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Abstract. We show that the Nakai–Moishezon ampleness criterion holds for real line
bundles on complete schemes. As applications, we treat the relative Nakai–Moishezon
ampleness criterion for real line bundles and the Nakai–Moishezon ampleness criterion
for real line bundles on complete algebraic spaces. The main ingredient of this paper is
Birkar’s characterization of augmented base loci of real divisors on projective schemes.
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1. Introduction

Throughout this paper, a scheme means a separated scheme of finite type over an alge-
braically closed field k of any characteristic. We call such a scheme a variety if it is reduced
and irreducible. Let us start with the definition of R-line bundles.

Definition 1.1 (R-line bundles). Let X be a scheme (or an algebraic space). An R-line
bundle (resp. a Q-line bundle) is an element of Pic(X) ⊗Z R (resp. Pic(X) ⊗Z Q) where
Pic(X) is the Picard group of X.

Similarly, we can define R-Cartier divisors.

Definition 1.2 (R-Cartier divisors). Let X be a scheme. An R-Cartier divisor (resp. a
Q-Cartier divisor) is an element of Div(X)⊗ZR (resp. Div(X)⊗ZQ) where Div(X) denotes
the group of Cartier divisors on X.

We prove the Nakai–Moishezon ampleness criterion for R-line bundles. The following
theorem is the main result of this paper.

Theorem 1.3 (Nakai–Moishezon ampleness criterion for real line bundles on complete
schemes). Let X be a complete scheme over an algebraically closed field and let L be an
R-line bundle on X. Then L is ample if and only if LdimZ · Z > 0 for every positive-
dimensional closed integral subscheme Z ⊂ X.
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When X is projective, Theorem 1.3 is well known. It was first proved by Campana and
Peternell (see [CP, 1.3. Theorem]). Then a somewhat simpler proof was given by Lazarsfeld
in [La, Theorem 2.3.18]. Unfortunately, their arguments do not work for complete nonpro-
jective schemes because they need an ample line bundle. Moreover, Kleiman’s ampleness
criterion does not always hold for complete nonprojective schemes (see [F1, Section 3] and
[F4, Example 12.1]). Hence we need some new idea to prove Theorem 1.3. By the standard
reduction argument, it is sufficient to treat the case where X is a complete normal variety.
Therefore, all we have to do is to establish the following theorem.

Theorem 1.4 (Nakai–Moishezon ampleness criterion for real Cartier divisors on complete
normal varieties). Let X be a complete normal variety over an algebraically closed field
and let L be an R-Cartier divisor on X. Then L is ample if and only if LdimZ · Z > 0 for
every positive-dimensional closed subvariety Z ⊂ X.

For the proof of Theorem 1.4, we use Birkar’s characterization of augmented base loci of
R-divisors on projective schemes (see Theorem 3.4). Hence our approach is different from
those of [CP] and [La]. Although we can not directly apply geometric arguments to R-line
bundles, we can generalize Theorem 1.3 for proper morphisms.

Theorem 1.5 (Relative Nakai–Moishezon ampleness criterion for real line bundles). Let
π : X → S be a proper morphism between schemes and let L be an R-line bundle on X.
Then L is π-ample if and only if LdimZ ·Z > 0 for every positive-dimensional closed integral
subscheme Z ⊂ X such that π(Z) is a point.

For the details of the Nakai–Moishezon ampleness criterion and Kleiman’s ampleness
criterion for line bundles, see [Kl]. The reader can find many nontrivial examples of
complete nonprojective varieties in [F1], [F4, Section 12], [FP], and so on. Finally, we prove
the following theorem as an application of Theorem 1.3 by using some basic properties of
algebraic spaces.

Theorem 1.6 (Nakai–Moishezon ampleness criterion for real line bundles on complete
algebraic spaces). Let X be a complete algebraic space over an algebraically closed field
and let L be an R-line bundle on X. Then L is ample if and only if LdimZ · Z > 0 for
every positive-dimensional closed integral subspace Z ⊂ X.

We note that we treat algebraic spaces only in the final section, where we prove Theo-
rem 1.6. We also note that the Nakai–Moishezon ampleness criterion for line bundles on
complete algebraic spaces plays an crucial role in Kollár’s projectivity criterion for moduli
spaces (see [Ko] and [F3]).
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2. Preliminaries

For simplicity of notation, we write the group law of Pic(X)⊗Z R additively.

Definition 2.1. Let L be an R-line bundle on a complete scheme X.

• If L =
∑

j ljLj such that lj is a positive real number and Lj is an ample line bundle
on X for every j, then we say that L is ample.

• If L =
∑

j ljLj such that lj is a positive real number and Lj is a semi-ample line
bundle on X for every j, then we say that L is semi-ample.

• If L · C ≥ 0 for every curve C on X, then we say that L is nef.
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• We further assume that X is a variety. If L =
∑

j ljLj such that lj is a positive
real number and Lj is a big line bundle on X for every j, then we say that L is big.

In the theory of minimal models, we usually use R-Cartier divisors. In this paper, we
do not use R-Weil divisors. We only use R-Cartier divisors.

Definition 2.2. Let X be a complete scheme. We consider the following natural homo-
morphism

ψ : Div(X)⊗Z R → Pic(X)⊗Z R.
We note that ψ is not necessarily surjective. Let D be an R-Cartier divisor on X. If the
image ofD by ψ is ample, semi-ample, nef, and big, thenD is said to be ample, semi-ample,
nef, and big, respectively. We also note that ψ is surjective when X is a variety.

For the basic properties of bigness and semi-ampleness, see [F2, Section 2.1]. Here we
only explain the following important characterization of nef and big R-divisors.

Lemma 2.3. Let L be a nef R-divisor on a projective variety X. Then L is big if and
only if LdimX > 0.

Proof. We put n = dimX.

Step 1. If L is big, then we can write L ∼R A + D where A is an ample R-divisor and
D is an effective R-Cartier divisor on X, where ∼R denotes the R-linear equivalence of
R-Cartier divisors. Then

Ln = (A+D) · Ln−1 ≥ A · Ln−1 = A · (A+D) · Ln−2 ≥ · · · ≥ An > 0.

Hence LdimX > 0 holds true when L is big.

Step 2. In this step, we will check that L is big under the assumption that Ln > 0 holds.
We will closely follow the proof of [La, Theorem 2.3.18]. We take ample R-divisors A1 and
A2 on X such that L+A1 and A1+A2 are Q-Cartier divisors on X. Since Ln > 0, we can
assume that

(L+ A1)
n > n

(
(L+ A1)

n−1 · (A1 + A2)
)

holds by taking A1 and A2 sufficiently small. By the numerical criterion for bigness (see
[La, Theorem 2.2.15]),

L− A2 = (L+ A1)− (A1 + A2)

is big. Hence L is also big.

We finish the proof of Lemma 2.3. □

3. Augmented base loci of R-divisors

In this section, we explain some properties of augmented base loci of R-divisors following
[B]. Let us start with the definition of base loci and stable base loci.

Definition 3.1 (Base loci and stable base loci of Q-divisors). LetX be a projective scheme
and let D be a Cartier divisor on X. The base locus of D is defined as

Bs|D| = {x ∈ X |α vanishes at x for every α ∈ H0(X,OX(D))}.
We consider Bs|D| with the reduced scheme structure.
The stable base locus of a Q-Cartier divisor L on X is defined as

B(L) =
∩
m

Bs|mL|

where m runs over all positive integers such that mL is Cartier. Note that B(L) is con-
sidered with the reduced scheme structure.
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The notion of augmented base loci plays a crucial role in the theory of minimal models.

Definition 3.2 (Augmented base loci of R-divisors). Let X be a projective scheme and
let L be an R-Cartier divisor on X. We put

B+(L) =
∩
H

B(L−H)

where H runs over all ample R-divisors such that L−H is Q-Cartier. As usual, we consider
B+(L) with the reduced scheme structure. We call B+(L) the augmented base locus of L.

Birkar defined B+(L) differently (see [B, Definition 1,2]). Then he proved that his
definition coincides with the usual one (see Definition 3.2). For the details, see [B, Lemma
3.1 (3)].

In order to explain Birkar’s theorem (see Theorem 3.4), it is convenient to introduce the
notion of exceptional loci of R-divisors.

Definition 3.3 (Exceptional loci of R-divisors). Let X be a projective scheme and let L
be an R-Cartier divisor on X. The exceptional locus of L is defined as

E(L) =
∪

dimV >0, L|V is not big

V,

that is, the union runs over the positive-dimensional subvarieties V ⊂ X such that L|V is
not big.

Note that E(L) is sometimes called the null locus of L when L is nef.

Theorem 3.4 ([B, Theorem 1.4]). Let X be a projective scheme. Assume that L is a nef
R-divisor on X. Then

B+(L) = E(L)
holds.

For the details of Theorem 3.4, we strongly recommend the reader to see Birkar’s original
statement in [B, Theorem 1.4]. We will use Theorem 3.4 when X is a normal projective
variety in the proof of Theorem 1.4.

4. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. The main ingredient of the proof of Theorem 1.4
below is Birkar’s theorem (see Theorem 3.4).

Proof of Theorem 1.4. Let

X =
k∪

i=1

Ui

be a finite affine Zariski open cover ofX. Let U i be the closure of Ui in PNi . By [Lü, Lemma
2.2], which is an easy application of the flattening theorem (see [RG, Théorème (5.2.2)]),
we can take an ideal sheaf I on U i with SuppOU i

/I ⊂ U i \Ui such that the blow-up of U i

along I eliminates the indeterminacy of U i 99K X. Therefore, by taking the normalization
of the blow-up of U i along I, we get a projective birational morphism πi : Xi → X from a
normal projective variety Xi such that πi : π

−1
i (Ui) → Ui is an isomorphism.

Xi

~~~~
~~
~~
~~ πi

��@
@@

@@
@@

@

U i
//_______ X
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By Theorem 3.4, there exists an ample R-divisor Hi on Xi such that π∗
iL−Hi is Q-Cartier

and that

B(π∗
iL−Hi) = B+(π

∗
iL) = E(π∗

iL)

holds. Let Exc(πi) be the exceptional locus of πi. Then

E(π∗
iL) = Exc(πi)

holds by Lemma 2.3 and the assumption that LdimZ ·Z > 0 for every positive-dimensional
closed subvariety Z ⊂ X. Since L is R-Cartier, we can write

L =
∑
j∈J

ljLj

such that lj is a real number and Lj is Cartier for every j ∈ J . If mj ∈ Q holds for every
j ∈ J and

π∗
i

(∑
j∈J

mjLj

)
− π∗

iL+Hi

is ample, then

B

(
π∗
i

(∑
j∈J

mjLj

))
⊂ B(π∗

iL−Hi) = Exc(πi)

holds. This implies that

B

(∑
j∈J

mjLj

)
⊂ πi(Exc(πi)) ⊂ X \ Ui.

Hence, there exists a positive real number ε such that if mj ∈ Q and |lj−mj| < ε for every
j ∈ J then

B

(∑
j∈J

mjLj

)
⊂

k∩
i=1

(X \ Ui) = ∅

holds. This means that
∑

j∈J mjLj is semi-ample. By this fact, we can write

L =
∑
p

rpMp

such that rp is a positive real number and Mp is a semi-ample Q-divisor for every p.
Therefore, L is a semi-ample R-divisor by definition. Thus there exist a morphism f : X →
Y onto a normal projective variety Y with f∗OX ≃ OY and an ample R-divisor A on Y
such that L is R-linearly equivalent to f ∗A (see [F2, Lemma 2.1.11]). By assumption,
L · C > 0 for every curve C on X. This implies that f is an isomorphism. Thus L is an
ample R-divisor. □

5. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. More precisely, we reduce Theorem 1.3 to a
special case where X is a normal variety, which is nothing but Theorem 1.4. Let us start
with the following elementary lemma.

Lemma 5.1. Let X be a complete scheme and let L be an R-line bundle on X. Let
X =

∪k
i=1Xi be the irreducible decomposition of X. Then L is ample if and only if

L|(Xi)red is ample for every i.

Proof. This statement is well known for Q-line bundles. Hence we will freely use this
lemma for Q-line bundles in the following argument.
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Step 1. If L is ample, then it is obvious that so is L|(Xi)red for every i. This is because we
can write

L =
∑
j

ajLj,

where Lj is an ample line bundle on X and aj > 0 for every j.

Step 2. In this step, we will prove that L is ample under the assumption that L|(Xi)red is
ample for every i. Since L is an R-line bundle, we can write

L =
m∑
j=1

ljLj,

where Lj ∈ Pic(X) and lj ∈ R for every j. We put

Vi =

{
(p1, . . . , pm) ∈ Rm

∣∣∣∣∣
m∑
j=1

pjLj|(Xi)red is ample

}
for every i. Then Vi contains an open neighborhood of l = (l1, . . . , lm) for every i since∑m

j=1 ljLj|(Xi)red is ample by assumption. Hence V =
∩k

i=1 Vi contains a small open neigh-
borhood of l ∈ Rm. Thus we can take positive real numbers r1, . . . , rp and

v1 = (v11, . . . , v1m), . . . , vp = (vp1, . . . , vpm) ∈ V ∩Qm

such that l =
∑p

α=1 rαvα. Then

Aα :=
m∑
j=1

vαjLj ∈ Pic(X)⊗Z Q

is ample for every α since vα ∈ V ∩Qm. Since we can write

L =

p∑
α=1

rαAα,

L is ample by definition.

We finish the proof of Lemma 5.1. □
Lemma 5.2. Let X be a complete variety and let L be an R-line bundle on X. Let
π : Y → X be a finite surjective morphism between complete varieties. Then L is ample if
and only if π∗L is ample.

Proof. This statement is well known for Q-line bundles. Hence we will freely use this
lemma for Q-line bundles in this proof. Thus it is obvious that π∗L is ample when L is
ample. Therefore, it is sufficient to prove that L is ample under the assumption that π∗L
is ample. Since L is an R-line bundle, we can write

L =
m∑
j=1

ljLj,

where Lj ∈ Pic(X) and lj ∈ R for every j. Since π∗L is ample, there exists a positive real
number ε such that if |lj − αj| < ε for every j then

π∗

(
m∑
j=1

αjLj

)
is ample. Moreover, if we further assume αj ∈ Q for every j, then

m∑
j=1

αjLj
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is ample since π is a finite surjective morphism. Hence we can write

L =
∑
i

riAi

such that ri is a positive real number and Ai is an ample line bundle for every i. This
means that L is ample by definition. □
Let us prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 5.1, we may assume that X is a variety. Let ν : Xν → X
be the normalization. Note that ν is a finite surjective morphism. Then by Lemma 5.2 it is
sufficient to prove that ν∗L is ample. Hence we may further assume that X is a complete
normal variety. In this case, the ampleness of L follows from Theorem 1.4. □

6. Proof of Theorem 1.5

In this section, we prove Theorem 1.5. The following lemma is well known for Q-line
bundles.

Lemma 6.1. Let π : X → S be a proper surjective morphism between schemes and let L
be an R-line bundle on X. Assume that L|Xs is ample for every closed point s ∈ S, where
Xs = π−1(s). Then L is π-ample, that is, we can write

L =
∑
i

aiLi

in Pic(X)⊗ZR such that Li is a π-ample line bundle on X and ai is a positive real number
for every i.

Before we prove Lemma 6.1, we prepare the following lemma, which is also well known
for Q-line bundles.

Lemma 6.2. Let π : X → S be a proper surjective morphism between schemes and let L
be an R-line bundle on X. Assume that L|Xs0

is ample for some closed point s0 ∈ S, where

Xs0 = π−1(s0). Then there exists a Zariski open neighborhood Us0 of s0 such that L|π−1(Us0 )

is ample over Us0.

Although Lemmas 6.1 and 6.2 are more or less known to the experts, we can not find
them in the standard literature. Hence we prove them here for the sake of completeness.

Proof of Lemma 6.2. Since L is an R-line bundle, there exist line bundlesMj for 1 ≤ j ≤ k
such that

L =
k∑

j=1

bjMj

in Pic(X)⊗Z R, where bj ∈ R for every j. We put

A =

{
(c1, . . . , ck) ∈ Rk

∣∣∣∣∣
k∑

j=1

cjMj|Xs0
is ample

}
.

Then A contains a small open neighborhood of (b1, . . . , bk). Hence we can write

L =
∑
i

aiLi,

where Li is a line bundle on X such that ai is a positive real number and Li|Xs0
is ample for

every i. Since Li|Xs0
is ample for every i, there exists a Zariski open neighborhood Us0 of

s0 such that Li|π−1(Us0 )
is ample over Us0 for every i (see, for example, [KoM, Proposition

1.41]). Therefore, L|π−1(Us0 )
=
∑

i aiLi|π−1(Us0 )
is ample over Us0 . □
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Let us prove Lemma 6.1.

Proof of Lemma 6.1. We use the same notation as in the proof of Lemma 6.2. By Lemma
6.2, we can take s1, . . . , sl ∈ S such that

l∪
α=1

Usα = S

and that L|π−1(Usα ) is ample over Usα for every α. We put

Aα =

{
(c1, . . . , ck) ∈ Rk

∣∣∣∣∣
k∑

j=1

cjMj|π−1(Usα ) is π-ample over Usα

}
.

Then Aα contains a small open neighborhood of (b1, . . . , bk). Therefore,
∩l

α=1Aα also
contains a small open neighborhood of (b1, . . . , bk). Hence we can write

L =
∑
i

aiLi

in Pic(X)⊗ZR such that Li is a π-ample line bundle on X and ai is a positive real number
for every i. □

Finally, we prove Theorem 1.5.

Proof of Theorem 1.5. If L is π-ample, then it is obvious that it satisfies the desired prop-
erty. Hence, by Lemma 6.1, it is sufficient to prove that L|Xs is ample for every closed
point s ∈ S, where Xs = π−1(s), under the assumption that LdimZ · Z > 0. This follows
from the Nakai–Moishezon ampleness criterion for R-line bundles on complete schemes (see
Theorem 1.3). □

7. Proof of Theorem 1.6

In this final section, we prove the Nakai–Moishezon ampleness criterion for R-line bundles
on complete algebraic spaces (Theorem 1.6) by using some basic properties of algebraic
spaces and Theorem 1.3.

Proof of Theorem 1.6. It is well known that the Nakai–Moishezon ampleness criterion
holds for line bundles on complete algebraic spaces (see, for example, [Ko, 3.11. Theo-
rem] and [P, (1.4) Theorem]). It is also well known that there exists a finite surjective
morphism f : Y → X from a complete scheme Y (see, for example, [Ko, 2.8. Lemma]). By
Theorem 1.3, f ∗L is an ample R-line bundle on Y . We write

L =
∑
j

ajLj,

where Lj is a line bundle on X and aj is a real number for every j. We put

M =
∑
j

bjLj,

where bj is a rational number for every j. If |aj − bj| ≪ 1 for every j, then f ∗M is an
ample Q-line bundle on Y since f ∗L is ample. Therefore, mM is an ample line bundle on
X for some positive integer m by the Nakai–Moishezon ampleness criterion for line bundles
on complete algebraic spaces. This implies that X is projective. Thus, by Theorem 1.3
again, L is an ample R-line bundle on X. □
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