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Base Point Free Theorem of Reid-Fukuda Type

By Osamu Fujino*

Abstract. Let (X,∆) be a proper dlt pair and L a nef Cartier
divisor such that aL−(KX+∆) is nef and log big on (X,∆) for some a ∈
Z>0. Then |mL| is base point free for every m � 0. Furthermore, we
give a partial answer to the four-dimensional log abundance conjecture
in the appendix.

0. Introduction

The purpose of this paper is to prove the following theorem. This type

of base point freeness was suggested by M. Reid in [Re, 10.4].

Theorem 0.1 (Base point free theorem of Reid-Fukuda type). Let

(X,∆) be a proper dlt pair and L a nef Cartier divisor such that aL −
(KX + ∆) is nef and log big on (X,∆) for some a ∈ Z>0. Then |mL| is

base point free for every m � 0, that is, there exists a positive integer m0

such that |mL| is base point free for every m ≥ m0.

This theorem was proved by S. Fukuda in the case where X is smooth

and ∆ is a reduced simple normal crossing divisor in [Fk2]. In [Fk3], he

proved it on the assumption that dimX ≤ 3 by using the log Minimal

Model Program. Our proof is similar to [Fk3]. However, we do not use

the log Minimal Model Program even in dimX ≤ 3. He also proved this

theorem in dimX ≥ 4 under some extra conditions (see [Fk4]).
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Notation. (1) We will make use of the standard notation and definitions

as in [KoM].
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(2) A pair (X,∆) denotes that X is a normal variety over C and ∆ is a

Q-divisor on X such that KX + ∆ is Q-Cartier.

(3) Diff denotes the different (see [Utah, Chapter 16]).

1. Preliminaries

In this section, we make some definitions and collect the necessary re-

sults.

Definition 1.1 (cf. [Ka2, Definition 1.3]). A subvariety W of X is

said to be a center of log canonical singularities for the pair (X,∆), if there

exists a proper birational morphism from a normal variety µ : Y → X and

a prime divisor E on Y with the discrepancy a(E,X,∆) ≤ −1 such that

µ(E) = W .

Definition 1.2. Let (X,∆) be lc and D a Q-Cartier Q-divisor on X.

The divisor D is called nef and log big on (X,∆) if D is nef and big, and

(DdimW ·W ) > 0 for every center of log canonical singularities W for the

pair (X,∆).

Remark 1.3. (1) Our definition of nef and log big is equivalent to that

of Reid and Fukuda (see [Fk3, Definition]).

(2) The pair (X,∆) is dlt if and only if it is wklt (see [Sz]).

(3) In [Fj], centers of log canonical singularities of dlt pairs were inves-

tigated (see [Fk, Definition 4.8, Lemma 4.9]).

The following proposition is a variant of Kawamata-Shokurov base point

free theorem (cf. [Fk3, Proposition 2], for the proof, see [Ka1, Lemma 3]

and [Fk2, Proof of Theorem 3]).

Proposition 1.4. Let (X,∆) be a proper dlt pair and L a nef Cartier

divisor such that aL − (KX + ∆) is nef and big for some a ∈ Z>0. If

Bs|mL| ∩ �∆� = ∅ for every m � 0, then |mL| is base point free for every

m � 0, where Bs|mL| denotes the base locus of |mL|.

The next lemma is a generalization of Kawamata-Viehweg vanishing

theorem.
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Lemma 1.5 (cf. [Fk1, Lemma]). Let X be a proper smooth variety and

∆ =
∑

i di∆i a sum of distinct prime divisors such that Supp∆ is a simple

normal crossing divisor and di is a rational number with 0 ≤ di ≤ 1 for

every i. Let D be a Cartier divisor on X. Assume that D − (KX + ∆) is

nef and log big on (X,∆). Then H i(X,OX(D)) = 0 for every i > 0.

2. Proof of Theorem

Proof of Theorem (0.1). By the definition of dlt pairs (see [Sh,

1.1]), there exists a log resolution (see [KoM, Notation 0.4 (10)]) f : Y → X

of (X,∆), which satisfies the following conditions:

(1) KY +f−1
∗ ∆ = f∗(KX +∆)+

∑
i aiEi with ai > −1 for every i, where

Ei’s are irreducible exceptional divisors,

(2) f induces an isomorphism at every generic point of center of log

canonical singularities for the pair (X,∆).

(See also [Sz, Divisorial Log Terminal Theorem].) We define E :=
∑

i�ai�Ei ≥ 0 and F := f−1
∗ ∆ + E −

∑
i aiEi. Then KY + F = f∗(KX +

∆) + E. If �∆� = 0, then (X,∆) is klt. So we can assume that �∆� �= 0.

We take an irreducible component S of �∆�. By [KoM, Corollary 5.52], S is

normal. Therefore, (S,Diff(∆−S)) is dlt by [Sh, 3.2.3] (see also [KoM, Def-

inition 2.37] and [Utah, 17.2 Theorem]). We put T := f−1
∗ S and M := f∗L.

We consider the following exact sequence:

0 → OY (−T ) → OY → OT → 0.

Tensoring with OY (mM + E) for m ≥ a, we have the exact sequence:

0 → OY (mM + E − T ) → OY (mM + E) → OT (mM + E) → 0.

By Lemma (1.5), H1(Y,OY (mM + E − T )) = 0. We note that M is nef

and mM + E − T − (KY + F − T ) = f∗(mL − (KX + ∆)) is nef and log

big on (Y, F − T ). Then we have that

H0(Y,OY (mM + E)) → H0(T,OT (mM + E))

is surjective. By the projection formula, we have that

H0(Y,OY (mM + E)) 
 H0(X, f∗OY (mM + E)) 
 H0(X,OX(mL))
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and

H0(T,OT (mM + E)) ⊃ H0(T,OT (mM)) 
 H0(S,OS(mL)).

Note that E is effective and f -exceptional and that E|T is effective but not

necessarily f |T -exceptional, where f |T : T → S. We consider the following

commutative diagram:

H0(Y,OY (mM + E)) −−−→ H0(T,OT (mM + E)) −−−→ 0
�

∼=

�

ι

H0(X,OX(mL)) −−−→ H0(S,OS(mL)).

Since the left vertical arrow is an isomorphism and ι is injective by the

above argument, the map ι is an isomorphism and

H0(X,OX(mL)) → H0(S,OS(mL))

is surjective. By induction on dimension, |mL|S | is base point free for every

m � 0 since (aL− (KX +∆))|S = aL|S − (KS +Diff(∆−S)) is nef and log

big on (S,Diff(∆−S)). So we have that Bs|mL|∩�∆� = ∅. By Proposition

(1.4), we get the result. �

3. Appendix

The following theorem is a partial answer to the four-dimensional log

abundance conjecture.

Theorem 3.1. Let (X,∆) be a proper dlt fourfold and KX + ∆ nef

and big. Then KX + ∆ is semi-ample.

Proof. Let a be a positive integer such that a(KX + ∆) is Cartier.

We define L := a(KX + ∆), S := �∆�, and T := f−1
∗ S = �f−1

∗ ∆�, where f

is the log resolution in the proof of Theorem (0.1). Apply the same proof

as that of Theorem (0.1) and the abundance theorem for the semi divisorial

log terminal threefold (S,Diff(∆−S)) (see [Fj]). Note that S is seminormal

and f |T : T → S has connected fibers by the connectedness lemma ([Utah,

17.4 Theorem]). �
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