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Abstract. We generalize the Fujita–Zucker–Kawamata semipositivity theorem from the
analytic viewpoint.
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1. Introduction

The main purpose of this paper is to generalize the well-known Fujita–Zucker–Kawamata
semipositivity theorem (see [Kaw1, §4. Semi-positivity], [Kaw2, Theorem 2], [FF, Section
5], [FFS, Theorem 3], and [Fuj]) from the analytic viewpoint.

Theorem 1.1. Let X be a complex manifold and let X0 ⊂ X be a Zariski open set such
that D = X \ X0 is a normal crossing divisor on X. Let V0 be a polarizable variation of
R-Hodge structure over X0 with unipotent monodromies around D. Let F b be the canonical
extension of the lowest piece of the Hodge filtration. Let F b → L be a quotient line bundle
of F b. Then the Hodge metric of F b induces a singular hermitian metric h on L such that√
−1Θh(L ) ≥ 0 and the Lelong number of h is zero everywhere.

As a direct consequence of Theorem 1.1, we have:

Corollary 1.2 (cf. [Kaw3]). Let X be a complex manifold and let X0 ⊂ X be a Zariski
open set such that D = X \X0 is a normal crossing divisor on X. Let V0 be a polarizable
variation of R-Hodge structure over X0 with unipotent monodromies around D. Let F b be
the canonical extension of the lowest piece of the Hodge filtration. Then OPX(F b)(1) has a

singular hermitian metric h such that
√
−1Θh(OPX(F b)(1)) ≥ 0 and that the Lelong number

of h is zero everywhere. Therefore, F b is nef in the usual sense when X is projective.

Remark 1.3. There exists a quite short published proof of Corollary 1.2 (see the proof
of [Kaw3, Theorem 1.1]). However, we have been unable to follow it. We also note that
the arguments in [Kaw1, §4. Semi-positivity] contain various troubles. For the details, see
[FFS, 4.6. Remarks].
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Remark 1.4. When X is projective and V0 is geometric in Corollary 1.2, the nefness of F b

has already played important roles in the Iitaka program and the minimal model program
for higher-dimensional complex algebraic varieties.

More generally, we can prove:

Theorem 1.5. Let X be a complex manifold and let X0 ⊂ X be a Zariski open set such
that D = X \ X0 is a normal crossing divisor on X. Let V0 be a polarizable variation of
R-Hodge structure over X0 with unipotent monodromies around D. If M is a holomorphic
line subbundle of the associated system of Hodge bundles Gr•F V =

⊕
pGrpF V which is

contained in the kernel of the Higgs field

θ : Gr•F V → Ω1
X(logD)⊗OX

Gr•F V ,

then the Hodge metric induces a singular hermitian metric h on its dual M ∨ such that√
−1Θh(M ∨) ≥ 0 and that the Lelong number of h is zero everywhere.

For the details of the Higgs field θ : Gr•F V → Ω1
X(logD) ⊗OX

Gr•F V in Theorem 1.5,
see Definition 2.7 below.

As a direct easy consequence of Theorem 1.5, we obtain:

Corollary 1.6 ([Z] and [B1, Theorem 1.8]). Let X be a complex manifold and let X0 ⊂ X
be a Zariski open set such that D = X \ X0 is a normal crossing divisor on X. Let
V0 be a polarizable variation of R-Hodge structure over X0 with unipotent monodromies
around D. If A is a holomorphic subbundle of the associated system of Hodge bundles
Gr•F V =

⊕
pGrpF V which is contained in the kernel of the Higgs field

θ : Gr•F V → Ω1
X(logD)⊗Gr•F V ,

then OPX(A∨)(1) has a singular hermitian metric h such that
√
−1Θh(OPX(A∨)(1)) ≥ 0 and

that the Lelong number of h is zero everywhere. Therefore, the dual vector bundle A∨ is
nef in the usual sense when X is projective.

Corollary 1.6 is an analytic version of [B1, Theorem 1.8] (see also [Fuj]). For some
generalizations of [B1, Theorem 1.8] from the Hodge module theoretic viewpoint, see [PoS,
Theorem 18.1] and [PoW, Theorem A]. For a very recent development on semipositivity
theorems from the theory of Higgs bundles, see [B2].

Remark 1.7. Let a be the integer such that F a+1
0 ⊊ F a

0 = V0. Then, in Corollary
1.6, GraF V is a holomorphic subbundle of Gr•F V and is contained in the kernel of θ.
Therefore, we can use Corollary 1.6 for A = GraF V . By considering the dual Hodge
structure in Corollary 1.6 and putting A = GraF V , Corollary 1.6 is also a generalization
of the Fujita–Zucker–Kawamata semipositivity theorem (see, for example, [FF, Remark
3.15]). Of course, by considering the dual Hodge structure, Theorem 1.5 contains Theorem
1.1 as a special case.

Our proof in this paper heavily depends on [Ko], which is based on [CKS], and Demailly’s
approximation result for quasi-plurisubharmonic functions on complex manifolds (see [D1]
and [D2]).

Remark 1.8 (Singular hermitian metrics on vector bundles). We note that our results
explained above are local analytic. Therefore, we can easily see that the Hodge metric of F b

in Theorem 1.1 is a semipositively curved singular hermitian metric in the sense of Păun–
Takayama (see [PăT, Definition 2.3.1] and [HPS, Lemma 18.2]). Moreover, in Corollary
1.6, the induced metric on A is a seminegatively curved singular hermitian metric in the
sense of Păun–Takayama (see [PăT, Definition 2.3.1] and [HPS, Lemma 18.2]). For the
details of singular hermitian metrics on vector bundles and some related topics, see [PăT]
(see also [HPS] and [B1]).
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2. Preliminaries

In this section, we collect some basic definitions and results.

2.1 (Singular hermitian metrics, multiplier ideal sheaves, and so on). Let us recall some ba-
sic definitions and facts about singular hermitian metrics and plurisubharmonic functions.
For the details, see [D2, (1.4), (3.12), (5.4), and so on].

Definition 2.2 (Singular hermitian metrics and curvatures). Let L be a holomorphic line
bundle on a complex manifold X. A singular hermitian metric h on L is a metric which
is given in every trivialization θ : L |U ≃ U × C by

||ξ||h = |θ(ξ)|e−φ(x), x ∈ U, ξ ∈ Lx,

where φ ∈ L1
loc(U) is an arbitrary function, called the weight of the metric with respect

to the trivialization θ. Note that L1
loc(U) is the space of locally integrable functions on U .

The curvature Θh(L ) of a singular hermitian metric h on L is defined by

Θh(L ) := 2∂∂φ,

where φ is a weight function and ∂∂φ is taken in the sense of currents. It is easy to see
that the right hand side does not depend on the choice of trivializations. Therefore, we
get a global closed (1, 1)-current Θh(L ) on X. In this paper,

√
−1Θh(L ) ≥ 0 means that√

−1Θh(L ) is positive in the sense of currents.
Let L be a holomorphic line bundle on a smooth projective variety X. Then it is well

known that there exists a singular hermitian metric h on L with
√
−1Θh(L ) ≥ 0 if and

only if L is pseudoeffective (see [D2, (6.17) Theorem (c)]).

Definition 2.3 ((Quasi-)plurisubharmonic functions). A function φ : U → [−∞,∞)
defined on an open set U ⊂ Cn is called plurisubharmonic if

(i) φ is upper semicontinuous, and
(ii) for every complex line L ⊂ Cn, φ|U∩L is subharmonic on U ∩ L, that is, for every

a ∈ U and ξ ∈ Cn satisfying |ξ| < d(a, U c) = inf{|a − x| | x ∈ U c}, the function φ
satisfies the mean inequality

φ(a) ≤ 1

2π

∫ 2π

0

φ(a+ eiθξ)dθ.

Let X be an n-dimensional complex manifold. A function φ : X → [−∞,∞) is said to
be plurisubharmonic if there exists an open cover X =

∪
i∈I Ui such that φ|Ui

is plurisub-
harmonic on Ui (⊂ Cn) for every i. A quasi-plurisubharmonic function is a function φ
which is locally equal to the sum of a plurisubharmonic function and of a smooth function.

Let φ be a quasi-plurisubharmonic function on a complex manifold X. Then the multi-
plier ideal sheaf J (φ) ⊂ OX is defined by

Γ(U,J (φ)) = {f ∈ OX(U) | |f |2e−2φ ∈ L1
loc(U)}

for every open set U ⊂ X. It is well known that J (φ) is a coherent ideal sheaf on X.
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Definition 2.4 (Lelong numbers). Let φ be a quasi-plurisubharmonic function on U (⊂
Cn). The Lelong number ν(φ, x) of φ at x ∈ U is defined as follows:

ν(φ, x) = lim inf
z→x

φ(z)

log |z − x|
.

It is well known that ν(φ, x) ≥ 0.

In this paper, we will implicitly use the following easy lemma repeatedly.

Lemma 2.5. Let L be a holomorphic line bundle on a complex manifold X. Let h = ge−2φ

be a singular hermitian metric on L , where g is a smooth hermitian metric on L and φ is
a locally integrable function on X. We assume that

√
−1Θh(L ) ≥ 0. Then there exists a

quasi-plurisubharmonic function ψ on X such that φ coincides with ψ almost everywhere.
In this situation, we put J (h) = J (ψ). Moreover, we simply say the Lelong number of
h to denote the Lelong number of ψ if there is no risk of confusion.

2.6 (Systems of Hodge bundles, Higgs fields, curvatures, and so on). Let us recall the
definition of systems of Hodge bundles.

Definition 2.7 (Systems of Hodge bundles). Let V0 = (V0, F0) be a polarizable variation
of R-Hodge structure on a complex manifold X0, where V0 is a local system of finite-
dimensional R-vector spaces on X0 and {F p

0 } is the Hodge filtration. Then we obtain a
Higgs bundle (E0, θ0) on X0 by setting

E0 = Gr•F0
V0 =

⊕
p

F p
0 /F

p+1
0

where V0 = V0 ⊗ OX0 . Note that θ0 is induced by the Griffiths transversality

∇ : F p
0 → Ω1

X0
⊗OX0

F p−1
0 .

More precisely, ∇ induces

θp0 : F
p
0 /F

p+1
0 → Ω1

X0
⊗OX0

(
F p−1
0 /F p

0

)
for every p. Then

θ0 =
⊕
p

θp0 : E0 → Ω1
X0

⊗OX0
E0.

The pair (E0, θ0) is usually called the system of Hodge bundles associated to V0 = (V0, F0)
and θ0 is called the Higgs field of (E0, θ0).

We further assume that X0 is a Zariski open set of a complex manifold X such that
D = X \X0 is a normal crossing divisor on X and that the local monodromy of V0 around
D is unipotent. Then, by [S, (4.12)], we can extend (E0, θ0) to (E, θ) on X, where

E = Gr•F V =
⊕
p

F p/F p+1

and
θ : E → Ω1

X(logD)⊗OX
E.

Note that V is the canonical extension of V0 and F
p is the canonical extension of F p

0 , that
is,

F p = j∗F
p
0 ∩ V ,

where j : X0 ↪→ X is the natural open immersion, for every p.

We need the following important calculations of curvatures by Griffiths. For the ba-
sic definitions and properties of the induced metrics and curvatures for subbundles and
quotient bundles of a vector bundle, see [GT, §1 and §2].
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Lemma 2.8. We use the same notation as in Definition 2.7. Let F b
0 be the lowest piece of

the Hodge filtration. Let q0 be the metric of F b
0 induced by the Hodge metric. Let Θq0(F

b
0 )

be the curvature form of (F b
0 , q0). Then we have

Θq0(F
b
0 ) + (θb0)

∗ ∧ θb0 = 0

where (θb0)
∗ is the adjoint of θb0 with respect to the Hodge metric (see, for example, [GT] and

[S, (7.18) Lemma]). Let L0 be a quotient line bundle of F b
0 . Then we have the following

short exact sequence of locally free sheaves:

0 → S0 → F b
0 → L0 → 0.

Let A be the second fundamental form of the subbundle S0 ⊂ F b
0 . Let h0 be the induced

metric of L0. Then we obtain
√
−1Θh0(L0) =

√
−1Θq0(F

b
0 )|L0 +

√
−1A ∧ A∗

= −
√
−1(θb0)

∗ ∧ θb0|L0 +
√
−1A ∧ A∗.

Note that A∗ is the adjoint of A with respect to q0. Therefore, the curvature form of
(L0, h0) is a semipositive smooth (1, 1)-form on X0.

In the proof of Theorem 1.1 in Section 4, we will investigate asymptotic behaviors of
log h0, ∂ log h0, ∂∂ log h0 near the normal crossing divisor D and see that the largest lower
semicontinuous extension h of h0 on X has desired properties.

Lemma 2.9. We use the same notation as in Definition 2.7. Let q0 be the Hodge metric
on the system of Hodge bundles (E0, θ0) induced by the original Hodge metric. Let Θq0(E0)
be the curvature form of (E0, q0). Then we have

Θq0(E0) + θ0 ∧ θ∗0 + θ∗0 ∧ θ0 = 0

where θ∗0 is the adjoint of θ0 with respect to q0 (see, for example, [GT] and [S, (7.18)
Lemma]). Therefore, we have

√
−1Θq0(E0) = −

√
−1θ0 ∧ θ∗0 −

√
−1θ∗0 ∧ θ0.

Let M0 be a line subbundle of E0 which is contained in the kernel of θ0 and let h†0 be the
induced metric on M0. Then√

−1Θh†0
(M0) =

√
−1Θq0(E0)|M0 +

√
−1A∗ ∧ A

= −
√
−1θ0 ∧ θ∗0|M0 −

√
−1θ∗0 ∧ θ0|M0 +

√
−1A∗ ∧ A

= −
√
−1θ0 ∧ θ∗0|M0 +

√
−1A∗ ∧ A

where A is the second fundamental form of the line subbundle M0 ⊂ E0 and A∗ is the
adjoint of A with respect to q0. Therefore, the curvature of (M0, h

†
0) is a seminegative

smooth (1, 1)-form on X0.

3. Nefness

Let us start with the definition of nef line bundles on projective varieties.

Definition 3.1 (Nef line bundles). A line bundle L on a projective variety X is nef if
L · C ≥ 0 for every curve C on X.

In this paper, we need the notion of nef locally free sheaves (or vector bundles) on
projective varieties, which is a generalization of Definition 3.1.

Definition 3.2 (Nef locally free sheaves). A locally free sheaf (or vector bundle) E of finite
rank on a projective variety X is nef if the following equivalent conditions are satisfied:

(i) E = 0 or OPX(E )(1) is nef on PX(E ).
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(ii) For every map from a smooth projective curve f : C → X, every quotient line
bundle of f ∗E has nonnegative degree.

A nef locally free sheaf in Definition 3.2 was originally called a (numerically) semipositive
sheaf in the literature.

Let us recall the definition of nef line bundles in the sense of Demailly (see [D2, (6.11)
Definition]).

Definition 3.3 (Nef line bundles in the sense of Demailly). A holomorphic line bundle L
on a compact complex manifold X is said to be nef if for every ε > 0 there is a smooth
hermitian metric hε on L such that

√
−1Θhε(L ) ≥ −εω, where ω is a fixed hermitian

metric on X.

We can easily check:

Lemma 3.4. If X is projective in Definition 3.3, then L is nef in the sense of Demailly
if and only if L is nef in the usual sense.

Proof. It is an easy exercise. For the details, see [D2, (6.10) Proposition]. □
The following proposition is more or less well-known to the experts. We write the proof

for the reader’s convenience.

Proposition 3.5. Let X be a compact complex manifold and let L be a holomorphic line
bundle equipped with a singular hermitian metric h. Assume that

√
−1Θh(L ) ≥ 0 and

the Lelong number of h is zero everywhere. Then L is a nef line bundle in the sense of
Definition 3.3.

First, we give a quick proof of Proposition 3.5 when X is projective. It is an easy
application of the Nadel vanishing theorem and the Castelnuovo–Mumford regularity.

Proof of Proposition 3.5 when X is projective. Let A be an ample line bundle on X such
that |A | is basepoint-free. By Skoda’s theorem (see [D2, (5.6) Lemma]), we have J (hm) =
OX for every positive integer m, where J (hm) is the multiplier ideal sheaf of hm. Here,
we used the fact that the Lelong number of h is zero everywhere. By the Nadel vanishing
theorem,

H i(X,ωX ⊗ L ⊗m ⊗ A ⊗n+1−i) = 0

for every 0 < i ≤ n = dimX and every positive integer m. By the Castelnuovo–Mumford
regularity, ωX ⊗ L ⊗m ⊗ A ⊗n+1 is generated by global sections for every positive integer
m. We take a curve C on X. Then C · (ωX⊗L ⊗m⊗A ⊗n+1) ≥ 0 for every positive integer
m. This means that C · L ≥ 0. Therefore, L is nef in the usual sense. □
Next, we prove Proposition 3.5 when X is not necessarily projective. The proof depends

on Demailly’s approximation theorem for quasi-plurisubharmonic functions on complex
manifolds (see [D1]).

Proof of Proposition 3.5: general case. Let ω be a hermitian metric on X and let ε be any
positive real number. We fix a smooth hermitian metric g on L . Then we can write
h = ge−2φ, where φ is an integrable function on X. Since

√
−1Θh(L ) ≥ 0, we see that

√
−1∂∂φ ≥ −1

2

√
−1Θg(L ) =: γ.

By Lemma 2.5, we may assume that φ is quasi-plurisubharmonic. Note that γ is a smooth
(1, 1)-form on X. By [D1, Proposition 3.7] (see also [D2, (13.12) Theorem] and [D3,
Theorem 56]), we can construct a quasi-plurisubharmonic function ψε on X with only
analytic singularities (see (3.1) below) such that

√
−1∂∂ψε ≥ γ − 1

2
εω
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(see [D1, Proposition 3.7 (iii)], [D2, (13.12) Theorem (c)], and [D3, Theorem 56 (c)]). Since
the Lelong number of h is zero everywhere by assumption, we obtain

0 ≤ ν(ψε, x) ≤ ν(φ, x) = 0

for every x ∈ X by [D1, Proposition 3.7 (ii)] (see also [D2, (13.12) Theorem (b)] and [D3,
Theorem 56 (b)]). Therefore, the Lelong number of ψε is zero everywhere. By construction,
we can easily see that ψε is smooth outside {x ∈ X |ψε(x) = −∞}. As mentioned above,
ψε has only analytic singularities, that is, it can be written locally near every point x0 ∈ X
as

(3.1) ψε(z) = c log
∑

1≤j≤N

|gj(z)|2 +O(1)

with a family of holomorphic functions {g1, . . . , gN} defined near x0 and a positive real
number c (see [D3, Definition 52]). Since ν(ψε, x) = 0 for every x ∈ X, we obtain that
ψε ̸= −∞ everywhere. Therefore, ψε is a smooth function on X. We put hε = ge−2ψε .
Then hε is a smooth hermitian metric on L such that

√
−1Θhε(L ) ≥ −εω. This means

that L is a nef line bundle in the sense of Definition 3.3. □

4. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1 and Corollary 1.2. The arguments below
heavily depend on [Ko, Section 5]. Therefore, we strongly recommend the reader to see
[Ko, Section 5], especially [Ko, Definition 5.3], before reading this section.

4.1. We put ∆a = {z ∈ C | |z| < a}, ∆a = {z ∈ C | |z| ≤ a}, and ∆∗
a = ∆a \ {0}. On ∆n

a ,
we fix coordinates z1, . . . , zn.

Let us quickly recall the definition of nearly boundedness and almost boundedness due to
Kollár for the reader’s convenience.

Definition 4.2 (see [Ko, Definition 5.3 (vi) and (vii)]). On (∆∗
a)
n with 0 < a < e−1, we

define the Poincaré metric by declaring the coframe{
dzi

zi log |zi|
,

dz̄i
z̄i log |zi|

}
to be unitary. This defines a frame of every Ωk which we will refer to as the Poincaré
frame.

A function f defined on a dense Zariski open set of ∆n
a is called nearly bounded on ∆n

a if
f is smooth on (∆∗

a)
n and there are C > 0, k > 0 and ε > 0 such that for every ordering of

the coordinate functions z1, . . . , zn at least one of the following conditions is satisfied for
every z ∈ {z ∈ (∆∗

a)
n | |z1| ≤ · · · ≤ |zn|}.

(a): |f | ≤ C,
(b): |z1| ≤ exp(−|zm|−ε) and |f | ≤ C(− log |zm|)k for some 2 ≤ m ≤ n.

A form η defined on a dense Zariski open set of ∆n
a is called nearly bounded on ∆n

a if the
coefficient functions are nearly bounded on ∆n

a when we write η in terms of the Poincaré
frame. If η1 and η2 are nearly bounded on the same ∆n

a , then η1 ∧ η2 is nearly bounded on
∆n
a .
A form η defined on a dense Zariski open set of ∆n

a is called almost bounded on ∆n
a if

there is a proper bimeromorphic map p : W → ∆n
a such that W is smooth and every

w ∈ W has a neighborhood where p∗η is nearly bounded.

Remark 4.3. The definition of nearly boundedness and almost boundedness in Definition
4.2 is slightly different from Kollár’s original one (see [Ko, Definition 5.3 (vii)]). We think
that it is a kind of clarification. Of course, everything in [Ko, Section 5] works well for our
definition.
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4.4 (Proof of Theorem 1.1). We fix a smooth hermitian metric g on L . The Hodge metric
induces a smooth hermitian metric h0 on L |X0 . Then we can write

h0 = ge−2φ0

for some smooth function φ0 on X0. We use the same notation as in Lemma 2.8. Let V be
the canonical extension of V0 = V0⊗OX0 . Let q0 be the Hodge metric on V0. For simplicity,
we use the same notation q0 to denote (q0)|F b

0
, that is, the metric on F b

0 induced by the
metric q0 on V0. Let P be an arbitrary point of X. We take a suitable local coordinate
(z1, . . . , zn) centered at P and a small positive real number a with a < e−1. Then, by
[CKS, Theorem 5.21] (see also [Kas] and [VZ, Claim 7.8]), we can write

V |∆n
a
≃

r⊕
i=1

O∆n
a
ei(z),

where ei(z) ∈ Γ(∆n
a ,V ), such that

(4.1) q0(ei(z), ei(z)) ≤ C1(− log |z1|)a1 · · · (− log |zn|)an

for z ∈ (∆∗
a)
n, where a1, . . . , an are some positive integers and C1 is a large positive real

number. By making a smaller, we may further assume that

L |∆n
a
≃ O∆n

a
e(z),

where e(z) ∈ Γ(∆n
a ,L ) is a nowhere vanishing section of L on ∆n

a . We take a lift
f(z) ∈ Γ(∆n

a , F
b) of e(z), that is, p(f(z)) = e(z), where p : F b → L . Then we can write

(4.2) f(z) = f1(z)e1(z) + · · ·+ fr(z)er(z),

where fi(z) is a holomorphic function on ∆n
a for every i. By making a smaller again, we

may assume that fi(z) is holomorphic in a neighborhood of (∆a)
n. Of course, we may

further assume that e(z) ̸= 0 in a neighborhood of (∆a)
n. By (4.1) and (4.2), we obtain

that there exists some large positive real number C2 such that

q0(f(z), f(z)) ≤ C2(− log |z1|)a1 · · · (− log |zn|)an

holds for z ∈ (∆∗
a)
n. Therefore,

C3e
−2φ0(z) ≤ g(e(z), e(z))e−2φ0(z)

= h0(e(z), e(z))

≤ q0(f(z), f(z)) ≤ C2(− log |z1|)a1 · · · (− log |zn|)an

for z ∈ (∆∗
a)
n, where

C3 = min
z∈(∆a)n

g(e(z), e(z)) > 0.

Thus,

−φ0(z) ≤ log (C (− log |z1|)a1 · · · (− log |zn|)an)
holds for z ∈ (∆∗

a)
n, where C is some large positive real number. By applying similar

arguments to the dual line bundle L ∨, we may further assume that

φ0(z) ≤ log (C (− log |z1|)a1 · · · (− log |zn|)an)
holds for z ∈ (∆∗

a)
n. Let φ be the smallest upper semicontinuous function that extends φ0

to X. More explicitly,

φ(z) = lim
ε→0

sup
w∈∆n

ε∩X0

φ0(w),

where ∆n
ε is a polydisc on X centered at z ∈ X. Then, by Lemma 4.6, we obtain:

Lemma 4.5. φ is locally integrable on X.
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Proof of Lemma 4.5. Let P be an arbitrary point of X. In a small open neighborhood of
P , we have

0 ≤ φ±(z) ≤ log (C (− log |z1|)a1 · · · (− log |zn|)an)
where φ+ = max{φ, 0} and φ− = φ+ − φ. By Lemma 4.6 below, we obtain that φ is
locally integrable on X. □

We have already used:

Lemma 4.6. We have ∫ a

0

r log(− log r)dr <∞

for 0 < a < e−1.

Proof of Lemma 4.6. We put t = − log r. Then we can easily check∫ a

0

r log(− log r)dr =

∫ ∞

− log a

e−2t(log t)dt ≤
∫ ∞

− log a

te−2tdt ≤
∫ ∞

− log a

e−tdt = a <∞

by direct calculations. □

We put

h = ge−2φ.

Then h is a singular hermitian metric on L in the sense of Definition 2.2. The following
lemma is essentially contained in [Ko, Propositions 5.7 and 5.15].

Lemma 4.7. Let P be an arbitrary point of X. Then ∂φ0 and ∂̄∂φ0 are almost bounded
in a neighborhood of P ∈ X. More precisely, there exists ∆n

a on X centered at P for some
0 < a < e−1 such that φ0, ∂φ0, and ∂̄∂φ0 are smooth on (∆∗

a)
n and that ∂φ0 and ∂̄∂φ0 are

almost bounded on ∆n
a .

Proof of Lemma 4.7. We consider the following short exact sequence:

0 → S → F b → L → 0.

We fix smooth hermitian metrics g1, g2 and g on S , F b, and L , respectively. We assume
that g1 = g2|S and that g is the orthogonal complement of g1 in g2. Let h1 and h2
be the induced Hodge metrics on S0 = S |X0 and F b

0 , respectively. By applying the
calculations in [Ko, Section 5] to detS and detF b, we obtain deth1 = det g1 · e−φ1 and
deth2 = det g2 · e−φ2 on X0 such that ∂φ1, ∂̄∂φ1, ∂φ2, and ∂̄∂φ2 are almost bounded in
a neighborhood of P . More precisely, we can take a polydisc ∆n

a centered at P for some
0 < a < e−1 and a composite of permissible blow-ups p : W → ∆n

a (see [Ko, 5.9] and [W,
Theorem 3.5.1]) such that φ1 and φ2 are smooth on (∆∗

a)
n and that every w ∈ W has a

neighborhood ∆n
a′w

centered at w ∈ W for some 0 < a′w < e−1 where p∗(∂φ1), p
∗(∂∂φ1),

p∗(∂φ2), and p
∗(∂∂φ2) are nearly bounded on ∆n

a′w
. For the details, see [Ko, Propositions

5.7 and 5.15]. By construction, φ0 = −φ1 + φ2. Therefore, φ0 is smooth on (∆∗
a)
n, and

p∗(∂φ0) and p∗(∂∂φ0) are nearly bounded on ∆n
a′w
. This means that φ0, ∂φ0, and ∂∂φ0

are smooth on (∆∗
a)
n and that ∂φ0 and ∂∂φ0 are almost bounded on ∆n

a . □

We prepare an easy lemma.

Lemma 4.8. We assume 0 < a < e−1. We have∫ a

0

log(− log r)

− log r
dr <∞.
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Proof of Lemma 4.8. We put t = − log r. Then r = e−t. We have∫ a

0

log(− log r)

− log r
dr =

∫ − log a

∞

log t

t
(−e−t)dt

=

∫ ∞

− log a

log t

t
e−tdt

≤
∫ ∞

− log a

e−tdt = a <∞.

This is what we wanted. □
The following lemma is missing in [Ko, Section 5]. This is because it is sufficient to

consider the asymptotic behaviors of ∂φ0 and ∂̄∂φ0 for the purpose of [Ko, Section 5].

Lemma 4.9. Let η be a smooth (2n− 1)-form on ∆n
a with compact support. We put

Sε⃗ = {z ∈ ∆n
a | |zi| ≥ εi for every i and |zi0| = εi0 for some i0}

where ε⃗ = (ε1, . . . , εn) with εi > 0 for every i. Then there is a sequence {ε⃗k} with ε⃗k ↘ 0
such that

lim
k→∞

∫
Sε⃗k

φη = 0.

Proof of Lemma 4.9. We put

Sε,1 = {z ∈ ∆n
a | |z1| = ε}.

Then it is sufficient to prove that

lim
k→∞

∫
Sεk,1

φη = 0

for some sequence {εk} with εk ↘ 0. Without loss of generality, we may assume that η is
a real (2n− 1)-form by considering η+η̄

2
and η−η̄

2
√
−1

. Let us consider the real 1-form

ω =
1

(2(− log |z1|)2)1/2

(
dz1
z1

+
dz̄1
z̄1

)
.

This form is orthogonal to the foliation Sε,1 and has length one everywhere by the Poincaré
metric. We consider the vector field

v =
1

(2(− log |z1|)2)1/2

(
z1(log |z1|)2

∂

∂z1
+ z̄1(log |z1|)2

∂

∂z̄1

)
,

which is dual to ω. We fix ε with 0 < ε < a < e−1. We consider the flow ft on ∆∗
a ×∆n−1

a

corresponding to −v. We can explicitly write

ft : [0,∞)× Sε,1 → ∆∗
a ×∆n−1

a

by

(4.3) (t, (w, z2, · · · , zn)) 7→
(
w

ε
exp

(
− exp

(
1√
2
t+ log(− log ε)

))
, z2, · · · , zn

)
.

Therefore, by using the flow ft, we can parametrize {z ∈ C | 0 < |z| ≤ ε} × ∆n−1
a by

[0,∞)× Sε,1. If we write

ω ∧ φη = f(z)dV,

where dV is the standard volume form of Cn, then we put

(ω ∧ φη)+ = max{f(z), 0}dV
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and
(ω ∧ φη)− = (ω ∧ φη)+ − ω ∧ φη.

We can easily see that ∫
∆n

a

(ω ∧ φη)± <∞

by Lemmas 4.6 and 4.8. Therefore, we obtain

(4.4)

∫
[0,∞)×Sε,1

(ω ∧ φη)± <∞.

The image of {t} × Sε,1 in ∆n
a is Sε(t),1 with 0 < ε(t) ≤ ε. By (4.3), we have

ε(t) = exp

(
− exp

(
1√
2
t+ log(− log ε)

))
.

We note that ω is orthogonal to Sε(t),1 and unitary. More explicitly, we can directly check

f ∗
t ω = −dt.

Therefore, the above integral (4.4) transforms to∫
[0,∞)

(∫
Sε(t),1

(φη)±

)
dt <∞.

Note that (φη)± is defined by

f ∗
t (ω ∧ φη)± = −dt ∧ (φη)±.

This can happen only if ∫
Sε(tk),1

(φη)± → 0

for some sequence {tk} with tk ↗ ∞. This implies that we can take a sequence {εk} with
εk ↘ 0 such that

lim
k→∞

∫
Sεk,1

φη = 0.

Therefore, we have a desired sequence {ε⃗k}. □
Remark 4.10. The real 1-form ω and the corresponding flow ft in the proof of Lemma
4.9 are different from the 1-form ω and the flow vt in the proof of [Ko, Proposition 5.16],
respectively.

By combining the proof of [Ko, Proposition 5.16] and the proof of Lemma 4.9, we have:

Lemma 4.11. Let η be a nearly bounded (2n−1)-form on ∆n
a with compact support. Then

there exists a sequence {ε⃗′k} with ε⃗′k ↘ 0 such that

lim
ε⃗′k↘0

∫
S
ε⃗′k

η = 0.

We leave the details of Lemma 4.11 to the reader (see the proof of [Ko, Proposition 5.16]
and the proof of Lemma 4.9).

By Lemmas 4.7 and 4.9, we have the following lemma.

Lemma 4.12. Let η be a smooth (2n− 2)-form on ∆n
a with compact support. We further

assume that ∂φ0 and ∂̄∂φ0 are nearly bounded on ∆n
a . Then∫

∆n
a

φ∂∂̄η =

∫
∆n

a

∂∂̄φ0 ∧ η.
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Note that the right hand side is an improper integral. Therefore, we obtain∫
∆n

a

∂∂̄φ ∧ η =

∫
∆n

a

∂∂̄φ0 ∧ η,

where we take ∂∂̄ of φ as a current.

Proof of Lemma 4.12. We put

Vε⃗k = {z ∈ ∆n
a | |zi| ≥ εik for every i}

where ε⃗k = (ε1k, · · · , εnk) with εik > 0 for every i. Then∫
∆n

a

φ∂∂̄η = lim
ε⃗k↘0

∫
Vε⃗k

φ0∂∂̄η

= lim
ε⃗k↘0

∫
Vε⃗k

d(φ0∂̄η)− lim
ε⃗′k↘0

∫
V
ε⃗′k

∂φ0 ∧ ∂̄η

= lim
ε⃗k↘0

∫
Sε⃗k

φ0∂̄η + lim
ε⃗′k↘0

∫
V
ε⃗′k

d(∂φ0 ∧ η)− lim
ε⃗′k↘0

∫
V
ε⃗′k

∂̄∂φ0 ∧ η

= lim
ε⃗′k↘0

∫
V
ε⃗′k

∂∂̄φ0 ∧ η

=

∫
∆n

a

∂∂̄φ0 ∧ η.

The first equality holds since φ is locally integrable. The second one follows from integra-
tion by parts. Note that φ0 is smooth in a neighborhood of Vε⃗k . We also note that

lim
ε⃗k↘0

∫
Vε⃗k

∂φ0 ∧ ∂̄η = lim
ε⃗′k↘0

∫
V
ε⃗′k

∂φ0 ∧ ∂̄η

holds. The third one follows from Stokes’ theorem and integration by parts. We obtain
the fourth one by Lemmas 4.9 and 4.11. Note that∫

V
ε⃗′k

d(∂φ0 ∧ η) =
∫
S
ε⃗′k

∂φ0 ∧ η

by Stokes’ theorem. The final one follows from [Ko, Proposition 5.16 (i)]. □
Lemma 4.13. Let η be a smooth (2n− 2)-form on ∆n

a with compact support. We assume
that ∂φ0 and ∂̄∂φ0 are almost bounded on ∆n

a . Then∫
∆n

a

φ∂∂̄η =

∫
∆n

a

∂∂̄φ0 ∧ η.

Proof of Lemma 4.13. By assumption, ∂φ0 and ∂̄∂φ0 are almost bounded on ∆n
a . There-

fore, after taking some suitable blow-ups and a suitable partition of unity, we can apply
Lemma 4.12. Then we obtain the desired equality. □
Lemma 4.14. Let η1 and η2 be a smooth (2n − 2)-form and a smooth (2n − 3)-form on
X with compact support, respectively. Then

(4.5)

∫
X

√
−1Θh0(L |X0) ∧ η1 <∞

and

(4.6)

∫
X

√
−1Θh0(L |X0) ∧ dη2 = 0.
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Therefore,
√
−1Θh0(L |X0) can be extended to a closed positive current T on X by improper

integrals. We note that
√
−1Θh0(L |X0) is a semipositive smooth (1, 1)-form on X0 (see

Lemma 2.8).

Proof of Lemma 4.14. We note that
√
−1Θh0(L |X0) =

√
−1Θg(L )|X0 + 2

√
−1∂∂φ0

by definition and that
√
−1Θg(L ) is a d-closed smooth (1, 1)-form on X. Therefore, it is

sufficient to prove that

(4.7)

∫
∆n

a

√
−1∂∂φ0 ∧ η1 <∞

and

(4.8)

∫
∆n

a

∂∂φ0 ∧ dη2 = 0

by taking some suitable partition of unity. We see that (4.7) and (4.8) follow from [Ko,
Corollary 5.17] since ∂∂φ0 is almost bounded on ∆n

a (see Lemma 4.7). More precisely,
by taking some suitable blow-ups and a suitable partition of unity, we can reduce the
problems to the case where ∂∂φ0 is nearly bounded on some polydisc ∆n

a . Then (4.7)
follows from [Ko, Proposition 5.16 (i)]. By [Ko, Proposition 5.16 (i)], integration by parts,
Stokes’ theorem, and Lemma 4.11, we can directly check that∫

∆n
a

∂∂φ0 ∧ dη2 = 0

as in the proof of Lemma 4.12. □

By Lemma 4.13, we can see that

(4.9)
√
−1Θh(L ) =

√
−1Θg(L ) + 2

√
−1∂∂φ

coincides with T . Note that we took ∂∂ of φ as a current in (4.9). In particular,
√
−1Θh(L ) ≥ 0,

that is,
√
−1Θh(L ) is a closed positive current on X. By Lemma 2.5, φ is a quasi-

plurisubharmonic function since φ is the smallest upper semicontinuous function that ex-
tends φ0 to X.

Finally, we prove:

Lemma 4.15. Let φ be a quasi-plurisubharmonic function on ∆n
a for some 0 < a < e−1.

Assume that there exist some positive integers a1, · · · , an and a positive real number C
such that

−φ(z) ≤ log (C (− log |z1|)a1 · · · (− log |zn|)an)
holds for all z ∈ (∆∗

a)
n. Then the Lelong number of φ at 0 is zero.

Proof. We denote the Lelong number of φ at x by ν(φ, x). We can easily see that

0 ≤ ν(φ, 0) = lim inf
z→0

φ(z)

log |z|
≤ lim inf

z→0

log (C (− log |z1|)a1 · · · (− log |zn|)an)
− log |z|

≤ 0

holds. Therefore, the Lelong number ν(φ, 0) of φ at 0 is zero. □

Thus we obtain Theorem 1.1 by Lemma 4.15.

Now Corollary 1.2 is almost obvious by Theorem 1.1.
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Proof of Corollary 1.2. We put π : Y = PX(F b) → X and Y0 = π−1(X0). We consider
the variation of Hodge structure π∗V0 on Y0. Then π∗F b is the canonical extension of
the lowest piece of the Hodge filtration. By applying Theorem 1.1 to the natural map
π∗F b → OPX(F b)(1) → 0, we obtain a singular hermitian metric on OPX(F b)(1) with the
desired properties. □

5. Proof of Theorem 1.5

In this section, we will prove Theorem 1.5 and Corollary 1.6. We will only explain how
to modify the arguments in Section 4.

5.1 (Proof of Theorem 1.5). Let {F p
0 } be the Hodge filtration of the polarizable variation

of R-Hodge structure V0 = (V0, F0) on X0. We put

0 = F b+1
0 ⊊ F b

0 ⊆ · · · ⊆ F a+1
0 ⊊ F a

0 = V0 := V0 ⊗ OX0 .

By assumption, M is a holomorphic line subbundle of
⊕

pGrpF V . Therefore, M is nat-

urally a holomorphic line subbundle of Q :=
⊕b+1

p=a+1 V /F p. Then we have the following
big commutative diagram of holomorphic vector bundles on X.

0

��
0

��

M

��
0 // S ′

��

//
⊕
finite

V // Q //

��

0

0 // S

��

//
⊕
finite

V // Q′ //

��

0

M

��

0

0

We note that S ′ =
⊕b+1

p=a+1 F
p and Q′ = Q/M and that S is the kernel of the naturally

induced surjection
⊕

finite V → Q′. By taking the dual of the above commutative diagram,
M ∨ is a quotient bundle of Q∨ and Q∨ is a subbundle of

⊕
finite

V ∨. Therefore, we can apply

the same arguments as in Section 4 to M ∨ by considering the polarizable variation of R-
Hodge structure

⊕
finite

V ∨
0 . Then we see that the Hodge metric of

⊕
finite

V ∨
0 induces the desired

singular hermitian metric h on M ∨ by Lemma 2.9.

Finally, we give a proof of Corollary 1.6.

Proof of Corollary 1.6. We put π : Y = PX(A∨) → X and Y0 = π−1(X0). We consider
π∗V0 on Y0. Then π

∗A is contained in the kernel of the Higgs field

π∗θ : Gr•F π
∗V → Ω1

Y (log π
∗D)⊗Gr•F π

∗V .

By applying Theorem 1.5 to the line subbundle OPX(A∨)(−1) of π∗A, we obtain the desired
result. □
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