On canonical rings

Osamu Fujino

Kyoto University

November 29, 2021

History and Moriwaki's early works

2 On canonical rings

On log canonical rings of projective varieties

History and Moriwaki's early works

History

In 1996:

 Moriwaki's seminar Text Book: D. Mumford: Algebraic Geometry I. Complex Projective Varieties Students: O. Fujino, K. Yamaki, and 4 others (Ono, Tane, Higuchi, Yuyama)

Moriwaki's lecture

Topic: elementary proof of Modell–Faltings The lecture note was published in 2017 by A. Moriwaki, S. Kawaguchi, and H. Ikoma

Moriwaki's early works

• Zariski decomposition (1986, 1988)

There are many variants.

Some generalization of the Zariski decomposition still plays a crucial role in MMP.

• Torsion-freeness (1987)

His result was already generalized completely.

Openness of nefness (1992)

This is related to my recent work on MMP. This problem is still widely open.

Zariski decomposition, 1

Definition 1.1 (Zariski decomposition in C-K-M's sense)

Let $f: X \to Y$ be a proper surjective morphism of normal varieties. An expression D = P + N of \mathbb{R} -Cartier divisors D, P and N is called the *Zariski decomposition in C-K-M's sense* if the following conditions are satisfied:

- (1) P is f-nef,
- (2) N is effective, and
- (3) the natural homomorphisms $f_*O_X(\lfloor mP \rfloor) \to f_*O_X(\lfloor mD \rfloor)$ are bijective for all $m \in \mathbb{N}$.

In his master thesis, Moriwaki proved that *P* is semiample in some special case. Zariski decomposition is closely related to the finite generation of canonical rings.

Zariski decomposition, 2

Zariski decomposition still plays an important role in MMP.

Theorem 1.2 (V. Lazić and N. Tsakanikas)

Assume that any smooth projective variety *V* such that K_V is pseudo-effective has an NQC weak Zariski decomposition. Then every projective log canonical pair (X, Δ) such that $K_X + \Delta$ is pseudo-effective has a minimal model.

The existence problem of minimal models for log canonical pairs can be reduced to the existence problem of NQC weak Zariski decompositions for smooth projective varieties.

Torsion-freeness, 1

Theorem 1.3 (J. Kollár, 1986)

Let $f: X \to Y$ be a surjective morphism between complex projective varieties such that X is smooth. Then $R^i f_* \omega_X$ is torsion-free for every *i*.

This theorem can be proved easily by using Hodge theory.

Theorem 1.4 (A. Moriwaki, 1987)

Let $f: X \to Y$ be a projective surjective morphism between complex analytic varieties such that *X* is smooth. Then $R^i f_* \omega_X$ is torsion-free for every *i*.

Here, X is not necessarily compact. Hence we can not directly use the Hodge structure on X.

Torsion-freeness, 2

Takegoshi completely generalized Kollár's torsion-freeness.

Theorem 1.5 (K. Takegoshi, 1995)

Let $f: X \to Y$ be a proper surjective morphism between complex analytic varieties such that X is a Kähler manifold. Then $R^i f_* \omega_X$ is torsion-free for every *i*.

We skip my contributions on this topic. Then we finally get:

Theorem 1.6 (S. Matsumura)

Let $f: X \to Y$ be a proper surjective morphism between complex analytic varieties such that X is a Kähler manifold. Let (L, h) be a pseudo-effective line bundle on X. Then $R^i f_* (\omega_X \otimes L \otimes \mathcal{J}(h))$ is torsion-free for every *i*.

Openness of nefness, 1

- $f: X \to S$: projective morphism of algebraic varieties
- L: line bundle on X

We put:

$$\mathcal{A} := \{s \in S \mid L_s \text{ is ample on } X_s\}$$
$$\mathcal{N} := \{s \in S \mid L_s \text{ is nef on } X_s\}$$

Theorem 1.7

 \mathcal{A} is Zariski open in S

This theorem is well known. It is natural to ask:

Question 1.8 Is *N* Zariski open?

Openness of nefness, 2

Theorem 1.9 (Moriwaki?)

 ${\cal N}$ is not Zariski open

Moriwaki constructed an explicit example in positive characteristic. He used Frobenius pull-backs of semistable rank 2 vector bundles on curves.

Question 1.10

Is N Zariski open in characteristic zero?

I think that everyone believes that N is not open. However, no example has been founded yet. When *L* is an \mathbb{R} -Cartier divisor, Lesieutre constructed an example such that N is not open.

- X: compact complex manifold
- $\Delta = \sum_{i} a_i \Delta_i$ is a Q-divisor on X with $0 \le a_i \le 1$ for every *i*, Supp Δ : simple normal crossing divisor

We put

$$R(X,\Delta) := \bigoplus_{m \ge 0} H^0(X, O_X(\lfloor m(K_X + \Delta) \rfloor))$$

and call it the *log canonical ring* of (X, Δ) . When $\Delta = 0$, we write

$$R(X) := \bigoplus_{m \ge 0} H^0(X, O_X(mK_X))$$

and call it the *canonical ring* of *X*.

We are mainly interested in:

Conjecture 2.1 (Finite generation of $R(X, \Delta)$)

 $R(X, \Delta)$ is a finitely generated \mathbb{C} -algebra.

- If dim X = 1, then X is a compact Riemann surface. In this case, the above conjecture is almost obvious.
- If dim X = 2, then we can check that R(X, Δ) is always finitely generated.

When dim X = 2, $K_X + \Delta$ is big, and $a_i = 1$ for some *i*, the proof is much more difficult than we expected. This was carried out by Takao Fujita.

Hence we may assume that $\dim X \ge 3$.

In dimension 3, Moriwaki established:

Theorem 2.2 (A. Moriwaki, 1988)

In dimension ≤ 3 , R(X) is always a finitely generated \mathbb{C} -algebra.

- In Theorem 2.2, it is sufficient to treat the case where dim X = 3, κ(X) = 2, and X is not algebraic.
- Although I have not checked the details, I believe that we can prove that *R*(*X*, Δ) is always finitely generated in dimension ≤ 3.

We need the condition that *X* is Kähler in dimension ≥ 4 .

Theorem 2.3 (P. M. H. Wilson, 1981)

There exists a compact non-Kähler manifold in dimension 4 such that R(X) is not finitely generated.

Hence the correct conjecture is:

Conjecture 2.4 (Finite generation of $R(X, \Delta)$)

We further assume that *X* is Kähler. Then $R(X, \Delta)$ is a finitely generated \mathbb{C} -algebra.

When X is projective, we have:

Theorem 2.5 (Birkar–Cascini–Hacon–M^cKernan, 2010)

We assume that *X* is projective and that $a_i < 1$ holds for every *i*. Then $R(X, \Delta)$ is a finitely generated \mathbb{C} -algebra. In particular, R(X) is a finitely generated \mathbb{C} -algebra.

 BCHM partially established MMP for kawamata log terminal pairs and obtained the above finite generation. It is a great work on MMP.

Idea of the proof: By Fujino–Mori's canonical bundle formula, we can reduce the problem to the case where $K_X + \Delta$ is big. In this case, by BCHM, we can prove the existence of good minimal model. Then $R(X, \Delta)$ is a finitely generated \mathbb{C} -algebra.

For *X*, which is Kähler but is not projective, we have:

Theorem 2.6 (O. Fujino, 2015)

If *X* is a compact Kähler manifold and $a_i < 1$ holds for every *i*, then $R(X, \Delta)$ is a finitely generated \mathbb{C} -algebra. In particular, R(X) is always a finitely generated \mathbb{C} -algebra when *X* is Kähler.

• By this theorem, Moriwak's theorem, and Wilson's example, we completely solved the finite generation conjecture of canonical rings for compact complex manifolds

Idea of Proof:

- We may assume that $\kappa(X, K_X + \Delta) \ge 1$.
- We take the litaka fibration $f: X \to Y$ with respect to $K_X + \Delta$.
- By a generalization of Fujino–Mori's canonical bundle formula, we can construct Δ_Y such that R(X, Δ) is finitely generated if and only if R(Y, Δ_Y) is finitely generated.
 Here, we need that X is Kähler and a_i < 1 for every *i*.
- By construction, $K_Y + \Delta_Y$ is big and *Y* is a smooth projective variety. Therefore, we can apply the result by BCHM.

On log canonical rings of projective varieties

From now on, we always assume that X is a complex projective variety.

- X: smooth projective variety defined over \mathbb{C}
- $\Delta = \sum_{i} a_i \Delta_i$ is an \mathbb{R} -divisor on X with $0 \le a_i \le 1$ for every i, Supp Δ : simple normal crossing divisor
- $\lfloor \Delta \rfloor := \sum_{a_i=1} \Delta_i$, the round-down of Δ

We state our main goal again.

Conjecture 3.1 (Finite generation of $R(X, \Delta)$)

If we further assume that Δ is a \mathbb{Q} -divisor, then $R(X, \Delta)$ is finitely generated.

Note that we have already known that *R*(*X*, Δ) is finitely generated when [Δ] = 0 by BCHM. Hence we are only interested in the case where [Δ] ≠ 0.

Conjecture (Conjecture A_n)

If dim X = n and Δ is a \mathbb{Q} -divisor, then $R(X, \Delta)$ is a finitely generated \mathbb{C} -algebra.

Conjecture (Conjecture B_n)

If we further assume that dim X = n, Δ is a \mathbb{Q} -divisor, $\lfloor \Delta \rfloor$ is irreducible, and $K_X + \Delta$ is big, then $R(X, \Delta)$ is a finitely generated \mathbb{C} -algebra.

Conjecture (Conjecture C_n)

If dim X = n and $K_X + \Delta$ is pseudo-effective, then (X, Δ) has a good minimal model.

Conjecture (Conjecture A_n)

If dim X = n and Δ is a \mathbb{Q} -divisor, then $R(X, \Delta)$ is a finitely generated \mathbb{C} -algebra.

- This conjecture is the main goal when X is a projective variety.
- In n ≤ 4, Conjecture A_n holds true. We note: Conjecture C_{≤3} ⇒ Conjecture A₄
- If $\lfloor \Delta \rfloor = 0$, then $R(X, \Delta)$ is finitely generated by BCHM

Conjecture (Conjecture B_n)

If we further assume that dim X = n, Δ is a \mathbb{Q} -divisor, $\lfloor \Delta \rfloor$ is irreducible, and $K_X + \Delta$ is big, then $R(X, \Delta)$ is a finitely generated \mathbb{C} -algebra.

- This conjecture is a very special case of Conjecture A_n.
- We can run a (K_X + Δ)-MMP with scaling. However, we have not known whether it always terminates or not. If [Δ] = 0, then it terminates at a good minimal model. Then R(X, Δ) is finitely generated.

Conjecture (Conjecture C_n)

If dim X = n and $K_X + \Delta$ is pseudo-effective, then (X, Δ) has a good minimal model.

- This conjecture says that after finitely many flips and divisorial contractions we can always obtain a birational model (Y, Δ_Y) such that $K_Y + \Delta_Y$ is semiample.
- This conjecture is the main goal of the theory of minimal models.

The main result is:

Theorem 3.2 (O. Fujino and Y. Gongyo, 2017)

Conjectures A_n , B_n , and $C_{\leq n-1}$ are all equivalent.

• This theorem shows that Conjecture A_n is a much more difficult conjecture than we expected. If Conjecture A_n holds true for every *n*, then we can prove that almost all conjectures on the theory of minimal models hold true.

Idea of Proof:

Conjecture A_n ⇒ Conjecture B_n
 Conjecture B_n looks much easier to treat than Conjecture A_n...
 This step is obvious

 Conjecture B_n ⇒ Conjecture C_{≤n-1} We consider (X, Δ) with dim X = n - 1 Y: a cone over X Z → Y: blow-up at the vertex We apply Conjecture B_n to (Z, Δ_Z) for some Δ_Z. We can prove Conjecture C_{≤n-1}.

Key point: we can prove the nonvanishing conjecture for smooth projective varieties in dimension n - 1 by Conjecture B_n. Then we can freely run the minimal model program with ample scaling in dimension n - 1 by Hashizume's result. The main problem is the semiampleness of $K + \Delta$.

 Conjecture C_{≤n-1} ⇒ Conjecture A_n We consider (X, Δ) with dim X = n and κ(X, K_X + Δ) ≥ 1. Then we can prove that (X, Δ) has a good minimal model. More precisely, by running the minimal model program with scaling, we can prove that (X, Δ) has a minimal model. The difficult part is to prove the semiampleness of K + Δ. Fortunately, this part was already carried out by Fujino–Gongyo.

One of the most difficult conjectures in MMP is:

Conjecture 3.3 (Abundance conjecture)

Let (X, Δ) be a projective log canonical pair such that $K_X + \Delta$ is nef. Then $K_X + \Delta$ is semiample.

- dim X ≤ 3, the abundance conjecture holds true in full generality.
- dim $X \ge 4$, it is still widely open.

Key result is:

Theorem 3.4 (O. Fujino and Y. Gongyo, 2014)

Let (X, Δ) be a projective semi-log canonical pair such that Δ is a \mathbb{Q} -divisor and let $\nu: X^{\nu} \to X$ be the normalization. We put $K_{X^{\nu}} + \Theta = \nu^*(K_X + \Delta)$. Suppose that $K_{X^{\nu}} + \Theta$ is semiample. Then $K_X + \Delta$ is also semiample.

This theorem plays a crucial role in various inductive arguments.

On Kähler manifolds

The following conjecture is still widely open.

Conjecture 3.5

When *X* is a nonprojective compact Kähler manifold and Δ is a \mathbb{Q} -divisor, $R(X, \Delta)$ is a finitely generated \mathbb{C} -algebra.

- This conjecture holds true when $\lfloor \Delta \rfloor = 0$. Therefore, we may assume that $\lfloor \Delta \rfloor \neq 0$.
- When [∆] ≠ 0, we can not use canonical bundle formula to reduce the problem to the case where X is projective.
- Since *X* is not projective, we can not use the framework of MMP.

Thank you

Thank you very much!