ON RATIONAL CHAIN CONNECTEDNESS

OSAMU FUJINO

The results in this short note seems to be more or less well known to the experts although they are formulated and stated only for algebraic varieties in [HM]. Here, we do not repeat the proof of [HM] in the complex analytic setting. We will use a different approach.

Definition 1 (Rational chain connectedness). Let X be a projective complex analytic space. We say that X is *rationally chain connected* if for arbitrary points $P_1, P_2 \in X$ there exists a connected curve C on X such that $P_1, P_2 \in C$ and that every irreducible component of C is rational.

In Definition 1, X may be reducible and highly singular.

Theorem 2. Let $\pi: X \to S$ be a projective morphism of complex analytic spaces with $\pi_*\mathcal{O}_X \simeq \mathcal{O}_S$ such that (X, Δ) is log canonical. Assume that $-(K_X + \Delta)$ is π -ample over some open neighborhood of $P \in S$. Then $\pi^{-1}(P)$ is rationally chain connected.

Proof. After shrinking S around P, we can naturally see $[X, K_X + \Delta]$ as a quasi-log complex analytic space with Nqlc $(X, K_X + \Delta) = \emptyset$ (see [F2]). Therefore, by [F2, Theorem 9.8], we obtain that $\pi^{-1}(P)$ is rationally chain connected.

Note that the proof of [F2, Theorem 9.8] essentially depends on [HM]. Hence, this note does not give an alternative proof of the results in [HM] established for algebraic varieties.

Corollary 3. Let $\pi: X \to S$ be a projective bimeromorphic morphism of normal complex varieties with $\pi_*\mathcal{O}_X \simeq \mathcal{O}_S$ such that (X, Δ) is kawamata log terminal. Let $P \in S$ be an arbitrary point. Assume that $K_X + \Delta$ is π -numerically trivial over P, that is, $(K_X + \Delta) \cdot C = 0$ holds for every curve C with $\pi(C) = P$. Then $\pi^{-1}(P)$ is rationally chain connected.

Proof. After shrinking S around P, we can find an effective Q-Cartier Q-divisor D on X such that $(X, \Delta + D)$ is still kawamata log terminal and that -D is π -ample. Hence $-(K_X + \Delta + D)$ is π -ample over some open neighborhood of P. Therefore, by Theorem 2, $\pi^{-1}(P)$ is rationally chain connected.

The following lemma is obvious. We will use it in the proof of Theorem 5.

Lemma 4. Let $g: Z \to Y$ and $f: Y \to X$ be proper surjective morphisms of complex analytic spaces. If $(f \circ g)^{-1}(P)$ is rationally chain connected, then $f^{-1}(P)$ is also rationally chain connected.

Proof. This is because $(f \circ g)^{-1}(P) \to f^{-1}(P)$ is surjective.

Date: 2023/3/4, version 0.00.

²⁰¹⁰ Mathematics Subject Classification. Primary 14E30; Secondary 14J17, 32S05.

Key words and phrases. rational chain connectedness, kawamata log terminal singularities, minimal model program.

This note will be contained in [F1] or [F2].

OSAMU FUJINO

By using the minimal model program for projective morphisms between complex analytic spaces (see [F1]), we can prove the following result as an easy application of Corollary 3.

Theorem 5 (Kawamata log terminal singularities). Let X be a normal complex variety such that (X, Δ) is kawamata log terminal for some effective \mathbb{R} -divisor Δ on X. Let $f: Y \to X$ be any proper bimeromorphic morphism from a complex variety Y. Then $f^{-1}(P)$ is rationally chain connected for every $P \in X$.

The author learned the following proof in [DH].

Proof. Throughout this proof, we will freely shrink X around P without mentioning it explicitly. By applying Chow's lemma for proper bimeromorphic morphisms (see [H, Corollary 2]) and taking a suitable resolution of singularities (see [BM]), we may assume that Y is smooth and f is projective by Lemma 4. We may further assume that the exceptional locus Exc(f) of f is a divisor and that the union of the support of $f_*^{-1}\Delta$ and Exc(f) is a simple normal crossing divisor on Y. Then we can write

$$K_Y + \Delta_Y = f^*(K_X + \Delta) + E$$

such that (Y, Δ_Y) is kawamata log terminal and that E is effective with Supp E = Exc(f). By [F1], we can run a minimal model program with respect to $K_Y + \Delta_Y$ over X around P starting from (Y, Δ_Y) :

$$(Y, \Delta_Y) =: (Y_0, \Delta_{Y_0}) \xrightarrow{\varphi_0} (Y_1, \Delta_{Y_1}) \xrightarrow{\varphi_1} \cdots \xrightarrow{\varphi_{i-1}} (Y_i, \Delta_{Y_i}) \xrightarrow{\varphi_i} \cdots \xrightarrow{\varphi_{m-1}} (Y_m, \Delta_{Y_m}),$$

where $\Delta_{Y_{i+1}} := (\varphi_i)_* \Delta_{Y_i}$ for every $i \ge 0$, such that $K_{Y_m} + \Delta_{Y_m}$ is semi-ample over some open neighborhood of P. We note that each step φ_i exists only after shrinking X around P suitably. We also note that f is a projective bimeromorphic morphism. Hence $K_Y + \Delta_Y$ is automatically big over X. Therefore, we finally get a small projective bimeromorphic morphism $f_m \colon Y_m \to X$ such that $K_{Y_m} + \Delta_{Y_m} = f_m^*(K_X + \Delta)$ holds. By Corollary 3, $f_m^{-1}(P)$ is rationally chain connected. By applying Theorem 2 to each flipping contraction and each divisorial contraction in the above minimal model program, we can check that $\pi^{-1}(P)$ is rationally chain connected with the aid of Lemma 4.

The following corollary of Theorem 5 is well known for proper rational maps of algebraic varieties.

Corollary 6. Let $f: X \dashrightarrow Y$ be a meromorphic map of complex analytic spaces such that (X, Δ) is kawamata log terminal. Assume that there are no rational curves on Y. Then f is a morphism.

Proof. Let Γ be the graph of $f: X \dashrightarrow Y$. By Theorem 5, any positive-dimensional fiber of $p: \Gamma \to X$ is rationally chain connected, where $p: \Gamma \to X$ is the projection. Since Y has no rational curves, $p: \Gamma \to X$ is an isomorphism. This means that f is a morphism. \Box

References

- [BM] E. Bierstone, P. D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207–302.
- [DH] O. Das, C. D. Hacon, The log minimal model program for Kähler 3-folds, preprint (2020). arXiv:2009.05924 [math.AG]
- [F1] O. Fujino, Minimal model program for projective morphisms between complex analytic spaces, preprint (2022). arXiv:2201.11315 [math.AG]
- [F2] O. Fujino, On quasi-log structures for complex analytic spaces, preprint (2022). arXiv:2209.11401 [math.AG]

- [HM] C. D. Hacon, J. M^cKernan, On Shokurov's rational connectedness conjecture, Duke Math. J. 138 (2007), no. 1, 119–136.
- [H] H. Hironaka, Flattening theorem in complex-analytic geometry, Amer. J. Math. **97** (1975), 503–547.

Department of Mathematics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: fujino@math.kyoto-u.ac.jp