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Abstract. We discuss the minimal model program for projective morphisms between
compact complex analytic spaces. For simplicity, we consider only the minimal model
program for divisorial log terminal pairs with ample scaling.

1. Introduction

We demonstrate that the minimal model program established in [F1] can be applied to
the study of projective morphisms between compact complex analytic spaces. In this short
note, we restrict our attention to the results of [F1] and [F2]. Naturally, by incorporating
results from [EH1] and [H], one can obtain several more general versions of the minimal
model program for projective morphisms of compact complex analytic spaces. We leave
such generalizations to the interested reader as an exercise or further study.
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In this note, we freely use the notation and some results from [F1] and [F2].

2. Minimal model program for compact complex analytic spaces

Let π : X → Y be a projective morphism between complex analytic spaces. In [F1], the
main focus is on the case where Y is Stein. More precisely, we fix a Stein compact subset
W of Y such that Γ(W,OY ) is noetherian and discuss the minimal model program over
Y around W . In this short note, we note that the minimal model program can also work
for projective morphisms between compact complex analytic spaces.

Theorem 2.1 (Minimal model program). Let π : X → Y be a projective morphism be-
tween compact complex analytic spaces. Let (X,∆) be a Q-factorial divisorial log terminal
pair. Then we can run the (KX +∆)-minimal model program over Y .

Moreover, if A is a π-ample R-line bundle on X such that KX +∆+A is π-nef, then
we can run the (KX +∆)-minimal model program over Y with scaling of A.

One of the main differences between the case where Y is Stein and the case where Y is
compact is given in the following remark.

Remark 2.2. We note that in Theorem 2.1, the π-ample line bundle A may satisfy
H0(X,A⊗m) = 0 for all m > 0.

Let us prove Theorem 2.1.
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Proof of Theorem 2.1. Since Y is compact, we have ρ(X/Y ;Y ) < ∞. Hence we can use
the cone and contraction theorem established in [F2, Theorem 1.1.6]. Therefore, we can
always run the (KX + ∆)-minimal model program over Y . We note that the existence
of flips required for this minimal model program has already been established (see [F1,
Theorem 1.14]). As usual, we put

λ := inf{t ≥ 0 | KX +∆+ tA is π-nef over Y }.
Then, by [F2, Theorem 1.1.6 (7)], there exists a (KX + ∆)-negative extremal ray R of
NE(X/Y ;Y ) such that (KX +∆+ λA) ·R = 0. Note that KX +∆+ λA is π-nef over Y .
Thus we can run the (KX +∆)-minimal model program over Y with scaling of A. Then
we obtain a sequence of flips and divisorial contractions:

X =: X0

ϕ099K X1

ϕ199K · · ·
ϕi−199K Xi

ϕi99K · · ·
starting from (X0,∆0) := (X,∆). We put A0 := A, Ai := ϕi−1∗Ai−1, and ∆i := ϕi−1∗∆i−1

for every i ≥ 1. We note that (Xi,∆i) is a Q-factorial divisorial log terminal pair for every
i. We finish the proof of Theorem 2.1. �

In the proof of Theorem 2.1, we put

λi := inf{t ≥ 0 | KXi
+∆i + tAi is π-nef over Y }.

Then can check that
λ =: λ0 ≥ λ1 ≥ · · · ≥ λi ≥ · · · ≥ 0

holds as in the usual algebraic setting.
The minimal model program described in Theorem 2.1 is expected to terminate after

finitely many steps. Unfortunately, the general termination is still a widely open problem.
In what follows, we describe several important cases in which the minimal model program
with scaling is known to terminate.

Theorem 2.3. In Theorem 2.1, if KX + ∆ is not π-pseudo-effective, then the minimal
model program with ample scaling always terminates at a Mori fiber space over Y . If
KX +∆ is π-pseudo-effective, then λ∞ := limi→∞ λi = 0 holds.

Proof of Theorem 2.3. We take a finite open cover Y =
∪

j∈J Uj with Uj ⊂ Wj ⊂ Vj,
where Uj and Vj are open subsets of Y and Wj is a Stein compact subset of Y such that
Γ(Wj,OY ) is noetherian, for every j ∈ J . From now on, we may freely shrink Vj around
Wj for every j ∈ J . In particular, we may assume that Vj is Stein. We put Xj := π−1(Vj)
for every j ∈ J . We can take an effective general R-Cartier R-divisor Aj on Xj with
Aj ∼R A|Xj

such that (Xj,∆j + Aj) is divisorial log terminal for every j ∈ J , where
∆j := ∆|Xj

. We first treat the case where KX + ∆ is not π-pseudo-effective. We take a
small positive real number ε such that KX+∆+εA is not π-pseudo-effective. By applying
[F1, Theorem E] to (Xj,∆j + εAj) for every j ∈ J , we obtain that the minimal model
program over Y with scaling of A terminates at a Mori fiber space over Y . Next, we treat
the case where KX +∆ is π-pseudo-effective. If the minimal model program terminates,
then it is obvious that λ∞ = 0. So we assume that the minimal model program does
not terminate with λ∞ > 0. In this case, the above minimal model program can be seen
as a (KX +∆ + 1

2
λ∞A)-minimal model program over Y with scaling of A. By applying

[F1, Theorem E] to (Xj,∆j +
1
2
λ∞Aj), we get a contradiction. Anyway, we always have

λ∞ = 0 when KX +∆ is π-pseudo-effective. We finish the proof of Theorem 2.3. �
Theorem 2.4. In Theorem 2.1, we further assume that (X,∆) is kawamata log terminal
and that one of the following conditions hold.
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(i) KX +∆ is π-big.
(ii) KX +∆ is π-pseudo-effective and ∆ is π-big.
(iii) KX +∆ is not π-pseudo-effective.

Then the (KX + ∆)-minimal model program over Y with scaling of A in Theorem 2.1
always terminates. In (i) and (ii), it terminates at a minimal model over Y . In (iii), it
terminates at a Mori fiber space over Y .

Proof of Theorem 2.4. Note that (iii) has already been proved in Theorem 2.3. Hence it
is sufficient to treat (i) and (ii). We use the same notation as in the proof of Theorem
2.3. We can take an effective R-Cartier R-divisor Aj on Xj with Aj ∼R A|Xj

such that
(Xj,∆j +Aj) is kawamata log terminal for every j ∈ J , where ∆j := ∆|Xj

. By using the
finiteness of weak log canonical models over Vj around Wj (see [F1, Theorem E]), we can
check that the minimal model program in Theorem 2.1 terminates on Xj around Wj for
every j ∈ J . Hence the minimal model program terminates over Y . We finish the proof
of Theorem 2.4. �
We close this short note with a useful theorem.

Theorem 2.5 (Dlt blow-ups). Let X be a compact normal complex variety and let ∆
be an effective R-divisor on X such that KX + ∆ is R-Cartier. Then there exists a
projective bimeromorphic morphism f : Z → X from a compact normal complex variety
Z with KZ +∆Z := f ∗(KX +∆) such that (Z,∆≤1

Z +Supp∆>1) is a Q-factorial divisorial
log terminal pair. Moreover, we may assume that a(E,X,∆) ≤ −1 holds for every f -
exceptional divisor E on Z. We note that if (X,∆) is log canonical then ∆Z = ∆≤1

Z

holds.

For the reader’s convenience, we give a proof of Theorem 2.5 here.

Proof of Theorem 2.5. By the resolution of singularities, we take a projective bimeromor-
phic morphism g : V → X from a smooth complex variety V withKV +∆V := g∗(KX+∆).
We may assume that Supp∆V is a simple normal crossing divisor on V . We put

Θ := g−1
∗

(
∆≤1 + Supp∆>1

)
+

∑
E: g-exceptional

E.

Then we can write
KV +Θ = g∗(KX +∆) + F

with −g∗F ≥ 0 by definition. Since g : V → X is a projective morphism of compact
normal complex varieties, we can always take a g-ample line bundle A on V such that
KV + Θ + A is g-nef. Then we run the (KV + Θ)-minimal model program over X with
scaling of A explained in Theorem 2.1. By suitably taking a finite open cover of X as
in the proof of Theorem 2.3, we can check that the positive part of F is contracted after
finitely many steps of the minimal model program. For the details, see, for example,
the proof of [F1, Theorem 1.21]. Hence we obtain a desired projective bimeromorphic
morphism f : Z → X. If (X,∆) is log canonical, then it is obvious that ∆Z = ∆≤1

Z holds.
We finish the proof of Theorem 2.5. �
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