(X,L) → H0(X ′,L|X′)

is surjective.

Step 3. If dimC < n, then |L|X′| is basepoint-free by the induction hypothesis. By (4.1),
|L| is basepoint-free in a neighborhood of X ′.

Step 4. If dimC = n and C ∩X−∞ = ∅, then |L|C | is basepoint-free by Lemma 4.1 since
[C, ω|C ] is an irreducible quasi-log canonical pair with

ω|C + rL|C ≡ 0

and
r > dim(X ′ \X ′

−∞)− 1 = dimC − 1.

We note that |L|X−∞ | is basepoint-free by assumption. Therefore, |L|X′ | is obviously
basepoint-free. Hence, by (4.1), |L| is basepoint-free in a neighborhood of X ′.

Step 5. By Steps 3, 4, and (4.1), we may assume that X \X−∞ is irreducible with dim(X \
X−∞) = n such that X is connected. Since L−ω ≡ (r+1)L is ample, H1(X, IX−∞⊗L) = 0
by Theorem 2.13 (ii). Therefore, the natural restriction map

H0(X,L) → H0(X−∞,L|X−∞)

is surjective. Since |L|X−∞ | is basepoint-free by assumption, the base locus Bs|L| of |L|
is disjoint from X−∞. Since X \ X−∞ is irreducible and X is connected, Bs|L| does not
contain X \X−∞. By Step 3, Bs|L| contains no qlc centers of [X,ω]. Hence Bs|L| contains
no qlc strata of [X,ω].

We assume that Bs|L| ̸= ∅. We take a general member D of |L|. Then we can take
0 < c ≤ 1 such that [X,ω + cD] is a quasi-log scheme with

Nqlc(X,ω + cD) = Nqlc(X,ω)

and that there exists a qlc center C of [X,ω+ cD] with C ∩Bs|L| ̸= ∅ by construction (see
Proposition 3.4). We put

X ′ = C ∪ Nqlc(X,ω + cD).

By adjunction (see Theorem 2.13 (i)), [X ′, (ω+cD)|X′ ] is a quasi-log scheme. By construc-
tion, dimC < n and

(ω + cD)|X′ + (r − c)L|X′ ≡ 0

hold. Note that
r − c > dimC − 1 = dim(X ′ \X ′

−∞)− 1

holds. Therefore, by the induction hypothesis, |L|X′ | is basepoint-free. Since L−(ω+cD) ≡
(r+ 1− c)L is ample, H1(X, IX′ ⊗L) = 0 by Theorem 2.13 (ii), where IX′ is the defining
ideal sheaf of X ′ on X. Thus, the restriction map

H0(X,L) → H0(X ′,L|X′)

is surjective. In particular, |L| is basepoint-free in a neighborhood of C. This is a contra-
diction since C ∩ Bs|L| ̸= ∅. Hence, we obtain Bs|L| = ∅.

We obtained the desired statement. □
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5. Proof of Theorem 1.1

Let us explain the idea of the proof of the relative spannedness in Theorem 1.1. We
construct a sequence of closed subschemes

Z0 ⊂ Z1 ⊂ · · · ⊂ Zk−1 ⊂ X

such that Zk−1 = F holds set theoretically. For every i, there exists an R-Cartier divisor
ωi|Zi

on Zi such that [Zi, ωi|Zi
] is a quasi-log scheme and that

ωi|Zi
+ rL|Zi

≡ 0

holds with
r > dimF − 1 ≥ dimZi − 1.

We can make [Zi, ωi|Zi
] satisfy that (Z0)−∞ = ∅ and that (Zi+1)−∞ ⊂ Zi set theoretically

for every i. By Theorem 1.6, the complete linear system |L|Z0| is basepoint-free. By the
vanishing theorem for quasi-log schemes, we obtain that the natural restriction map

f∗OX(L) → f∗OZi
(L|Zi

)

is surjective for every i. Therefore, if |L|Zi
| is basepoint-free, then the relative base locus

Bsf |L| is disjoint from Zi. This implies that |L|(Zi+1)−∞| is basepoint-free since we have
(Zi+1)−∞ ⊂ Zi. Then, by Theorem 1.6, the complete linear system |L|Zi+1

| is basepoint-
free. Hence we finally obtain that the relative base locus Bsf |L| is disjoint from F . This
means that

f ∗f∗OX(L) → OX(L)

is surjective at every point of F .

We start with the following easy lemma on log canonical pairs.

Lemma 5.1. Let (X,∆) be a log canonical pair and let B be an effective R-Cartier divisor
on X such that (X,∆+B) is not log canonical. Then there exists an increasing sequence
of real numbers

0 ≤ c0 < c1 < · · · < ck−1 < ck = 1

with the following properties.

(i) c0 is the log canonical threshold of (X,∆) with respect to B.
(ii) We put Ui = X \ Nlc(X,∆ + ciB) for every i. Then Ui+1 ⊊ Ui holds for every

0 ≤ i ≤ k − 1.
(iii) For every 1 ≤ i ≤ k, X \ Nlc(X,∆+ tB) = Ui holds for any t ∈ (ci−1, ci].

In this situation, for each i with 0 ≤ i ≤ k − 1, there exists a finite set of log canonical
centers {Cj}j∈Ii of (X,∆+ ciB) such that

Ui \ Ui+1 ⊂
∪
j∈Ii

Cj

and that

Nlc(X,∆+B) =
k−1∪
i=0

(∪
j∈Ii

Cj

)
holds set theoretically.

Proof. We note that ci is a kind of jumping numbers of (X,∆) with respect to B for every
i. More precisely, we consider the following Zariski open set

Ut := X \ Nlc(X,∆+ tB)

for every t ∈ [0, 1] and increase t from 0 to 1. Then there exists an increasing sequence of
real numbers

0 ≤ c0 < c1 < · · · < ck−1 < ck = 1
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satisfying the desired properties.
The following description may be helpful. By the above construction, c0 is the log

canonical threshold of (X,∆) with respect to B and ck = 1. Let Nklt(X,∆ + ci−1B)
denote the non-klt locus of (X,∆ + ci−1B) for 1 ≤ i ≤ k − 1. Equivalently, Vi−1 :=
X\Nklt(X,∆+ci−1B) is the largest Zariski open set of X such that (Vi−1, (∆+ci−1B)|Vi−1

)
is kawamata log terminal. Then ci−ci−1 is the log canonical threshold of (X,∆+ci−1B) with
respect to B on the Zariski open set Vi−1 = X \Nklt(X,∆+ ci−1B) for 1 ≤ i ≤ k− 1. □
We prepare one more easy lemma.

Lemma 5.2. Let (X,∆) be a log canonical pair and let B1, . . . , Bk be effective Cartier

divisors on X passing through a closed point P of X. If (X,∆+
∑k

i=1 Bi) is log canonical
around P , then the inequality k ≤ dimX holds.

Although Lemma 5.2 is well known, we prove it here for the reader’s convenience.

Proof. By shrinking X around P , we may assume that (X,∆+
∑k

i=1Bi) is log canonical.
If dimX = 1, then the statement is obvious. We use the induction on dimX. So we
assume that dimX ≥ 2 holds. Let ν : Z → Bk be the normalization of Bk. We put

KZ +∆Z = ν∗(KX +∆+Bk).

Then (Z,∆Z) is log canonical by adjunction since (X,∆ + Bk) is log canonical. We note
that SuppBi and SuppBk have no common irreducible components for 1 ≤ i ≤ k− 1 since
(X,∆+

∑k
i=1Bi) is log canonical. We take Q ∈ ν−1(P ). Then (Z,∆Z +

∑k−1
i=1 ν

∗Bi) is log
canonical by adjunction and Q ∈ Supp ν∗Bi for 1 ≤ i ≤ k − 1. Therefore, we obtain

k − 1 ≤ dimZ = dimX − 1

by the induction hypothesis. This means that the desired inequality k ≤ dimX holds. □
Let us prove Theorem 1.1 by using Theorem 1.6 and Lemma 5.1.

Proof of Theorem 1.1. Since KX + ∆ + rL ≡Y 0, −(KX + ∆) is f -ample, and r > 0, we
see that L is f -ample. We put f(F ) = P and shrink Y around P . Then we may assume
that Y is affine without loss of generality. We put n = dimX and take general hyperplane
sections B1, . . . , Bn+1 on Y such that P ∈ SuppBi for every i. We put

B =
n+1∑
i=1

f ∗Bi.

Then (X,∆ + B) is log canonical outside F and is not log canonical at every point of F
by Lemma 5.2.

Step 1. Let F ′ be any positive-dimensional irreducible component of F . In this step, we
will prove that dimF ′ ≥ r − 1 holds.

We put

c = max{t ∈ R | (X,∆+ tB) is log canonical at the generic point of F ′},
that is, c is the log canonical threshold of (X,∆) with respect to B at the generic point of
F ′. By construction, 0 ≤ c < 1 and F ′ is a log canonical center of (X,∆+ cB). We now
consider the natural quasi-log scheme structure of [X,∆+ cB] as in Example 2.14. We put

X ′ = F ′ ∪ Nqlc(X,∆+ cB)

and consider the induced quasi-log scheme [X ′, (KX + ∆ + cB)|X′ ] by adjunction (see
Theorem 2.13 (i)). Note that

tL|X′ − (KX +∆+ cB)|X′ ≡ (t+ r)L|X′



16 OSAMU FUJINO

is ample for t > −r since f(X ′) = P . We note that

degχ(X ′, IX′
−∞

⊗OX′(tL)) = dimF ′

holds because L|X′ is ample and the coherent ideal sheaf IX′
−∞

on X ′ can be considered a

coherent sheaf on F ′. More precisely, IX′
−∞

⊂ OF ′ holds since {0} = IF ′ ∩ IX′
−∞

⊂ OX′ ,

where IF ′ is the defining ideal sheaf of F ′ on X ′. By Theorem 2.13,

H i(X ′, IX′
−∞

⊗OX′(tL)) = 0

for i > 0 and t ∈ Z with t > −r. Since L|X′ is ample,

H0(X ′, IX′
−∞

⊗OX′(tL)) = 0

for t ∈ Z with t < 0. Therefore, we obtain

χ(X ′, IX′
−∞

⊗OX′(tL)) = 0

for t ∈ Z with −r < t ≤ −1. Hence, we obtain

dimF ′ = degχ(X ′, IX′
−∞

⊗OX′(tL)) ≥ r − 1.

This means that the dimension of every positive-dimensional irreducible component of
F is ≥ r − 1.

Step 2. In Steps 2 and 3, we will prove that f ∗f∗OX(L) → OX(L) is surjective at every
point of F .

By Lemma 5.1, we have an increasing sequence of real numbers

0 ≤ c0 < c1 < · · · < ck = 1

satisfying the properties in Lemma 5.1. We consider normal pairs (X,∆ + ciB) for 0 ≤
i ≤ k−1. We put ωi = KX +∆+ ciB. Then [X,ωi] is a quasi-log scheme for 0 ≤ i ≤ k−1
(see Example 2.14). We put

Zi =
∪
j∈Ii

Cj ∪ Nqlc(X,ωi)

and consider the pair [Zi, ωi|Zi
] for every i with 0 ≤ i ≤ k − 1. Then, by adjunction (see

Theorem 2.13 (i)), [Zi, ωi|Zi
] is a quasi-log scheme with f(Zi) = P for 0 ≤ i ≤ k − 1. We

note that Nqlc(X,ω0) = ∅ since (X,∆+ c0B) is log canonical by definition. We also note
that (Zi)−∞ = Nqlc(Zi, ωi|Zi

) = Nqlc(X,ωi) for every i by construction. Since L − ωi is
numerically equivalent to

L− (KX +∆) ≡Y (r + 1)L

over Y , L− ωi is f -ample. Therefore, by Theorem 2.13 (ii),

H1(X, IZi
⊗OX(L)) = 0,

where IZi
is the defining ideal sheaf of Zi on X. Hence, the restriction map

(5.1) H0(X,OX(L)) → H0(Zi,OZi
(L))

is surjective for every 0 ≤ i ≤ k − 1.

Step 3. Since [Z0, ω0|Z0 ] is a projective quasi-log canonical pair such that

ω0|Z0 + rL|Z0 ≡ 0

with r > dimF − 1 ≥ dimZ0 − 1, the complete linear system |L|Z0| is basepoint-free by
Corollary 4.3.

If |L|Zi
| is basepoint-free, then the relative base locus Bsf |L| is disjoint from Zi by

(5.1). By Lemma 5.1, Nqlc(X,ωi+1) ⊂ Zi holds set theoretically. This implies that Bsf |L|
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does not intersect with Nqlc(X,ωi+1) = Nqlc(Zi+1, ωi+1|Zi+1
) = (Zi+1)−∞. Therefore,

|L|(Zi+1)−∞| is basepoint-free. Since
ωi+1|Zi+1

+ rL|Zi+1
≡ 0

with r > dimF − 1 ≥ dimZi+1 − 1, |L|Zi+1
| is basepoint-free by Theorem 1.6. We repeat

this process. We note that F = Nlc(X,∆+ B) = Nqlc(X,ωk) set theoretically. Hence we
finally obtain that the complete linear system |L|Zk−1

| is basepoint-free and that the relative
base locus Bsf |L| is disjoint from F = Nqlc(X,ωk), equivalently, f

∗f∗OX(L) → OX(L) is
surjective at every point of F .

We obtained all the desired statements. □
Proof of Corollary 1.2. We assume that KX + ∆ + (n + 1)L is not f -nef. Then, by the
cone and contraction theorem for log canonical pairs (see [4, Theorem 1.1]), we get a
(KX +∆+(n+1)L)-negative extremal contraction φ : X → W over Y . Thus, by replacing
f : X → Y with φ : X → W , we may assume that the relative Picard number ρ(X/Y ) = 1.
Therefore, there exists r with r > n + 1 such that KX +∆+ rL is relatively numerically
trivial over Y . By Theorem 1.1, we have

n = dimX ≥ r − 1 > n.

This is a contradiction. This means that KX + ∆ + (n + 1)L is f -nef. Similarly, we can
check that KX +∆+ nL is f -nef when dimY ≥ 1. □
We close this section with the proof of Corollary 1.3.

Proof of Corollary 1.3. Without loss of generality, we may assume that Y is affine by
shrinking Y around f(F ). Since dimX = dimY and f is surjective, f is generically finite.
Hence f∗OX(−L) ≠ 0 holds. Thus we can take an effective Cartier divisor D on X such
that D ∼ −L. Since (X,∆) is kawamata log terminal, (X,∆+ εD) is also kawamata log
terminal for 0 < ε ≪ 1. By construction,

KX +∆+ εD + (r + ε)L

is relatively numerically trivial over Y . Therefore, by Theorem 1.1, the dimension of
every positive-dimensional irreducible component of F is ≥ (r + ε)− 1, that is, ≥ ⌊r⌋. If
dimF ≤ r + 1, then dimF < (r + ε) + 1 obviouly holds. Thus, by Theorem 1.1,

f ∗f∗OX(L) → OX(L)

is surjective at every point of F . □

6. Generalizations for quasi-log canonical pairs

In this section, we will prove Theorem 1.7. The following lemma is a generalization of
Lemma 5.1 for quasi-log canonical pairs.

Lemma 6.1. Let [X,ω] be an irreducible quasi-log canonical pair and let B be an effective
R-Cartier divisor on X. Then there exist an increasing sequence of real numbers

c−1 = 0 ≤ c0 < c1 < · · · < ck−1 < ck = 1,

globally embedded simple normal crossing pairs (Yi, BYi
) for 0 ≤ i ≤ k, and proper surjective

morphisms fi : Yi → X for all 0 ≤ i ≤ k with the following properties.

(i) For every 0 ≤ i ≤ k,

(X,ω + ciB, fi : (Yi, BYi
) → X)

is a quasi-log scheme.
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(ii) We put

Ui = X \ Nqlc(X,ω + ciB)

for every 0 ≤ i ≤ k. Then

Uk ⊊ Uk−1 ⊊ · · · ⊊ U0 = X

holds.
(iii) For every 0 ≤ i ≤ k,

(X,ω + tB, fi : (Yi, BYi
+ (t− ci)f

∗
i B) → X)

is a quasi-log scheme such that

Ui = X \ Nqlc(X,ω + tB)

holds for any t ∈ (ci−1, ci].
(iv) For each 0 ≤ i ≤ k−1, there exists a finite set of qlc centers {Cj}j∈Ii of [X,ω+ciB]

such that

Ui \ Ui+1 ⊂
∪
j∈Ii

Cj

holds.

Before we prove Lemma 6.1, we make an important remark.

Remark 6.2. In Lemma 6.1, let f : (Y,BY ) → X be a quasi-log resolution of [X,ω]. Let
X ′ be the union of all qlc centers of [X,ω] contained in SuppB. Assume that the union
of all strata of (Y,BY ) mapped to X ′ by f , which is denoted by Y ′, is a union of some
irreducible components of Y . We put Y ′′ = Y − Y ′, KY ′′ + BY ′′ = (KY + BY )|Y ′′ , and
f ′′ = f |Y ′′ . By [7, Proposition 6.3.1] and [13, Theorem 3.35], we may further assume that

(Y ′′, BY ′′ + (f ′′)∗B)

is a globally embedded simple normal crossing pair. Then, by Lemma 3.2,

(X,ω +B, f ′′ : (Y ′′, BY ′′ + (f ′′)∗B) → X)

is a quasi-log scheme. By the following proof of Lemma 6.1, we see that

Nqlc(X,ω +B) =
k−1∪
i=0

(∪
j∈Ii

Cj

)
holds set theoretically.

We give a detailed proof of Lemma 6.1 for the reader’s convenience, although it is similar
to the proof of Lemma 5.1.

Proof of Lemma 6.1. Let f : (Y,BY ) → X be a quasi-log resolution of [X,ω].

Step 1. If there exists a qlc center C of [X,ω] such that C ⊂ SuppB. Then we put c0 = 0,
(Y0, BY0) = (Y,BY ), and f0 = f .

Step 2. We assume that there are no qlc centers of [X,ω] contained in SuppB. By [7,
Proposition 6.3.1] and [13, Theorem 3.35], we may assume that

(Y, f ∗B + SuppBY )

is a globally embedded simple normal crossing pair.
If (BY + f ∗B)>1 = 0, then we put c0 = 1, (Y0, BY0) = (Y,BY + f ∗B), f0 = f , and we

stop this process (see Lemma 3.1).
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If (BY + f ∗B)>1 ̸= 0, then we can take 0 < c0 < 1 such that (BY + c0f
∗B)>1 = 0 and

that there exists a component G of (BY +c0f
∗B)=1 with f(G) ⊂ SuppB. In this situation,

we put (Y0, BY0) = (Y,BY + c0f
∗B) and f0 = f . Then we see that

(X,ω + c0B, f0 : (Y0, BY0) → X)

is the desired quasi-log canonical pair (see Lemma 3.1).

Step 3. We assume that we have already constructed

(X,ω + ciB, fi : (Yi, BYi
) → X)

for i ≥ 0 with ci < 1.
Let X ′

i be the union of Nqlc(X,ω+ ciB) and all qlc centers of [X,ω+ ciB] contained in
SuppB. By [7, Proposition 6.3.1], we may assume that the union of all strata of (Yi, BYi

)
mapped to X ′

i by fi, which is denoted by Y ′
i , is a union of some irreducible components of

Yi. We put Y ′′
i = Yi − Y ′

i ,

KY ′′
i
+BY ′′

i
= (KYi

+BYi
)|Y ′′

i
,

and f ′′
i = fi|Y ′′

i
. We may further assume that(

Y ′′
i , (f

′′
i )

∗B + SuppBY ′′
i

)
is a globally embedded simple normal crossing pair by [7, Proposition 6.3.1] and [13,
Theorem 3.35].

If

f ′′
i

(
Supp

(
BY ′′

i
+ (1− ci)(f

′′
i )

∗B
)>1
)
⊂ X ′

i

holds, then we put ci+1 = 1,(
Yi+1, BYi+1

)
=
(
Y ′′
i , BY ′′

i
+ (1− ci)(f

′′
i )

∗B
)
,

fi+1 = f ′′
i , and we stop this process. We can see that(

X,ω +B, fi+1 : (Yi+1, BYi+1
) → X

)
with ci+1 = 1 is a quasi-log scheme with the desired properties (see Lemma 3.2).

Otherwise, we put

ci+1 = sup
{
s ∈ R

∣∣∣ f ′′
i

(
Supp

(
BY ′′

i
+ (s− ci)(f

′′
i )B

)>1
)
⊂ X ′

i

}
.

In this situation, we have ci < ci+1 < 1. Then we put(
Yi+1, BYi+1

)
=
(
Y ′′
i , BY ′′

i
+ (ci+1 − ci)(f

′′
i )

∗B
)

and fi+1 = f ′′
i . We can see that(

X,ω + ci+1B, fi+1 : (Yi+1, BYi+1
) → X

)
is a quasi-log scheme with the desired properties (see Lemma 3.2).

Step 4. After finitely many steps, we get a finite increasing sequence of real numbers:

c−1 = 0 ≤ c0 < c1 < · · · < ck−1 < ck = 1.

By the above construction, we obviously have the desired properties.

Roughly speaking, ci − ci−1 is the quasi-log canonical threshold of [X,ω + ci−1B] with
respect to B on the Zariski open set X \X ′

i−1 of X for 1 ≤ i ≤ k − 1. Hence we can see
this lemma as a quasi-log scheme analogue of Lemma 5.1. □

We give a sketch of the proof of Theorem 1.7 for the reader’s convenience, although the
proof of Theorem 1.7 is essentially the same as that of Theorem 1.1.

Sketch of Proof of Theorem 1.7. We divide the proof into several small steps.
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Step 1. Since L− ω ≡ (r + 1)L is φ-ample, we have R1φ∗(IXi
⊗L) = 0, where Xi is any

irreducible component of X and IXi
is the defining ideal sheaf of Xi on X. Therefore, the

restriction map

φ∗L → φ∗(L|Xi
)

is surjective. We note that [Xi, ω|Xi
] is a quasi-log canonical pair by adjunction (see

Theorem 2.13 (i)). We also note that ω|Xi
+ rL|Xi

is relatively numerically trivial over
W . Therefore, by replacing [X,ω] with [Xi, ω|Xi

], we may assume that X is irreducible.
Furthermore, by replacing W with φ(X), we may assume that W is an irreducible variety.
By shrinking W around φ(F ), we may further assume that W is an affine variety.

Step 2. If φ(X) = W is a point, then we have X = F and may assume that dimX =
dimF ≥ 1 holds. In this case, by Lemma 4.1, r ≤ dimF + 1 holds. This means that
dimF ≥ r− 1 holds true. If dimF < r+1, equivalently, r > dimF − 1 = dimX − 1, then
|L| is basepoint-free by Lemma 4.1 again. This means that

φ∗φ∗L → L
is surjective at every point of F .

Step 3. From now on, we may assume that dimW ≥ 1 holds. We put n = dimX and
take general hyperplane sections B1, . . . , Bn+1 on W such that φ(F ) ∈ SuppBi for every i.
We put

B =
n+1∑
i=1

φ∗Bi.

Step 4. Let F ′ be any positive-dimensional irreducible component of F .
If F ′ is a qlc center of [X,ω]. Then [F ′, ω|F ′ ] is a quasi-log canonical pair by adjunction

(see Theorem 2.13 (i)). Hence we obtain

dimF ′ = degχ(F ′,L⊗t|F ′) ≥ r − 1

by the usual application of the vanishing theorem (see Theorem 2.13 (ii) and Step 1 in the
proof of Lemma 4.1).

From now on, we may assume that F ′ is not a qlc center of [X,ω]. Let f : (Y,BY ) → X
be a quasi-log resolution of [X,ω]. Let X ′ be the union of all qlc centers contained in F .
By [7, Proposition 6.3.1], we may assume that the union of all strata of (Y,BY ) mapped
to X ′ by f , which is denoted by Y ′, is a union of some irreducible components of Y . We
put Y ′′ = Y − Y ′, KY ′′ + BY ′′ = (KY + BY )|Y ′′ , and f ′′ = f |Y ′′ . We may further assume
that

(Y ′′, (f ′′)∗B + SuppBY ′′)

is a globally embedded simple normal crossing pair by [7, Proposition 6.3.1] and [13,
Theorem 3.35]. By [7, Lemma 6.3.13], we can take 0 < c < 1 such that there ex-
ists an irreducible component G of (BY ′′ + c(f ′′)∗B)=1 with f ′′(G) = F ′ and that F ′ ̸⊂
f ′′ (Supp(BY ′′ + c(f ′′)∗B)>1). Then

(X,ω + cB, f ′′ : (Y ′′, BY ′′ + c(f ′′)∗B) → X)

is a quasi-log scheme such that F ′ is a qlc center of [X,ω + cB] (see Lemma 3.2). We put

X ′ = F ′ ∪ Nqlc(X,ω + cB).

Then, by adjunction (see Theorem 2.13 (i)), [X ′, (ω + cB)|X′ ] is a quasi-log scheme. By
construction,

dimF ′ = degχ(X ′, IX′
−∞

⊗ L⊗t) ≥ r − 1

as in Step 1 in the proof of Theorem 1.1.
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Step 5. We note that

(X,ω +B, f ′′ : (Y ′′, BY ′′ + (f ′′)∗B) → X)

is a quasi-log scheme (see Lemma 3.2) such that Nqlc(X,ω+B) = F holds set theoretically
(see [7, Lemma 6.3.13]). By Lemma 6.1, the arguments in Steps 2 and 3 in the proof of
Theorem 1.1 work with some minor modifications. Hence, we obtain that

φ∗φ∗L → L
is surjective at every point of F = Nqlc(X,ω +B).

We obtained all the desired statements. □
Proof of Corollary 1.8. We note that the cone and contraction theorem holds true for
quasi-log canonical pairs (see [7, Theorems 6.7.3 and 6.7.4]). Therefore, the proof of
Corollary 1.2 works as well in this case, using Theorem 1.7. □
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