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The results in this short note seems to be more or less well known to the experts
although they are formulated and stated only for algebraic varieties in [HM]. Here, we
do not repeat the proof of [HM] in the complex analytic setting. We will use a different
approach.

Definition 1 (Rational chain connectedness). Let X be a projective complex analytic
space. We say that X is rationally chain connected if for arbitrary points P1, P2 ∈ X
there exists a connected curve C on X such that P1, P2 ∈ C and that every irreducible
component of C is rational.

In Definition 1, X may be reducible and highly singular.

Theorem 2. Let π : X → S be a projective morphism of complex analytic spaces with
π∗OX ≃ OS such that (X,∆) is log canonical. Assume that −(KX +∆) is π-ample over
some open neighborhood of P ∈ S. Then π−1(P ) is rationally chain connected.

Proof. After shrinking S around P , we can naturally see [X,KX + ∆] as a quasi-log
complex analytic space with Nqlc(X,KX+∆) = ∅ (see [F2]). Therefore, by [F2, Theorem
9.8], we obtain that π−1(P ) is rationally chain connected. □

Note that the proof of [F2, Theorem 9.8] essentially depends on [HM]. Hence, this note
does not give an alternative proof of the results in [HM] established for algebraic varieties.

Corollary 3. Let π : X → S be a projective bimeromorphic morphism of normal complex
varieties with π∗OX ≃ OS such that (X,∆) is kawamata log terminal. Let P ∈ S be an
arbitrary point. Assume that KX + ∆ is π-numerically trivial over P , that is, (KX +
∆) · C = 0 holds for every curve C with π(C) = P . Then π−1(P ) is rationally chain
connected.

Proof. After shrinking S around P , we can find an effective Q-Cartier Q-divisor D on
X such that (X,∆ +D) is still kawamata log terminal and that −D is π-ample. Hence
−(KX +∆+D) is π-ample over some open neighborhood of P . Therefore, by Theorem
2, π−1(P ) is rationally chain connected. □

The following lemma is obvious. We will use it in the proof of Theorem 5.

Lemma 4. Let g : Z → Y and f : Y → X be proper surjective morphisms of complex
analytic spaces. If (f◦g)−1(P ) is rationally chain connected, then f−1(P ) is also rationally
chain connected.

Proof. This is because (f ◦ g)−1(P ) → f−1(P ) is surjective. □
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By using the minimal model program for projective morphisms between complex ana-
lytic spaces (see [F1]), we can prove the following result as an easy application of Corollary
3.

Theorem 5 (Kawamata log terminal singularities). Let X be a normal complex variety
such that (X,∆) is kawamata log terminal for some effective R-divisor ∆ on X. Let
f : Y → X be any proper bimeromorphic morphism from a complex variety Y . Then
f−1(P ) is rationally chain connected for every P ∈ X.

The author learned the following proof in [DH].

Proof. Throughout this proof, we will freely shrink X around P without mentioning it
explicitly. By applying Chow’s lemma for proper bimeromorphic morphisms (see [H,
Corollary 2]) and taking a suitable resolution of singularities (see [BM]), we may assume
that Y is smooth and f is projective by Lemma 4. We may further assume that the
exceptional locus Exc(f) of f is a divisor and that the union of the support of f−1

∗ ∆ and
Exc(f) is a simple normal crossing divisor on Y . Then we can write

KY +∆Y = f ∗(KX +∆) + E

such that (Y,∆Y ) is kawamata log terminal and that E is effective with SuppE = Exc(f).
By [F1], we can run a minimal model program with respect to KY +∆Y over X around
P starting from (Y,∆Y ):

(Y,∆Y ) =: (Y0,∆Y0)
φ099K (Y1,∆Y1)

φ199K · · ·
φi−199K (Yi,∆Yi

)
φi99K · · ·

φm−199K (Ym,∆Ym),

where ∆Yi+1
:= (φi)∗∆Yi

for every i ≥ 0, such that KYm + ∆Ym is semi-ample over some
open neighborhood of P . We note that each step φi exists only after shrinking X around
P suitably. We also note that f is a projective bimeromorphic morphism. Hence KY +∆Y

is automatically big over X. Therefore, we finally get a small projective bimeromorphic
morphism fm : Ym → X such that KYm + ∆Ym = f ∗

m(KX + ∆) holds. By Corollary 3,
f−1
m (P ) is rationally chain connected. By applying Theorem 2 to each flipping contraction
and each divisorial contraction in the above minimal model program, we can check that
π−1(P ) is rationally chain connected with the aid of Lemma 4. □
The following corollary of Theorem 5 is well known for proper rational maps of algebraic

varieties.

Corollary 6. Let f : X 99K Y be a meromorphic map of complex analytic spaces such
that (X,∆) is kawamata log terminal. Assume that there are no rational curves on Y .
Then f is a morphism.

Proof. Let Γ be the graph of f : X 99K Y . By Theorem 5, any positive-dimensional fiber
of p : Γ → X is rationally chain connected, where p : Γ → X is the projection. Since Y has
no rational curves, p : Γ → X is an isomorphism. This means that f is a morphism. □
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