
FUNDAMENTAL PROPERTIES OF BASIC SLC-TRIVIAL FIBRATIONS
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Abstract. We introduce the notion of basic slc-trivial fibrations. It is a generalization
of that of Ambro’s lc-trivial fibrations. Then we study fundamental properties of basic slc-
trivial fibrations by using the theory of variations of mixed Hodge structure on cohomology
with compact support. More precisely, we prove that the moduli part of a basic slc-trivial
fibration is b-strongly nef. Note that the notion of basic slc-trivial fibrations is closely
related to that of normal irreducible quasi-log canonical pairs. So the results obtained in
this paper will play an important role in the theory of quasi-log schemes. Here we give
a structure theorem for normal irreducible quasi-log canonical pairs as an application of
the main theorem. This result makes the theory of quasi-log schemes more powerful and
more flexible.
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1. Introduction

From 2006 to 2007, I wrote a preprint [Fn5], where I obtained some generalizations
of Kollár’s injectivity, vanishing, and torsion-free theorems by using the theory of mixed
Hodge structures on cohomology with compact support. Note that a completely revised
and expanded version of [Fn5] is now published as Chapter 5 of [Fn10] (see also [Fn9]
and [Fn13]). The main motivation of [Fn5] is to establish some generalizations of Kollár’s
theorems for the theory of quasi-log schemes introduced by Florin Ambro (see [A3]). In
2009, I wrote a very preliminary version of [FF1] and started a joint work with Taro
Fujisawa. One of my motivations of [FF1] is to formulate an ultimate generalization of
the Fujita–Zucker–Kawamata semipositivity theorem and obtain some kind of canonical
bundle formula for reducible varieties by using the theory of variations of mixed Hodge
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structure on cohomology with compact support. Soon after we released a preprint version
of [FF1] in 2012, I got the projectivity of the coarse moduli spaces of stable varieties in
[Fn14] as an easy application of [FF1]. I thought that the paper [Fn14] was an important
unexpected application of [FF1] because everyone thought that the projectivity of the
coarse moduli spaces of stable varieties had been already proved in [Ko1]. We note that
the main result of [Fn14] now can be proved without using the theory of variations of
mixed Hodge structure (see [Fn15]). The proof in [Fn15] uses the Kollár–Ohsawa type
vanishing theorem for simple normal crossing pairs. Anyway, in this paper, we discuss a
kind of canonical bundle formula for reducible varieties, which we call a basic slc-trivial
firbration, as an application of [FF1]. This paper relates the theory of variations of mixed
Hodge structure on cohomology with compact support discussed in [FF1] to the theory of
quasi-log schemes established in [Fn10, Chapter 6]. Therefore, the results in this paper
will play a crucial role in the study of quasi-log schemes.

Let us introduce basic slc-trivial fibrations f : (X,B) → Y . They consist of a projective
surjective morphism f : X → Y from a simple normal crossing variety X to a normal
irreducible variety Y such that (X,B) is a simple normal crossing pair and that KX + B
is Q-linearly trivial over Y . More precisely, we assume:

(1) Y is a normal irreducible variety,
(2) every stratum of X is dominant onto Y and f∗OX ≃ OY , where f : X → Y is a

projective surjective morphism,
(3) B is a Q-divisor on X such that (X,B) is a simple normal crossing pair and that

B = B≤1 holds over the generic point of Y ,
(4) there exists a Q-Cartier Q-divisor D on Y such that KX +B ∼Q f

∗D, and
(5) rank f∗OX(⌈−(B<1)⌉) = 1.

We note that X is not necessarily irreducible in the above setup. It may be a reducible
simple normal crossing variety. Of course, we are mainly interested in the case where X
is reducible. The notion of basic slc-trivial fibrations is a natural generalization of that of
lc-trivial fibrations (see [A4] and [FG2]) and will suit the theory of quasi-log schemes very
well.

In the above setup, let σ : Y ′ → Y be a birational morphism from a normal irreducible
variety Y ′. Then we can construct a following commutative diagram of basic slc-trivial
fibrations:

(X ′, BX′)
µ //

f ′

��

(X,B)

f
��

Y ′
σ

// Y

where BX′ is defined by KX′ +BX′ = µ∗(KX +B) and f ′ : (X ′, BX′) → Y ′ is nothing but
the base change of f : (X,B) → Y by σ : Y ′ → Y on a nonempty Zariski open set of Y ′.
We call f ′ : (X ′, BX′) → Y ′ an induced basic slc-trivial fibration of f : (X,B) → Y by
σ : Y ′ → Y . As for lc-trivial fibrations, we can define a discriminant Q-b-divisor B and a
moduli Q-b-divisor M on Y associated to f : (X,B) → Y (see 4.5).

Before we state the main theorem of this paper, we have to introduce the notion of
strongly nef Q-divisors.

Definition 1.1 (Strongly nef divisors, see Definition 2.5). Let X be a normal irreducible
variety and let D be a divisor on X. If there exist a normal complete variety X which
contains X as a dense Zariski open set and a nef divisor D on X such that D = D|X , then
D is called a strongly nef divisor on X. A finite R>0-linear (resp. Q>0-linear) combination
of strongly nef divisors is called a strongly nef R-divisor (resp. Q-divisor).
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Let us state the main theorem of this paper, which is a generalization of [A4, Theorem
0.2] (see also [FG2, Theorem 3.6]).

Theorem 1.2 (Main Theorem). Let f : (X,B) → Y be a basic slc-trivial fibration and let
B and M be the induced discriminant and moduli Q-b-divisors of Y respectively. Then we
have the following properties:

(i) K+B is Q-b-Cartier, and
(ii) M is b-strongly nef, that is, there exists a proper birational morphism σ : Y ′ → Y

from a normal variety Y ′ such that MY ′ is a strongly nef Q-divisor on Y ′ and that
M = MY ′.

We note that K in Theorem 1.2 is the canonical b-divisor of Y . For the precise definition
of Q-b-divisors and b-strongly nef divisors, see Definition 2.12 below.

Theorem 1.2 can be restated as follows without using b-divisors.

Theorem 1.3. Let f : (X,B) → Y be a basic slc-trivial fibration. Then there is a proper
birational morphism σ : Y ′ → Y from a normal variety Y ′ such that

(i) KY ′ +BY ′ is Q-Cartier and ν∗(KY ′ +BY ′) = KY ′′ +BY ′′ for every proper birational
morphism ν : Y ′′ → Y ′ from a normal variety Y ′′, and

(ii) MY ′ is a Q-Cartier Q-divisor on Y ′ that is strongly nef and ν∗MY ′ = MY ′′ for
every proper birational morphism ν : Y ′′ → Y ′ from a normal variety Y ′′.

We note that BY ′ (resp. BY ′′) is the discriminant Q-divisor on Y ′ (resp. Y ′′) and that
MY ′ (resp. MY ′′) is the moduli Q-divisor on Y ′ (resp. Y ′′) in Theorem 1.3.

In [A4], Florin Ambro established Theorem 1.2 under the assumption that (X,B) has
only sub kawamata log terminal singularities over the generic point of Y . The case where
(X,B) has only sub log canonical singularities over the generic point of Y was proved in
[FG2]. Note that Ambro used the theory of variations of Hodge structure in [A4] and
Gongyo and the author used the theory of variations of mixed Hodge structure in [FG2].

On moduli Q-b-divisors, we pose the following conjecture.

Conjecture 1.4 (b-semi-ampleness conjecture). Let f : (X,B) → Y be a basic slc-trivial
fibration. Then the moduli part M is b-semi-ample.

By Lemma 4.11 below, we see that it is sufficient to prove Conjecture 1.4 under the extra
assumption that Y is complete. Anyway, Conjecture 1.4 is still widely open even when X
is a smooth irreducible variety and B = 0. For some known cases and related topics, we
recommend the reader to see [Ka2], [Fn2], [A5], [PrSh], [FG2], and so on. In a joint paper
with Taro Fujisawa and Haidong Liu (see [FFL]), we will prove:

Theorem 1.5. If Y is complete and MY ′ is numerically trivial in Theorem 1.2, then
MY ′ ∼Q 0 holds.

As an easy consequence of Theorem 1.5, we have the following result.

Corollary 1.6. Conjecture 1.4 holds true when Y is a curve.

We note that Theorem 1.5 is a generalization of [A5, Theorem 3.5] and [Fl, Theorem
1.3] and that Corollary 1.6 is a generalization of [A4, Theorem 0.1]. For the details of
Theorem 1.5 and Corollary 1.6, see [FFL].

As an application of Theorem 1.3, we will prove the following theorem. Theorem 1.7,
which is one of the main motivations of this paper, will play an crucial role in the theory
of quasi-log schemes.
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Theorem 1.7 (Structure theorem for normal irreducible quasi-log canonical pairs). Let
[X,ω] be a quasi-log canonical pair such that X is a normal irreducible variety. Then there
exists a projective birational morphism p : X ′ → X from a smooth quasi-projective variety
X ′ such that

KX′ +BX′ +MX′ = p∗ω,

where BX′ is a subboundary R-divisor, that is, BX′ = B≤1
X′ , such that SuppBX′ is a simple

normal crossing divisor and that B<0
X′ is p-exceptional, and MX′ is a strongly nef R-divisor

on X ′. Furthermore, we can make BX′ satisfy p(B=1
X′ ) = Nqklt(X,ω).

We further assume that [X,ω] has a Q-structure. Then we can make BX′ and MX′

Q-divisors in the above statement.

We note that there are many examples of quasi-log canonical pairs in the theory of
minimal models.

Example 1.8. (1) Let (X,∆) be a quasi-projective semi-log canonical pair. Then [X,ω],
where ω = KX +∆, is a quasi-log canonical pair such that W is a qlc stratum of [X,ω] if
and only if W is an slc stratum of (X,∆). For the details, see [Fn7, Theorem 1.2].

(2) Let W be a qlc stratum of a quasi-log canonical pair [X,ω]. Then [W,ω|W ] is also a
quasi-log canonical pair by adjunction (see, for example, [Fn10, Theorem 6.3.5]).

(3) Let [X,ω] be a quasi-log canonical pair such that X is irreducible. Let ν : Xν → X
be the normalization of X. Then we can prove that [Xν , ν∗ω] is a quasi-log canonical pair.
For the details, see [FLh1, Theorem 1.1].

(4) Let W be an slc stratum of a quasi-projective semi-log canonical pair (X,∆). Then,
by (1), (2), and (3) above, we see that [W,ω|W ] and [W ν , ν∗(ω|W )] are quasi-log canonical
pairs, where ω = KX +∆ and ν : W ν → W is the normalization of W .

Here we give an important remark on Theorem 1.7.

Remark 1.9 (Generalized polarized pairs). We put BX = p∗BX′ and MX = p∗MX′ in
Theorem 1.7. Then BX is a boundary R-divisor on X, that is, an effective R-divisor
on X with BX = B≤1

X , since B<0
X′ is p-exceptional. Of course, KX + BX + MX is R-

Cartier by construction. Let X → S be any projective morphism between quasi-projective
varieties. Then, (X,BX +MX) is a generalized polarized pair which comes with the data

X ′ p−→ X −→ S and MX′ as in [BZ, Definition 1.4]. Moreover, we can easily check
that (X,BX +MX) is generalized lc in the sense of [BZ, Definition 4.1]. We note that
(X,BX +MX) is generalized klt in the sense of [BZ, Definition 4.1] when Nqklt(X,ω) = ∅.
For the details of generalized polarized pairs, we recommend the reader to see [BZ, Section
4].

By Theorem 1.7, we can prove a kind of subadjunction formula for minimal qlc strata
of quasi-log canonical pairs. Corollary 1.10 is a complete generalization of [Ka3, Theorem
1]. For a different generalization of [Ka3, Theorem 1], see [FG1, Theorem 1.2]. We also
recommend the reader to see [FLw2] for a generalization of Corollary 1.10.

Corollary 1.10 (Subadjunction for minimal qlc strata). Let [X,ω] be a quasi-log canonical
pair and let W be a minimal qlc stratum of [X,ω]. We assume that W is quasi-projective
and H is any ample R-divisor on W . Then we can construct an effective R-divisor ∆W on
W such that (W,∆W ) is kawamata log terminal with KW +∆W ∼R ω|W +H. We further
assume that [X,ω] has a Q-structure and H is an ample Q-divisor on W . Then we can
make ∆W a Q-divisor with KW +∆W ∼Q ω|W +H.

As an application of Theorem 1.7, we will prove:

Corollary 1.11 ([FLh2]). Every quasi-log canonical pair has only Du Bois singularities.
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Corollary 1.11 is a complete generalization of [Ko3, Corollary 6.32]. We will discuss
Corollary 1.11 and some related topics in a joint paper with Haidong Liu (see [FLh2]).
We note that the arguments in [FLh2] and this paper are free from the minimal model
program.

By using Theorem 1.7, we will also prove:

Corollary 1.12 (Simply connectedness and rationally chain connectedness of quasi-log
canonical Fano pairs, [FLw2]). Let [X,ω] be a connected projective quasi-log canonical pair.
Assume that −ω is ample. Then X is simply connected and rationally chain connected.

Corollary 1.13 (Lengths of extremal rational curves, [FLw2]). Let [X,ω] be a quasi-log
canonical pair and let π : X → S be a projective morphism onto a variety S. Then every
ω-negative extremal ray R of the relative Kleiman–Mori cone NE(X/S) is spanned by a
rational curve C with 0 < −ω · C ≤ 2 dimX.

We will discuss a generalization of Corollary 1.10, Corollaries 1.12 and 1.13 in a joint
paper with Wenfei Liu (see [FLw2]).

Finally, as an application of Theorem 1.7, we will prove the following Fujita-type freeness
for quasi-log canonical surfaces in a joint paper with Haidong Liu (see [FLh3]).

Corollary 1.14 ([FLh3]). Let [X,ω] be a projective quasi-log canonical pair of dimension
two and let M be a Cartier divisor on X. We put N = M − ω. Assume that N2 ·Xi > 4
for every irreducible component Xi of X and that N ·C ≥ 2 for every curve C on X. Then
the complete linear system |M | is basepoint-free.

Corollary 1.14 is a generalization of the result for semi-log canonical surfaces obtained
in [Fn11].

We strongly recommend the reader to see [FLh2], [FLh3], [FFL], and [FLw2] after read-
ing this paper.

1.15 (Historical comments on related papers). One of the starting points of this paper
is Mori’s work in [M, Section 5, Part II]. It is a prototype of the so-called Fujino–Mori
canonical bundle formula (see [FM]). We note that [FM] is an expanded version of Mori’s
unpublished preprint written and circulated around 1994. We also note that the moduli
part is called the semistable part in [FM]. In [Ka3, Theorem 2], Kawamata essentially
proved that the moduli part of a klt-trivial fibration is nef. After the author learned [Ka3,
Theorem 2], he soon got some applications of Kawamata’s result in [Fn1] and then obtained
the so-called Fujino–Mori canonical bundle formula with Shigefumi Mori by combining
Mori’s unpublished preprint with [Ka3, Theorem 2]. Then the author discussed the semi-
ampleness of semistable parts for certain algebraic fiber spaces in [Fn2] and also proved
that the semistable part behaves very well under pull-back in [Fn2, Section 4]. In [Fn3,
Section 4], he essentially proved that the moduli part of an lc-trivial fibration is nef. This
result is a direct generalization of [Ka3, Theorem 2]. From the Hodge theoretic viewpoint,
[Ka3] is pure and [Fn3, Section 4] is mixed. We note that [Fn3, Sections 4 and 5] was
not published. If the author remembers correctly, he planned to divide [Fn3] into two
papers following the editor’s recommendation (see [Fn4, Remark 1.1]). On the other hand,
Ambro started to study some applications of [Ka3, Theorem 2] in his thesis (see [A1])
independently. Then he formulated lc-trivial fibrations, which are now called klt-trivial
fibrations in this paper, and proved that the moduli part is b-nef (see [A4]). His result
recovers [Ka3, Theorem 2]. However, his proof is different from Kawamata’s original
one in [Ka3] and is essentially the same as the arguments in [M, Section 5, Part II] and
[Fn2, Section 4]. Moreover, in [A5], Ambro proved that the moduli part of a klt-trivial
fibration is b-nef and abundant under some mild assumptions. Note that this deep result
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was generalized for lc-trivial fibrations by [FG2]. More precisely, in [FG2], Gongyo and the
author showed how to reduce some problems for lc-trivial fibrations to those for klt-trivial
fibrations. On the semi-ampleness, Kawamata essentially proved that the moduli part of
an lc-trivial fibration is semi-ample when the dimension of general fibers is one in [Ka2]
(see also [PrSh]). Anyway, as we mentioned before, the b-semi-ampleness conjecture (see
Conjecture 1.4) is still widely open. We recommend the reader to see [Fn8], where the
author discussed various topics around lc-trivial fibrations. Roughly speaking, in [Fn8], the
author formulated lc-trivial fibrations for Kähler manifolds and proved the finite generation
of canonical rings for compact Kähler manifolds. We also recommend the reader to see
[Fn12] for a survey on some related topics. Finally, we note that Kollár surveys lc-trivial
fibrations in [Ko2]. His treatment is slightly different from others.

We briefly explain the organization of this paper. In Section 2, we fix the notation and
recall various basic results for the reader’s convenience. Here we introduce the notion of
strongly nef divisors and explain some basic properties. Section 3 is a short section on the
theory of variations of mixed Hodge structure on cohomology with compact support. We
explain some results in [FF1]. Note that Theorem 3.1 is the main ingredient of this paper.
Theorem 3.1 is a generalization of the Fujita–Zucker–Kawamata semipositivity theorem. In
Section 4, we introduce the notion of (pre-)basic slc-trivial fibrations, define discriminant
Q-b-divisors and moduli Q-b-divisors, and study some basic properties. The notion of
basic slc-trivial fibrations is a generalization of that of Ambro’s lc-trivial fibrations. In
Section 5, we treat an inversion of adjunction for pre-basic slc-trivial fibrations under some
assumptions. Although we do not need the result in Section 5 explicitly in this paper, the
calculation in Section 5 may help the reader understand Theorem 1.7. In Section 6, we take
a cyclic cover of the generic fiber of a given basic slc-trivial fibration to construct a new
pre-basic slc-trivial fibration. Then we interpret the moduli part of a given basic slc-trivial
fibration Hodge theoretically. In Section 7, we discuss various covering lemmas essentially
due to Yujiro Kawamata. We will use them in the subsequent sections. In Section 8, we
prove that the moduli part of a basic slc-trivial fibration behaves very well under pull-back
by generically finite morphisms with some mild assumptions. Section 9 is devoted to the
proof of the main theorem: Theorem 1.2. In Section 10, we treat normal irreducible quasi-
log canonical pairs. By the main result in Section 10, we see that a normal irreducible
quasi-log canonical pair with Q-structure can be seen as a basic slc-trivial fibration. This
fact is one of the main motivations to introduce the notion of basic slc-trivial fibrations.
In Section 11, we prove Theorem 1.7 as an application of Theorem 1.2. By this theorem,
we see that normal irreducible quasi-log canonical pairs are similar to log canonical pairs.
Section 12 is a short section on a remark about the basepoint-free theorem for quasi-log
canonical pairs. In the final section: Section 13, we give some supplementary remarks on
[FF1], which is one of the main ingredients of this paper, for the reader’s convenience.

Acknowledgments. The author was partially supported by JSPS KAKENHI Grant
Numbers JP16H03925, JP16H06337. He would like to thank Yoshinori Gongyo, Wen-
fei Liu, Takeshi Abe, Kenta Hashizume, and Haidong Liu for discussions. He also would
like to thank Professor Taro Fujisawa very much for useful discussions and advice, and for
allowing him to include [FF3] in this paper.

Conventions. We will work over C, the complex number field, throughout this paper. We
will freely use the basic notation of the minimal model program as in [Fn6] and [Fn10]. A
scheme means a separated scheme of finite type over C. A variety means a reduced scheme,
that is, a reduced separated scheme of finite type over C. In this paper, a variety may be
reducible. However, we sometimes assume that a variety is irreducible without mentioning
it explicitly if there is no danger of confusion. The set of integers (resp. rational numbers
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or real numbers) is denoted by Z (resp. Q or R). The set of nonnegative (resp. positive)
rational numbers is denoted by Q≥0 (resp. Q>0). We use Z≥0, Z>0, R≥0, and R>0 similarly.

2. Preliminaries

In this section, we fix the notation and recall some basic results for the reader’s conve-
nience.

2.1 (Divisors). Let X be a scheme with structure sheaf OX and let KX be the sheaf of
total quotient rings of OX . Let K∗

X denote the (multiplicative) sheaf of invertible elements
in KX , and O∗

X the sheaf of invertible elements in OX . We note that OX ⊂ KX and
O∗

X ⊂ K∗
X hold. A Cartier divisor D on X is a global section of K∗

X/O∗
X , that is, D is an

element of Γ(X,K∗
X/O∗

X). A Q-Cartier divisor (resp. An R-Cartier divisor) is an element
of Γ(X,K∗

X/O∗
X)⊗Z Q (resp. Γ(X,K∗

X/O∗
X)⊗Z R).

Let D1 and D2 be two R-Cartier divisors on X. Then D1 is linearly (resp. Q-linearly,
or R-linearly) equivalent to D2, denoted by D1 ∼ D2 (resp. D1 ∼Q D2, or D1 ∼R D2) if

D1 = D2 +
k∑

i=1

ri(fi)

such that fi ∈ Γ(X,K∗
X) and ri ∈ Z (resp. ri ∈ Q, or ri ∈ R) for every i. We note that

(fi) is a principal Cartier divisor associated to fi, that is, the image of fi by

Γ(X,K∗
X) → Γ(X,K∗

X/O∗
X).

Let f : X → Y be a morphism between schemes. If there exists an R-Cartier (resp. a
Q-Cartier) divisor B on Y such that D1 ∼R D2 + f ∗B (resp. D1 ∼Q D2 + f ∗B), then
D1 is said to be relatively R-linearly (resp. Q-linearly) equivalent to D2. It is denoted by
D1 ∼R,f D2 or D1 ∼R,Y D2 (resp. D1 ∼Q,f D2 or D1 ∼Q,Y D2).

From now on, let X be an equidimensional scheme. We note that X is not necessarily
regular in codimension one. A (Weil) divisor D on X is a finite formal sum

D =
∑
i

diDi

where Di is an irreducible reduced closed subscheme of X of pure codimension one and di
is an integer for every i such that Di ̸= Dj for every i ̸= j. If di ∈ Q (resp. di ∈ R) for
every i, then D is called a Q-divisor (resp. an R-divisor). Let D =

∑
i diDi be an R-divisor

as above. We put

D≤1 =
∑
di≤1

diDi, D<1 =
∑
di<1

diDi, D=1 =
∑
di=1

Di, and ⌈D⌉ =
∑
i

⌈di⌉Di,

where ⌈di⌉ is the integer defined by di ≤ ⌈di⌉ < di + 1. Moreover, we put ⌊D⌋ = −⌈−D⌉
and {D} = D − ⌊D⌋. Let D be an R-divisor. We call D a subboundary R-divisor if
D = D≤1 holds. When D is effective and D = D≤1 holds, we call D a boundary R-divisor.

We further assume that f : X → Y is a surjective morphism onto an irreducible variety
Y . Then we put

Dv =
∑

f(Di)⊊Y

diDi and Dh = D −Dv,

and call Dv the vertical part and Dh the horizontal part of D with respect to f : X → Y ,
respectively.

2.2 (Singularities of pairs). A pair (X,∆) consists of a normal variety X and an R-divisor
∆ on X such that KX +∆ is R-Cartier. A pair (X,∆) is called sub kawamata log terminal
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(resp. sub log canonical) if for any proper birational morphism f : Y → X from a normal
variety Y , every coefficient of ∆Y is < 1 (resp. ≤ 1) where

KY +∆Y := f ∗(KX +∆).

A pair (X,∆) is called kawamata log terminal (resp. log canonical) if (X,∆) is sub kawa-
mata log terminal (resp. sub log canonical) and ∆ is effective.

Let (X,∆) be a sub log canonical pair and let W be a closed subset of X. Then
W is called a log canonical center of (X,∆) if there exist a proper birational morphism
f : Y → X from a normal variety Y and a prime divisor E on Y such that multE ∆Y = 1
and f(E) = W .

We note that −multE ∆Y is denoted by a(E,X,∆) for any prime divisor E on Y and
is called the discrepancy coefficient of E with respect to (X,∆).

Let X be a normal variety and let ∆ be an R-divisor on X such that KX + ∆ is R-
Cartier. Under this assumption, we can define the discrepancy coefficient a(E,X,∆) for
any prime divisor E over X by taking a suitable resolution of singularities. The minimal
log discrepancy of (X,∆) in a closed subset Z ⊊ X is

mldZ(X,∆) := inf
cX(E)⊂Z

a(E,X,∆) + 1,

where E is a prime divisor over X and cX(E) is the center of E on X.

In this paper, we mainly treat reducible varieties. So we need the notion of (sub) semi-log
canonical singularities.

Definition 2.3 (Semi-log canonical singularities). Let X be an equidimensional variety
that satisfies Serre’s S2 condition and is normal crossing in codimension one. Let ∆ be
an R-divisor on X such that no irreducible component of Supp∆ is contained in the
singular locus of X and that KX + ∆ is R-Cartier. We say that (X,∆) has only sub
semi-log canonical (sub slc, for short) singularities if (Xν ,∆Xν ) is sub log canonical, where
ν : Xν → X is the normalization of X and KXν + ∆Xν = ν∗(KX + ∆), that is, ∆Xν is
the sum of the inverse images of ∆ and the conductor of X. An slc center of (X,∆) is the
ν-image of an lc center of (Xν ,∆Xν ). An slc stratum of (X,∆) means either an slc center
of (X,∆) or an irreducible component of X. If (X,∆) has only sub semi-log canonical
singularities and ∆ is effective, then we say that (X,∆) has only semi-log canonical (slc,
for short) singularities.

If (X,∆) is (sub) semi-log canonical and X is normal, then (X,∆) is (sub) log canonical
by definition.

For the details of semi-log canonical singularities, see [Fn7] and [Ko3].

2.4 (Strongly nef divisors). Let us introduce the notion of strongly nef divisors. It is
indispensable for the main theorem of this paper: Theorem 1.2.

Definition 2.5 (Strongly nef divisors). Let X be a normal irreducible variety and let D
be a divisor on X. If there exist a completion X of X, that is, X is a normal complete
variety and contains X as a dense Zariski open set, and a nef divisor D on X such that
D = D|X , thenD is called a strongly nef divisor onX. A finite R>0-linear (resp.Q>0-linear)
combination of strongly nef divisors is called a strongly nef R-divisor (resp. Q-divisor).

The following easy lemma is very important in some applications.

Lemma 2.6. Let X be a normal irreducible quasi-projective variety, let D be a strongly
nef divisor on X, and let H be an ample divisor on X. Then D +H is ample.

We give a detailed proof for the reader’s convenience.
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Proof of Lemma 2.6. It is sufficient to prove that OX(D + H) is ample. Therefore, by
replacing D and H with mD and mH for some positive integer m, respectively, we may
assume that H is very ample (see, for example, [H, Chapter II, Theorem 7.6]). Thus, there
exists an embedding i : X ↪→ PN such that OX(H) ≃ i∗OPN (1). Let X† be the closure
of X in PN . Let X be a completion of X on which there is a nef divisor D such that
D = D|X . By [L, Lemma 2.2], which is an easy application of the flattening theorem (see
[RG, Théorème (5.2.2)]), we can take an ideal sheaf I on X† with SuppOX†/I ⊂ X† \X
such that the blow-up of X† along I eliminates the indeterminacy of X† 99K X. Therefore,
by taking the normalization of the blow-up of X† along I, we get a projective birational

morphism α : X̃ → X†, which is an isomorphism over X, from a normal variety X̃ such

that the induced birational map β : X̃ 99K X is a morphism, and an effective divisor E on

X̃ such that SuppE ⊂ X̃ \ X and −E is α-ample. Note that we can see X as a Zariski

open set of X̃.

X

X
?�

OO

� � // X†

``@
@
@
@

X̃

β

ggPPPPPPPPPPPPPPPP
α

oo

Therefore, we can construct an ample line bundle L on X̃ such that L|X ≃ OX(lH) for

some positive integer l. We consider a nef divisor β∗D on X̃. Since X̃ is projective and L
is an ample line bundle on X̃, L ⊗ OX̃(lβ

∗D) is ample. By restricting it to X, we obtain
that OX(lD+ lH) is an ample line bundle on X. Thus, OX(D+H) is ample. This is what
we wanted. □

We note that any Cartier divisor is strongly nef when X is affine.

Lemma 2.7. Let X be a normal irreducible affine variety and let D be a (not necessarily
effective) Weil divisor on X which is Cartier. Then there exist a normal irreducible pro-
jective variety X containing X as a dense Zariski open set and a Weil divisor D on X
such that D = D|X and that OX(D) is a very ample line bundle on X. In particular, D
is strongly nef.

Proof. We fix a closed embedding X ⊂ CN . Then we take the closure X1 of X in PN .
Note that there exists a hyperplane H on PN such that

(2.1) SuppH|X1 = X1 \X.

Let X2 be the normalization of X1. In this situation, we can see X as a dense Zariski open
set of X2. Let D2 be the closure of D in X2. We take an ample Cartier divisor H† on
X2 and a sufficiently large positive integer l. Then we can take an effective Weil divisor Γ
which is linearly equivalent to D2+ lH

†, that is, Γ−D2 ∼ lH†. We take the normalization
of the blow-up of X2 along the ideal sheaf OX2(−Γ). Then we get a projective birational
morphism p : X3 → X1 from a normal variety X3 and a Weil divisor D3 on X3 such that
p is an isomorphism over X and that D3 is a Cartier divisor satisfying D = D3|X . Note
that we saw X as a dense Zariski open set of X3. As in the proof of Lemma 2.6, we take
the normalization of the blow-up of X1 along a suitable ideal sheaf on X1 to eliminate the
indeterminacy of p−1 : X1 99K X3. Then we get the following commutative diagram

X
β

  A
AA

AA
AA

A
α

~~}}
}}
}}
}}

X1
p−1

//_______ X3
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where α : X → X1 is a projective birational morphism from a normal irreducible variety X
such that α is an isomorphism over X. By using (2.1), we can construct an ample divisor
A on X with SuppA = X \X. Of course, we saw X as a dense Zariski open set of X. We
put D := β∗D3 +mA for some sufficiently large positive integer m. Then D is very ample
and D|X = D by construction. Anyway, we see that D is strongly nef. □

We prepare one more easy lemma on ample divisors.

Lemma 2.8. Let f : X → Y be a projective morphism between quasi-projective varieties.
Let D be an f -ample Cartier (resp. Q-Cartier or R-Cartier) divisor on X and let H be an
ample divisor on Y . Then D +mf ∗H is an ample divisor (resp. Q-divisor or R-divisor)
for every sufficiently large positive integer m.

Proof. IfD is Q-Cartier, then it is well known thatD+mf ∗H is ample for every sufficiently
large positive integer m. When D is an f -ample R-divisor, we can write D =

∑k
i=1 diDi

where di ∈ R>0 and Di is an f -ample divisor for every i. Then

D +mf ∗H =
k∑

i=1

di(Di +mif
∗H) +

(
m−

k∑
i=1

midi

)
f ∗H,

where mi is a positive integer such that Di + mif
∗H is ample for every i. Therefore, it

is sufficient to prove that aA + bf ∗H is ample, where a and b are positive real numbers
and A is an ample divisor on X. We fix a positive integer l such that A+ lf ∗H is ample.
We take a positive real number c such that 0 < c ≪ 1 and b − c ∈ Q>0. Then we take a
positive rational number d with 0 < d≪ 1. In this situation, we can write

aA+ bf ∗H =
c

l
(A+ lf ∗H) + (dA+ (b− c)f ∗H) +

(
a− c

l
− d
)
A.

This means that aA + bf ∗H is ample. Anyway, we obtain that D + mf ∗H always can
be written as a finite R>0-linear combination of ample divisors on X for every sufficiently
large positive integer m. This is what we wanted. □

We give some remarks on strongly nef divisors.

Remark 2.9. (1) Let X be a normal irreducible variety and let D be a strongly nef R-
divisor on X. Then D ·C ≥ 0 for every complete integral curve C on X. In particular, D
is π-nef for any proper morphism π : X → S onto a variety S.
(2) Let π : X → S be a projective morphism from a normal quasi-projective irreducible

variety onto a quasi-projective variety S. Let D be a π-nef R-divisor on X, let A be a
π-ample R-divisor on X, and let H be an ample divisor on S. Then, by Lemma 2.8, we
can easily see that D+A+mπ∗H is an ample R-divisor on X, that is, a finite R>0-linear
combination of ample divisors on X, for every sufficiently large positive integer m. We
note that D + A is a π-ample R-divisor on X.

2.10 (b-divisors). Let us quickly recall the notion of b-divisors introduced by Shokurov
(see [Sh, Section 1]). We note that a b-divisor was originally called a bi-divisor in [Sh].

Let X be a normal variety and let DivX be the space of Weil divisors on X. A b-divisor
on X is an element:

D ∈ DivX = lim
Y→X

DivY,

where the (projective) limit is taken over all proper birational morphism f : Y → X from
a normal variety Y under the pushforward homomorphism f∗ : DivY → DivX. We can
define Q-b-divisors on X similarly. If D =

∑
dΓΓ is a (Q-)b-divisor on a normal variety X
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and f : Y → X is a proper birational morphism from a normal variety Y , then the trace
of D on Y is the (Q-)divisor

DY :=
∑

Γ is a divisor on Y

dΓΓ.

The Q-Cartier closure of a Q-Cartier (Q-)divisor D on a normal variety X is the Q-b-
divisor D with trace

DY = f ∗D

where f : Y → X is a proper birational morphism from a normal variety Y .

Definition 2.11 (Canonical b-divisor). Let X be a normal variety and let ω be a top
rational differential form of X. Then (ω) defines a b-divisor K. We call K the canonical
b-divisor of X.

We need the following definition for Theorem 1.2 and Conjecture 1.4.

Definition 2.12 (b-strongly nef and b-semi-ample Q-b-divisors, and Q-b-Cartier divisors).
Let X be a normal variety. A Q-b-divisor D of X is b-strongly nef (resp. b-semi-ample)
if there exists a proper birational morphism X ′ → X from a normal variety X ′ such that
D = DX′ and DX′ is strongly nef (resp. semi-ample). A Q-b-divisor D of X is Q-b-Cartier
if there is a proper birational morphism X ′ → X from a normal variety X ′ such that
D = DX′ .

For more details on b-divisors, see, for example, [C, 2.3.2 b-divisors].

2.13 (Simple normal crossing pairs). In this paper, we will mainly treat simple normal
crossing pairs.

Definition 2.14. We say that the pair (X,D) is simple normal crossing at a point a ∈ X
if X has a Zariski open neighborhood U of a that can be embedded in a smooth variety
Y , where Y has a regular system of parameters (x1, . . . , xp, y1, . . . , yr) at a = 0 in which U
is defined by a monomial equation

x1 · · ·xp = 0

and

D =
r∑

i=1

αi(yi = 0)|U , αi ∈ R.

We say that (X,D) is a simple normal crossing pair if it is simple normal crossing at every
point of X. If (X, 0) is a simple normal crossing pair, then X is called a simple normal
crossing variety. If (X,D) is a simple normal crossing pair and D is reduced, then D is
called a simple normal crossing divisor on X. Let (X,D) be a simple normal crossing pair
such that D = D≤1 holds. Then it is easy to see that (X,D) is sub slc in the sense of
Definition 2.3. In this situation, we simply say that W is a stratum of (X,D) if W is an
slc stratum of (X,D) in the sense of Definition 2.3. We note that a stratum of a simple
normal crossing variety X means a stratum of a simple normal crossing pair (X, 0).

Let X be a simple normal crossing variety and let ∆ be an R-divisor on X such that no
irreducible component of Supp∆ is contained in the singular locus of X and that KX +∆
is R-Cartier. Let Z be a closed subset Z ⊊ X such that Z contains no stratum of X. Then
we put

mldZ(X,∆) := mldν−1(Z)(X
ν ,Θ),

where ν : Xν → X is the normalization and KXν +Θ = ν∗(KX +∆), that is, Θ is the sum
of the inverse images of ∆ and the singular locus of X. We call mldZ(X,∆) the minimal
log discrepancy of (X,∆) in a closed subset Z. We will use it in Theorem 5.1 below.
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We close this section with a useful lemma. We will often use it in the subsequent sections
without mentioning it explicitly. We note that the classical topology means the Euclidean
topology in Lemma 2.15.

Lemma 2.15. Let (X,D) be a simple normal crossing pair with dimX = n and let
f : X → Z be a morphism onto an m-dimensional smooth irreducible variety Z. Assume
that every stratum of (X, SuppD) is smooth over Z. Let a ∈ X be any closed point. Then
we have the following local analytic description of f : (X,D) → Z in a neighborhood of
a ∈ X.

(i) U and V are open neighborhoods of a ∈ X and f(a) ∈ Z in the classical topology,
respectively.

(ii) W is an open set of Cn+1 in the classical topology.
(iii) (z1, . . . , zm) and (z1, . . . , zn+1) are systems of local analytic coordinates of V and

W , respectively.
(iv) p : W → V is the projection given by (z1, . . . , zn+1) 7→ (z1, . . . , zm).
(v) U is defined by a monomial equation zm+1 · · · zm+p = 0 in W and a = (0, . . . , 0) ∈

W .
(vi) D|U =

∑r
i=1 αi(zm+p+i = 0)|U with αi ∈ R.

(vii) f |U = p ◦ ι, where ι is the natural closed embedding U ↪→ W .

U � � ι //

f |U   A
AA

AA
AA

A W

p

��
V

Let ρ : Z ′ → Z be a morphism from a smooth irreducible variety Z ′. We put X ′ = X×Z Z
′

and consider the following commutative diagram.

X

f

��

X ′

f ′

��

ρ′oo

Z Z ′
ρ

oo

Let D′ be the pull-back of D on X ′ by ρ′. Then we can easily see that (X ′, D′) is a simple
normal crossing pair and every stratum of (X ′, SuppD′) is smooth over Z ′ by the above
local analytic description of f : (X,D) → Z.

Proof. By definition, X is Zariski locally a simple normal crossing divisor on a smooth
variety Y in a neighborhood of a ∈ X (see Definition 2.14). By taking a small open set W
of Y containing a in the classical topology, f |U : U → Z, where U := X ∩W , extends to a
holomorphic map W → Z (see, for example, [Fi, 0.22. Corollary 2]). Since every stratum
of (X, SuppD) is smooth over Z by assumption, we obtain the desired local analytic
description by shrinking W suitably around a and taking a small open neighborhood V of
f(a) in Z in the classical topology. By this local analytic description, we can easily see
that f : (X,D) → Z behaves well under base change. □

3. Variations of mixed Hodge structure

In this section, let us quickly recall the main result of [FF1] (see also [FFS]). We note
that Theorem 3.1 is the main ingredient of Theorem 1.2. Theorem 3.1 follows from the
theory of variations of mixed Hodge structure on cohomology with compact support.

Theorem 3.1 ([FF1, Theorems 7.1 and 7.3]). Let (X,D) be a simple normal crossing
pair such that D is reduced and let f : X → Y be a projective surjective morphism onto
a smooth variety Y such that every stratum of (X,D) is dominant onto Y . Assume that
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there exists a simple normal crossing divisor ΣY on Y such that every stratum of (X,D)
is smooth over Y ∗ = Y \ ΣY . Then we have

(i) f∗ωX/Y (D) is a locally free sheaf on Y .

We further assume that all the local monodromies on the local system Rd(f |X∗)∗ι!QX∗\D∗

around ΣY are unipotent, where d = dimX − dimY , X∗ = f−1(Y ∗), D∗ = D|X∗, and
ι : X∗ \D∗ ↪→ X∗. Then we have the following properties.

(ii)
(
f∗ωX/Y (D)

)
|V is a nef locally free sheaf on V , where V is any complete subvariety

of Y .
(iii) Let ρ : Y ′ → Y be a morphism from a smooth variety Y ′ such that ρ−1(ΣY ) is

a simple normal crossing divisor on Y ′. Let (X ′, D′) be a simple normal crossing
pair and let f ′ : X ′ → Y ′ be a projective surjective morphism onto Y ′ such that
f ′ : (X ′, D′) → Y ′ is nothing but the base change of f : (X,D) → Y by ρ : Y ′ → Y
over Y \ ΣY and that every stratum of (X ′, D′) is dominant onto Y ′. Then there
exists a natural isomorphism ρ∗(f∗ωX/Y (D)) ≃ f ′

∗ωX′/Y ′(D′) of locally free sheaves
which extends the base change isomorphism over Y \ ΣY .

We sketch the proof of Theorem 3.1 for the reader’s convenience. The details are con-
tained in [FF1] (see also Section 13 for some supplementary remarks).

Sketch of proof. By [FF1, Theorem 4.15], the local system Rd(f |X∗)∗ι!QX∗\D∗ underlies a
graded polarizable variation of Q-mixed Hodge structure on Y ∗. Moreover, it is admissible
(see, for example, [FF1, Definition 3.11]). We put

Vd
Y ∗ = Rd(f |X∗)∗ι!QX∗\D∗ ⊗OY ∗ .

Let
· · · ⊂ F p+1(Vd

Y ∗) ⊂ F p(Vd
Y ∗) ⊂ F p−1(Vd

Y ∗) ⊂ · · ·
be the Hodge filtration. By [FF1, Theorem 7.3 (b)], we obtain that f∗ωX/Y (D) is isomor-
phic to the upper canonical extension of(

Gr0F (Vd
Y ∗)
)∗

= HomOY ∗

(
Gr0F (Vd

Y ∗),OY ∗
)
.

In particular, f∗ωX/Y (D) is a locally free sheaf on Y . For the details of the (upper)
canonical extensions of Hodge bundles, see [FF1, Remark 7.4]. Anyway, we get (i). When
all the local monodromies on the local system Rd(f |X∗)∗ι!QX∗\D∗ around ΣY are unipotent,
f∗ωX/Y (D) is the canonical extension of(

Gr0F (Vd
Y ∗)
)∗

= HomOY ∗

(
Gr0F (Vd

Y ∗),OY ∗
)
.

Therefore f∗ωX/Y (D) ≃
(
Gr0F (Vd

Y )
)∗
, where Gr0F (Vd

Y ) is the canonical extension of

Gr0F (Vd
Y ∗) = F 0(Vd

Y ∗)/F 1(Vd
Y ∗).

Note that Gr0F (Vd
Y ) is isomorphic to Rdf∗OX(−D) by [FF1, Theorem 7.1 (2)]. Thus we

obtain that
(
f∗ωX/Y (D)

)
|V is a nef locally free sheaf on V for any complete subvariety

V of Y (see [FF1, Remark 5.22, Corollary 5.23, and Theorem 7.1 (4)]). So we get (ii).
As we saw above, f∗ωX/Y (D) can be characterized by using canonical extensions of Hodge
bundles. We note that canonical extensions of Hodge bundles behave well under pull-back
by ρ : Y ′ → Y such that ρ−1(ΣY ) is a simple normal crossing divisor on Y ′. More precisely,
we see that the pull-back of

(
Gr0F (Vd

Y )
)∗

is isomorphic to the canonical extension of the

pull-back of
(
Gr0F (Vd

Y ∗)
)∗
. Therefore, we get a natural isomorphism ρ∗

(
f∗ωX/Y (D)

)
≃

f ′
∗ωX′/Y ′(D′), which is nothing but (iii). □
Remark 3.2. In Theorem 3.1, the same results hold for Rif∗ωX/Y (D) for every i. We
only treat the case where i = 0 since it is sufficient for our purposes in this paper. For the
details of the cases where i ̸= 0, see [FF1].
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Anyway, we recommend the interested reader to see [FF1] for the details of Theorem
3.1.

4. Basic slc-trivial fibrations

In this section, we introduce the notion of (pre-)basic slc-trivial fibrations and define
discriminant Q-b-divisors and moduli Q-b-divisors for (pre-)basic slc-trivial fibrations.

Let us start with the definition of (pre-)basic slc-trivial fibrations.

Definition 4.1 (Basic slc-trivial fibration). A pre-basic slc-trivial fibration f : (X,B) → Y
consists of a projective surjective morphism f : X → Y and a simple normal crossing pair
(X,B) satisfying the following properties:

(1) Y is a normal irreducible variety,
(2) every stratum of X is dominant onto Y and f∗OX ≃ OY ,
(3) B is a Q-divisor such that B = B≤1 holds over the generic point of Y , and
(4) there exists a Q-Cartier Q-divisor D on Y such that

KX +B ∼Q f
∗D.

If a pre-basic slc-trivial fibration f : (X,B) → Y also satisfies

(5) rank f∗OX(⌈−B<1⌉) = 1,

then it is called a basic slc-trivial fibration.

Before we study basic slc-trivial fibrations, we make a remark on lc-trivial fibrations and
klt-trivial fibrations for the reader’s convenience.

Remark 4.2 (Lc-trivial fibrations and klt-trivial fibrations). Let f : (X,B) → Y be a basic
slc-trivial fibration. Roughly speaking, if X is irreducible and (X,B) is sub log canonical
(resp. sub kawamata log terminal) over the generic point of Y , then f : (X,B) → Y is
called an lc-trivial fibration (resp. a klt-trivial fibration). We note that a klt-trivial fibration
is called an lc-trivial fibration in [A4] (see [A4, Definition 2.1]). For the details, see [FG2,
Definitions 3.1 and 3.2].

Anyway, the notion of basic slc-trivial fibrations is a generalization of that of lc-trivial
fibrations.

4.3 (Induced (pre-)basic slc-tirival fibrations). Let f : (X,B) → Y be a (pre-)basic slc-
trivial fibration and let σ : Y ′ → Y be a generically finite morphism from a normal irre-
ducible variety Y ′. Then we have an induced (pre-)basic slc-trivial fibration f ′ : (X ′, BX′) →
Y ′, where BX′ is defined by µ∗(KX + B) = KX′ + BX′ , with the following commutative
diagram:

(X ′, BX′)
µ //

f ′

��

(X,B)

f

��
Y ′

σ
// Y,

whereX ′ coincides withX×Y Y
′ over a nonempty Zariski open set of Y ′. More precisely, X ′

is a simple normal crossing variety with a morphism X ′ → X×Y Y
′ that is an isomorphism

over a nonempty Zariski open set of Y ′ such that X ′ is projective over Y ′ and that every
stratum of X ′ is dominant onto Y ′.

Lemma 4.4. Let f ′
i : (X ′

i, BX′
i
) → Y ′ be an induced (pre-)basic slc-trivial fibration for

i = 1, 2. Then there exist an induced (pre-)basic slc-trivial fibration f ′
3 : (X ′

3, BX′
3
) → Y ′
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and a commutative diagram

X ′
3

p1

~~}}
}}
}}
} p2

  A
AA

AA
AA

A

X ′
1

f ′
1   B

BB
BB

BB
X ′

2

f ′
2~~||

||
||
|

Y ′

such that pi induces a birational correspondence between each stratum of X ′
3 and X ′

i and
that KX′

3
+BX′

3
= p∗i (KX′

i
+BX′

i
) holds for i = 1, 2.

Proof. By definition, there exists a nonempty Zariski open set U of Y ′ such that X ′
1 and

X ′
2 coincide with X ×Y Y

′ over U . By [BVP, Theorem 1.4], we can take a common partial
resolution X ′

3 of X ′
1 and X ′

2, which coincides with X ×Y Y ′ over U , with the desired
properties. □
4.5 (Discriminant and moduli Q-b-divisors). Let f : (X,B) → Y be a (pre-)basic slc-
trivial fibration as in Definition 4.1. Let P be a prime divisor on Y . By shrinking Y
around the generic point of P , we assume that P is Cartier. We set

bP := max

{
t ∈ Q

∣∣∣∣ (X,B + tf ∗P ) is sub slc over
the generic point of P

}
and set

BY =
∑
P

(1− bP )P,

where P runs over prime divisors on Y . Equivalently, we have

bP = max

{
t ∈ Q

∣∣∣∣ (Xν ,Θ+ tν∗f ∗P ) is sub log canonical
over the generic point of P

}
,

where ν : Xν → X is the normalization and KXν +Θ = ν∗(KX +B), that is, Θ is the sum
of the inverse images of B and the singular locus of X. Then it is easy to see that BY is
a well-defined Q-divisor on Y and is called the discriminant Q-divisor of f : (X,B) → Y .
We set

MY = D −KY −BY

and call MY the moduli Q-divisor of f : (X,B) → Y . By definition, we have

KX +B ∼Q f
∗(KY +BY +MY ).

Let σ : Y ′ → Y be a proper birational morphism from a normal variety Y ′ and let
f ′ : (X ′, BX′) → Y ′ be an induced (pre-)basic slc-trivial fibration by σ : Y ′ → Y . We can
define BY ′ , KY ′ and MY ′ such that σ∗D = KY ′ + BY ′ +MY ′ , σ∗BY ′ = BY , σ∗KY ′ = KY

and σ∗MY ′ =MY . We note that BY ′ is independent of the choice of (X ′, BX′), that is, BY ′

is well-defined, by Lemma 4.4 above and Lemma 4.6 below. Hence there exist a unique
Q-b-divisor B such that BY ′ = BY ′ for every σ : Y ′ → Y and a unique Q-b-divisor M such
that MY ′ =MY ′ for every σ : Y ′ → Y . Note that B is called the discriminant Q-b-divisor
and that M is called the moduli Q-b-divisor associated to f : (X,B) → Y . We sometimes
simply say that M is the moduli part of f : (X,B) → Y .

The following lemma has already been used in the definition of discriminant Q-b-divisors
in 4.5.

Lemma 4.6. Let fi : (Xi, Bi) → Y be a pre-basic slc-trivial fibration for i = 1, 2. Assume
that there exists a morphism p : X2 → X1 over Y which induces a birational correspondence
between each irreducible component of X1 and X2 such that KX2+B2 = p∗(KX1+B1) holds.
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Then f1 : (X1, B1) → Y and f2 : (X2, B2) → Y induce the same discriminant Q-divisor
on Y .

Proof. Let P be a prime divisor on Y . We may assume that P is Cartier by shrinking Y
around P as above. Since (X1, B1 + tf ∗

1P ) is sub slc over the generic point of P if and
only if (X2, B2 + tf ∗

2P ) is sub slc over the generic point of P for every t ∈ Q. Therefore,
f1 : (X1, B1) → Y and f2 : (X2, B2) → Y induce the same discriminant Q-divisor on Y by
the definition of discriminant Q-divisors. □
When (X, SuppB + Supp f ∗P ) is a simple normal crossing pair, we can explicitly write

down bP .

Remark 4.7 ([Ka3, Theorem 2] and [A1, Remark 3.1]). Let f : (X,B) → Y be a pre-basic
slc-trivial fibration and let P be a prime divisor on Y . By shrinking Y around the generic
point of P , we assume that P is Cartier. If (X, SuppB + Supp f ∗P ) is a simple normal
crossing pair and the irreducible decomposition f ∗P =

∑
j wjQj satisfies f(Qj) = P for

every j, then we can explicitly write

(4.1) bP = min
j

1− dj
wj

,

where dj = multQj
B for every j, by direct calculations. Equivalently, we have

(4.2) multP BY = 1− bP = max
j

dj + wj − 1

wj

.

Note that (4.2) plays a crucial role when we compare the minimal log discrepancy of (X,B)
with that of (Y,BY ). See, for example, the proof of Theorem 5.1 below.

We give a small remark on the definition of discriminant Q-divisors.

Remark 4.8. Let f : (X,B) → Y be a pre-basic slc-trivial fibration. We do not need
condition (4) in Definition 4.1 in order to define the discriminant Q-divisor BY .

We will use condition (5) in Definition 4.1 to relate the moduli Q-divisor MY with some
Hodge bundles (see Proposition 6.1 below).

We prepare an elementary finite base change formula, which will be used in Sections 8
and 9.

Lemma 4.9 ([A1, Theorem 3.2]). Let us consider a commutative diagram:

(X ′, BX′)
µ //

f ′

��

(X,B)

f

��
Y ′

σ
// Y,

where f : (X,B) → Y is a pre-basic slc-trivial fibration, σ : Y ′ → Y is a finite morphism
of normal irreducible varieties, and f ′ : (X ′, BX′) → Y ′ is an induced pre-basic slc-trivial
fibration. Then σ∗(KY +BY ) = KY ′ +BY ′ holds, where BY (resp. BY ′) is the discriminant
Q-divisor of f : (X,B) → Y (resp. f ′ : (X ′, BX′) → Y ′).

Remark 4.10. In Lemma 4.9, KY + BY is not necessarily Q-Cartier. However, we can
define σ∗(KY +BY ) since σ is a finite morphism between normal varieties.

Proof of Lemma 4.9. Without loss of generality, we may assume that Y and Y ′ are both
smooth by shrinking Y suitably. Let P ′ be a prime divisor on Y ′. We put P = σ(P ′) and
w = multP ′ σ∗P . Then it is sufficient to see wbP = bP ′ because σ∗(KY + P ) = KY ′ + P ′

holds in a neighborhood of the generic point of P ′. By the definition of discriminant
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Q-divisors, we may assume that X is smooth by replacing (X,B) with (Xν ,Θ), where
ν : Xν → X is the normalization with KXν +Θ = ν∗(KX +B) as usual.
We take any c ≤ bP . Then KX +B+ cf ∗P is sub log canonical over the generic point of

P . Therefore, KX′ +BX′ + c(f ◦ µ)∗P = KX′ +BX′ + c(f ′)∗σ∗P is sub log canonical over
the generic point of P ′. Since σ∗P = wP ′, KX′ +BX′ + cw(f ′)∗P ′ is sub log canonical over
the generic point of P ′. This implies that cw ≤ bP ′ . Thus we get bP ′ ≥ wbP .
We take any c ≥ bP . By taking a suitable birational modification of X, we may assume

that there exists a prime divisor E on X such that a(E,X,B+cf ∗P ) ≤ −1 and f(E) = P .
Since X ′ is a resolution of X ×Y Y ′, we can find a prime divisor E ′ on X ′ such that
µ(E ′) = E, f ′(E ′) = P ′, and a(E ′, BX′ + cw(f ′)∗P ′) = a(E ′, BX′ + c(f ◦ σ)∗P ) ≤ −1.
Therefore, we get cw ≥ bP ′ . This implies wbP ≥ bP ′ .

Thus we obtain wbP = bP ′ . This is what we wanted, that is, σ∗(KY + BY ) = KY ′ +
BY ′ . □

We close this section with the following easy lemma.

Lemma 4.11. Let f : (X,B) → Y be a (pre-)basic slc-trivial fibration. Then there exists
a (pre-)basic slc-trivial fibration f : (X,B) → Y such that

(i) Y is a normal complete variety which contains Y as a dense Zariski open set, and
(ii) the restriction of f : (X,B) → Y to Y coincides with f : (X,B) → Y .

Proof. We can write KX +B + r(φ) = f ∗D for some Q-Cartier Q-divisor D on Y , r ∈ Q,
and φ ∈ Γ(X,K∗

X). We take a normal complete irreducible variety Y which contains Y
as a dense Zariski open set. By taking a suitable birational modification, we may assume
that there exists a Q-Cartier Q-divisor D on Y with D|Y = D. By using [BVP, Theorem
1.4], we can construct a complete simple normal crossing variety X which contains X as
a dense Zariski open set and a projective morphism f : X → Y which is an extension of
f : X → Y . By [BVP, Theorem 1.4], we may assume that every stratum of X is dominant
onto Y and that Σ := X \ X is a simple normal crossing divisor on X. In particular,
f ∗OX ≃ OY holds since every stratum of X is dominant onto Y . We may further assume
that (X,Σ+SuppB′) is a simple normal crossing pair, where B′ is the closure of B on X.

We put B := f
∗
D−KX − r(φ). Note that we can see φ as an element of Γ(X,K∗

X
). Then

f : (X,B) → Y satisfies the desired properties. □

Lemma 4.11 is indispensable for the proof of Theorem 1.2 (ii).

5. Inversion of adjunction

In this section, we prove the following theorem, which is essentially the same as [A4,
Theorem 3.1]. Although we do not use Theorem 5.1 explicitly in this paper, the arguments
in the proof of Theorem 5.1 below may help the reader understand the proof of Theorem
1.7 in Section 11.

Theorem 5.1 (Inversion of adjunction). Let f : (X,B) → Y be a pre-basic slc-trivial
fibration such that K +B = KY +BY , where K is the canonical b-divisor of Y and B is
the discriminant Q-b-divisor of f : (X,B) → Y . Then there is a positive integer N such
that

1

N
mldf−1(Z)(X,B) ≤ mldZ(Y,BY ) ≤ mldf−1(Z)(X,B)

for every closed subset Z ⊊ Y .

Proof. We take a proper birational morphism σ : Y ′ → Y from a smooth variety Y ′ such
that σ−1(Z) is a divisor on Y ′ and that Suppσ−1(Z) ∪ SuppBY ′ is included in a simple
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normal crossing divisor ΣY ′ . Let f ′ : (X ′, BX′) → Y ′ be an induced pre-basic slc-trivial
fibration with

(X,B)

f
��

(X ′, BX′)

f ′

��

µoo

Y Y ′.σ
oo

We may further assume that SuppBX′∪Supp(f ′)∗ΣY ′ is included in a simple normal cross-
ing divisor ΣX′ . Let ΣY ′ =

∑
l Pl (resp. ΣX′ =

∑
j Qj) be the irreducible decomposition

of ΣY ′ (resp. ΣX′). We may assume that there exists j0 such that Qj0 ⊂ (σ ◦ f ′)−1(Z) and
a(Qj0 , X,B) + 1 = mldf−1(Z)(X,B) when mldf−1(Z)(X,B) ≥ 0. When mldf−1(Z)(X,B) =
−∞, we assume that a(Qj0 , X,B) + 1 < 0 holds. If we need, we take more blow-ups of Y ′

and may assume that f ′(Qj0) = Pl0 for some l0 with the aid of the flattening theorem (see
[RG, Théorème (5.2.2)]). By (4.1), we obtain

a(Pl0 , Y, BY ) + 1 = a(Pl0 , Y
′,BY ′) + 1 ≤ a(Qj0 , X

′, BX′) + 1 = a(Qj0 , X,B) + 1.

Therefore, if mldf−1(Z)(X,B) ≥ 0, then a(Pl0 , Y, BY ) + 1 ≤ mldf−1(Z)(X,B). When
mldf−1(Z)(X,B) = −∞, we get a(Pl0 , Y, BY ) + 1 < 0. Anyway, we obtain that

mldZ(Y,BY ) ≤ mldf−1(Z)(X,B)

always holds.
If mldf−1(Z)(X,B) = −∞, then

1

N
mldf−1(Z)(X,B) ≤ mldZ(Y,BY )

obviously holds for any positive integer N . Therefore, from now on, we may assume that
mldf−1(Z)(X,B) ≥ 0. Let Pl be any prime divisor contained in σ−1(Z). Then

a(Pl, Y, BY ) + 1 = a(Pl, Y
′,BY ′) + 1

≥ 1

Nl

(
min

f ′(Qj)=Pl

a(Qj, X
′, BX′) + 1

)
≥ 1

Nl

mldf−1(Z)(X,B)

for some positive integer Nl by (4.1). By [A2, Theorem 2.3], we can check that{
mldf−1(Z)(X,B) |Z ⊊ Y

}
is a finite subset of Q≥0 ∪ {−∞}. Therefore, we can take a positive integer N satisfying
the desired properties. □

6. Cyclic cover of the generic fiber

The main purpose of this section is to interpret moduli parts of basic slc-trivial fibrations
Hodge theoretically. We closely follow the formulation in [A4, Section 5]. The approach in
[A4, Section 5] is essentially the same as those in [M, Section 5, Part II] and [Fn2, Section
4].

Let f : (X,B) → Y be a basic slc-trivial fibration. Let F be a general fiber of f : X → Y .
We put

b(F,BF ) := min{m ∈ Z>0 |m(KF +BF ) ∼ 0}
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where KF +BF = (KX +B)|F . From now on, we treat the following situation:

(6.1) (X,B)

f

��

X̃
f̃

||xx
xx
xx
xx
xx

πoo (V,BV )

h
uullll

lll
lll

lll
lll

l

doo

Y

where f : (X,B) → Y is a basic slc-trivial fibration as above, b = b(F,BF ) and

(6.2) KX +B +
1

b
(φ) = f ∗(KY +BY +MY )

with φ ∈ Γ(X,K∗
X), and Supp (B − f ∗(BY +MY )) is a simple normal crossing divisor on

X. We further assume that (Bh)=1 is Cartier and that every stratum of (X, (Bh)=1) is
dominant onto Y by taking some suitable blow-ups (see, for example, [BVP, Section 8]

and [Fn14, Lemma 2.11]). Let π : X̃ → X be the b-fold cyclic cover associated to (6.2).
More explicitly, we put

∆ = KX/Y +B − f ∗(BY +MY ).

Then b∆ = −(φ) ∼ 0 holds by definition. We note that the support of {∆} is a simple

normal crossing divisor on X. We can define an OX-algebra structure of
⊕b−1

i=0 OX(⌊i∆⌋)
by b∆ = (φ−1) ∼ 0. We note that

OX(⌊i∆⌋)×OX(⌊j∆⌋) → OX(⌊(i+ j)∆⌋)
is well-defined for 0 ≤ i, j ≤ b− 1 by ⌊i∆⌋+ ⌊j∆⌋ ≤ ⌊(i+ j)∆⌋ and that

OX(⌊(i+ j)∆⌋) ≃ OX(⌊(i+ j − b)∆⌋)

for i+ j ≥ b by b∆ = (φ−1) ∼ 0. In this situation, we have the following description of X̃:

(6.3) X̃ = SpecX

b−1⊕
i=0

OX(⌊i∆⌋).

Let ζ be a fixed primitive b-th root of unity and let G = ⟨ρ⟩ be the cyclic group Z/bZ.
Then G acts on

⊕b−1
i=0 OX(⌊i∆⌋) by OX-algebra homomorphisms defined by:

ρ(l) = ζ il

for a local section l of OX(⌊i∆⌋).
Here, we give an alternative description of X̃ for the reader’s convenience, which is more

familiar than (6.3). We put L = OX(−⌊∆⌋). Then we see that b{∆} = (φ−1)−b⌊∆⌋ ∈ |Lb|.
In this notation, we have

(6.4) X̃ =
b−1⊕
i=0

L−i

(⌊
ib{∆}
b

⌋)
=

b−1⊕
i=0

L−i(⌊i{∆}⌋).

We note that
L−i(⌊i{∆}⌋) = OX(i⌊∆⌋+ ⌊i{∆}⌋) = OX(⌊i∆⌋).

Thus this usual description of the b-fold cyclic cover (6.4) coincides with the above de-
scription (6.3). We note that [Ko3, 2.3 Ramified covers] may be helpful.

By construction, π : X̃ → X is étale outside Supp{∆}. We note that X̃ is normal

and π : X̃ → X is a well-known b-fold cyclic cover of X associated to b{∆} ∈ |Lb|
over a neighborhood of the generic point of every irreducible component of Supp{∆}. By
construction again, there exist φ̃ ∈ Γ(X̃,K∗

X̃
) such that π∗φ = φ̃b in Γ(X̃,K∗

X̃
). We note

that X̃ is connected by the definition of b = b(F,BF ). We also note that G = ⟨ρ⟩ acts
on φ̃ by ρ(φ̃) = ζ−1φ̃. We define BX̃ by the formula KX̃ + BX̃ = π∗(KX + B). We can

easily see that (Bh
X̃
)=1 = π∗((Bh)=1) holds. We can also check that (X̃, (Bh

X̃
)=1) is semi-log
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canonical and that every slc stratum of (X̃, (Bh
X̃
)=1) is dominant onto Y . Let d : V → X̃

be a projective birational morphism from a simple normal crossing variety V . We assume

that d is an isomorphism over the generic point of every slc stratum of (X̃, (Bh
X̃
)=1). We

put g := π ◦ d : V → X and

KV +BV = d∗(KX̃ +BX̃) = g∗(KX +B).

By taking some more blow-ups if necessary, we may assume that (Bh
V )

=1 is Cartier (see
[BVP, Section 8] and [Fn14, Lemma 2.11]). We put ψ = d∗φ̃ ∈ Γ(V,K∗

V ). Thus we have
g∗φ = ψb ∈ Γ(V,K∗

V ). Therefore,

(6.5) KV +BV + (ψ) = h∗(KY +BY +MY )

holds. We further assume that (V,BV ) is a simple normal crossing pair. By construction,

π∗ωX̃/Y ((B
h
X̃
)=1) =

b−1⊕
i=0

ωX/Y ((B
h)=1)⊗OX(⌈−i∆⌉).

We note that (Bh
X̃
)=1 = π∗((Bh)=1) holds and that G acts on π∗ωX̃/Y ((B

h
X̃
)=1) naturally.

Since KV + (Bh
V )

=1 = d∗(KX̃ + (Bh
X̃
)=1) + E, where E is a d-exceptional Q-divisor such

that ⌈E⌉ ≥ 0, d∗ωV/Y ((B
h
V )

=1) = ωX̃/Y ((B
h
X̃
)=1) holds. Therefore, the following eigensheaf

decomposition holds:

h∗ωV/Y ((B
h
V )

=1) = f̃∗ωX̃/Y ((B
h
X̃
)=1)

=
b−1⊕
i=0

f∗OX(⌈(1− i)KX/Y − iB + if ∗BY + if ∗MY ⌉+ (Bh)=1).
(6.6)

We note that

rank f∗OX(⌈−B + f ∗BY + f ∗MY ⌉+ (Bh)=1) = rank f∗OX(⌈−(B<1)⌉) = 1

by Definition 4.1 (5). If necessary, we take a projective birational modification σ : Y ′ → Y
and construct an induced basic slc-trivial fibration (X ′, BX′) → Y ′ of f : (X,B) → Y by
σ : Y ′ → Y , and so on. Then we get the following commutative diagram similar to the
original diagram (6.1).

(6.7) (X ′, BX′)

f ′

��

X̃ ′

f̃ ′

zzuuu
uu
uu
uu
uu

π′
oo (V ′, BV ′)

h′
uujjjj

jjjj
jjjj

jjjj
jjj

d′oo

Y ′

We can assume that this new diagram (6.7) coincides with the original diagram (6.1) over
some nonempty Zariski open set of Y ′ by [BVP, Theorem 1.4]. By replacing f : (X,B) → Y
and (V,BV ) with f

′ : (X ′, BX′) → Y ′ and (V ′, BV ′) respectively, we further assume that
the following properties hold for (6.1).

(a) Y is a smooth quasi-projective irreducible variety, andX and V are quasi-projective
simple normal crossing varieties.

(b) ΣX , ΣV , and ΣY are simple normal crossing divisors on X, V , and Y , respectively.
(c) f and h are projective surjective morphisms.
(d) B, BV , and BY , MY are supported by ΣX , ΣV , and ΣY , respectively.
(e) every stratum of (X,Σh

X) and (V,Σh
V ) is smooth over Y \ ΣY .

(f) f−1(ΣY ) ⊂ ΣX , f(Σ
v
X) ⊂ ΣY , and h

−1(ΣY ) ⊂ ΣV , h(Σ
v
V ) ⊂ ΣY .

(g) (Bh)=1 and (Bh
V )

=1 are Cartier.
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By definition and construction, we can easily check the following basic properties of

h : (V,BV )
g−→ (X,B)

f−→ Y . Proposition 6.1 is the main result of this section.

Proposition 6.1. We have the following properties.

(i) π : X̃ → X is a Galois cover and its Galois group G is Z/bZ.
(ii) h : (V,BV ) → Y is a pre-basic slc-trivial fibration.
(iii) f : (X,B) → Y and h : (V,BV ) → Y induce the same discriminant and moduli

part on Y .
(iv) For any irreducible component P of SuppΣY , we assume that there exists a prime

divisor Q on V such that multQ(−BV +h∗BY ) = 0, h(Q) = P , and multQ h
∗P = 1.

Then MY is an integral divisor and OY (MY ) is a direct summand of h∗OV (KV/Y +
(Bh

V )
=1).

(v) In (iv), we further assume that all the local monodromies on the local system

RdimV−dimY (h|V ∗)∗ι!QV ∗\(Bh
V ∗ )=1

around ΣY are unipotent, where Y ∗ = Y \ΣY , V
∗ = h−1(Y ∗), BV ∗ = (BV )|V ∗, and

ι : V ∗ \ (Bh
V ∗)=1 ↪→ V ∗ is the natural open immersion. Then(

h∗OV (KV/Y + (Bh
V )

=1)
)
|W

is a nef locally free sheaf on W , where W is any complete subvariety of Y . In
particular, (MY )|W is a nef Cartier divisor on W .

Proof of Proposition 6.1. In the above construction, we have already described the action

of G = Z/bZ on X̃ explicitly. Therefore, (i) is obvious. By the definition of b = b(F,BF ),
the general fiber of h : V → Y is connected. Since every stratum of V is dominant
onto Y , we see that the natural map OY → h∗OV is an isomorphism. By construction,
KV + BV ∼Q,f 0 and BV = B≤1

V holds over the generic point of Y . Therefore, h :
(V,BV ) → Y is a pre-basic slc-trivial fibration. This is (ii). By construction again, we see
that (X,B + tf ∗P ) is sub slc over the generic point of P if and only if (V,BV + th∗P )
is sub slc over the generic point of P . Therefore, f : (X,B) → Y and h : (V,BV ) → Y
induce the same discriminant Q-divisor BY . This implies (iii) since MY = D −KY −BY .
We note that

KX +B +
1

b
(φ) = f ∗(KY +BY +MY )

and

(6.8) KV +BV + (ψ) = h∗(KY +BY +MY ).

By (6.8) and multQ(−BV + h∗BY ) = 0 in (iv), we obtain multQ h
∗MY ∈ Z. Since

multQ h
∗P = 1 by the assumption in (iv), MY is an integral divisor on Y . By Theo-

rem 3.1, h∗OV (KV/Y + (Bh
V )

=1) is a locally free sheaf. As we saw above, by construction
and assumption, we have the following eigensheaf decomposition

h∗ωV/Y ((B
h
V )

=1) = f̃∗ωX̃/Y ((B
h
X̃
)=1)

=
b−1⊕
i=0

f∗OX(⌈(1− i)KX/Y − iB + if ∗BY + if ∗MY ⌉+ (Bh)=1).
(6.9)

We note that the eigensheaf corresponding to the eigenvalue ζ−1 is

N = f∗OX(⌈−B + f ∗BY + f ∗MY ⌉+ (Bh)=1),

which is an invertible sheaf on Y . From now on, we will prove that OY (MY ) = N holds.
Since OY (MY ) and N are both invertible, we can freely replace Y with its Zariski open set
Y 0 such that codimY (Y \ Y 0) ≥ 2. Therefore, we can assume that ⌈−B+ f ∗BY ⌉+(Bh)=1
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and −BV +h∗BY +(Bh
V )

=1 are both effective. We have already seen thatMY is an integral
divisor. Since ⌈−B + f ∗BY ⌉+ (Bh)=1 is effective, there exists a natural inclusion:

OY (MY ) ⊂ N = OY (MY )⊗ f∗OX(⌈−B + f ∗BY ⌉+ (Bh)=1).

Let a be an element of C(Y ). Then we see that

(6.10) (h∗a · ψ) +KV/Y + (Bh
V )

=1 = h∗((a) +MY ) + (−BV + h∗BY + (Bh
V )

=1)

holds by (6.8). By construction, φ̃ is a rational section of KX̃/Y + (Bh
X̃
)=1 with the action

of G by ρ(φ̃) = ζ−1φ̃. Therefore, by taking an embedding N into C(Y ) suitably, a rational
section a of N corresponds to a rational section h∗a · ψ of KV/Y + (Bh

V )
=1. Therefore, if

a in (6.10) corresponds to a local holomorphic section of N on a Zariski open set U ⊂ Y ,
then

(6.11)
(
(h∗a · ψ) +KV/Y + (Bh

V )
=1
)
|h−1(U) ≥ 0.

Since −BV +h∗BY contains no fibers over any codimension one points of Y by assumption,
(6.10) and (6.11) imply that

((a) +MY ) |U ≥ 0.

This means that a ∈ Γ(U,OY (MY )). Thus, we obtain a natural opposite inclusion N ⊂
OY (MY ). Anyway, we get N = OY (MY ). This is (iv). (v) is a direct consequence of (iv)
and Theorem 3.1. □

We close this section with a remark on the assumptions in (iv) and (v) in Proposition
6.1. We will implicitly use it in Sections 7 and 8.

Remark 6.2. Let h : (V,BV ) → Y be a pre-basic slc-trivial fibration satisfying the
assumptions in (iv) and (v) in Proposition 6.1. We consider the following commutative
diagram of pre-basic slc-trivial fibrations:

(V †, BV †)
α //

h†
$$I

II
II

II
II

I
(V,BV )

h{{ww
ww
ww
ww
w

Y

where h† : (V †, BV †) → Y is a pre-basic slc-trivial fibration, α is an isomorphism over Y ∗ =
Y \ΣY , and KV † +BV † = α∗(KV +BV ). Then it is almost obvious that h† : (V †, BV †) → Y
also satisfies the assumptions in (iv) and (v) in Proposition 6.1.

7. Covering lemmas revisited

In this section, we explain some covering lemmas, which are essentially due to Yujiro
Kawamata (see [Ka1]). We will use Lemma 7.3, which is the main result of this section,
in Sections 8 and 9.

Let us start with a well-known covering lemma in [Ka1].

Lemma 7.1 ([Ka1, Theorem 17]). Let X be a smooth quasi-projective variety and let
D be a simple normal crossing divisor on X such that D =

∑r
j=1Dj is the irreducible

decomposition. Let Nj be a positive integer for 1 ≤ j ≤ r. Then we can construct a finite
cover τ : Z → X satisfying the following properties.

(i) Z is a smooth quasi-projective variety and there is a simple normal crossing divisor
ΣX on X such that D ≤ ΣX , τ is étale over X \ ΣX , τ

−1(ΣX) is a simple normal
crossing divisor on Z.

(ii) We have τ ∗Dj = Njτ
−1(Dj) for every 1 ≤ j ≤ r.

Since it is very important to understand how to construct τ : Z → X, we sketch the
proof of Lemma 7.1 for the reader’s convenience.
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Sketch of proof. Here, we closely follow the presentation in [EV, 3.19. Lemma] and [V,
Lemma 2.5]. We take an ample line bundle A on X such that ANj ⊗ OX(−Dj) is gen-
erated by global sections for 1 ≤ j ≤ r. We put n = dimX. We take general members

H
(j)
1 , . . . , H

(j)
n of

∣∣ANj ⊗OX(−Dj)
∣∣ for 1 ≤ j ≤ r such that D +

∑
i,j H

(j)
i is a simple

normal crossing divisor on X. Let Z
(j)
i be the cyclic cover obtained by taking the Nj-th

root out of Dj+H
(j)
i (see [EV, 3.5. Cyclic covers] and [V, Lemma 2.3]). More explicitly, let

s
(j)
i ∈ Γ(X,ANj) be a section whose zero divisor is Dj+H

(j)
i . The dual of s

(j)
i : OX → ANj ,

that is,
(
s
(j)
i

)∨
: A−Nj → OX , defines an OX-algebra structure on

⊕Nj−1
l=0 A−l. Then we

can write Z
(j)
i = SpecX

⊕Nj−1
l=0 A−l. In this situation, we can check that the normalization

of (
Z

(1)
1 ×X · · · ×X Z(1)

n

)
×X · · · ×X

(
Z

(r)
1 ×X · · · ×X Z(r)

n

)
,

which is denoted by Z, has the desired properties. For the details, we recommend the
reader to see [EV, 3.19. Lemma] and [V, Lemma 2.5]. We note that we can take ΣX =

D +
∑

i,j H
(j)
i by construction. We will use the above description of Z in the proof of

Lemma 7.3 below. □
The following slight generalization of Lemma 7.1 is very important for our applications.

Lemma 7.2 (see [Ka3, Corollary 19] and [A4, Remark 4.2]). Let X, D, and N1, . . . , Nr

be as in Lemma 7.1. Let ρ : X ′ → X be a projective surjective morphism from a smooth
quasi-projective variety X ′ such that ρ−1(D) is a simple normal crossing divisor on X ′.
Then we may assume that τ : Z → X in Lemma 7.1 fits into a commutative diagram

Z

τ

��

Z ′

τ ′

��

ρ′oo

X X ′
ρ

oo

satisfying the following properties.

(i) τ ′ is a finite cover and ρ′ is a projective morphism.
(ii) Z ′ is a smooth quasi-projective variety.
(iii) There is a simple normal crossing divisor ΣX′ on X ′ such that τ ′ is étale over

X ′ \ ΣX′, (τ ′)−1(ΣX′) is a simple normal crossing divisor, and ρ−1(ΣX) ⊂ ΣX′,
where ΣX is the simple normal crossing divisor on X in Lemma 7.1.

Although the proof of Lemma 7.2 is more or less well-known to the experts, we give a
detailed proof for the reader’s convenience.

Proof of Lemma 7.2. We closely follow the presentation in [V, Corollary 2.6]. In the proof

of Lemma 7.1, we can choose the divisors H
(j)
i on X such that D′ := ρ−1

(
D +

∑
i,j H

(j)
i

)
is a simple normal crossing divisor on X ′. Let Z† be the normalization of an irreducible
component of Z ×X X ′. Then we get the following commutative diagram:

Z

τ

��

Z†

τ†

��

ρ†oo

X X ′.ρ
oo

By construction, τ † is étale over X ′\D′. Let D′ =
∑

j D
′
j be the irreducible decomposition.

We put
N ′

j := lcm
l
{e(∆l

j) |∆l
j is an irreducible component of (τ †)−1(D′

j)},
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where e(∆l
j) denotes the ramification index of ∆l

j over D′
j. Let τ̃ : Z̃ → X ′ be the finite

cover constructed in Lemma 7.1 for X ′, D′, and N ′
j. Let Z ′ be the normalization of an

irreducible component of Z̃ ×X′ Z†. Thus we get the following commutative diagram:

Z

τ

��

Z†

τ†

��

oo Z ′

τ ′

~~~~
~~
~~
~~

α
��

βoo

X X ′
ρ

oo Z̃.
τ̃

oo

Since τ̃ : Z̃ → X ′ is constructed as a chain of finite cyclic covers, the same holds true for
β : Z ′ → Z†. The ramification index of a component of β−1(∆l

j) over ∆
l
j is N ′

j/e(∆
l
j) by

construction. Therefore, the ramification index of an irreducible component of (τ ′)−1(D′
j)

over D′
j is given by

N ′
j

e(∆l
j)

· e(∆l
j) = N ′

j.

By the construction of Z̃, this is nothing but the ramification index of an irreducible

component of (τ̃)−1(D′
j) over D

′
j. Therefore, α : Z ′ → Z̃ is unramified in codimension one.

Since Z̃ is smooth, α is étale. Thus, we can easily check that τ ′ : Z ′ → X ′ satisfies the
desired properties. □

The following lemma is the main result of this section. This somewhat technical covering
lemma will play an important role in Sections 8 and 9.

Lemma 7.3 (Unipotent reduction for pre-basic slc-trivial fibrations). Let h : (V,BV ) → Y
be a pre-basic slc-trivial fibration such that Y is a smooth quasi-projective variety. Assume
that there are simple normal crossing divisors ΣV and ΣY on V and Y respectively such
that h−1(ΣY ) ⊂ ΣV , h(Σ

v
V ) ⊂ ΣY , SuppBV ⊂ ΣV , and every stratum of (V,Σh

V ) is smooth
over Y \ ΣY . Then there exist a finite cover γ : Y ′ → Y from a smooth quasi-projective
variety Y ′ such that ΣY ′ := γ−1(ΣY ) is a simple normal crossing divisor on Y ′ and a
commutative diagram

V

h
��

V ×Y Y
′

��

qoo V ′poo

h′
zzuu
uu
uu
uu
uu

Y Y ′
γ

oo

with the following properties.

(i) p is a projective birational morphism from a simple normal crossing variety V ′

which is an isomorphism over Y ′ \ ΣY ′.
(ii) h′ : (V ′, BV ′) → Y ′ is a pre-basic slc-trivial fibration, where γ′ := q ◦ p : V ′ → V

and KV ′ +BV ′ = (γ′)∗(KV +BV ).
(iii) There exists a simple normal crossing divisor ΣV ′ on V ′ such that (γ′)−1(ΣV ) ⊂

ΣV ′, SuppBV ′ ⊂ ΣV ′, h′(Σv
V ′) ⊂ ΣY ′, (h′)−1(ΣY ′) ⊂ ΣV ′, and every stratum of

(V ′,Σh
V ′) is smooth over Y ′ \ ΣY ′.

(iv) h′ : (V ′, BV ′) → Y ′ satisfies the assumptions in (iv) and (v) in Proposition 6.1.

Proof. Let ΣY =
∑r

j=1 Pj and ΣV =
∑

lQl be the irreducible decomposition of ΣY and

ΣV respectively. In this case, we can write h∗Pj =
∑

l w
j
lQl with wj

l ∈ Z≥0 for every j.
Let Mj be the monodromy matrix on the local system

RdimV−dimY (h|V ∗)∗ι!QV ∗\(Bh
V ∗ )=1
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around Pj, where V ∗ := h−1(Y ∗), BV ∗ := BV |V ∗ , and ι : V ∗ \ (Bh
V ∗)=1 ↪→ V ∗. By

[FF1, Theorem 4.5], the local system RdimV−dimY (h|V ∗)∗ι!QV ∗\(Bh
V ∗ )=1 underlies a graded

polarizable variation of Q-mixed Hodge structure on Y ∗ := Y \ ΣY . In particular, Mj is
quasi-unipotent. We put

mj := min{m ∈ Z>0 |Mm
j is unipotent}

and

wj := lcm
l
{wj

l |h(Ql) = Pj}

Then we set

Nj := lcm{mj, w
j}.

By applying Lemma 7.1 to Y , ΣY , andNj, we can construct a finite cover γ : Y ′ → Y . More
precisely, let A be an ample line bundle on Y such that ANj ⊗ OY (−Pj) is generated by

global sections for 1 ≤ j ≤ r. We put n = dimY . We take general members H
(j)
1 , . . . , H

(j)
n

of |ANj ⊗ OY (−Pj)| for 1 ≤ j ≤ r such that ΣY +
∑

i,j H
(j)
i is a simple normal crossing

divisor on Y . By the above data A, Nj, and ΣY +
∑

i,j H
(j)
i , we can construct a finite

cover γ : Y ′ → Y , which is a chain of cyclic covers (see the proof of Lemma 7.1). Let

s ∈ Γ(Y,ANj) be a section whose zero divisor is Pj+H
(j)
1 . The dual of s : OY → ANj , that

is, s∨ : A−Nj → OY , defines an OY -algebra structure on
⊕Nj−1

i=0 A−i. From now on, we will
see γ : Y ′ → Y in a neighborhood of the generic point of Pj. Therefore, by shrinking Y
suitably, we assume that (s = 0) = Pj. By construction, we can easily see that γ : Y ′ → Y
can be decomposed as follows:

γ : Y ′ β−→ Ỹ
α−→ Y,

where Ỹ = SpecY
⊕Nj−1

i=0 A−i, α : Ỹ → Y is the cyclic cover obtained by taking the Nj-th

root out of Pj, and β : Y ′ → Ỹ is a finite étale morphism. Let us consider V ×Y Ỹ =

SpecV
⊕Nj−1

i=0 (h∗A)−i. Note that the OV -algebra structure on
⊕Nj−1

i=0 (h∗A)−i is defined by
the dual of h∗s ∈ Γ(V, (h∗A)Nj), that is, (h∗s)∨ : (h∗A)−Nj → OV . We put

Z̃ := SpecV

Nj−1⊕
i=0

(h∗A)−i ⊗OV

(⌊
ih∗Pj

Nj

⌋)
.

Of course, the OV -algebra structure on

Nj−1⊕
i=0

(h∗A)−i ⊗OV

(⌊
ih∗Pj

Nj

⌋)
is defined by the isomorphism

(h∗A)−Nj ⊗OV

(⌊
Njh

∗Pj

Nj

⌋)
∼−→ OV ,

which is induced by h∗s ∈ Γ(V, (h∗A)Nj). Then we get a morphism Z̃ → V ×Y Ỹ induced
by the natural map of OV -algebras

Nj−1⊕
i=0

(h∗A)−i →
Nj−1⊕
i=0

(h∗A)−i ⊗OV

(⌊
ih∗Pj

Nj

⌋)
.
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We put Z ′ := Z̃ ×Ỹ Y
′ and take a suitable birational modification a : V ′ → Z ′. Then we

get the following big commutative diagram:

(7.1) Z̃

b

{{xx
xx
xx
xx
xx
x

��

Z ′β2oo

��

V ′

p

{{ww
ww
ww
ww
ww

aoo

h′

��		
		
		
		
		
		
		
		
		

V

h

��

V ×Y Ỹ

��

oo V ×Y Y
′

��

β1

oo

Y Ỹα
oo Y ′

β
oo

where β, β1, and β2 are finite étale morphisms. We put P̃j = α−1(Pj). We define BZ̃ by
KZ̃+BZ̃ = b∗(KV +BV ). Similarly, we put β∗

2(KZ̃+BZ̃) = KZ′ +BZ′ and a∗(KZ′ +BZ′) =
KV ′ + BV ′ . Without loss of generality, by shrinking Y suitably, we may assume that

h(Ql) = Pj holds if h(Ql) ⊂ Pj. By the construction of α : Ỹ → Y and the definition of

Nj, c
∗P̃j is reduced (see [KM, Proposition 7.23]) and (Z̃, c∗P̃j) is semi-log canonical, where

c : Z̃ → Ỹ . We note that Z ′ → Y ′ in (7.1) is the base change of c : Z̃ → Ỹ by an étale

morphism β : Y ′ → Ỹ . Therefore, we can take a birational modification a : V ′ → Z ′ which
is an isomorphism over Y ′ \ γ−1(Pj) such that h′ : (V ′, BV ′) → Y ′ is a pre-basic slc-trivial
fibration satisfying the desired properties. Although we constructed h′ : (V ′, BV ′) → Y ′

after shrinking Y around the generic point of Pj, we can construct a desired pre-basic
slc-trivial fibration h′ : (V ′, BV ′) → Y ′ globally without shrinking Y by the above local
description and [BVP, Theorem 1.4]. □
Anyway, we will use Lemma 7.3 in Sections 8 and 9.

8. Pull-back of the moduli parts

In this section, we see that the moduli parts behave well under pull-back by generically
finite morphisms with some mild assumptions.

Let

KX +B +
1

b
(φ) = f ∗(KY +BY +MY )

and h : (V,BV )
g−→ (X,B)

f−→ Y be as in Section 6 which satisfies conditions (a)–(g) in
Section 6. Let γ : Y ′ → Y be a generically finite morphism from a smooth quasi-projective
variety Y ′. Assume that there is a simple normal crossing divisor ΣY ′ which contains
γ−1(ΣY ). By base change, we have a commutative diagram:

(8.1) V

��

g

��~~
~~
~~
~~

V ′

g′

~~||
||
||
||

νoo

��

X

f   @
@@

@@
@@

@ X ′σoo

f ′
  B

BB
BB

BB
B

Y Y ′
γ

oo

where h′ : (V ′, BV ′)
g′−→ (X ′, BX′)

f ′
−→ Y ′ satisfies the same properties, that is, (a)–(g)

in Section 6, and it is nothing but the base change of h : (V,BV )
g−→ (X,B)

f−→ Y by
γ : Y ′ → Y over Y \ ΣY . We note that BX′ and BV ′ are induced by crepant pull-back,
that is, KX′ + BX′ = σ∗(KX + BX) and KV ′ + BV ′ = ν∗(KV + BV ), ΣX′ ⊃ σ−1(ΣX),

ΣV ′ ⊃ ν−1(ΣV ), and φ
′ = σ∗φ. In this situation, we say that the setup h′ : (V ′, BV ′)

g′−→
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(X ′, BX′)
f ′
−→ Y ′ is induced from h : (V,BV )

g−→ (X,BX)
f−→ Y by the base change

γ : Y ′ → Y .

In the above setup, we have the following theorem, which is a generalization of [A4,
Proposition 5.5]. Note that [A4, Proposition 5.5] is a generalization of [Fn2, Proposition
4.2].

Theorem 8.1. Let h : (V,BV )
g−→ (X,B)

f−→ Y be a setup as in Section 6 which
satisfies conditions (a)–(g) in Section 6. Let γ : Y ′ → Y be a generically finite projective
morphism from a smooth quasi-projective variety Y ′. Assume that there exists a simple
normal crossing divisor ΣY ′ on Y ′ which contains γ−1(ΣY ). We consider an induced setup

h′ : (V ′, BV ′)
g′−→ (X ′, BX′)

f ′
−→ Y ′ as in (8.1). Note that h′ : (V ′, BV ′)

g′−→ (X ′, BX′)
f ′
−→

Y ′ is nothing but the base change of h : (V,BV )
g−→ (X,B)

f−→ Y by γ : Y ′ → Y over

Y \ΣY . LetMY ′ be the moduli part of the induced setup h′ : (V ′, BV ′)
g′−→ (X ′, BX′)

f ′
−→ Y ′.

Then we obtain γ∗MY =MY ′.

Proof. We divide the proof into the following two steps.

Step 1. In this step, we further assume that h : (V,BV ) → Y and h′ : (V ′, BV ′) → Y ′

satisfy the assumptions in (iv) and (v) in Proposition 6.1. Then the moduli parts MY and
MY ′ are both integral divisors. By Theorem 3.1, there exists a natural isomorphism

γ∗
(
h∗OV (KV/Y + (Bh

V )
=1
)
≃ h′∗OV ′(KV ′/Y + (Bh

V ′)=1),

which is compatible with the action of the Galois group G = Z/bZ (see Proposition 6.1).
Therefore, we have an induced isomorphism of eigensheaves corresponding to the eigenvalue
ζ−1. Thus we obtain the isomorphism γ∗OY (MY ) ≃ OY ′(MY ′). This means that γ∗MY −
MY ′ is linearly trivial. If γ is finite, then we know that γ∗MY =MY ′ holds by Lemma 4.9.
Therefore, γ∗MY −MY ′ is exceptional over Y . More precisely, codimY γ(E) ≥ 2 holds for
E = γ∗MY −MY ′ . Thus we get γ∗MY = MY ′ in this special case since γ∗MY −MY ′ is
linearly trivial.

Step 2. In this step we treat the general case. By Lemma 7.3, we can construct a finite

cover τ : Y → Y such that an induced setup h : (V ,BV )
g−→ (X,BX)

f−→ Y as in (8.1)
satisfies the assumptions in (iv) and (v) in Proposition 6.1. By construction, we may
assume that there is a simple normal crossing divisor Σ1 on Y such that ΣY ⊂ Σ1, τ is
étale over Y \ Σ1, and γ

−1(Σ1) is a simple normal crossing divisor on Y ′. We may further
assume that γ−1(Σ1) ∪ ΣY ′ is contained in a simple normal crossing divisor. By Lemma
7.2, we can construct the following commutative diagram:

Y

τ

��

Ỹ

τ̃
��

γ̃oo

Y Y ′
γ

oo

where τ̃ : Ỹ → Y ′ is a finite cover from a smooth quasi-projective variety Ỹ , and there is
a simple normal crossing divisor Σ2 on Y ′ such that γ−1(Σ1) ∪ ΣY ′ ⊂ Σ2, τ̃ is étale over

Y ′ \ Σ2, and (τ̃)−1(Σ2) is a simple normal crossing divisor on Ỹ . Then we apply Lemma

7.3 again. We get a finite cover Y
′ → Ỹ from a smooth quasi-projective variety Y

′
and
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the following commutative diagram:

Y
′

γ′

wwooo
ooo

ooo
ooo

ooo
o

����
��
��
��
�

τ ′

����
��
��
��
��
��
��
��

Y

τ

��

Ỹ

τ̃
��

γ̃
oo

Y Y ′
γ

oo

such that an induced setup h
′
: (V

′
, BV

′)
g′−→ (X

′
, BX

′)
f
′

−→ Y
′
satisfies the assumptions in

(iv) and (v) in Proposition 6.1. Anyway, h : (V ,BV ) → Y and h
′
: (V

′
, BV

′) → Y
′
satisfy

the assumptions in Step 1. Therefore, we get MY
′ = (γ′)∗MY , We note that τ ∗MY = MY

and (τ ′)∗MY ′ = MY
′ hold by Lemma 4.9 because τ and τ ′ are both finite. Thus we get

(τ ′)∗(MY ′ − γ∗MY ) = 0. This implies that MY ′ = γ∗MY holds.

Anyway, we obtain γ∗MY =MY ′ . □

9. Proof of Theorem 1.2

In this section, we prove Theorem 1.2, which is the main theorem of this paper. Theorem
1.2 obviously generalizes [A4, Theorem 0.2] and [FG2, Theorem 3.6]. Since we have already
checked that the moduli part of a given basic slc-trivial fibration behaves well under pull-
back by generically finite morphisms with some mild assumptions in Theorem 8.1, there
are no difficulties to prove Theorem 1.2.

Let us prove Theorem 1.2.

Proof of Theorem 1.2. Let f : (X,B) → Y be a basic slc-trivial fibration. As usual, we
put

KX +B +
1

b
(φ) = f ∗(KY +BY +MY )

where b = b(F,BF ) and φ ∈ Γ(X,K∗
X). By taking a birational modification of X which

is an isomorphism over the generic point of every stratum of X, we may assume that
Supp(B − f ∗(BY +MY )) is a simple normal crossing divisor on X, (Bh)=1 is a Cartier
divisor on X, and every stratum of (X, (Bh)=1) is dominant onto Y (see, for example,
[BVP, Theorem 1.4 and Section 8] and [Fn14, Lemma 2.11]). As in Section 6, by taking

the b-fold cyclic cover π : (X̃, BX̃) → (X,B) associated to

KX/Y +B − f ∗(BY +MY ) =
1

b
(φ−1)

and a suitable birational modification d : (V,BV ) → (X̃, BX̃), we get

h : (V,BV )
g−→ (X,B)

f−→ Y.

Then we take a projective birational morphism σ : Y ′ → Y from a smooth quasi-projective

variety Y ′ and obtain an induced setup h′ : (V ′, BV ′)
g′−→ (X ′, BX′)

f ′
−→ Y ′ which satisfies

conditions (a)–(g) in Section 6.
From now on, we will prove that ν∗(MY ′) = MY ′′ and ν∗(KY ′ +BY ′) = KY ′′ +BY ′′ hold

for every proper birational morphism ν : Y ′′ → Y ′ from a normal variety Y ′′. We take a
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common resolution

Y ′′′

p

}}{{
{{
{{
{{ q

!!D
DD

DD
DD

D

Y ′ Y ′′
ν

oo

such that Y ′′′ is a smooth quasi-projective variety and that p−1(ΣY ′) is a simple normal

crossing divisor on Y ′′′. We consider an induced setup h′′′ : (V ′′′, BV ′′′)
g′′′−→ (X ′′′, BX′′′)

f ′′′
−→

Y ′′′ as in Section 8. By Theorem 8.1, we get p∗MY ′ = MY ′′′ . Thus we obtain p∗(KY ′ +
BY ′) = KY ′′′ +BY ′′′ . Since q : Y ′′′ → Y ′′ is birational, ν∗MY ′ = MY ′′ and ν∗(KY ′ +BY ′) =
KY ′′ +BY ′′ follow from the above relations by taking q∗.

Finally, we will prove that MY ′ is strongly nef. By Lemma 4.11, we can compactify
f : (X,B) → Y and may assume that X and Y are both complete varieties. Therefore, it is

sufficient to prove that MY ′ is nef. Let τ : Y
′ → Y ′ be a suitable finite cover from a smooth

projective variety Y
′
as in Lemma 7.3. More precisely, h

′
: (V

′
, BV

′) → Y
′
satisfies the

assumptions in (iv) and (v) in Proposition 6.1, where h
′
: (V

′
, BV

′)
g′−→ (X

′
, BX

′)
f
′

−→ Y
′

is an induced setup from h′ : (V ′, BV ′)
g′−→ (X ′, BX′)

f ′
−→ Y ′ by τ : Y

′ → Y ′. Then
τ ∗MY ′ = MY

′ holds by Lemma 4.9 since τ is finite. By Proposition 6.1, MY
′ is a nef

Cartier divisor. Therefore, MY ′ is nef. Anyway, we obtain that M is b-strongly nef. □

10. Quasi-log canonical pairs

In this section, let us recall the basic definitions of quasi-log canonical pairs and prove
a result on normal irreducible quasi-log canonical pairs, which will play a crucial role in
the proof of Theorem 1.7. For the details of the theory of quasi-log schemes, see [Fn10,
Chapter 6]. We note that our formulation in [Fn10, Chapter 6] is slightly different from
Ambro’s original one (see [A3]).

Let us start with the definition of globally embedded simple normal crossing pairs. We
will soon use it for the definition of quasi-log canonical pairs (see Definition 10.2).

Definition 10.1 (Globally embedded simple normal crossing pairs). Let Y be a simple
normal crossing divisor on a smooth varietyM and let B be an R-divisor onM such that Y
and B have no common irreducible components and that the support of Y +B is a simple
normal crossing divisor on M . In this situation, the pair (Y,BY ), where BY := B|Y , is
called a globally embedded simple normal crossing pair.

Of course, a globally embedded simple normal crossing pair is a simple normal crossing
pair in the sense of Definition 2.14. We note that a simple normal crossing variety can not
always be embedded as a simple normal crossing divisor on a smooth variety. Therefore, a
simple normal crossing pair is not necessarily a globally embedded simple normal crossing
pair.

Let us quickly look at the definition of quasi-log canonical pairs.

Definition 10.2 (Quasi-log canonical pairs). Let X be a scheme and let ω be an R-Cartier
divisor (or an R-line bundle) on X. Let f : Y → X be a proper morphism from a globally
embedded simple normal crossing pair (Y,BY ). If the natural map

OX → f∗OY (⌈−(B<1
Y )⌉)

is an isomorphism, BY is a subboundary R-divisor, and

f ∗ω ∼R KY +BY
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holds, then (X,ω, f : (Y,BY ) → X) or simply [X,ω] is called a quasi-log canonical pair
(qlc pair, for short).

We say that (X,ω, f : (Y,BY ) → X) or [X,ω] has a Q-structure if BY is a Q-divisor,
ω is a Q-Cartier divisor (or a Q-line bundle), and f ∗ω ∼Q KY + BY holds in the above
definition.

Let (X,ω, f : (Y,BY ) → X) be a quasi-log canonical pair as in Definition 10.2. Let
ν : Y ν → Y be the normalization. We put KY ν +Θ = ν∗(KY +BY ), that is, Θ is the sum
of the inverse images of BY and the singular locus of Y . Then (Y ν ,Θ) is sub log canonical
in the usual sense (see 2.2). Let W be a log canonical center of (Y ν ,Θ) or an irreducible
component of Y ν . Then f ◦ ν(W ) is called a qlc stratum of (X,ω, f : (Y,BY ) → X). If
there is no danger of confusion, we simply call it a qlc stratum of [X,ω]. If C is a qlc
stratum of [X,ω] but is not an irreducible component of X, then C is called a qlc center
of (X,ω, f : (Y,BY ) → X) or simply of [X,ω]. The union of all qlc centers of [X,ω] is
denoted by Nqklt(X,ω, f : (Y,BY ) → X) or simply by Nqklt(X,ω). It is important
that by adjunction (see [Fn10, Theorem 6.3.5 (i)]) [Nqklt(X,ω), ω|Nqklt(X,ω)] has a natural
quasi-log canonical structure induced by (X,ω, f : (Y,BY ) → X).

The following theorem is the main result of this section. Although this is a special case
of [FLh1, Theorem 1.1], we give a detailed proof for the reader’s convenience.

Theorem 10.3 (see [FLh1, Theorem 1.1]). Let (X,ω, f : (Y,BY ) → X) be a quasi-log
canonical pair. Assume that X is a normal irreducible variety. Then we can construct a
projective surjective morphism f ′ : Y ′ → X with the following properties:

(i) (Y ′, BY ′) is a globally embedded simple normal crossing pair, Y ′ is quasi-projective,
BY ′ is a subboundary R-divisor, and KY ′ +BY ′ ∼R (f ′)∗ω,

(ii) the natural map OX → f ′
∗OY ′(⌈−(B<1

Y ′ )⌉) is an isomorphism, and
(iii) every stratum of Y ′ is dominant onto X.

Therefore, (X,ω, f ′ : (Y ′, BY ′) → X) is also a quasi-log canonical pair. Moreover, we have:

(iv) if C is a qlc stratum of (X,ω, f ′ : (Y ′, BY ′) → X) then C is a qlc stratum of
(X,ω, f : (Y,BY ) → X), and

(v) Nqklt(X,ω, f ′ : (Y ′, BY ′) → X) = Nqklt(X,ω, f : (Y,BY ) → X).

Furthermore, if KY + BY ∼Q f ∗ω, then KY ′ + BY ′ ∼Q (f ′)∗ω holds by construction. We
note that if (X,ω, f ′ : (Y ′, BY ′) → X) has a Q-structure then f : (Y ′, BY ′) → X is a basic
slc-trivial fibration in the sense of Definition 4.1.

Proof. By [Fn10, Proposition 6.3.1], we may assume that Y is quasi-projective and that the
union of all strata of (Y,BY ) mapped to Nqklt(X,ω, f : (Y,BY ) → X), which is denoted
by Y ′′, is a union of some irreducible components of Y by taking some suitable blow-ups
of the ambient space M of Y . We put Y ′ = Y −Y ′′ and KY ′ +BY ′ = (KY +BY )|Y ′ . Then
we obtain the following commutative diagram:

Y ′

f ′

��

� � ι // Y

f
��

V p
// X

where ι : Y ′ ↪→ Y is a natural closed immersion and

Y ′ f ′
// V

p // X

is the Stein factorization of f ◦ ι : Y ′ → X. By construction, the natural map OV → f ′
∗OY ′

is an isomorphism and every stratum of Y ′ is dominant onto V . By construction again,
ι : Y ′ ↪→ Y is an isomorphism over the generic point of X. Therefore, p is birational.
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Thus, p : V → X is an isomorphism by Zariski’s main theorem since X is normal and p is
a finite birational morphism. So we have the following commutative diagram.

Y ′

f ′

��

� � ι // Y

f
��

X X

By construction, it is obvious that BY ′ is a subboundary R-divisor and that KY ′ +BY ′ ∼R
(f ′)∗ω holds. Of course, if KY +BY ∼Q f

∗ω, then KY ′ +BY ′ ∼Q (f ′)∗ω.

Lemma 10.4. The natural map

α : OX → f ′
∗OY ′(⌈−(B<1

Y ′ )⌉)

is an isomorphism.

Proof of Lemma 10.4. Since X is normal and f ′
∗OY ′(⌈−(B<1

Y ′ )⌉) is torsion-free, it is suffi-
cient to see that α is an isomorphism in codimension one. Let P be a prime divisor on X
such that P ⊂ Nqklt(X,ω, f : (Y,BY ) → X). We note that every fiber of f is connected by
f∗OY ≃ OX . Thus, by construction, there exists an irreducible component of B=1

Y ′ which
maps onto P . Therefore, the effective divisor ⌈−(B<1

Y ′ )⌉ does not contain the whole fiber
of f ′ over the generic point of P . Thus, α is an isomorphism at the generic point of P .
This implies that the natural map α is an isomorphism. □

Let us go back to the proof of Theorem 10.3. By Lemma 10.4, (X,ω, f ′ : (Y ′, BY ′) → X)
is a quasi-log canonical pair. By construction, if C is a qlc stratum of (X,ω, f ′ : (Y ′, BY ′) →
X) then C is a qlc stratum of (X,ω, f : (Y,BY ) → X). By construction again, it is easy
to see that

INqklt(X,ω,f :(Y,BY )→X) = f ′
∗OY ′(⌈−(B<1

Y ′ )⌉ − Y ′′|Y ′) = INqklt(X,ω,f ′:(Y ′,BY ′ )→X)

(see the proof of [Fn10, Theorem 6.3.5 (i)]). Therefore, this new quasi-log canonical pair
(X,ω, f ′ : (Y ′, BY ′) → X) is the desired one. We note that f ′ : (Y ′, BY ′) → X is a basic
slc-trivial fibration in the sense of Definition 4.1 when (X,ω, f ′ : (Y ′, BY ′) → X) has a
Q-structure. □

Theorem 10.3 is one of the main motivations to introduce the notion of basic slc-trivial
fibrations.

We close this section with an important remark on embedded qlc centers.

Remark 10.5. In Theorem 10.3, let C be an embedded qlc center of (X,ω, f : (Y,BY ) →
X), that is, C is a qlc center of (X,ω, f : (Y,BY ) → X) that is not an irreducible
component of Nqklt(X,ω, f : (Y,BY ) → X). Then it is not clear whether C is also a qlc
center of (X,ω, f ′ : (Y ′, BY ′) → X) or not by the above construction of f ′ : (Y ′, BY ′) → X.
In Theorem 10.3, we just claim that the equality

Nqklt(X,ω, f ′ : (Y ′, BY ′) → X) = Nqklt(X,ω, f : (Y,BY ) → X)

holds.

11. Structure theorem for normal qlc pairs

In this section, we prove Theorem 1.7. We believe that Theorem 1.7 will make the
theory of quasi-log schemes more powerful and flexible. We will treat various nontrivial
applications of Theorem 1.7 in [FLh2], [FLh3], and [FLw2].

Let us start with the following elementary lemma.
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Lemma 11.1. Let (X,ω, f : (Y,BY ) → X) be a quasi-log canonical pair such that X is
a normal irreducible variety and that every stratum of Y is dominant onto X. Then we
obtain a Q-divisor Di on Y , a Q-Cartier divisor ωi on X, and a positive real number ri
for 1 ≤ i ≤ k such that

(i)
∑k

i=1 ri = 1,

(ii) Di = D≤1
i , SuppDi = SuppBY , D

=1
i = B=1

Y , and ⌈−(D<1
i )⌉ = ⌈−(B<1

Y )⌉ for every
i,

(iii) ω =
∑k

i=1 riωi and BY =
∑k

i=1 riDi, and
(iv) (X,ωi, f : (Y,Di) → X) is a quasi-log canonical pair with KY + Di ∼Q f ∗ωi for

every i.

Proof. We put BY =
∑

j bjBj, where Bj is a simple normal crossing divisor on Y for every
j, bj1 ̸= bj2 for j1 ̸= j2, and SuppBj1 and SuppBj2 have no common irreducible components
for j1 ̸= j2. We may assume that bj ∈ R\Q for 1 ≤ j ≤ l and bj ∈ Q for j ≥ l+1. We put
ω =

∑m
p=1 apωp, where ap ∈ R and ωp is a Cartier divisor on X for every p. We can write

KY +BY +
n∑

q=1

cq(φq) =
m∑
p=1

apf
∗ωp

where cq ∈ R and φq ∈ Γ(Y,K∗
Y ) for every q. We consider the following linear map

ψ : Rl+m+n −→ Γ(Y,K∗
Y /O∗

Y )⊗Z R
defined by

ψ(x1, . . . , xl+m+n) =
m∑

α=1

xαf
∗ωα −

n∑
β=1

xm+β(φβ)−
l∑

γ=1

xm+n+γBγ.

We note that ψ is defined over Q. By construction,

A := ψ−1

(
KY +

∑
j≥l+1

bjBj

)
is a nonempty affine subspace of Rl+m+n defined over Q. We put

P := (a1, . . . , am, c1, . . . , cn, b1, . . . , bl) ∈ A.

We can take P1, . . . , Pk ∈ A ∩ Ql+m+n and r1, . . . , rk ∈ R>0 such that
∑k

i=1 ri = 1 and∑k
i=1 riPi = P in A. Note that we can make Pi arbitrary close to P for every i. So we

may assume that Pi is sufficiently close to P for every i. For each Pi, we obtain

(11.1) KY +Di ∼Q f
∗ωi

which satisfies (ii) by using ψ. By construction, (i) and (iii) hold. By (11.1) and (ii),

(X,ωi, f : (Y,Di) → X)

is a quasi-log canonical pair for every i. Therefore, we get (iv). □
We prepare one more lemma for the proof of Theorem 1.7, which is essentially contained

in [Fn10, Chapter 6].

Lemma 11.2. Let (X,ω, f : (Y,BY ) → X) be a quasi-log canonical pair such that X is a
normal irreducible variety. We assume that every stratum of Y is dominant onto X. Let
P be a prime divisor on X which is Cartier. We put

bP := max

{
t ∈ R

∣∣∣∣ (Y,BY + tf ∗P ) is sub slc over
the generic point of P

}
.

Then bP ≤ 1 holds.
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Proof. If P is a qlc center of [X,ω], then bP = 0. Therefore, from now on, we assume
that P is not a qlc center of [X,ω]. By shrinking X around the generic point of P , we
may assume that X is quasi-projective and that (Y,BY + bPf

∗P ) is sub slc. By taking
a suitable birational modification of Y (see [BVP, Theorem 1.4]), we may further as-
sume that (Y, SuppBY + Supp f ∗P ) is a simple normal crossing pair. In this situation,
(X,ω + bPP, f : (Y,BY + bPf

∗P ) → X) has a natural quasi-log canonical structure. In
order to prove bP ≤ 1, we may further assume that X is a smooth curve and P is a
point of X by taking general hyperplanes of X and by using adjunction. If bP > 1, then
((BY + f ∗P )v)<1 = (BY + f ∗P )v holds over P . This implies that f ∗P ≤ ⌈−(B<1

Y )⌉. Thus
we get

OX ⊊ OX(P ) ⊂ f∗OY (⌈−(B<1
Y )⌉)

in a neighborhood of P . This is a contradiction because the natural map

OX → f∗OY (⌈−(B<1
Y )⌉)

is an isomorphism. Therefore, we obtain bP ≤ 1. □
Let us start the proof of Theorem 1.7.

Proof of Theorem 1.7. By Theorem 10.3, we may assume that there exist a projective
surjective morphism f : (Y,BY ) → X from a simple normal crossing pair (Y,BY ) such
that every stratum of Y is dominant onto X and that (X,ω, f : (Y,BY ) → X) is a quasi-
log canonical pair. By taking some more blow-ups, we may further assume that (Bh

Y )
=1

is Cartier and that every stratum of (Y, (Bh
Y )

=1) is dominant onto X (see, for example,
[BVP, Theorem 1.4 and Section 8] and [Fn14, Lemma 2.11]).

Step 1. In this step, we treat the case where [X,ω] has a Q-structure. In this situation, f :
(Y,BY ) → X is a basic slc-trivial fibration (see Theorem 10.3). Let B be the discriminant
Q-b-divisor and let M be the moduli Q-b-divisor associated to f : (Y,BY ) → X. Since
(Y,BY ) is sub slc, BX is a subboundary Q-divisor on X, that is, BX = (BX)

≤1 . By
Lemma 11.2, we obtain that BX is an effective Q-divisor on X. By the definition of qlc
centers, we have f((Bv

Y )
=1) = Nqklt(X,ω). We take a projective birational morphism

p : X ′ → X from a smooth quasi-projective variety X ′. Let f ′ : (Y ′, BY ′) → X ′ be an
induced basic slc-trivial fibration with the following commutative diagram.

(Y,BY )

f
��

(Y ′, BY ′)

f ′

��

qoo

X X ′
p

oo

By Theorem 1.2, we may assume that there exists a simple normal crossing divisor ΣX′ on
X ′ such thatM = MX′ , SuppMX′ and SuppBX′ are contained in ΣX′ , and that every stra-
tum of (Y ′, SuppBh

Y ′) is smooth overX ′\ΣX′ . Of course, we may assume thatMX′ := MX′

is strongly nef by Theorem 1.2. We may further assume that every irreducible component
of q−1

∗ ((Bv
Y )

=1) is mapped onto a prime divisor in ΣX′ with the aid of the flattening theo-
rem (see [RG, Théorème (5.2.2)]). We put BX′ := BX′ . Note that BX′ is a subboundary
Q-divisor on X ′ since (Y ′, BY ′) is sub slc. In the above setup, f ′(q−1

∗ (Bv
Y )

=1) ⊂ B=1
X′ by the

definition of B. Thus, we get Nqklt(X,ω) ⊂ p(B=1
X′ ). On the other hand, we can easily see

that p(B=1
X′ ) ⊂ Nqklt(X,ω) by definition. Therefore, p(B=1

X′ ) = Nqklt(X,ω) holds. Since
p∗BX′ = BX and BX is effective, B<0

X′ is p-exceptional. Hence, BX′ and MX′ satisfy the
desired properties. We note that BX′ and MX′ are obviously Q-divisors by construction.

Step 2. In this step, we treat the general case. We first use Lemma 11.1 and get a
positive real number ri and (X,ωi, f : (Y,Di) → X) for 1 ≤ i ≤ k with the properties
in Lemma 11.1. Then we apply the argument in Step 1 to (X,ωi, f : (Y,Di) → X) for
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every i. By Theorem 1.2, we can take a projective birational morphism p : X ′ → X from
a smooth quasi-projective variety X ′ which works for (X,ωi, f : (Y,Di) → X) for every
i. By summing them up with weight ri, we get R-divisors BX′ and MX′ with the desired
properties. In this case, we do not claim that BX′ is the discriminant of f ′ : (Y ′, BY ′) → X ′.

Anyway, we get p : X ′ → X, BX′ , and MX′ with the desired properties. □
As we mentioned in Remark 1.9, (X,BX +MX), where BX := p∗BX′ andMX := p∗MX′ ,

is generalized lc in the sense of [BZ, Definition 4.1]. Moreover, if Nqklt(X,ω) = ∅, then
(X,BX +MX) is generalized klt in the sense of [BZ, Definition 4.1].

Finally, we prove Corollary 1.10.

Proof of Corollary 1.10. By adjunction (see [Fn10, Theorem 6.3.5]), [W,ω|W ] is a quasi-
log canonical pair. Since W is a minimal qlc stratum of [X,ω], W is a normal irreducible
variety and Nqklt(W,ω|W ) = ∅ holds (see [Fn10, Theorem 6.3.5 and Lemma 6.3.9]). By
Theorem 1.7, we can take a projective birational morphism p : W ′ → W from a smooth
quasi-projective varietyW ′, a subboundary R-divisorBW ′ whose support is a simple normal
crossing divisor on W ′, a strongly nef R-divisor MW ′ on W ′ such that p∗(ω|W ) = KW ′ +
BW ′ +MW ′ . Since Nqklt(W,ω|W ) = ∅ holds, we may assume that BW ′ = B<1

W ′ . By taking
some more blow-ups, if necessary, we may further assume that there exists an effective
p-exceptional Cartier divisor E on W ′ such that SuppBW ′ ∪ SuppE is contained in a
simple normal crossing divisor and that −E is p-ample. We note that −εE + p∗H +MW ′

is semi-ample for any 0 < ε ≪ 1. Therefore, we can take a general effective R-divisor
G ∼R −εE + p∗H + MW ′ such that Supp(BW ′ + εE + G) is a simple normal crossing
divisor on W ′ and ⌊BW ′ + εE + G⌋ ≤ 0. By construction, KW ′ + BW ′ +MW ′ + p∗H ∼R
KW ′ + BW ′ + εE + G holds. We put ∆W = p∗(BW ′ + εE + G). Then ∆W satisfies the
desired properties.

When [X,ω] has a Q-structure and H is an ample Q-divisor, it is easy to see that we can
make ∆W a Q-divisor with KW +∆W ∼Q ω|W +H by the above construction of ∆W . □

12. On the basepoint-freeness

In this section, we give a small remark on the basepoint-free theorem for quasi-log
canonical pairs.

The following theorem is a special case of the basepoint-free theorem for quasi-log
schemes (see [Fn10, Theorem 6.5.1]). We can quickly reduce Theorem 12.1 to the usual
Kawamata–Shokurov basepoint-free theorem for kawamata log terminal pairs by Corollary
1.10. Note that the general basepoint-free theorem for quasi-log schemes (see [Fn10, The-
orem 6.5.1]) easily follows from Theorem 12.1. For the details, see Claims 1, 3, and 4 in
the proof of [Fn10, Theorem 6.5.1].

Theorem 12.1 (Basepoint-free theorem, see [Fn10, Theorem 6.5.1]). Let [X,ω] be a quasi-
log canonical pair with Nqklt(X,ω) = ∅ and let π : X → S be a projective morphism
between schemes. Let L be a π-nef Cartier divisor on X. Assume that qL− ω is π-ample
for some real number q > 0. Then there exists a positive number m0 such that OX(mL) is
π-generated for every integer m ≥ m0.

Proof. Without loss of generality, we may assume that S is quasi-projective. ThenX is also
quasi-projective. Therefore, we can take an ample Q-divisorH onX such that qL−(ω+H)
is still π-ample. By Corollary 1.10, we can take an effective R-divisor ∆X on X such that
ω +H ∼R KX +∆X and that (X,∆X) is kawamata log terminal. Therefore, by the usual
Kawamata–Shokurov basepoint-free theorem for kawamata log terminal pairs, we obtain
a positive number m0 such that OX(mL) is π-generated for every integer m ≥ m0. □
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13. Supplements to [FF1]

In this section, we give some supplementary remarks on [FF1] for the reader’s conve-
nience. We believe that there are no serious troubles in [FF1]. However, we found that
it contains some minor mistakes and ambiguities. So we fix them here. For a completely
different approach to the results in [FF1] based on Saito’s theory of mixed Hodge modules,
see [FFS].

13.1 (Base change theorem). We note that the statement of [FF1, Lemma 3.4 (iv)] is
correct. However, the proof of [FF1, Lemma 3.4 (iv)] is somewhat misleading. Therefore,
we recommend the interested reader to see [Fs1, Lemma 2.20] and its proof. Anyway, we
think that [FF1, Lemma 3.4] is an easy exercise.

13.2 (Semipositivity theorem). In [FF1, Section 5], we discussed a generalization of the
Fujita–Zucker–Kawamata semipositivity theorem (see [FF1, Theorem 5.21]), which plays
a crucial role in this paper. We used [FF1, Corollary 5.23], which is an easy consequence of
[FF1, Theorem 5.21], in Theorem 3.1 (ii). Unfortunately, there are some ambiguities in the
arguments in [FF1, Section 5]. In [FF1, 5.8], we defined the condition (mMH). It was not
precise enough because the real structure was not mentioned explicitly. In [Fs2, Section
2], Taro Fujisawa, who is one of the authors of [FF1], removed the ambiguities from [FF1,
Section 5]. We recommend the reader to see [Fs2]. We also recommend the interested
reader to see [FFS, Theorem 3] and [FF2]. In [FF2], we give an analytic generalization of
the Fujita–Zucker–Kawamata semipositivity theorem whose proof is completely different
from the arguments in [FF1, Section 5].

13.3 (Lemma on two filtrations). In Section 4 of [FF1], the lemma on two filtrations [D,
Propositions (7.2.5) and (7.2.8)] (see also [PeSt, Theorem 3.12]) was used several times
(explicitly stated at p. 608, the proof of Lemma 4.5, p. 610, Remark 4.6, p. 618, Step 1
of the proof of Lemma 4.10 and p. 623, the proof of Lemma 4.12, and implicitly used at
p. 611, the proof of Lemma 4.8). However, there are missing points in the arguments.

Let K be a complex, W a finite increasing filtration on K and F a finite decreasing
filtration on K. In order to apply the lemma on two filtrations for the spectral sequence

(Ep,q
r (K,W ), Frec),

it is necessary to discuss about the E0-terms. More precisely, it has to be checked that
the strictness of the filtration F on the complex GrWm K holds true for all m. Here we will
explain how to check this strictness for the case of Lemma 4.10 of [FF1] mentioned above.
For the other cases, the similar arguments are valid.

In Step 1 of the proof of Lemma 4.10, the bifiltered complex

(Rf∗ΩX•/∆(logE•), L, F )

is studied. Thus the strictness of the filtration F on the complex

GrLmRf∗ΩX•/∆(logE•)

has to be checked for all m. Under the canonical isomorphism

GrLmRf∗ΩX•/∆(logE•) ≃ Rf∗GrLm ΩX•/∆(logE•)

≃ Rf−m∗ΩX−m/∆(logE−m)[m],

the filtration F coincides with the filtration induced from the stupid filtration, which is
denoted by F again, on the complex ΩX−m/∆(logE−m). Therefore it suffices to prove the
strictness of the filtration F on Rf−m∗ΩX−m/∆(logE−m) that is induced by the stupid filtra-
tion F on ΩX−m/∆(logE−m). The strictness of F on Rf−m∗ΩX−m/∆(logE−m) is equivalent
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to the E1-degeneracy of the spectral sequence Ep,q
r (Rf−m∗ΩX−m/∆(logE−m), F ). We note

that the morphism of Er-terms

dr : E
p,q
r (Rf−m∗ΩX−m/∆(logE−m), F )

−→ Ep+r,q−r+1
r (Rf−m∗ΩX−m/∆(logE−m), F )

is zero on ∆∗ for all p, q and for all r ≥ 1 because X−m −→ ∆ is smooth and projective
over ∆∗. On the other hand,

Ep,q
1 (Rf−m∗ΩX−m/∆(logE−m), F ) = Rp+qf−m∗GrpF ΩX−m/∆(logE−m)

= Rqf−m∗Ω
p
X−m/∆(logE−m),

is a locally free O∆-module of finite rank by [St, (2.11) Theorem]. Therefore the morphism
of E1-terms d1 is zero on the whole ∆ for all p, q. Inductively on r, we obtain that
Ep,q

r (Rf−m∗ΩX−m/∆(logE−m), F ) is a locally free O∆-module of finite rank and that dr is
zero on the whole ∆ for all p, q and for all r ≥ 1. Thus the E1-degeneracy is proved.
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