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FOREWORD

The 23rd Infernational Symposihm of the’Diviéion of Mathematics
of the Taniguchi Foundation was held between August 22 and August 27
1988 in Katata, Japan. The main topic was the birational geometry
of algebraic varieties; ten Japanese and nine foreign participants
attended the sympbsium.' The aim of the sympésiuﬁ waé to bring
together specialists in related areas to repori on recent
devélopments in their fields, and to exchange ideas.

Special emphasis was given to possible future developments of
the theory of algebraic varieties. The collection of open . problems
presented here represents in part the outcome of éhese discuésions.
Tﬁe organisers hope that this collection will Le n;éful in poipting
out future directions of research.

We are all grateful to the Taniguchi foundation for making this
conference possible through generous financiaf-support, and finally
to the participants, whose effort made ﬁossible the success of the

conference.
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Problems on 3-folds with trivial canonical bundle
by

Herbert Clemens

1. Some open problems about curves on hypersurfaces over (.

Problem 1. The generic quintic X c P4 is the only case in any
dimension in which a constant count predicts that X contains a
finite number of rational curves of each degree. Fofvgiven degree
d, show that X contains only a finite number of rational curves of
that degree. (True for loﬁ d.) The number of lihes on X is

3

1-53-23 and thé number of'conics is 2:57:2437. Find the number of

twis;ed cubics.
Problem 2. If C is a rational curve on a smooth X c P4
with deg X 2 5 and if C has infinitesimal deformations in X,
that is,
0
H (NC/X) ¥ 0,

show that the infinitesimal Abel-Jacobi map
HO(Ng y) @ ' (02) » ul(e)),

induced by contracting normal vector fieids«against'forms, is

non-trivial. (This result would solve Problem 1.)

Problem 3. Decide whether, for given n and"X c P® a generic
hypersurface of degree sufficiently large, every subcanonical curve
on X 1is the intersection of a surface with X. ("Subcanonical"
means that the curve’s canonical bundle is induced from a line
bundle on X. C. Voisin recently showed that the hypothesis of

being subcanonical is necessary.)

Problem 4. Find a continuous family of lines on a smooth

_4—.



quintic threefold which is not a cone over a quintic curve (or show
that no such family exists).

Problem 5. Find ﬁ smooth X ¢ P4, deg X > 6, with infinitely
many figid and smooth rational curves (or show that no such X‘

exists).

2. Problems about 2-connected compact complex manifolds X with
trivial canonical bundle.
A 2-connected compact complex manifold X is topologically the

éonnected sum of g copies of SaxSS.

Call g the genus of X.
Deformations of Calabi-Eckmann manifolds were the only known
examples before 1984. Those manifolds had genus one and further had
the property that hl(ox) # 0, so that they admitted non-trivial
line bundles.

In 1984, R. Friedman constructed examples of X with genus >
1. Furthermore Friedman’s examples have the property that h (0 ) =
0 'so that they admit no non-trivial line bundles. In particular,
KX is trivial. Also Friedman’'s examﬁles occur in families which
.specialize to small contractions of projective threefolds with
trivial canonical,bundles. So the genera in‘Friedman’s examples are
bounded until Kx-trivial threefolds with arbitrarily high third
Betti number are shown'to exist.

Problem 6. Decide whetﬂer 2-connected X with Kx trivial can
have arbitrarily high genus, arbitrarily low genus.

Problem 7. Construct a nodal degeneration for a family of X
of genus one. A small resolution of the central fiber would give a

complex structure on Ss.



Problem 8. Construct continuous (non4éompact) families of
curves on 2-connected X with KX trivial. Construct a

non-trivial rank 2 vector bundle on it.

3. Problems about D-modules and deformations of.submanifolds

Let Y be a compact éomplex submanifold of a (possibly open)
cbmplex manifold X. Suppose Y is locally subcanonical, that is,
there is a topological neighborhood X' of Y in X and a line
bundle L on X' whose restriction to Y is KY' (All curves are
locally subcanonical.) |

Define

D(L) = algebra of (right) differential endomorphisms of L.’

One then defines the left ©D(L)-module

o(Y,L) = (0(L)e. 0.)e. 0. .
Ox Y DY Y
It is a theorem in the theory of D-modules that
' dimY-i

HY(o(Y,L))* = lim H (L/$3L) .

We denote the right-hand group as Hq-l(LX). So, if Y contracts
to a point under: |

f: X = XO’
then H0(¢(Y,L)) is finite dimensional.
Conversely, suppose this last group:
N(Y;L) = #O(e(Y,L))
is finite-dimensional. Define ®# to be the (left) 0X~submodule
in D(L)@0 OY which is the preimage of ¢

X
natural map

x@CN(Y;L) under the

?(L)e, 6, — o(L) ..




Let L(?) be the 0y-submodule of L annihilated by ®. Then, in
this case,
4 = {feoy | fL c L(M)}
is an ideal of definition for Y c X.
. Problem 9. Is it true that for any coherent §

r+1) = 0

ul(x; ge4%/4
for r » 0, . if. Y contracts? (It may not be too hard to find a

counterexample. )

4. One hard miscellaneous problem
- Problem 10. Find a smooth threefold X with trivial canonical

bundle and first Betti number 0 which contains no rational curves.



Open pfoblems and questions
by

Torsten Ekedahl

Problem 1. How does one compute the fundamental group of the

2,
c

The fundamental group of the complement of a plane curve has

complement of a curve in P

appeared in some recent (and not so recent) work. The abelianized
fundamental group is easy‘to compute (and depends only on the number
of components and the degree of thé curve) and this calculation has
been used by Hirzebruch to construct interesting surfaces aé covers
of the plane. On the other hand, the work of Fulton-Hansen and
Deligne haé‘shown that the fundamental group of a curve with only
nodes is always abelian.

In the general case not much is known. Except for some special
curves which occur as hyperplane sections of naturally occuring
discriminant loci, etc., the oﬁly known.method to "compute" the
fundamental group is the one given by Zariski: Take a point not on
the curve and consider the pencil of lines through that point. The
fundamental group G of a general line in this pencil minus its
intersection with the curve generates the fundamental group of the
whole complement and the relations are.obtainéd by following each
geometric generator of G when the general line in the pencil is
moved around the lines which do not intersect the curve
transversally. This move gives the homotopy between the generator
and another element of G and all the relations are obtained this

way. The problem is that this procedure is not easy to perform_in

—_8—



explicit cases and one would like to have either a way to follow
Zariski’s method or to find other methods. One test case for which
no one seems to be able to compute the fundamental group is when the
curve consists of a nodal curve and twq.flex tangents.

Problem 2. Is the fundamental group of a smooth and projective
surface residually finite? |

Any'finitély generated group can be the fundamental group of a
compact real 4-manifold. On the other hand, Thurston has proved
that the fundamental group of a compact 3-manifold is always
residually finite (i.e. the intersection of all subgroups of finite
index is the"identity.element). The fundamental group of a smooth
and proper surface is very special. Essentially nothing seems to be
known about this problem.

Problem 3. Does thgre.exist a minimal surface X of general
type with-'(Kz) =1, x(@x) =1 and PZ(X) = 3?

Under the first two conditions the third is equivalent to
hl(X,mXil) = 1. In [Ekedahl:Canonical models of surfaces «esy to
appear in Publ. IHES] it was proved that this implies that the
characteristic of thé base field is two and that there is a double
inseparable cover of X which is (birationally) a K3-surface or
rational. This implies that 1 < (sz) £ 9 and in [loc. cit.]
examples with hl(X,mx-l) > 0 were given for 2 < (sz) ﬁ 9. While
probably not important in itself the qﬁestion could be seen as a
test case for whefher one can make thé same detailed analysis of
surfaces of,geﬁeral type with small (szj, as one has dohe in
characteriétic zero. In this analysis the linear system IZKXI
should probably play an important role (cf. [loc.cit:II,1,10]).

—9—



Problem 4. Can an Enriques surface in characteristic 2 of
geometric genus 0 have non-trivial vector fields?

As usual, a negative answer should have pleasant consequences -
“for the deformation theory of Enriques surfaces. I can show
(unpublished) that an Enriques surface of.geometric genus 0 with
.vector fields can not have an elliptic pehcil (and thus must have a
quasi-elliptic one).

Problem 5. What is the correct moduli problem for Enriques
surfaces in characteristic 2?

The first point is to get a moduli problem which is
pro-representable and as always it ié the possible nonzero vector
fields which cause a problem. If we consider the case of nonzero
geometric genus those with vector fields are called supersingular
and there is only one.up to a scalar. The first attempt is to
rigidify Bigt which for a family of Enriques surfaces is flat of
Qrder 2. Namely consider a flat group scheme ®/S of order 2 and
for every T » S the set of isomorphish 6lasses of‘data {X > T,
¢) where X~ T is a family of Enriques surfaces and ¢ 1is an
isomorphism between QT and Elgt(X/T). This problem is
pro-representable at all Enri§ues surfaces except those
supersingular Enriques surfaces for which the square of a nonzero
vector field is 0. In order to include them one needs therefore some
further rigidification.

Problem 6. Is there a surface in characteristic 0 which is not
uniruled but almost all of whose reductions mod p are uniruled?

To begin with such a surface must have irregularity 0. Indeed,

a uniruled surface with B1 # 0 has its Albanese map image

—10_ ¢



l-dimensional and this lifts from almost all reductions to
characteristic 0. The fibers are rational and -this also lifts.
Furthermore, the geometric genus is 0. To see this we may suppose
that the surface is defined over a number fie1§ K. If we consider
the action of the Galois group of K/K on szSK,QQ(l)) thén, as
for almost all reductions the Néron-Severi group fills out all of
Hz; almoét all Ffobénius elements have finite order and so by
Chebotarev density the image of the whole Galois group is finite..
If we then apply the Hodge-Tate‘decomposition thgorem we get that
10 1(s) = o.

This shows that x(os) = 1 and as any finite étale cover of S
fulfills the same conditions S is in fact algebraically simply
connected.

Problem 7. Does there exist a restricted class of minimai
surfaces and a function -f(p) such that. f(p) » 1/3 and such that
any minimal surface of general type in charecferistic P eifher
belongs to this class or fulfills f(p) < cz/clz?

This is inspired by the result of [Ekedahl:Foliations and
inseparable morphisms, Proc. Symp. Pure Math. 46, i39-150] where it
is proved‘that for a surface of general type either -p/(p—l)2 <
°2/°12 or it is uniruled. Examples of [Szpiro:Asterisque 64
169-202, 3.4) show that in the question thé restricted class has to |

contain non-uniruled members.



Problems on decompositions of De Rham complexes
by

Luc Illusie (*)

Problem 1. Let A be an abelian category. An object K of
‘Db(A) is said to be decomposable if K 'is isomorphic, in Db(A),
~to a complex with 0 differential [1:3.1]. Let k be a perfect
field with characteristic P >0 and let X be a smooth k-scheme.
Let F : X > X' be the relative Frobenius, where X' is the:
pull-back of X by the Frobenius automorphism of k, and let Qk
bg-the De Rham complex of X/k. Let us say that X is
DR-decomposable if’ F.Qk is decomposable (in D(X‘,@x,)); it is the
same to say that there exists an isomorphism in D(X',0 |

Xl)

i 3 N L]
Qi Qx, [-i] = Fan)

inducing the Cartier isomorphism ¢l on H'.

If X 1is DR-decomposable (even if F.Qi ié decomposable),

<1
| X can be lifted to Wz(k), [1:3.6]. Conversely{ if X can be
lifted to Wz(k), is X DR-~decomposable?

'~ The answer is yes if X is of dimension < p [1:2.3]. Aﬁd in
general t<pF.Qk'“is decomposable. The answer is still yes if, for
any n, the canonical map 8 Qi, = Q;, has a section, which is the
case, in particular, if ‘X is parallelizable. The answer is‘yes,
too, if there exists a smooth lifting X/Wz(k) so that F : X aX‘ ~§
can be lifted to X, which is the case, in particular, if X is

affine [1:2.2(ii)]. Note also that, if X and Y ‘are

DR-decomposable, then the same is'true for Xka and for any Z

(*) Unité associée au CNRS n° 752




g ———

étale over X. The first unknown case is that of a quadric of
dimension 3 in characteristic 2.

Problem 2. Let S = Spec A, where A is a complete discrete
valuation ring of mixed characteristic with prerfect residue field
k of cﬁaracteristic P, and let f : X > S be flat, locally of
finite type, with X Tregular and special fiber Y a reduced
divisor with normal croééings in X. Let j : U= X be the open

set where f is smooth, and consider mk/s i= j'Qﬁ/S and oy =

mk/s @Ak. The complex m%, introduced by Hyodo [2], satisfies a

Cartier isomorphism
¢!, a%, = F.gimé.

Assume that dim Y < p. 1Is F.m% decomposable?

Lgt e be the index of ramification of A over W(k). The
anser is yes if e =1 and f is smooth [1:2.1]. The answer is
unknown otherwise. Note that we can embed § into T = Spec
W(k)[t] in such a way that the image of t becomes a uniformizing
parameter. If there exists a subscheme X/T with semi-stable
reduction over t = 0 and inducing X/S, the answer is still yes by
" [3:2.2].

Problem 3. Let k be a perfect field of éharacteristic p > 0,
let X/k be a smooth and projective variety of pure dimension
d < p, liftable to Wz(k). Let L be a line bundle on X.

3.1. Assume that L is nef and big. Is it true that
H'(X,008L) = 0 for i > 07

3.2. Same question, assuming that L is semi-ample and big.

A positive answer to 3.1 (which of course implies 3.2) would

give a new prodf of the Kawamata-Viehweg vanishing theorem (see [4]).



Note that under the assumptions of the probleﬁ X 1is DR-decomposable.

For

(1]

(2]
(3]
(4]

d = 2, the answer to 3.1 is ves [1:2.8].
References
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Problems on Fano 3-folds
by

Vasilii Alekseevich Iskovskikh

Problem 1. Is Birk!P2 a simple group? (k : algebraically

closed) [1,6,7]. -
ProBlem 2. Describe Aut Z[x,y] in terms of generators and
relations.
Problem 3. Describe Aut k[x,y,2z] in terms of generators and
relations. (k : .algebraically closed) cf. [Nagata:Automorphism
group of klx,yl], Lecture Note Series, Kyoto University, Kinokuniya].

. Problem 4. Describe. Bir V, where V is one of the following

Fano 3-folds:
6

a) =V8 c P": complete intersection of 3 quadrics;
7,

b) Vloc P ;

c) V3 ‘ ¢ a smooth cubic hypersurface.

cf. [3,4,2].

3 47,

Problem 6. Ppove that none of the Fano 3-folds of genus 6 is

-Problem 5..Describe Bir P

rational [4,2].
Problem 7. Study the unirationality question for the following
Fano 3-folds:
a) V= PS i a dduble cover with ramification along a sextic;
b) a smooth degree 4 hypersurface;
c) V- W4 c PG: a double cover of}the cone over the Veronese

surface, cf. [4].

Problem 8. Are Fano 3-folds stably rational?



Problem 9. Compute the intermediate Jacobian of all Fano
3-folds. . |

Problem 10. Study the moduli space of Fano 3-folds. Which ones.
are rational?

Problem 11. Let G < GL(4,C) be a finite subgroup. Is P3/G
rational? 1I. Kolpakov-Miroshnichenko and Ju. Prokhorov proved ;his
for solvable G (to appear) and in a few other cases.

Problem 12. Can a small.smqoth deformation of a nonrational
_3-fold be rational?

Problem 13. Prove the fationality criterion for conic bundles
cf. [5].

‘ Problem 14. Find rationality criteria for fiber spaces of del
Pezzo surfaces. The degree 4 case was studied by V. Alekseev:
Rationality criteria for 3-folds with a pencil of deg;ee 4 del Pezzo
surfaces. Mat. Zam. 41 (1987) 724-729.

Problem 15. Find ratiénality criteria for conic bundles over a
base of higher dimension.

Problem 16. Prove that the general cubic 4-fold is not rational.
cf. [10]. |

Problem 17. Is the general cubic n-fold rational;for n=x>5?

Problem 18. Describe Bir(general quartic 4-fold) cf. [8].

Problem 19. Prove that Bir X = Aut X for every smooth

n

hypersurface in P of degree n > 5 cf. [8].

Problem 20. Prove the existgnce of a uniform upper bound for
(-K)n for n-dimensional Fano varieties cf. [3].
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Problems connepted with effective Nullstellensatz

by

Janos Kollar

Problem 1. (Algebraic Bézout problem.) Let M be a graded
K[xo,'-~,xnj—module. Let Mi = {meM | dim Supp m s-i}, Then

0=M.,cM, c

e s o C -
0 n

2; deg(M; ,/M,).

1
Define graded deg M

Now let f,, ..., f € K[xy, +++s x 1. It is clear from general
nonsense that graded deg K[xo, vy in]/(fl, ey fk) can be bounded
by some function of deg fl’ «e.y deg fk . What is this function? It ;

is probably doubly exponential in n.

Problem 2. Notation as above. Find a good bound for the number

of the associated primes of the ideal (£1, ey fk)'

_Let .HI’ ooy Hn be divisors on a projective variety X of
dimension n. Let V1, ooy Vk be the scheme-theoretic connected
components of Hln...an . There is a natural way (cf. [F:9.1]) to

assign numbers eq(Vi,H) to the components Vi such that
Ei eq(Vi,ﬂ) = H1~.;.-Hn.
The number ‘eq(Vi,ﬂ) is called ?he equivalence of Vi . In
[F:9.1.1], there is a very beautiful formula for eq(Vi,ﬂ) but it
is very hard to use in computations. Here are some problems. -
Problem 3. Assume that V' = V + one embedded closed point. Is

it true that eq(V',H) = eq(V,H) + 17

Problem 4. Let V c Pn be a reduced surface. Is it true that

eq(le,H.) < eq(V,H)?




Problem 5. Assume»that (X,Hl, ey Hn,Vl) varies in a flat
family. Is it true that eq(Vl,g) is locally constant?

. Problem 6. The individual terms of the formula [F:9.1.1] are
not deformatioﬁ invariants. .If the answer to 5 is yes, there should
be another formula that clearly shows deformation invariance. This
happens if X is Gorenstein and dim V1 < 1.

References
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Some problems about 3-dimensional extremal nbds and flips
by

Janos Kollar and Shigefumi Mori

The following are some problems related to our joint work (to
appear sooner or later).
To fix notation, let X be a 3-fold with only terminal

singularities, let 'C c X be an irreducible rational curve s.t.

(C-Kx) < 0 and such that there is a contraction f : X » Y which
maps C to a point and is an isomorphism outside C.

Problem 1. By [M2:6.2],4X can have at most 3 singular points
on C. It seems likely that in fact one can have at most Z.Singulaf i
péints. It would-be nice to have a direct proof.

Problem 2. From our classification it follows that the
excéptional indéx 2 points [M1:12.3,23.1,25]Acan not occur on C. Is
there a direct proof for this? Is there a deeper reasfn behind
this?

Problem 3. Are there examples of extremal nbds with a point of
type IC [M2:Appendix A] for any odd index > 5? We have examples
with index 5 or 7, and it is very likely that examples exist for any
odd index = 5. A nice construction could help a lot to understand

this exceptional case. Similarly, the existence of some other

exceptional cases is not fully known (2 singular points with indices
2 and m.$ 2, nonsemistable),

Problem 4. Let (P,H) ¢ (P,Y) be a general hypérplane section‘
We prove that in almost all cases, (P,H) 1is a quotient singularity.

Possibly the only exception occurs when X has a single singular




point, which is of index 3 and is fhe quotient of a compound Dn-type
point. This would be a very interesting result. In particular,
this would imply that (P,ﬁ) is always rational. Maybe there is a
direct proof of this. |

Problem 5. Pushing along the lines of 4, one can ask how much
of [KSB:Chapter 3] generalizes to»arbitrary rational singularities.
To be mo;e specific, let- (P,Z') be a rational surface singularity
and let (P,Z) be the 3-dimensional total space of a-l-pgrameter
smoothing of (P,Z’). .

(i) By [KSB:Chapter 3], if (P,Z') is a quotient singularity,
then the canonical Oz-algebra

Speo HO (2,0, (nK,))

is finitely generated. This result also holds for some other
rationalvsingularities. It would be interesting to see more
examples or counterexamples;

(ii) If the canonical algebra is finitely generated, then oﬁe
can study the deformation space of (P,Z’) as in [KSB:Chapter 3].
For this one has to find all rational singularities with
Q-Gorenstein smoothings and understand certain partial resolutions
of (P,Z') as in [KSB:Chapter 31.

Even simple individual examples afe not easy to work out.

Problem 6. Going back to the original set-up, Reid’s question
about I-KXI havihg a member with only Du Val singulariﬁies is
still open. This is a very nice problem. A direct pro;f might be
very interesting;

Problem 7. If one Qants to flip in the category of projective

varieties then one has to understand the simultaneous contraction of



several curves. Very little is known about the possible
configurations of curves and singularitigs.

Problem 8. The existence of 3—dimensional flips with canonical
singularitiés is proved. However nothing is known about the local
étructure.

Problem 9. Do 3-dimensional flips with canonical singularities
vary continuously? This should be easier than 4-dimensiona1fflips
and this would imply the deformation invariance of plurigenera for'
3-folds with Q-faétorial canonical singularities. We should
mention that Q-factoriality has nothing to do witﬁzplurigenera but
it is heeded for the proof we have.

| Problem 10. While 3-dimensional flops are much eésier than
flips, if is still unknown whether or not 3-dimensional flops with
canonical singularities vary continuously.

Problem 11. The method of [M2] can be applied in two more cases.
The first is the case when a 3-fold extremal contraction contracts
a surface to a curve. All the results of [M2], except (6.2.(i)), :
apply in this case. One shquld be able to work out the local
structure of such contractions using the method of [M2].

The other case is when f : X » Z is an extréﬁal contraction
s.t. dim Z = 2. 1In this case, it is easy to see that Z has only
quotient singularities. If, locally, Z is the smooth cover and if
X is the normalization of szz, then X ~haslonly terminal
singularities and the natural map f : X % is an extremal
‘contraction which is flat. It should be possible_to work out the
local structure of ¥ and thereby the local structure of f. There

should be only a few cases besides those listed in [M2].




The following problems are only vaguely related to flips.

Problem 12. It would be nice to have more information about
S-dimensional cahonical singularities. By Shepherd-Barron
(unpublished), their algebraic fundamental group is finite. Is the
fundamental group itself finite? It might be possible to say
something more about the simply connected ones.

Proslem 13. Is a small deformation of a (3-dimensional)
canonical singularity canonical? This is the most basic open
problem.

Problem 14. Is there a 3-dimensional analogue of Artin’s .
theory of fundamental cycles? From this point of view, what is the
correct 3-dimensional analogue of rational surface singularities?
The class of rational 3-fold singularities might be too large.

Problem 15. Now that we have a unique canonical modification of
& 3-dimensional singularity,.it might be possible to start a
systematic study of 3-dimensional singularities. So far very
little has been done in this direction.

Problem 16. Let Y be a 3-dimenéional variety. Consider the
set of all f : X - Y, where f is birational, X has canonical
singularities and KX is f-nef. 1Is this set finite? By [KM],
there are only finitely many such where f is also projective.‘

Problem 17. Finally a fairly obvious question. What about
characteristic p? It is interesting that the cone theory for smooth
varieties is easier in cHaracteristic p.
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Flippant problems
by

Miles Reid

Problem 1. (Linear bilinear.pfoblem.) Let f : UxV > W be ;
bilinear map and F : UeV - W the linear map it induces. The
problem is to bound rank F from below in terms of the geometry of
f.

Examples. (i) If w, v#0 = f(u,v) # 0 then

rank F > dim U + dim V - 1.

(ii) If f : VXV - W is symmetric and f(vl,vz) # f(v3,v3) for
every linearly independent Vi Vg Vg then ;ank F>3:-dim V - 3,

Proofs. By assumption, F does not kill any primitive tensor
u®v (resp. any rank 3 tensor vAev2 + v3@v3) so

1

P(Ker F)nP(U)xP(V) ¢ => codim Ker F > dim U + dim V - 2;

P(Ker F)nP(rank 3) ¢ => codim Ker F > 3-dim V - 4.

This argument applies several hundred times in the litepature.
For example, it plays a key role in: the free rencil trick and
Cliffora’s theorem; Castelnuovo’s theorem X(QS) < 0 => S ruled;
Enriques’ famous argument that a linear system on an Enriques
surface with positive Self—intersection must contain reducible
divisorsﬂ More recently, applied to cup product maps on
Hodge-theoretic spaces, Greenland Voisin have used it to show that
surfaces of degree d in P3 containing nontrivial curves have
codimension > d-3 in all hypersurfaces (and for d » 0, codim =
d-3 .gives only lines, codim = 2d-5 only conics).

In the last example, cases of smallest rank have an



interpretation in térms of homogenheous spaces; a similar example is
‘Castelnuovo’s hundred year old theorem that = 2n+3 linearly general
points of pn imppsing < 2n+1 condition$ on quadrics must lie on a
normal rational curve. See my preprint [Quadrics through a

canonical surface] for a detailed attempt on a special case of this
problem.

! "This question is above all practical, but there may also be an
answer in terms of algebraic groups.

Problem 2. What is a general elephant? The problem is to find a
common framework for the following elephantine manifestatfons:

a) If Y is a (weak) Fano 3-fold, the general surface X €
l—KYI' is a'K3 - surface; if P € Y is a terminal 3-fold
siﬁgularity then the general-anticanonical surface is a Du'Vél
singularity; the same holds for one class of flip singularities.

b) If PeY is a flip singﬁlarity not covered in (a) then
Mori proved that the double cover g : X » Y branched in a”general

anti-bicanonical surface has Gorenstein canonical singularities; if

f- : Y =Y is the flipping contraction then there is a commutative
diagram
XX -+ Y _
he If )
X = Y

where X is also a Gorenstéin 3-fold with canopical singulérities
and h 1is a small partial resolution. .

c) If S is a variety and a € |-4K|, b € |-6K| sufficiently
good,éections, then a Wéierstrass fibration X 2 S can be defined by .
interpreting yz = x3 + ax + b; then Kx = OX and X will have at

worst canonical singularities.

In éach case, we pass from a variety or singularity with K

-



négative, or ‘K non-Cartier to a variety X with KX = 0, and
canonical singularities. The dimension can change, in (a) by -1, in
(b) by 0 and in (c) by +1. Can this be generalised? Does there
exist in general'a reduction from a variety with K negative to X
with Kx trivial and canonical singularities, possibly of larger
dimension? For example, what data does one need on S to get a

K3 - fibfe space ‘X -» S with KX = 07?

Problem 3. (Flip singularities as formal extensions of Du Val
singularities.) The problem is to use the infinitesimal view to
4study pairs’ S c X, whefe P E}S is a Du Val singularity contained
as an anticanonical divisor of a 3-fold flip singularity.

Example. Let C c Pz. be a nonsingular conic and S =
Spec k[x,y,z]/(xz—yz) the affine cone over C; as normal sheaf take
the unique nontrivial divisorial sheaf (corresponding to a generator
of the cone):

L =~ GSu ) osv/(uy—vx, uzjvy).

2

Take the trivial first order structure 60.8L, L™ = 0, giving

g(1)

S
Spec k[x,y,z,u,v}/I(l),

where
(1)

rk [x y u] <1, u2 = uv = v2 = 0.
Yy z2V
There are just two ways of extending this to higher order:
a) Introduce a new variable w, and set
Xyu
I1 : rk [y z v] £ 1;
uvw
this is the cone over the Veronese surface, with C(l) as hyperplane

section.

b) No new variables, just set’
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I, : rk [x y “] <1
2 ° Yy 2z vV *

This is Francia's example, the cone over the cubic scroll F1,z c P4
with C as a +1 section.

Problem 4. (Flip singularities as toric hypersurfaces.) I
believe that the 3-fold flip singularities can be classified in much
the same way as terminal singularities, and that the eventual
outcome will be a list of just a few series. Problem 3 was one

attempt at describing the singularities "from the inside". The

question here is to classify the following type of situations:
- +
AT ----5 A
(p— \ /(P+

PeXcaA .

Here P € A is a 4-fold toric ambient space with local class
group CL A =~ Z, having two "Q-factorisations" corfesponding to the
two ample cones in Z (these need not be isomorphisms outside P).
Then take X c A such that its proper transforms in At and A~

give rise to a directed flip
- X~ X
oo N ot

PeX .

+

For example the first series consists of the direct product A =
Aleo where A0 is the toric flip studied by Danilov, apd X cA a
Cartier divisor. -

Problem 5. (Grandfather of flops.) The following exgmple is
contained in my pagoda paper: consider the 5-fold hypersurface
PeEeW: (x2 + uyz + vz2 + uvt2 = 0) c As.

This is singular along the (u,v)-plane Az, and has two small

resolutions
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-canewmy

W

W 2

N
Pew ,

2
where the exceptional locuses are Pl-bundles over A~. The

resolutions exist essentially because the discriminant of the quadric

form in 4 variables )
x2 + uy2 + v22 + th2 € k(u,v)[x,y,z,t]
is a square in k(u,v).

Now by taking suitable sections of W by nonsingular codimension

2 subvarieties of AG we obtain a whole range of 3-fold flops
\ X, ==c=--. Y

1 N /(

PeX )
where X1 2 X contracts a (1,-3)-curve. This includes many examples
where P € X is not a cD4 point. |

Conjecture: All 3-fold flops arise in this way.

Notes: a) This conjecture is about 7 years old, and my reason fdr
resurrecting it is thg current interest in the questipn of
(+1,-3)-curves on a smooth 3-fold. If the conjecture is true it
gives implicitly a list of all that can be contracted and flopped.

b) Singularity theorists have told me on one or two occasions
that the conjecture is false; but I’m not certain that.we were

talking about the same question.



Problems about Fano varieties

by

Vyacheslav Vliadimirovich Shokurov

Problem 1. Classify Fano 3-folds.with.(1og—)termina1
singularities. E
a) First try to prove the existence of a good divisor in .

|-K| or in |-2K|. Maybe this can be dohe by first using Reid’s
Plurigenus formula to check that [-2K| is not empty. Then use the
existence of good member locally and try to globalize.

_Vb) Maybe there are a few exceptions tov(a). Try to classify
them.

c) If there is a good divisor as above then try to bound the
number of non-Gorenstein points. | v

- d) Is the so-éalled Fano bound (-Ka) < 72 true?

Probleﬁ 2. (Manin) Describe all pairs (S,D), where S is a
possibly singular surface and D an effective reduced divisor such
that there exists a finite covering § - S which is unramified
outside D and the Kodaira dimension of § is 2 0. These might
be ex#ctly those surfaces for which S-D has only finitely many
inﬁegral points over any given number field.

Definition. (i) The Fano index of an n-dimensional Fano
Variety V with log-terminal singularities is the smallest
positive f such that -K = fL, where L is an ample Cartier
divisor. It is known that  .f < n+l and equality holds for
projective n-space only. In all other cases f < n and equality

holds only for hyperquadrics.

- —30—-




(ii) The set

Fn = {f|f is a Fano index of an n-dimensional Fano variety}
is called the Fano spectrum.

(iii) We say fhat~a subget F of R is semi-discontinuous frém
above if for every x in R there is ap' € > 0 such that
fx-a,x)nF = ¢.

Problem 3. a) Is the Fano spectrum semi-discontinuous from
above? This ié true for n=2. [Alekseev, Izv. AN USSR, to appear].

b) Is it ‘true that Fn + m-n‘c an[m+1,m-n) for any m > n?
Maybe we evén~have equality.

¢c) Find an[n-l,n]. Describe the corresponding Fano vafieties.

d) The same as above for [n-2,n-1].

e) Is the rank of the Néron-Severi group bounded by some
function of the index on n-dimensional Fano varieties? For n = 2,
this was proved by Nikulin. |

" '"'‘Problem 4. A Fano variety is called primitive if it is not
Bifationél_to a non-trivial Fano fiber space. For example by
results of Iskovskih and Manin three dimensiohal quartics are
primitive.

a) If V is a primitive Fano variety, is it true that it has
only finitely many smooth (or even log-terminal) models which are
also Fano?

b) Are there only finitely many deformation types of primitive
Fano‘varieties of any given dimension?

c) Find more primitive Fano 3-folds.

Problem 5. Let V be an n-dimensional variety and assume

that Ky 1is @-Cartier. Let f : W+ V be a good resolution and



Kw = f‘KV + 3 aiEi. For any point P € V we define the minimal
discreﬁapcy md(P) = min{ailf(Ei)=P}. By definition V has
log-terminal singularities iff md(P) > -1 for every P.
a) Prove that md(P) < dim V - 1 and that equaiity holds iff
P is sﬁooth.
'b) Prove that if P is singular then md(P) < dim V -2 and
equality holds only for Gorenstein points.

c) Let

Im = {md(P)|P is a (log-)terminal singularity of dimension m}

be the (log-)terminal spectrum. One can ask the same question about

the (log-)terminal spectrum that we asked about the Fano spectrum.
Problem 6. Let X be a normal projective variety, and let Di

be Weil divisors on X. Let

‘Q = {(dl,...,dn)le+2diDi is log-terminal and has maximal
" Kodaira dimension}.

We call two n-tuples in Q equivalent if they have isomorphic

canonical models. Prove that the equivalence clasges give a locally

polyhedral énd rational decomposition of Q.
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Open problems on fiber spaces and moduli
by

Eckart Viehweg

Both papers, [K] and [V], are approaches to show that moduli
spaces for certain classes of canonically polarized varieties are
quasi—préjective. Whereas J. Kollar's method works only for compact
moduli spaces, [V] works only for moduli prbblems (over C) where
the reduced Hilbgrt scheme is non-singular.

Question 1. Are tﬁere any criteria implying that the reduced
Hilbert scheme for a class of polarized varieties is non-singular?

In fact, as A.'Todorov told me, he was able to prove that
Question 1 has an affirmative answer for some manifolds with trivial
canonical sheaf. However [V] works only for canonically polarized
manifolds!  Hence: |

. Problem 2. Can one generalize [V] to manjfolds with arbitrary
polarizations?

It would be much nicer to get rid of the assumption on’
compactness in [K] or on smoothness inA[V]. The reason I failed
even for cénonicélly polarized manifolds is that I was unable to
give an affirmative answer to (see [V] or the excellent survey [(M]
for the notations): |

Problem 3.'Let Y be a quasi-projective variety, YO cY an
open subvariety and f0 : xo - Y0 a smooth morphism. If QXO/YO
is relatively ample for f , can one find for some v > 1 a

coherent extension ¥ of fo.w§ to Y such that % 1is weakly

o/Y

0
positive over Y0 ?



of coufse, the sheaf F should come from the direct image of
the v-th power of the dualizing sheaf of some projective
morphism f : X =+ Y extending fo{ In some sense an affirmative
answer to Problem 3 would follow from the existence of a "good"
extension f of fo. However, I do not even know what "good" is
supposed to mean.

Let Y,

o 0 > YO be a desingularization, Yb -+ Y a smooth

compactification such that Y'-Yb is a normal crossing divisor.

Let fb : Xb - Yb be the pullback of the morphism considered in
Problem 3. Let us assume that, for k = dim XO - dim Yb;'the
monodromy of ka',cx, around the components of Y'-Yb is

. 0 .

unipotent. Then, using W. Schmid’s nilpotent orbit theorem, one

has a‘natural locally free sheaf %' on Y’ extending

k
o :o R f'.C v
YO .0 XO

Using Y. Kawamata’s positivity theorem and the usual techniques (§3

and fb.wxale extends to a subbundle ¥’ of '#'.

of [V], for example) an affirmative answer to Problem 3 would follow

from an affirmative answer to:
Problem 4. Can one construct a compactification Y of YO
.and a 1oca11y free sheaf ¥ (or #) on Y, such that ' = <*%
(or #' = t*#) for some morphisms <t : Y - Y extending (after
blowing -up) Ty | |
Finally, it would be nice to weaken the hypothesis I made in
[V] on the singularities allowed for the varieties considered for

the moduli problem. Also one should be able to allow certain

reducible varieties (as in [K] where stable curves are considered).
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Problem list
by

Gang Xiao

All surfaces will be smooth projective, defined over the
complex number field.:

Problem 1. Characterize.singular fibers of hyperelliptic
fibrations in terms of the singularities of the ramification
divisor, .then use it to derive globai invariants of the surface,
Just as Horikawa did for the case of genus 2 fibrations.

Réference: (Hol _

Problem 2. Find the upper limit of slope for a hyperelliptic
fibration of genus g, as a function in ¢g.

A hyperelliptic fibration of genus g is a fibration f : S -
C where the general fiber is a hyperelliptic curve of genus g.
Assﬁme that the fibration is no@ locally trivial. Then the slope of
the fibration is the ratio

(KZ-8(g-1) (g(C)=1))/(x(04)-(g-1)(g(C)-1)),

or equivalently the unique number X  such that
2

Kg = 2-x(05)+(8-2)(g-1)(g(C)-1).

One should use the result of the preceding problem, then give
bounds for the number of various possible singularities.

Problem é. Find the largest lower bound for the slopes of
surface fibrations whose general fibers-are "generic" curves of
genus g, as é function in g.

It seems that this bound converges towards 8 when g gbes to

infinity.




Reference: [X2]

Problem 4. Let f : S C be a surface fibration of genus g
2 2, not locally trivial, such that the irregularity q of S is
greater than the genus b of C. It is known that the slope
of f 1is at least 4 [X2, Corollary 1 to Theorem 1'].  However if 2
= 4; then q = b+l (X2, Theorem 3]. Presumably, the greater qQ-b
is, the bigger the lower bound of A should be. Find a good.
;elationship between i, g-b and. g.
| Conjecture 5: For almost all surfaces of genéral-type, there
are no cohomologically trivial automorphisms.

We have onl&,to consider canonical automorphism, of order 2 or
3 [B].

Casé of order 2: Try to show that theré must be (-2)-curves
fixed by the automofphism, then study the local behavior of Hl’1
around (-2)-curves.

Case of order 3: we éoﬁjecture that there is no infinite family
of surfaces such that the canonical map is a cyclic triple cover of
the image.

Reference [P1], [P2]

Problem 6. Classification of surfaces of general type whose
canonical map is associated to abfibration: according to [B], the
genus of the fibration is 2, 3, 4 or 55

Case of genus 3: Find the largest coefficient ¢ such>that

Kz > c-pg + const.
This ¢ should be between 4% and 6 (see [X4] for 6, and an

unpublished easy estimate for the other bound) .-

Case of genus 4: Nothing is known yet except that



Kz p-3 Sg g + const.

Case of genus 5@ We corijecture that there is no infinite family
of surfaces whose canonical map is associated to a genus 5 fibration.

It is enough to prove that the fixed part cannot be 8 times a
section. The case where the fixed part is 7 times a section plus .
another section is already OK; due to the Miyaoka Inequality applied
to the open situation which is the surface minus the section.

‘Problem 7. Let f : S » C be a surface fibration,v F a
singular fiber of f. .There is a base extension n : ¢ C ‘such
that the minimal resolution of the puli—back of F is:semi-stable.
Let T : 8-+ C be the pull-back fibration. The slope-of T is
determined by that of f and the behavior of F. Determine the
effect of F on the slope of T, and give upper and lowér bounds of
that effect.

Problem 8. Find a good way to classify the singular fibers of
general surface fibrations.

dne possible way to go through problem 7.

Prbblem 9. Give necessary and sufficient combinatorial
conditions in terms of the irréducible components, for a curve to be
realizable as a singular fiber in a surface fibration where'the
genus of the general fiber is > 2.

Reference: [X5], [NU]

Problem 10. Fiﬁd surfaces to fill in the unknown region of
surface éeography.

This region is 2.83c2 < 012 < 3c2.

Basic idea: Beginning with a fibered surface with c¢.2 = 3c

1

it is possible to make a series of new surfaces by making base

-




extensions and twisting general and special fibers. If different
operations give coprime Chern number changes, fill-in is possible.
But experiments on some known surfaces did not give this coprimeness
property.

References: [Ch], [H], [S].

P:oblem 11. Let f: S »C be surface fibration, g the genus
of a genéral fiber, b = g(C), ¢ the irregularity of 8.

Conjecture: q < 5%1 +b if f 1is not trivial.

Solved only for the éase b =0 in [X4].

- ‘Severi’s conjecture 12: If K2

< 4x, then the Albanese map is
not‘genericallj finite.

A joint attempt of Igor Reider and myself to attack this problem
from ‘a local point of view around a canonical divisor has failed.
Another possible approach is by proving the analogue of [X3, Theorem
1] fori general surfaces. |

Reference: [Cl1l], [R]

Problem 13. Find an upper bound for the number of irreducible
‘components of the moduli space of surfaces of general type with
given Chern numbers.

.Refgrencef [Cl]

Problem 14. Find an effective bound for the number of minimal
surfaces of general-typg which can be dominated by a given surface
[DM]. |

‘Conjecture 15: The upper bound of the order of the automorphism
group of a surface of general type increases proportionally with the

Chern numbers of the surface.

Solved only for abelian case in [X6].



Problem 16. Let dn be the dimension of the smallest rational
variety contgining the birétional image of the n-canonical map of a
surface of general type S. This dn should increase towards,
infinity when n and thq Chern invariants of S do the same. Give‘

an estimate of dn'

This could be useful in Problems 13 and 15.

Problem 17. Classification of surfaces with pg =q=1: Give -
an upper bound for the genus of the Albanese fibration as a function
. .2 '
in K.

For example if K2 = 2, the genus must be 2 [X2, Theorem 2].

Problem 18. Is there an algebraic surface which is
algebraically simply connected but not topologically so?

This question is formulated because no such example is known.

Problem 19. Is there a surface fibration f : S = C such that

f’mS/C is not positive and q(S') = g(C') for every base change .

f' : 8" 5 C' of f?
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Pfoblems
by

‘Takao Fujita

1. Prove or disprove the following.

Conjecture. Let L be an ample line bundle on a smooth
'projectivevvariety M whose canonical bundle is-: K..lThen K+tL is
spanried for any integer t with t > 1+dim M. Méfeovér K;fL is
very ample if t > l+dim M.. | |

Comments. (1.1) This i; obvious'when n =dim M = 1,

(1.2) There are several examples shéwing that.the boﬁnés t >
14n, t > 14n are sharp. Also t > n and (or t > n) miéhﬁ be -
enough if we assume that L" > 1. T

(1.3) One can prove that K+(n+1)ﬁ is nef. Moreover if char(k)
"= 0, then m(K+(n+l)L) is spanned for some m > 0. o 3

(1.4) When M is of general type and K is ample, the
conjecture predicts, as a special case'in which L = K, that tK is
spanned for t 2 2+n and is very ample for t > 3+n. In case n = 2,
this 1is contained in Bombieri’s result.

Thus, it would be reasonable to ask the following

Question. Let M be a smooth variety of general type such that

K 1is nef. Then, is tK spanned for t > 2+n? Is
HO (M, tK)eRO (M, sK) » HO(M, (t+s)K)
surjective for any t 2 2+n and s > 3+n?
(1.5) When n = dim M = 2 and char(k) = 0, the conjecture
follows from‘Reider’s theory on adjoin£ systems.

It would be nice if we could generalize this approach as follows:




‘Supposed Lemma: Let A be a nef and big line bundle on M
'with (An) > n"®. Then K+A is spanned (or very ample) unless (*).

Here (*) is a condition which satisfies the following
Vrequirements: (i) we can prove the above Lemma under this condition,
(ii) the conjecture follows from the Lemma. ++--- Unfortunately, I
cannot.even guess how this condition (*) should be formulated.

(1.6) If L is ample and spanned and if char(k) = 0, then
K+tL is spanned for t > l+n. Moreover K+nL is spanned too
unless (M,L) = (Pn,o(l))f

(1.7) I believe that this conjecture is extremely difficult. Even
a partial éolution in some special case would be very nice.

2. Let L -be a nef and big line bundle on a variety V. Define the
sectional genus g(V,L) by means of the Hilbert polynomial x(V,tL).
Then |

Conjecture. The inequality g(V,L) > 0 always holds. Moreover,
if g(V,L) = 0 and if -V is normai, then aA(V,L) = 0.

Comments. (2.1) The A-genus is defined by aA(V,L) = n + d -
ho(V;L), where n =dimV and d = (L").

(2.2) If L is nef and big and if A(V,L) = 0, then there is
a birational morphism f : V5 W and a polarized variety (W,H)
with A(W,H) = 0 such thét L = f*H. Iﬁ such a case H 1is always
very ample.

(2.3) When char(k) = 0, the conjecture would follow from the
"Flip Conjecture". In particular, it is true in case n = dim V < 3
‘by virtue of Mori’s result.

3. Prove (or disprove) the following

Conjecture: hl(M,O) < g(M,L) for any polarized manifold (M,L).



Furthermore, describe the structure of (M,L) if equality holds..

Comments: (3.1) It would be safer to assume char(k) = 0.

(3.2) The conjecture is true if g(M,L) = 0, 1, 2 (at least if
char(k) = 0).

(3.3) The conjecture is true if char(k) = 0 and L is spanned.

(3.4) I1f ¢ hl(M,o) = 1, then (M,L) is a scroll over an

elliptic curve.

1

(3.5) If g h™ = 2, then (M,ﬁ) is a scroll over a curve of

genus 2, or numerically equivalent to a Jacobian scroll of a curve '
of genus two, or M is an abelian surface or one point blow-up of
an abelian surface. Here by a Jacobian scroll of a curve C we
mean the following: Fix é point x on C :and take the product of
n copies of C. Let 12 be the projections. Let D =32 pi;(x).
Then D descends to a divisor A on the symmetric product S. A
is ample and the Albanese map induce; a morphism S - J(C), which
is a P" 8-bundle if - n > 2g-2. Moreover (S,A) is a scroll over
J(C). This is called the Jacobian scroll.

(3.6) In order to solve the conjecture we should perhaps study
the relation between adjoint mappings of (M,L) and the Albanese
mapping of M.

4, Let. Pl’ e ey Pr be points on Pz in a general'position, and
let 'S be the surface obtained by blowing up these points. Determine
the shape of the coﬁe of effective curves on S.

Conjectured Answer: Let P c Nl(S) be the cone of l-cycles with
positive self-intersection. Then the cone of effective curves is
generated by the positive half of P and the (-1)-curves.

Of course the cone of effective curves is bigger if the points




are in a special position.

Comments. (4.1) If r < 9 then S 'is a Del Pezzo surface and
the cone of effective curves is generated by the (-1)-curves.

(4.2) If r = 9 then the cone of effective curves is not
. generated by the (-i)-curves But I am sure that the conjectured
answer is true. .

(4.3; Suppose that r = 15 and let Ei be the exceptionalAcurve
over Pi' The.conjectﬁre_would imply that 4H-—2Ei is ample. Even
this special case is unknown.

.(4.4); If the conjectured answer is true then all the possible
deforﬁation types of rational polafized surfaces enumerated by my
computer program do. really exist.

(4.5) I would like to ask similar questions for irrational

ruled surfaces too.



A smoothing problem related to Mumford’s fake projective plane
by
Masa-Nori Ishida
In [3], Mumford constructed an algebraic surface of general

type with K2 = 9 and pg = q = 0. This surface is called Mumford’s
fake projective plane because it has the same Betti numbers ‘as the

" complex projective plane.

Mumford’s surface is given as the generic fiber of a regular
Zz-scheme M. . The closed fiber MO is a normal'croésing'diﬁisor

in M. 1Its normalization is isomorphic to the rational surface B

obtained by blowing up the ﬁrojectiVe plane over the prime field at

the seven Fz—rational point. In particular; the automorphism group . °

of B is equal to the simple group PSL(3,F2) of order 168.

The rational surface B has seven exceptional (-1)-curvés and
seven (j2)—curves which are the proper transforms of the seven
‘Fz-ratiqnal lines in the plane. These 14 curves form 7 pairs of a
(-1)-curve and a (-2)-curve and thé closed fiber M0 is obtained
from B by identifying the curves in each pair. Mumford’s surface is
a smoothing of Mo.

In [2] we explicitly describe the identification of the curves
on B. Wé can show thét tﬁere are exactlyAS other ways (up to
isomorphism) to identify the (-1)-curves and the (-2)-curves on
B such that we obt;in a variety with only normal crossings. We cén
show that we obtain projective Fz-surfaces with K2 = 3c2 = 9 and
x(0) = 1.

Problem Are these surfaces smoothable over Zz?

These surfaces are d-semi-stable in the sense of [1].
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Open problems
by

Yujiro Kawamata .

Problem 1. Flip conjectures:

(i) existence of flip (dim > 4)

(ii) termination of fiips (dim = 5)

Problem 2. Log-flip conjectures (generalization of (1)):

(i) existence (dim 2 3), (ii) termination (dim > 3).

Probiem 3. Crepant flip conjéctures (special case of (2)):

(i) existence (dim = 4), (ii) termination (dim > 4).

3(i) implies 1(i) in one dimension less.

Problem 4. Abundance conjecture (dim > 3).

Problem 5. If a canonical.divisor K of a nonsingular
projective variety X 1is not pseudo-effective, does»there gxist a
covering family of curves {Cl} on X such that (K-Cl).< 0? Mofe
generally, describe the cone of pseudo-éffective divisors.

Problem 6. Inductive structures of canonical and terminal
singularities: Investigate the simplification process of those
singularities via (i) blowing'up with small discrepancies; (ii)
hyperplane cutting; (iii) coverings; (iv) deformations.

Problem 7. Are deformations of canonical (resp. terminal)
singularities canoﬁital (resp. terminal)?

- Problem 8. Is an extremal ray represented by a rational curve?
Is the exceptional locus of an extremal confraction covered by

rational curves?




Open problems
by

Masayoshi Miyanishi

1. Topologically contractible algebraic surfaces

Let X be a smooth algebraic Qariety defined over C. X 1is a
complex homology n-éeli if Hi(X;Z) = 0 for every i > 0. When
dim X = 2, we call X a homology plané.

Problem 1.1. Suppose «(X) =

(1) Is a homology plane topologically contractible?

(2) Classify all homology planes or topologically contractible
algebraic surfaces with k(X)

Problem 1.2. (Conjecture of Petrie-tom Dieck). Let X be a
homology plane with a nontrivial automorphism of finite order. Is
X then isomorphic to Az?

Problem 1.3. Let X be a complex homology 3- cell and let V
be an algebralc compactification with boundary divisor D := V-X of
simple normal crossings. Say something on irreducible components

of D and the dual graph of D.

2. Logarithmic del»Pezzo surfaces
A normal proaectlve surface V. defined over C 1is a log'dei
Pezzo surface if (1) -V has at worst quotient sinéularities and
-KV is ample. There are some basic works on log del Pezzo

surfaces by D.-Q. Zhang. Let V. := V-Sing V. Then nl(VO) "is a

0
finite group. Let U0 be the universal covering space of VO and

let U be the normalization of V in the function field C(UO).



The surface U with the normalization morphism p : U~ V is
called a gquasi-universal covering. Then U is again a log del

Pezzo surface.

Problem 2.1. Let V be a log del Pezzo surface. Does it hold
that V is a compactification of Cz if and only if nl(Vo) = {e}? .

Problem 2.2. Let V be a log del Pezzo surface of rank 1.
Then does it hold that V = P2/G with G c PGL(2) if and only if

nl(Vo) ¢ {e} and U has rank 17

3. Affine cancellation problem in dimension 3
The said problem ésks if X o As provided X x Al x A4. The
condition implies x(X) = -=». We say that X is affine r-ruled

if X contains a Zariski open set U isomorphic to Uo x AT.

Problem 3.1. Suppose X 1is a smooth affine 3-fold with 1k(X)
= ~o, Is X thén affine 1-ruled?

For example, ;et X be a cubic hypersurface xi+kg+x§+x2 = -1
in A4. Then «k(X) = -» and X is not affine Z-ruled,.though we
do not know yet if it is not affine l-éuled either.

Problem 3.2. Let f : X!a Y be a flat surjéctive'morfhism
from a smooth algebraic'S-fdld X to a smooth algebraic surface Y
such that general fibers of f are isomorphic to AL or Al :=
Al-{O}. Let F be any degenerate fiber of f. Determine Fred'

Problem 3.3. Let X be a normal affine algebraic 3-fold with
6n1y isolated singularities. When X is affine l1-ruled, determine
the type of singularities. Are they canonibal?

Problem 3.4. Obtain any kind of algebraic characterization of

the affine 3-space A3(

—=50—




. Open problems
by

Yoichi Miyaoka

Classification theory.

Problem 1. Let X be a compact complex projective manifold with

1
X

never semi-positive (Bogomolov-Donaldson). In particular, there is a

trivial cénonical bundle. When nl(X) = 1, it is known that @ is
curve C c X such that Qilc is not semi-positive. Is it

possible to deform C in X to produce a rational curve? A
partial result is known in dimension 2 (Mumford). If the answer
is affirmative, study the set of rational curves on X, which would
not be empty.

Problem 2. Is the set of smooth n-dimensional Fano manifolds

bounded? If Pic X =~ Z, two general points on a Fano mainfold can be
Joined by n rational curves. Can they be joiﬁed by a single rational

curve? (If so, the boundedneés of such Fano manifolds follows).

P-adic cohomology
Problem 3. Let X be a proper flat scheme over a discrete
‘'valuation ring R with quotient field K of characteristic 0 and
with perfect residue field k of characteristic Pp > 0. When X is

smooth over R, Fontaine-Messing has proved that

m; + m £i1%,p Tf=1
B Ty (x) = (B oy K, (V/W)) ,
p>dimX, r > m,

+ .. 0 n
5 = Lin B pys ((0g/0 0g) /H).
Find an alalogue of this isomorphism in the semistable case.




Problem of Zariski decompositioﬁ
by

Atsushi Moriwaki

1. Introduction

The origin of Zariski decomposition of a divisor on an
algebraic variety is Zariski’s famous paper "The theorem of
Riemann-Roch for high moltiples of an effective divisors on an
algebraic surface". In his paper, he studied a certain property of
a ring R(S,D) = mnono(S,nD)} where S is a projective surface
and D a divisor on S. In consideration of the above ring, he
found some decomposition of a divisor D. This decomposition was

_very useful for special study of algebraic surfaces beyond Zariski's

purpose, for example "Cancellation problem of affine plano": ‘Hence,
it‘is very important to extend this decomposition to higher
dimensional varieties. The first problem of this attempt is to find a
natural definition. The second is to prove the existence of a
decomposition and the final one is to find applications. So far we
have completed only the first and the third steps. For example, the
success of this theory includes not only the minimal model theory but
also its logarithmic versioo. The existence of the minimal model with
respect to a logarithmic canonical divisor of 3-fold is still open.
We expect more fasoinating applications. VIn this note, we summarize

several problems about Zariski decomposition.

2. Review of surface case

Let S be a smooth projective surface and D an R-divisor




on .S, that is, an element of Div(S)eR. We say that D is
pseudo-effective if k(X,D+A) # -» for any ample R-divisor A -on.
S. We consider the following two condisions (A), (B) about a
decomposition D = P+N.  In the following context, we assume that
D 1is pseudo-effective.

Conditi&n (A)

(al) P, N are R-divisors such that P is nef and N is

effective.

(a2) Letting N = Ei aiNi be the irreducible decomposition of
N, the intersection matrix ((Ni-Nj)) is negative definite.

(a3) (P-Ni) = 0 for all 1i.

Condition (B)

(bl) same as (al)

(b2) The n;tural Bomomorphisms HO(S,[nP]) - HO(S,[nD]) are
bijective for.all n.

Then we have

Proposition 2.1. If D is big, Condition(A) is equivalent to (B).

Furthermore, let D + gA =‘P8 + N8 and D = P + N be a.
decomposition satisfying Condition (A) or (B) for small positive
real number g and ample divisor A. Then,

Proposition 2.2. The limits

lime¢0 P8 and limew'Ne

exists and are equal to P and N respectively.

Hence, it is sufficient to consider Condition (B) for a big
divisor. The construction of a decomposition satisfying (B) is very

easy. This is done in the following manners.

Lgt [nD] = Mn + Fn be the decomposition such that Fn is the



fixed part of the complete linear system of |[nD]|. Then it is
clear that Mn is nef. Set N = inf(Fn/n) and P = D-N. So we
have a decomposition D = P + N, which is the desired' decomposition.
Finally, we remark that if D 1is a- Q-divisor, then P and
N are also Q-divisofs by.Conditions (a2) and (a3).
3. Definition of Zariski decomposition
Let X be a smooth projective variety and D an R-divisor
on X. pet In be the ideal sheaf defined by the image of the

natural homomorphism HO(X,[nD])eox(-[nD])~+ 0 Let 'R be a

X
discrete valuation rihg of the rational function field of - X.
Define the integer a by IRS= t.an R, where t is a prime-
element of R. Set vR(D)A= inf(an/n). If R is defined by a -
subvariety C of X, we denote Vg by Voo

We say a decomposition D '= P + N is-a Zariski decomposition
(resp. sectional decomposition) if the following cohditions are
satisfied. |

(1) N is an effective R-divisor.

(2) HO(X,[nP]) - HOGX,[ﬁD])‘ is bijective for every n.

(3) VR(P) = 0 for all DVR R (resp. Vf(P) = 0 for all prime
divisors r).

Note that (i) if vC(P) = 0 for all curves C, then P is
nef, (ii) if P is nef and big, vR(P) = 0 for all DVR R and
(iii) rationality of a decomposition is not expected (example of
Cutkosky).
4. Sectional decomposition and base cufve

- In this section, we assume dim X = 3 and D 1is big. We

consider the sum N = 3 vr(D)r, where summation runs over all prime




divisors. We can easily check that this summation is finite. Set P
=D-N. Then D =P + N is a sectional decomposition. Next we
consider the fgrmal l-cycle Z = 20 VC(P)C. The first fundamental
problem is

PROBLEM A. 1Is the formal 1l-cycle Z finite?

If there exists a Zariski decomposition of D, Problem A is true.
With resﬁect to this, we have

Proposition 4.1. Z has a limit in

NI(X) (=({l-cycles on X}/=)eR).

By this proposition, for any positive g, the set {C | VC(P) >
e} is finite.

PROBLEM B. Control Z by blowing-up process.

For this, there is a partial answer by Nakayama. His work is
very local to control Z. This is closely related to find a good
invariant for Z and-'induction step to vanishing of Z.

Finally, we propose the fundamental problem.

PROBLEM C. For an effective divisor D on a projective 3-fold
X, is there a birational morphism f : Y » X such that f*(D) has a
Zariski decomposition?

If x(X) < 3, then this is true using the Zariski decompo;ition
on a surface.

5. Paradise of Zariski decomposition

The reason why we consider a Zariski decomposition is to prove
finitely generatedness of the canonical ring. With respect to this,
we have the following theoren.

Theorem 5.1. Let (X,A) be a normal projective variety with

only log-terminal singularities and Kx + A =P+ N a Zariski



decomposition. Then P, N € Div(X)eQ and there exists m such that'

| [mP]] is base point free.




Problems on characterization of the complex projective space
by

Shigeru Mukai

A compact complex manifold X is a Fano manifold if its 1st
Chern class cl(X) € H}(X,Z) is positive, or‘equivalently. the
anticanoﬂical class -Kx' is ample. The projective space P" is
the mbst typical example. In this note, I pose some problems on

characterization of P" which was conceived during my study on Fano

manifolds of coindex 3 [Mu].

1. Characterization by index

For a Fano manifold X, the largest integer r which divides
cl(X) in HZ(X,Z) is called the>index of X. The index of P"  is
equal to .n+l.

Theorem 1. ([K-0O]). Let X be a Fano manifold. Then index X
< dim X + 1. Moreover, the equality holds if and ohly if X =~ P".

If X 1is a Fano manifold of index r, then the vector bunéle
Gx(--KX/r)er is ample and its first Chern class is equal to cl(X).
So we consider ample vector bundles E on X with cl(E) = cl(X).
How big can the rank r(E) of E be? By [Mo], there exists a
rational curve C on X with (C-cl(X)) < dim X + 1. Since every
vector bundle on Pl is a direct sum of line bundles, we have r(E)
= r(EIC) <.dim X + 1.

Conjecture 1. Let X be a Eompact complex manifold and E an
ample vector bundle on it with cl(ﬁ) = cl(X). If r(E) = dim X +1,
then (X,E) = (P?,0(1)2(n*1)),



2. Characterization by .the tangent bundle
The following was conjectured by [Ha].

Theorem 2. ([Mo]). A compact complex manifold X with ample

tangent bundle TX is isomorphic to Pn.
The tangent bundle Ty 1is a vector bundle on X with r(Ty) =
dim X and cl(TX) = cl(X). The vector bundles O(I)Q(n_l)GO(Z)
n+1

over P" and 0(1)Qn over a hyperquadric QC c P also satisfy

these conditions.

Conjecture 2. Let E be an ample vector'bundle on' X with

rk E = dim X and cl(E) = cl(X). Then the pair (X, E) is

®(n-1)

isomorphic to (", TP)’ (Pn,o(l) ®0(2)) or (Q°, G(l)en).

3. The logarithmic version of Hartshorne conjecture

The "log analogue" of the tangent bundle TX is the sheaf of

vector fields with logarithmic zeroes along D, which is denoted by
Tx(—log D). Tx(-log D) is characterized by the natural éxact

sequence -

0 - TX(—log D) - TX - ND/X

where ND/X is the normal bundle GD(D) of D and we regard-itAas

a sheaf on X with support on D. If X = p"

-and D is a
hyperplane, then Tx(-log D) is isomorphic to Or(l)en.
Conjecture 3.(*) Let X be a compact complex manifold and D

a nonzero reduced effective divisor on it. If the logarithmic

tangent bundle TX(—log D) is ample, then (X,D) = (Pn,hyperplane).

(*) In the problem session, Mori said that this would be proved by
essentially the same argument as in [Mo].




The tangent bundle Tx “is ample if the bisectional cur#atufe
is positive.

;Problem. Find a sufficient condition on the curvature for
TX(-log D) to be ample, that is, formulate a logarithmic version of
the Frankel conjecture which characterizes ¢".

4. Relation with the classification of Fano manifolds

Lett E. be a rank r vector bundle on- X with cl(Ei = ¢, (X)
and put Y.= P(E). Then ‘cl(Y) is r times the tautological line
bundle.VOY(l).‘ Hence if E is ample then Y is a Fano manifold of

index r. If r = n+l, n dim X, then Y is a Fano 2n-fold of

index n+l. We note p(Y)

p(X)+1 > 2,.where p denotes the
Picard number. The following is a.refiﬁement of Theorem 1.

Conjecfuré 4. -If- Y_ is a Fano manifold with Picard number p,
then index Y < diﬁ-&/ﬁ + 1.,  Moreover, the eéuality holds iff Y =~
(Pindex Yll)d; c '

Fér‘a Fano maﬂifbld .Y, we define the coindex by dim Y -
index Y + 1,lwﬁi§£ ié ﬂonnegativé by Theorem 1. Conjecture 4
implies

Conjecture 4’. If Y is a Fano manifold with Picard number >
2, then dim Y < 2:coindex Y. Moreover, the equality holds if Y =
Pcdindex Y « Pcoindex Y'

This conjecture implies Conjecture 1. In the case coindex Y <
3, Cohjecture 4’ is easily obtained from the following; |

Proposition. Let Y be a Fano manifold of coindex. ¢ < 3 and

R an extremal ray of Y. Let f : Y- Z be the contraction

morphism of R. Then we have either dim Z =dim Y or dim Z < c.



In the former case, f is birational anq_contfacts a divisor to a
point or to a curve.

(This proposition is also observed in [Fujl.)

Proof of Conjecture 4’ in the case coindex 3:

In the case dim Y > 4, Y has a nef extremal ray Rl' Since

p(Y) =2 2, Y has another extremal ray Rz. Let F2 be a fiber of
.maximal dimension of contR . By the proposition, dim Fz 2 dim Y -
2
3. Since the restriction of contR to Fi is finite, we have
: 1
dim Y - 3 < 3. Moreover, if the equality holds, then both .contR'
1
and contR are Ps-bundles over 3-folds. Hence we have Y =
‘ 2
PaxP3.
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Open problems
by -

Noboru Nakayama

Let X be an n-dimensional projective manifold over € and
let D be a pseudo-effective R-divisor on X. We have two
decomposi£ions D = PU(D) + NO(D) = Pv(D) + Nv(D) which have the'
following properties:

‘1a. Na is an ‘effective R-divisor and Pa is pseudo-effective.
1b. For any ample R-divisor A the intersection of all
effective R-divisors numerically equivalent to D+A is an analytic

subset of codimension at least 2.

lc. 'If D = P +N' satisfy conditions la and 1b then .N' > No'

2a. N is an effective R-divisor and P, is
prseudo-effective.

2b.  For any prime divisor G, Ple is pseudo-effective.

2c. If D ; P” +N" satisfy éonditions 2a and 2b then N" > Nv'

If dim X = 2 these two decompositions are the same and it is
called the Zariski decomposition of D. Here Pa is always nef and
No can be contracted. If dim X > 3> then these two.decompositions
are different in general.

Problem 1. (Zariski decomposition problem, For a
pseudo-effective R-divisor D find a modification g€ : Y= X such
that Pa(g‘D) is nef.

If Pa is nef, then the first decomposition is called the
Zariski decomposition of D. 1If Pv is nef then Pv =P .,

o

Problem 2. In Problem 1 can one get a modification g such that



P (g*D) is nef?
v v
It is also ‘important to consider the relative versions of these

problems.

Problem 3. Let f : M 5 S be a projective smooth morphism
‘between complex manifolds‘and let L be a line bun&le on N. .Then is
the set ({s € S | LIMS is nef} open in S?

If the relative version of Problem 1 is true then the anser to
Problem 3 is yes. |

Problem 4. Characterize the dual of the pseudo-effective cone.
VEspecially, we are interested in the‘fOIIOWing:

Problem 5..For a line bundle L, if L|G is pseudo-effective for
all prime divisors G, then is L pseudo-effective?

Relating to Problem 4 the following question is also important.

Problem 6. - On a compact Kidhler manifold, characterize the dual

of the Kahler cone.




Two problems
by

Shuichiro Tsﬁnoda

Prob}em 1. (Generalized Weierstrass proints) Let V a
nonsingular algebraic variety and E a vector bundle on V. Let
qk be_the sheaf of k-jets. Then we have a natural map § : 0y 2
Jk which is a homomorphism between .sheaves of rings. We denote by
Jk(E) the Jk—module asseciateg with E. If fij is a.sysfem of
tpansitipn functions for E . then .6(fij) is a system of transition
fﬁnetipn;”for-'Jk(E). Let W be a subspace of HO(E). Then we have
§(W) c HO(Jk(E)). A GW-point (Generalized Weierstrass) is a "special"
point on V with respect to &§(W) and Jk(E).

Example 1. A point at which the quotient of Jk(E) by the
ov-subsheaf generated by §(W) is not locally free is a GW-point.

Example 2. Assume n > rank Jk = 0, and that E is a line
bundle. If fl, ooy fl € W, then we have a global section
aflA...éfQ € det(Jk ® E). Consider the subepace W c Ho(det(JkoE))
generated by'the above section. A point at which the rational map
associated with W’ is not an isomorphism is a GW-point;

Example 3. Assume k =-1. In this case J1 ~ 0V + Q& as an _
Ov-module and &f = f + df. Let fi be a basis of W ¢ HO(E). Then
fidfj - fjdfi € HO(SZEOQé). As in Example 2 a base point of the
subspaee genereted by these elements is a GW-point.

Iitaka [Advances in Math. Vol. 33 (1979)]1 defined A-Weierstrass
pointe using symmetric forms. We conjecture that A-Weierstrass points

above are GW-points.



Problem 2. (Real analytic varieties with corners) Let D be
the unit ball in R"™ and let fl’ vee fn' be real analytic _
functions on D. We shall study the set V = {xeD | fi(x) > 0 vi}.
These are natural generalizations of algebraic geometr& and linear
programming. One can easily put a sheaf structure on V ‘and
globalize in the natural way. Thus we obtain the notion of feal
analytic varieties with corners. A unique feature of this category is
the "dissection" (a counterpart of blow-up). Two dimensional
dissectiong are obtained as follows:-

We identify two points on Rza{O} if they are on the same half
line. Then we get Sl. 'The.rest of thé construction of dissection is
completely the same as that of blow-up.

Now one can ask many questions about this category e.g.

resolution (should be easy), classification, and so on.




Fact Sheet on the Taniguchi Foundation

Official name and origin
Toyosaburo Taniguchi, chairman emeritus of the board of Toyobo
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personal funds in accordance with his late father's will.
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international level through international exchange of ideas and
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1) Ipitiating and/or finanéing international symposia df the
following character.

a) The ;ymposium should center especially around
promising young scholars giving them'an opportunity
.to exchange and develop their ideas. .

b) The number of pafticipants sh#ll_be limited to
discussion group size to allow ﬁaximum flow of
communication and personal contact.

2) Supporting publications of the results of the research of

* foreign as well as Japanese scholars.

3) Promoting and financing the sending of young researchers

abroad and also inviting young researchers to Japan.



