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Abstract

We describe the foundation of the log minimal model program for log canon-
ical pairs according to Ambro’s idea. We generalize Kollár’s vanishing and
torsion-free theorems for embedded simple normal crossing pairs. Then we
prove the cone and contraction theorems for quasi-log varieties, especially,
for log canonical pairs.
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Chapter 1

Introduction

In this book, we describe the foundation of the log minimal model program
(LMMP or MMP, for short) for log canonical pairs. We follow Ambro’s idea
in [Am1]. First, we generalize Kollár’s vanishing and torsion-free theorems
(cf. [Ko1]) for embedded normal crossing pairs. Next, we introduce the no-
tion of quasi-log varieties. The key points of the theory of quasi-log varieties
are adjunction and the vanishing theorem, which directly follow from Kollár’s
vanishing and torsion-free theorems for embedded normal crossing pairs. Fi-
nally, we prove the cone and contraction theorems for quasi-log varieties. The
proofs are more or less routine works for experts once we know adjunction
and the vanishing theorem for quasi-log varieties. Chapter 2 is an expanded
version of my preprint [F9] and Chapter 3 is based on the preprint [F10].

After [KM] appeared, the log minimal model program has developed dras-
tically. Shokurov’s epoch-making paper [Sh1] gave us various new ideas. The
book [Book] explains some of them in details. Now, we have [BCHM], where
the log minimal model program for Kawamata log terminal pairs is estab-
lished on some mild assumptions. In this book, we explain nothing on the
results in [BCHM]. It is because many survey articles were and will be writ-
ten for [BCHM]. See, for example, [CHKLM], [Dr], and [F19]. Here, we
concentrate basics of the log minimal model program for log canonical pairs.

We do not discuss the log minimal model program for toric varieties. It is
because we have already established the foundation of the toric Mori theory.
We recommend the reader to see [R], [M, Chapter 14], [FS], [F5], and so
on. Note that we will freely use the toric geometry to construct nontrivial
examples explicitly.

The main ingredient of this book is the theory of mixed Hodge struc-
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tures. All the basic results for Kawamata log terminal pairs can be proved
without it. I think that the classical Hodge theory and the theory of varia-
tion of Hodge structures are sufficient for Kawamata log terminal pairs. For
log canonical pairs, the theory of mixed Hodge structures seems to be indis-
pensable. In this book, we do not discuss the theory of variation of Hodge
structures nor canonical bundle formulas.

Apologies. After I finished writing a preliminary version of this book, I
found a more direct approach to the log minimal model program for log
canonical pairs. In [F21], I obtained a correct generalization of Shokurov’s
non-vanishing theorem for log canonical paris. It directly implies the base
point free theorem for log canonical pairs. I also proved the rationality theo-
rem and the cone theorem for log canonical pairs without using the framework
of quasi-log varieties. The vanishing and torsion-free theorems we need in
[F21] are essentially contained in [EV]. The reader can learn them by [F20],
where I gave a short, easy, and almost self-contained proof to them. There-
fore, now we can prove some of the results in this book in a more elementary
manner. However, the method developed in [F21] can be applied only to log
canonical pairs. So, [F21] will not decrease the value of this book. Instead,
[F21] will complement the theory of quasi-log varieties. I am sorry that I do
not discuss that new approach here.

Acknowledgments. First, I express my gratitude to Professors Shigefumi
Mori, Yoichi Miyaoka, Noboru Nakayama, Daisuke Matsushita, and Hiraku
Kawanoue, who were the members of my seminars when I was a graduate stu-
dent at RIMS. In those seminars, I learned the foundation of the log minimal
model program according to a draft of [KM]. I was partially supported by
the Grant-in-Aid for Young Scientists (A) ♯20684001 from JSPS. I was also
supported by the Inamori Foundation. I thank Professors Noboru Nakayama,
Hiromichi Takagi, Florin Ambro, Hiroshi Sato, Takeshi Abe and Masayuki
Kawakita for discussions, comments, and questions. I would like to thank
Professor János Kollár for giving me many comments on the preliminary ver-
sion of this book and showing me many examples. I also thank Natsuo Saito
for drawing a beautiful picture of a Kleiman–Mori cone. Finally, I thank
Professors Shigefumi Mori, Shigeyuki Kondo, Takeshi Abe, and Yukari Ito
for warm encouragement.
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1.1 What is a quasi-log variety ?

In this section, we informally explain why it is natural to consider quasi-log

varieties.
Let (Z,BZ) be a log canonical pair and let f : V → Z be a resolution

with
KV + S +B = f ∗(KZ +BZ),

where Supp(S + B) is a simple normal crossing divisor, S is reduced, and
xBy ≤ 0. It is very important to consider the locus of log canonical singular-

ities W of the pair (Z,BZ), that is, W = f(S). By the Kawamata–Viehweg
vanishing theorem, we can easily check that

OW ≃ f∗OS(p−BSq),

where KS + BS = (KV + S + B)|S. In our case, BS = B|S. Therefore, it is
natural to introduce the following notion. Precisely speaking, a qlc pair is a
quasi-log pair with only qlc singularities (see Definition 3.29).

Definition 1.1 (Qlc pairs). A qlc pair [X,ω] is a scheme X endowed with
an R-Cartier R-divisor ω such that there is a proper morphism f : (Y,BY ) →
X satisfying the following conditions.

(1) Y is a simple normal crossing divisor on a smooth variety M and there
exists an R-divisor D on M such that Supp(D+ Y ) is a simple normal
crossing divisor, Y and D have no common irreducible components,
and BY = D|Y .

(2) f ∗ω ∼R KY +BY .

(3) BY is a subboundary, that is, bi ≤ 1 for any i when BY =
∑
biBi.

(4) OX ≃ f∗OY (p−(B<1
Y )q), where B<1

Y =
∑

bi<1 biBi.

It is easy to see that the pair [W,ω], where ω = (KX + B)|W , with
f : (S,BS) → W satisfies the definition of qlc pairs. We note that the pair
[Z,KZ +BZ ] with f : (V, S+B) → Z is also a qlc pair since f∗OV (p−Bq) ≃
OZ . Therefore, we can treat log canonical pairs and loci of log canonical sin-
gularities in the same framework once we introduce the notion of qlc pairs.
Ambro found that a modified version of X-method, that is, the method in-
troduced by Kawamata and used by him to prove the foundational results
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of the log minimal model program for Kawamata log terminal pairs, works
for qlc pairs if we generalize Kollár’s vanishing and torsion-free theorems for
embedded normal crossing pairs. It is the key idea of [Am1].

1.2 A sample computation

The following theorem must motivate the reader to study our new framework.

Theorem 1.2 (cf. Theorem 3.39 (ii)). Let X be a normal projective

variety and B a boundary R-divisor on X such that (X,B) is log canonical.

Let L be a Cartier divisor on X. Assume that L − (KX + B) is ample. Let

{Ci} be any set of lc centers of the pair (X,B). We put W =
⋃
Ci with a

reduced scheme structure. Then we have

H i(X, IW ⊗OX(L)) = 0

for any i > 0, where IW is the defining ideal sheaf of W on X. In particular,

the restriction map

H0(X,OX(L)) → H0(W,OW (L))

is surjective. Therefore, if (X,B) has a zero-dimensional lc center, then the

linear system |L| is not empty and the base locus of |L| contains no zero-

dimensional lc centers of (X,B).

Let us see a simple setting to understand the difference between our new
framework and the traditional one.

1.3. Let X be a smooth projective surface and let C1 and C2 be smooth
curves onX. Assume that C1 and C2 intersect only at a point P transversally.
Let L be a Cartier divisor on X such that L − (KX + B) is ample, where
B = C1 +C2. It is obvious that (X,B) is log canonical and P is an lc center
of (X,B). Then, by Theorem 1.2, we can directly obtain

H i(X, IP ⊗OX(L)) = 0

for any i > 0, where IP is the defining ideal sheaf of P on X.
In the classical framework, we prove it as follows. Let C be a general

curve passing through P . We take small positive rational numbers ε and
δ such that (X, (1 − ε)B + δC) is log canonical at P and is Kawamata log
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terminal outside P . Since ε and δ are small, L − (KX + (1 − ε)B + δC) is
still ample. By the Nadel vanishing theorem, we obtain

H i(X, IP ⊗OX(L)) = 0

for any i > 0. We note that IP is nothing but the multiplier ideal sheaf

associated to the pair (X, (1 − ε)B + δC).

By our new vanishing theorem, the reader will be released from annoyance
of perturbing coefficients of boundary divisors.

We give a sample computation here. It may explain the reason why
Kollár’s torsion-free and vanishing theorems appear in the study of log canon-
ical pairs. The actual proof of Theorem 1.2 depends on much more sophisti-
cated arguments on the theory of mixed Hodge structures.

Example 1.4. Let S be a normal projective surface which has only one
simple elliptic Gorenstein singularity Q ∈ S. We put X = S × P1 and
B = S × {0}. Then the pair (X,B) is log canonical. It is easy to see that
P = (Q, 0) ∈ X is an lc center of (X,B). Let L be a Cartier divisor on X
such that L− (KX +B) is ample. We have

H i(X, IP ⊗OX(L)) = 0

for any i > 0, where IP is the defining ideal sheaf of P on X. We note that
X is not Kawamata log terminal and that P is not an isolated lc center of
(X,B).

Proof. Let ϕ : T → S be the minimal resolution. Then we can write KT +
C = ϕ∗KS, where C is the ϕ-exceptional elliptic curve on T . We put Y =
T ×P1 and f = ϕ× idP1 : Y → X, where idP1 : P1 → P1 is the identity. Then
f is a resolution of X and we can write

KY +BY + E = f ∗(KX +B),

where BY is the strict transform of B on Y and E ≃ C×P1 is the exceptional
divisor of f . Let g : Z → Y be the blow-up along E ∩ BY . Then we can
write

KZ +BZ + EZ + F = g∗(KY +BY + E) = h∗(KX +B),

where h = f ◦ g, BZ (resp. EZ) is the strict transform of BY (resp. E) on Z,
and F is the g-exceptional divisor. We note that

IP ≃ h∗OZ(−F ) ⊂ h∗OZ ≃ OX .
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Since −F = KZ +BZ + EZ − h∗(KX +B), we have

IP ⊗OX(L) ≃ h∗OZ(KZ +BZ + EZ) ⊗OX(L− (KX +B)).

So, it is sufficient to prove that

H i(X, h∗OZ(KZ + BZ + EZ) ⊗ L) = 0

for any i > 0 and any ample line bundle L on X. We consider the short
exact sequence

0 → OZ(KZ) → OZ(KZ + EZ) → OEZ
(KEZ

) → 0.

We can easily check that

0 → h∗OZ(KZ) → h∗OZ(KZ + EZ) → h∗OEZ
(KEZ

) → 0

is exact and
Rih∗OZ(KZ + EZ) ≃ Rih∗OEZ

(KEZ
)

for any i > 0 by the Grauert–Riemenschneider vanishing theorem. We can
directly check that

R1h∗OEZ
(KEZ

) ≃ R1f∗OE(KE) ≃ OD(KD),

where D = Q × P1 ⊂ X. Therefore, R1h∗OZ(KZ + EZ) ≃ OD(KD) is a
torsion sheaf on X. However, it is torsion-free as a sheaf on D. It is a
generalization of Kollár’s torsion-free theorem. We consider

0 → OZ(KZ + EZ) → OZ(KZ +BZ + EZ) → OBZ
(KBZ

) → 0.

We note that BZ ∩ EZ = ∅. Thus, we have

0 → h∗OZ(KZ + EZ) → h∗OZ(KZ +BZ + EZ) → h∗OBZ
(KBZ

)

δ→ R1h∗OZ(KZ + EZ) → · · · .

Since Supph∗OBZ
(KBZ

) = B, δ is a zero map by R1h∗OZ(KZ + BZ) ≃
OD(KD). Therefore, we know that the following sequence

0 → h∗OZ(KZ + EZ) → h∗OZ(KZ +BZ + EZ) → h∗OBZ
(KBZ

) → 0
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is exact. By Kollár’s vanishing theorem on BZ , it is sufficient to prove that
H i(X, h∗OZ(KZ +EZ)⊗L) = 0 for any i > 0 and any ample line bundle L.
We have

H i(X, h∗OZ(KZ) ⊗ L) = H i(X, h∗OEZ
(KEZ

) ⊗L) = 0

for any i > 0 by Kollár’s vanishing theorem. By the following exact sequence

· · · → H i(X, h∗OZ(KZ) ⊗ L) → H i(X, h∗OZ(KZ + EZ))

→ H i(X, h∗OEZ
(KEZ

)) → · · · ,

we obtain the desired vanishing theorem. Anyway, we have

H i(X, IP ⊗OX(L)) = 0

for any i > 0.

1.3 Overview

We summarize the contents of this book.
In the rest of Chapter 1, we collect some preliminary results and notations.

Moreover, we quickly review the classical log minimal model program.
In Chapter 2, we discuss Ambro’s generalizations of Kollár’s injectivity,

vanishing, and torsion-free theorems for embedded normal crossing pairs.
These results are indispensable for the theory of quasi-log varieties. To prove
them, we recall some results on the mixed Hodge structures. For the details
of Chapter 2, see Section 2.1, which is the introduction of Chapter 2.

In Chapter 3, we treat the log minimal model program for log canonical
pairs. In Section 3.1, we explicitly state the cone and contraction theorems
for log canonical pairs and prove the log flip conjecture I for log canonical
pairs in dimension four. We also discuss the length of extremal rays for log
canonical pairs with the aid of the recent result by [BCHM]. Subsection
3.1.4 contains Kollár’s various examples. We prove that a log canonical flop
does not always exist. In Section 3.2, we introduce the notion of quasi-log
varieties and prove basic results, for example, adjunction and the vanishing
theorem, for quasi-log varieties. Section 3.3 is devoted to the proofs of the
fundamental theorems for quasi-log varieties. First, we prove the base point
free theorem for quasi-log varieties. Then, we prove the rationality theorem
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and the cone theorem for quasi-log varieties. Once we understand the notion
of quasi-log varieties and how to use adjunction and the vanishing theorem,
there are no difficulties to prove the above fundamental theorems.

In Chapter 4, we discuss some supplementary results. Section 4.1 is
devoted to the proof of the base point free theorem of Reid–Fukuda type
for quasi-log varieties with only qlc singularities. In Section 4.2, we prove
that the non-klt locus of a dlt pair is Cohen–Macaulay as an application of
the vanishing theorem in Chapter 2. Section 4.3 is a detailed description
of Alexeev’s criterion for Serre’s S3 condition. It is an application of the
generalized torsion-free theorem. In Section 4.4, we recall the notion of toric
polyhedra. We can easily check that a toric polyhedron has a natural quasi-
log structure. Section 4.5 is a short survey of the theory of non-lc ideal
sheaves. In the finial section, we mention effective base point free theorems
for log canonical pairs.

In the final chapter: Chapter 5, we collect various examples of toric flips.

1.4 How to read this book ?

We assume that the reader is familiar with the classical log minimal model
program, at the level of Chapters 2 and 3 in [KM]. It is not a good idea to read
this book without studying the classical results discussed in [KM], [KMM],
or [M]. We will quickly review the classical log minimal model program in
Section 1.6 for the reader’s convenience. If the reader understands [KM,
Chapters 2 and 3], then it is not difficult to read [F16], which is a gentle
introduction to the log minimal model program for lc pairs and written in
the same style as [KM]. After these preparations, the reader can read Chapter
3 in this book without any difficulties. We note that Chapter 3 can be read
before Chapter 2. The hardest part of this book is Chapter 2. It is very
technical. So, the reader should have strong motivations before attacking
Chapter 2.

1.5 Notation and Preliminaries

We will work over the complex number field C throughout this book. But we
note that by using Lefschetz principle, we can extend almost everything to
the case where the base field is an algebraically closed field of characteristic
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zero. Note that every scheme in this book is assumed to be separated. We
deal not only with the usual divisors but also with the divisors with rational
and real coefficients, which turn out to be fruitful and natural.

1.5 (Divisors, Q-divisors, and R-divisors). For an R-Weil divisor D =∑r

j=1 djDj such that Di 6= Dj for i 6= j, we define the round-up pDq =∑r
j=1pdjqDj (resp. the round-down xDy =

∑r
j=1xdjyDj), where for any

real number x, pxq (resp. xxy) is the integer defined by x ≤ pxq < x + 1
(resp. x − 1 < xxy ≤ x). The fractional part {D} of D denotes D − xDy.
We define

D=1 =
∑

dj=1

Dj, D≤1 =
∑

dj≤1

djDj,

D<1 =
∑

dj<1

djDj, and D>1 =
∑

dj>1

djDj.

The support ofD =
∑r

j=1 djDj , denoted by SuppD, is the subscheme
⋃

dj 6=0Dj .

We call D a boundary (resp. subboundary) R-divisor if 0 ≤ dj ≤ 1 (resp. dj ≤
1) for any j. Q-linear equivalence (resp. R-linear equivalence) of two Q-
divisors (resp. R-divisors) B1 and B2 is denoted by B1 ∼Q B2 (resp. B1 ∼R

B2). Let f : X → Y be a morphism and B1 and B2 two R-divisors on X.
We say that they are linearly f -equivalent (denoted by B1 ∼f B2) if and
only if there is a Cartier divisor B on Y such that B1 ∼ B2 + f ∗B. We
can define Q-linear (resp. R-linear) f -equivalence (denoted by B1 ∼Q,f B2

(resp. B1 ∼R,f B2)) similarly.
Let X be a normal variety. Then X is called Q-factorial if every Q-divisor

is Q-Cartier.

We quickly review the notion of singularities of pairs. For the details, see
[KM, §2.3], [Ko4], and [F7]. See also the subsection 1.6.1.

1.6 (Singularities of pairs). For a proper birational morphism f : X → Y ,
the exceptional locus Exc(f) ⊂ X is the locus where f is not an isomorphism.
Let X be a normal variety and let B be an R-divisor on X such that KX +B
is R-Cartier. Let f : Y → X be a resolution such that Exc(f) ∪ f−1

∗ B has
a simple normal crossing support, where f−1

∗ B is the strict transform of B
on Y . We write KY = f ∗(KX +B) +

∑
i aiEi and a(Ei, X,B) = ai. We say

that (X,B) is sub log canonical (resp. sub Kawamata log terminal) (sub lc

(resp. sub klt), for short) if and only if ai ≥ −1 (resp. ai > −1) for any i. If
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(X,B) is sub lc (resp. sub klt) and B is effective, then (X,B) is called log

canonical (resp. Kawamata log terminal) (lc (resp. klt), for short). Note that
the discrepancy a(E,X,B) ∈ R can be defined for any prime divisor E over

X. Let (X,B) be a sub lc pair. If E is a prime divisor over X such that
a(E,X,B) = −1, then the center cX(E) is called an lc center of (X,B).

Definition 1.7 (Divisorial log terminal pairs). Let X be a normal va-
riety and B a boundary R-divisor such that KX + B is R-Cartier. If there
exists a resolution f : Y → X such that

(i) both Exc(f) and Exc(f) ∪ Supp(f−1
∗ B) are simple normal crossing di-

visors on Y , and

(ii) a(E,X,B) > −1 for every exceptional divisor E ⊂ Y ,

then (X,B) is called divisorial log terminal (dlt, for short).

For the details of dlt pairs, see Section 4.2. The assumption that Exc(f)
is a divisor in Definition 1.7 (i) is very important. See Example 4.16 below.

We often use resolution of singularities. We need the following strong
statement. We sometimes call it Szabó’s resolution lemma (see [Sz] and
[F7]).

1.8 (Resolution lemma). Let X be a smooth variety and D a reduced
divisor on X. Then there exists a proper birational morphism f : Y → X
with the following properties:

(1) f is a composition of blow-ups of smooth subvarieties,

(2) Y is smooth,

(3) f−1
∗ D ∪ Exc(f) is a simple normal crossing divisor, where f−1

∗ D is the
strict transform of D on Y , and

(4) f is an isomorphism over U , where U is the largest open set of X such
that the restriction D|U is a simple normal crossing divisor on U .

Note that f is projective and the exceptional locus Exc(f) is of pure codi-
mension one in Y since f is a composition of blowing-ups.

The Kleiman–Mori cone is the basic object to study in the log minimal
model program.
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1.9 (Kleiman–Mori cone). Let X be an algebraic scheme over C and let
π : X → S be a proper morphism to an algebraic scheme S. Let Pic(X)
be the group of line bundles on X. Take a complete curve on X which is
mapped to a point by π. For L ∈ Pic(X), we define the intersection number
L · C = degC f

∗L, where f : C → C is the normalization of C. Via this
intersection pairing, we introduce a bilinear form

· : Pic(X) × Z1(X/S) → Z,

where Z1(X/S) is the free abelian group generated by integral curves which
are mapped to points on S by π.

Now we have the notion of numerical equivalence both in Z1(X/S) and
in Pic(X), which is denoted by ≡, and we obtain a perfect pairing

N1(X/S) ×N1(X/S) → R,

where

N1(X/S) = {Pic(X)/ ≡} ⊗ R and N1(X/S) = {Z1(X/S)/ ≡} ⊗ R,

namely N1(X/S) and N1(X/S) are dual to each other through this intersec-
tion pairing. It is well known that dimR N

1(X/S) = dimR N1(X/S) <∞. We
write ρ(X/S) = dimR N

1(X/S) = dimRN1(X/S). We define the Kleiman–
Mori cone NE(X/S) as the closed convex cone in N1(X/S) generated by in-
tegral curves on X which are mapped to points on S by π. When S = SpecC,
we drop /SpecC from the notation, e.g., we simply write N1(X) in stead of
N1(X/SpecC).

Definition 1.10. An element D ∈ N1(X/S) is called π-nef (or relatively nef

for π), if D ≥ 0 on NE(X/S). When S = SpecC, we simply say that D is
nef.

Theorem 1.11 (Kleiman’s criterion for ampleness). Let π : X → S
be a projective morphism between algebraic schemes. Then L ∈ Pic(X) is

π-ample if and only if the numerical class of L in N1(X/S) gives a positive

function on NE(X/S) \ {0}.
In Theorem 1.11, we have to assume that π : X → S is projective since

there are complete non-projective algebraic varieties for which Kleiman’s
criterion does not hold. We recall the explicit example given in [F6] for the
reader’s convenience. For the details of this example, see [F6, Section 3].
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Example 1.12 (cf. [F6, Section 3]). We fix a lattice N = Z3. We take
lattice points

v1 = (1, 0, 1), v2 = (0, 1, 1), v3 = (−1,−1, 1),

v4 = (1, 0,−1), v5 = (0, 1,−1), v6 = (−1,−1,−1).

We consider the following fan

∆ =





〈v1, v2, v4〉, 〈v2, v4, v5〉, 〈v2, v3, v5, v6〉,
〈v1, v3, v4, v6〉, 〈v1, v2, v3〉, 〈v4, v5, v6〉,
and their faces



 .

Then the toric variety X = X(∆) has the following properties.

(i) X is a non-projective complete toric variety with ρ(X) = 1.

(ii) There exists a Cartier divisor D on X such that D is positive on
NE(X) \ {0}. In particular, NE(X) is a half line.

Therefore, Kleiman’s criterion for ampleness does not hold for this X. We
note thatX is not Q-factorial and that there is a torus invariant curve C ≃ P1

on X such that C is numerically equivalent to zero.

If X has only mild singularities, for example, X is Q-factorial, then it is
known that Theorem 1.11 holds even when π : X → S is proper. However,
the Kleiman–Mori cone may not have enough informations when π is only
proper.

Example 1.13 (cf. [FP]). There exists a smooth complete toric threefold
X such that NE(X) = N1(X).

The description below helps the reader understand examples in [FP].

Example 1.14. Let ∆ be the fan in R3 whose rays are generated by v1 =
(1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1), v5 = (−1, 0,−1), v6 = (−2,−1, 0) and
whose maximal cones are

〈v1, v2, v3〉, 〈v1, v3, v6〉, 〈v1, v2, v5〉, 〈v1, v5, v6〉, 〈v2, v3, v5〉, 〈v3, v5, v6〉.

Then the associated toric variety X1 = X(∆) is PP1(OP1 ⊕OP1(2)⊕OP1(2)).
We take a sequence of blow-ups

Y
f3−→ X3

f2−→ X2
f1−→ X1,
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where f1 is the blow-up along the ray v4 = (0,−1,−1) = 3v1 + v5 + v6, f2 is
along

v7 = (−1,−1,−1) =
1

3
(2v4 + v5 + v6),

and the final blow-up f3 is along the ray

v8 = (−2,−1,−1) =
1

2
(v5 + v6 + v7).

Then we can directly check that Y is a smooth projective toric variety with
ρ(Y ) = 5.

Finally, we remove the wall 〈v1, v5〉 and add the new wall 〈v2, v4〉. Then
we obtain a flop φ : Y 99K X. We note that v2 + v4 − v1 − v5 = 0. The
toric variety X is nothing but X(Σ) given in [FP, Example 1]. Thus, X
is a smooth complete toric variety with ρ(X) = 5 and NE(X) = N1(X).
Therefore, a simple flop φ : Y 99K X completely destroys the projectivity of
Y .

We use the following convention throughout this book.

1.15. R>0 (resp. R≥0) denotes the set of positive (resp. non-negative) real
numbers. Z>0 denotes the set of positive integers.

1.6 Quick review of the classical MMP

In this section, we quickly review the classical MMP, at the level of [KM,
Chapters 2 and 3], for the reader’s convenience. For the details, see [KM,
Chapters 2 and 3] or [KMM]. Almost all the results explained here will be
described in more general settings in subsequent chapters.

1.6.1 Singularities of pairs

We quickly review singularities of pairs in the log minimal model program.
Basically, we will only use the notion of log canonical pairs in this book. So,
the reader does not have to worry about the various notions of log terminal.

Definition 1.16 (Discrepancy). Let (X,∆) be a pair where X is a normal
variety and ∆ an R-divisor on X such that KX + ∆ is R-Cartier. Suppose
f : Y → X is a resolution. Then, we can write

KY = f ∗(KX + ∆) +
∑

i

a(Ei, X,∆)Ei.
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This formula means that

f∗(
∑

i

a(Ei, X,∆)Ei) = −∆

and that
∑

i a(Ei, X,∆)Ei is numerically equivalent to KY over X. The real
number a(E,X,∆) is called discrepancy of E with respect to (X,∆). The
discrepancy of (X,∆) is given by

discrep(X,∆) = inf
E
{a(E,X,∆) |E is an exceptional divisor over X}.

We note that it is indispensable to understand how to calculate discrep-
ancies for the study of the log minimal model program.

Definition 1.17 (Singularities of pairs). Let (X,∆) be a pair where X
is a normal variety and ∆ an effective R-divisor on X such that KX + ∆ is
R-Cartier. We say that (X,∆) is





terminal

canonical

klt

plt

lc

if discrep(X,∆)





> 0,

≥ 0,

> −1 and x∆y = 0,

> −1,

≥ −1.

Here, plt is short for purely log terminal.

The basic references on this topic are [KM, 2.3], [Ko4], and [F7].

1.6.2 Basic results for klt pairs

In this subsection, we assume that X is a projective variety and ∆ is an
effective Q-divisor for simplicity. Let us recall the basic results for klt pairs.
A starting point is the following vanishing theorem.

Theorem 1.18 (Vanishing theorem). Let X be a smooth projective va-

riety, D a Q-divisor such that Supp{D} is a simple normal crossing divisor

on X. Assume that D is ample. Then

H i(X,OX(KX + pDq)) = 0

for i > 0.
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It is a special case of the Kawamata–Viehweg vanishing theorem. It easily
follows from the Kodaira vanishing theorem by using the covering trick (see
[KM, Theorem 2.64]). In Chapter 2, we will prove more general vanishing
theorems. See, for example, Theorem 2.39. The next theorem is Shokurov’s
non-vanishing theorem.

Theorem 1.19 (Non-vanishig theorem). Let X be a projective variety,

D a nef Cartier divisor and G a Q-divisor. Suppose

(1) aD +G−KX is Q-Cartier, ample for some a > 0, and

(2) (X,−G) is sub klt.

Then, for all m≫ 0, H0(X,OX(mD + pGq)) 6= 0.

It plays important roles in the proof of the base point free and rationality
theorems below. In the theory of quasi-log varieties described in Chapter
3, the non-vanishing theorem will be absorbed into the proof of the base
point free theorem for quasi-log varieties. The following two fundamental
theorems for klt pairs will be generalized for quasi-log varieties in Chapter
3. See Theorems 3.66, 3.68, and 4.1 in Chapter 4.

Theorem 1.20 (Base point free theorem). Let (X,∆) be a projective klt

pair. Let D be a nef Cartier divisor such that aD − (KX + ∆) is ample for

some a > 0. Then |bD| has no base points for all b≫ 0.

Theorem 1.21 (Rationality theorem). Let (X,∆) be a projective klt pair

such that KX + ∆ is not nef. Let a > 0 be an integer such that a(KX + ∆)
is Cartier. Let H be an ample Cartier divisor, and define

r = max{ t ∈ R |H + t(KX + ∆) is nef }.

Then r is a rational number of the form u/v (u, v ∈ Z) where

0 < v ≤ a(dimX + 1).

The final theorem is the cone theorem. It easily follows from the base
point free and rationality theorems.

Theorem 1.22 (Cone theorem). Let (X,∆) be a projective klt pair. Then

we have the following properties.
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(1) There are (countably many) rational curves Cj ⊂ X such that

NE(X) = NE(X)(KX+∆)≥0 +
∑

R≥0[Cj].

(2) Let R ⊂ NE(X) be a (KX + ∆)-negative extremal ray. Then there

is a unique morphism ϕR : X → Z to a projective variety such that

(ϕR)∗OX ≃ OZ and an irreducible curve C ⊂ X is mapped to a point

by ϕR if and only if [C] ∈ R.

We note that the cone theorem can be proved for dlt pairs in the relative
setting. See, for example, [KMM]. We omit it here. It is because we will
give a complete generalization of the cone theorem for quasi-log varieties in
Theorem 3.75.

1.6.3 X-method

In this subsection, we give a proof to the base point free theorem (see Theo-
rem 1.20) by assuming the non-vanishing theorem (see Theorem 1.19). The
following proof is taken almost verbatim from [KM, 3.2 Basepoint-free The-
orem]. This type of argument is sometimes called X-method. It has various
applications in many different contexts. So, the reader should understand
X-method.

Proof of the base point free theorem. We prove the base point free theorem: The-
orem 1.20.

Step 1. In this step, we establish that |mD| 6= ∅ for every m ≫ 0. We can
construct a resolution f : Y → X such that

(1) KY = f ∗(KX + ∆) +
∑
ajFj with all aj > −1,

(2) f ∗(aD− (KX + ∆))−∑
pjFj is ample for some a > 0 and for suitable

0 < pj ≪ 1, and

(3)
∑
Fj(⊃ Exc(f)∪Suppf−1

∗ ∆) is a simple normal crossing divisor on Y .

We note that the Fj is not necessarily f -exceptional. On Y , we write

f ∗(aD − (KX + ∆)) −
∑

pjFj

= af ∗D +
∑

(aj − pj)Fj − (f ∗(KX + ∆) +
∑

ajFj)

= af ∗D +G−KY ,
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where G =
∑

(aj − pj)Fj. By the assumption, pGq is an effective f -
exceptional divisor, af ∗D +G−KY is ample, and

H0(Y,OY (mf ∗D + pGq)) ≃ H0(X,OX(mD)).

We can now apply the non-vanishing theorem (see Theorem 1.19) to get that
H0(X,OX(mD)) 6= 0 for all m≫ 0.

Step 2. For a positive integer s, let B(s) denote the reduced base locus
of |sD|. Clearly, we have B(su) ⊂ B(sv) for any positive integers u > v.
Noetherian induction implies that the sequence B(su) stabilizes, and we call
the limit Bs. So either Bs is non-empty for some s or Bs and Bs′ are empty
for two relatively prime integers s and s′. In the latter case, take u and v such
that B(su) and B(s′v) are empty, and use the fact that every sufficiently large
integer is a linear combination of su and s′v with non-negative coefficients to
conclude that |mD| is base point free for all m≫ 0. So, we must show that
the assumption that some Bs is non-empty leads to a contradiction. We let
m = su such that Bs = B(m) and assume that this set is non-empty.

Starting with the linear system obtained from Step 1, we can blow up
further to obtain a new f : Y → X for which the conditions of Step 1 hold,
and, for some m > 0,

f ∗|mD| = |L| (moving part) +
∑

rjFj (fixed part)

such that |L| is base point free. Therefore,
⋃{f(Fj)|rj > 0} is the base

locus of |mD|. Note that f−1Bs|mD| = Bs|mf ∗D|. We obtain the desired
contradiction by finding some Fj with rj > 0 such that, for all b ≫ 0, Fj is
not contained in the base locus of |bf ∗D|.
Step 3. For an integer b > 0 and a rational number c > 0 such that b ≥
cm+ a, we define divisors:

N(b, c) = bf ∗D −KY +
∑

(−crj + aj − pj)Fj

= (b− cm− a)f ∗D (nef)

+c(mf ∗D −
∑

rjFj) (base point free)

+f ∗(aD − (KX + ∆)) −
∑

pjFj (ample).

Thus, N(b, c) is ample for b ≥ cm+ a. If that is the case then, by Theorem
1.18, H1(Y,OY (pN(b, c)q +KY )) = 0, and

pN(b, c)q = bf ∗D +
∑

p−crj + aj − pjqFj −KY .
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Step 4. c and pj can be chosen so that

∑
(−crj + aj − pj)Fj = A− F

for some F = Fj0 , where pAq is effective and A does not have F as a com-
ponent. In fact, we choose c > 0 so that

min
j

(−crj + aj − pj) = −1.

If this last condition does not single out a unique j, we wiggle the pj slightly to
achieve the desired uniqueness. This j satisfies rj > 0 and pN(b, c)q +KY =
bf ∗D + pAq − F . Now Step 3 implies that

H0(Y,OY (bf ∗D + pAq)) → H0(F,OF (bf ∗D + pAq))

is surjective for b ≥ cm + a. If Fj appears in pAq, then aj > 0, so Fj is
f -exceptional. Thus, pAq is f -exceptional.

Step 5. Notice that

N(b, c)|F = (bf ∗D + A− F −KY )|F = (bf ∗D + A)|F −KF .

So we can apply the non-vanishing theorem (see Theorem 1.19) on F to get

H0(F,OF (bf ∗D + pAq)) 6= 0.

Thus, H0(Y,OY (bf ∗D + pAq)) has a section not vanishing on F . Since pAq

is f -exceptional and effective,

H0(Y,OY (bf ∗D + pAq)) ≃ H0(X,OX(bD)).

Therefore, f(F ) is not contained in the base locus of |bD| for all b≫ 0.

This completes the proof of the base point free theorem.

In the subsection 3.3.1, we will prove the base point free theorem for quasi-
log varieties. We recommend the reader to compare the proof of Theorem
3.66 with the arguments explained here.
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1.6.4 MMP for Q-factorial dlt pairs

In this subsection, we explain the log minimal model program for Q-factorial
dlt pairs. First, let us recall the definition of the log minimal model.

Definition 1.23 (Log minimal model). Let (X,∆) be a log canonical
pair and f : X → S a proper morphism. A pair (X ′,∆′) sitting in a diagram

X
φ

99K X ′

f ց ւf ′

S

is called a log minimal model of (X,∆) over S if

(1) f ′ is proper,

(2) φ−1 has no exceptional divisors,

(3) ∆′ = φ∗∆,

(4) KX′ + ∆′ is f ′-nef, and

(5) a(E,X,∆) < a(E,X ′,∆′) for every φ-exceptional divisor E ⊂ X.

Next, we recall the flip theorem for dlt pairs in [BCHM] and [HM]. We
need the notion of small morphisms to treat flips.

Definition 1.24 (Small morphism). Let f : X → Y be a proper birational
morphism between normal varieties. If Exc(f) has codimension ≥ 2, then f
is called small.

Theorem 1.25 (Log flip for dlt pairs). Let ϕ : (X,∆) → W be an

extremal flipping contraction, that is,

(1) (X,∆) is dlt,

(2) ϕ is small projective and ϕ has only connected fibers,

(3) −(KX + ∆) is ϕ-ample,

(4) ρ(X/W ) = 1, and

(5) X is Q-factorial.
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Then we have the following diagram:

X 99K X+

ց ւ
W

(i) X+ is a normal variety,

(ii) ϕ+ : X+ →W is small projective, and

(iii) KX+ + ∆+ is ϕ+-ample, where ∆+ is the strict transform of ∆.

We call ϕ+ : (X+,∆+) → W a (KX + ∆)-flip of ϕ.

Let us explain the relative log minimal model program for Q-factorial dlt
pairs.

1.26 (MMP for Q-factorial dlt pairs). We start with a pair (X,∆) =
(X0,∆0). Let f0 : X0 → S be a projective morphism. The aim is to set up a
recursive procedure which creates intermediate pairs (Xi,∆i) and projective
morphisms fi : Xi → S. After some steps, it should stop with a final pair
(X ′,∆′) and f ′ : X ′ → S.

Step 0 (Initial datum). Assume that we already constructed (Xi,∆i) and
fi : Xi → S with the following properties:

(1) Xi is Q-factorial,

(2) (Xi,∆i) is dlt, and

(3) fi is projective.

Step 1 (Preparation). If KXi
+ ∆i is fi-nef, then we go directly to Step 3

(2). If KXi
+ ∆i is not fi-nef, then we establish two results:

(1) (Cone Theorem) We have the following equality.

NE(Xi/S) = NE(Xi/S)(KXi
+∆i)≥0 +

∑
R≥0[Ci].
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(2) (Contraction Theorem) Any (KXi
+ ∆i)-negative extremal ray Ri ⊂

NE(Xi/S) can be contracted. Let ϕRi
: Xi → Yi denote the corre-

sponding contraction. It sits in a commutative diagram.

Xi

ϕRi−→ Yi

fi ց ւgi

S

Step 2 (Birational transformations). If ϕRi
: Xi → Yi is birational, then

we produce a new pair (Xi+1,∆i+1) as follows.

(1) (Divisorial contraction) If ϕRi
is a divisorial contraction, that is, ϕRi

contracts a divisor, then we set Xi+1 = Yi, fi+1 = gi, and ∆i+1 =
(ϕRi

)∗∆i.

(2) (Flipping contraction) If ϕRi
is a flipping contraction, that is, ϕRi

is
small, then we set (Xi+1,∆i+1) = (X+

i ,∆
+
i ), where (X+

i ,∆
+
i ) is the flip

of ϕRi
, and fi+1 = gi ◦ ϕ+

Ri
. See Theorem 1.25.

In both cases, we can prove that Xi+1 is Q-factorial, fi+1 is projective and
(Xi+1,∆i+1) is dlt. Then we go back to Step 0 with (Xi+1,∆i+1) and start
anew.

Step 3 (Final outcome). We expect that eventually the procedure stops,
and we get one of the following two possibilities:

(1) (Mori fiber space) If ϕRi
is a Fano contraction, that is, dimYi < dimXi,

then we set (X ′,∆′) = (Xi,∆i) and f ′ = fi.

(2) (Minimal model) If KXi
+ ∆i is fi-nef, then we again set (X ′,∆′) =

(Xi,∆i) and f ′ = fi. We can easily check that (X ′,∆′) is a log minimal
model of (X,∆) over S in the sense of Definition 1.23.

By the results in [BCHM] and [HM], all we have to do is to prove that
there are no infinite sequence of flips in the above process.

We will discuss the log minimal model program for (not necessarily Q-
factorial) lc pairs in Section 3.1.
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Chapter 2

Vanishing and Injectivity
Theorems for LMMP

2.1 Introduction

The following diagram is well known and described, for example, in [KM,
3.1]. See also Section 1.6.

Kawamata–Viehweg vanishing

theorem
=⇒

Cone, contraction, rationality,

and base point free theorems

for klt pairs

This means that the Kawamata–Viehweg vanishing theorem produces the
fundamental theorems of the log minimal model program (LMMP, for short)
for klt pairs. This method is sometimes called X-method and now classical.
It is sufficient for the LMMP for Q-factorial dlt pairs. In [Am1], Ambro
obtained the same diagram for quasi-log varieties. Note that the class of
quasi-log varieties naturally contains lc pairs. Ambro introduced the notion
of quasi-log varieties for the inductive treatments of lc pairs.

Kollár’s torsion-free and van-

ishing theorems for embedded

normal crossing pairs

=⇒
Cone, contraction, rationality,

and base point free theorems

for quasi-log varieties
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Namely, if we obtain Kollár’s torsion-free and vanishing theorems for
embedded normal crossing pairs, then X-method works and we obtain the
fundamental theorems of the LMMP for quasi-log varieties. So, there exists
an important problem for the LMMP for lc pairs.

Problem 2.1. Are the injectivity, torsion-free and vanishing theorems for

embedded normal crossing pairs true?

Ambro gave an answer to Problem 2.1 in [Am1, Section 3]. Unfortunately,
the proofs of injectivity, torsion-free, and vanishing theorems in [Am1, Sec-
tion 3] contain various gaps. So, in this chapter, we give an affirmative answer
to Problem 2.1 again.

Theorem 2.2. Ambro’s formulation of Kollár’s injectivity, torsion-free, and

vanishing theorems for embedded normal crossing pairs hold true.

Once we have Theorem 2.2, we can obtain the fundamental theorems
of the LMMP for lc pairs. The X-method for quasi-log varieties, which was
explained in [Am1, Section 5] and will be described in Chapter 3, is essentially
the same as the klt case. It may be more or less a routine work for the experts
(see Chapter 3 and [F16]). We note that Kawamata used Kollár’s injectivity,
vanishing, and torsion-free theorems for generalized normal crossing varieties

in [Ka1]. For the details, see [Ka1] or [KMM, Chapter 6]. We think that
[Ka1] is the first place where X-method was used for reducible varieties.

Ambro’s proofs of the injectivity, torsion-free, and vanishing theorems
in [Am1] do not work even for smooth varieties. So, we need new ideas
to prove the desired injectivity, torsion-free, vanishing theorems. It is the
main subject of this chapter. We will explain various troubles in the proofs
in [Am1, Section 3] below for the reader’s convenience. Here, we give an
application of Ambro’s theorems to motivate the reader. It is the culmination
of the works of several authors: Kawamata, Viehweg, Nadel, Reid, Fukuda,
Ambro, and many others. It is the first time that the following theorem is
stated explicitly in the literature.

Theorem 2.3 (cf. Theorem 2.48). Let (X,B) be a proper lc pair such

that B is a boundary R-divisor and let L be a Q-Cartier Weil divisor on X.

Assume that L− (KX + B) is nef and log big. Then Hq(X,OX(L)) = 0 for

any q > 0.

It also contains a complete form of Kovács’ Kodaira vanishing theorem
for lc pairs (see Corollary 2.43). Let us explain the main trouble in [Am1,
Section 3] by the following simple example.
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Example 2.4. Let X be a smooth projective variety and H a Cartier divisor
on X. Let A be a smooth irreducible member of |2H| and S a smooth divisor
onX such that S andA are disjoint. We putB = 1

2
A+S and L = H+KX+S.

Then L ∼Q KX +B and 2L ∼ 2(KX +B). We define E = OX(−L+KX) as in
the proof of [Am1, Theorem 3.1]. Apply the argument in the proof of [Am1,
Theorem 3.1]. Then we have a double cover π : Y → X corresponding to
2B ∈ |E−2|. Then π∗Ω

p
Y (log π∗B) ≃ Ωp

X(logB)⊕Ωp
X(logB)⊗E(S). Note that

Ωp
X(logB) ⊗ E is not a direct summand of π∗Ω

p
Y (log π∗B). Theorem 3.1 in

[Am1] claims that the homomorphisms Hq(X,OX(L)) → Hq(X,OX(L+D))
are injective for all q. Here, we used the notation in [Am1, Theorem 3.1]. In
our case, D = mA for some positive integer m. However, Ambro’s argument
just implies thatHq(X,OX(L−xBy)) → Hq(X,OX(L−xBy+D)) is injective
for any q. Therefore, his proof works only for the case when xBy = 0 even if
X is smooth.

This trouble is crucial in several applications on the LMMP. Ambro’s
proof is based on the mixed Hodge structure of H i(Y − π∗B,Z). It is a
standard technique for vanishing theorems in the LMMP. In this chapter,
we use the mixed Hodge structure of H i

c(Y − π∗S,Z), where H i
c(Y − π∗S,Z)

is the cohomology group with compact support. Let us explain the main
idea of this chapter. Let X be a smooth projective variety with dimX = n
and D a simple normal crossing divisor on X. The main ingredient of our
arguments is the decomposition

H i
c(X −D,C) =

⊕

p+q=i

Hq(X,Ωp
X(logD) ⊗OX(−D)).

The dual statement

H2n−i(X −D,C) =
⊕

p+q=i

Hn−q(X,Ωn−p
X (logD)),

which is well known and is commonly used for vanishing theorems, is not
useful for our purposes. To solve Problem 2.1, we have to carry out this
simple idea for reducible varieties.

Remark 2.5. In the proof of [Am1, Theorem 3.1], if we assume that X is
smooth, B′ = S is a reduced smooth divisor on X, and T ∼ 0, then we need
the E1-degeneration of

Epq
1 = Hq(X,Ωp

X(log S) ⊗OX(−S)) =⇒ Hp+q(X,Ω•X(log S) ⊗OX(−S)).
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However, Ambro seemed to confuse it with the E1-degeneration of

Epq
1 = Hq(X,Ωp

X(logS)) =⇒ Hp+q(X,Ω•X(logS)).

Some problems on the Hodge theory seem to exist in the proof of [Am1,
Theorem 3.1].

Remark 2.6. In [Am2, Theorem 3.1], Ambro reproved his theorem under
some extra assumptions. Here, we use the notation in [Am2, Theorem 3.1]. In
the last line of the proof of [Am2, Theorem 3.1], he used the E1-degeneration
of some spectral sequence. It seems to be the E1-degeneration of

Epq
1 = Hq(X ′, Ω̃p

X′(log
∑

i′

E ′i′)) =⇒ Hp+q(X ′, Ω̃•X′(log
∑

i′

E ′i′))

since he cited [D1, Corollary 3.2.13]. Or, he applied the same type of E1-
degeneration to a desingularization of X ′. However, we think that the E1-
degeneration of

Epq
1 = Hq(X ′, Ω̃p

X′(log(π∗R+
∑

i′

E ′i′)) ⊗OX′(−π∗R))

=⇒ Hp+q(X ′, Ω̃•X′(log(π∗R+
∑

i′

E ′i′)) ⊗OX′(−π∗R))

is the appropriate one in his proof. If we assume that T ∼ 0 in [Am2,
Theorem 3.1], then Ambro’s proof seems to imply that the E1-degeneration
of

Epq
1 = Hq(X,Ωp

X(logR) ⊗OX(−R)) =⇒ Hp+q(X,Ω•X(logR) ⊗OX(−R))

follows from the usual E1-degeneration of

Epq
1 = Hq(X,Ωp

X) =⇒ Hp+q(X,Ω•X).

Anyway, there are some problems in the proof of [Am2, Theorem 3.1]. In
this chapter, we adopt the following spectral sequence

Epq
1 = Hq(X ′, Ω̃p

X′(log π∗R) ⊗OX′(−π∗R))

=⇒ Hp+q(X ′, Ω̃•X′(log π∗R) ⊗OX′(−π∗R))

and prove its E1-degeneration. For the details, see Sections 2.3 and 2.4.
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One of the main contributions of this chapter is the rigorous proof of
Proposition 2.23, which we call a fundamental injectivity theorem. Even if
we prove this proposition, there are still several technical difficulties to recover
Ambro’s results on injectivity, torsion-free, and vanishing theorems: Theo-
rems 2.53 and 2.54. Some important arguments are missing in [Am1]. We
will discuss the other troubles on the arguments in [Am1] throughout Section
2.5. See also Section 2.9.

2.7 (Background, history, and related topics). The standard references
for vanishing, torsion-free, and injectivity theorems for the LMMP are [Ko3,
Part III Vanishing Theorems] and the first half of the book [EV]. In this
chapter, we closely follow the presentation of [EV] and that of [Am1]. Some
special cases of Ambro’s theorems were proved in [F4, Section 2]. Chapter 1
in [KMM] is still a good source for vanishing theorems for the LMMP. We
note that one of the origins of Ambro’s results is [Ka2, Section 4]. However,
we do not treat Kawamata’s generalizations of vanishing, torsion-free, and
injectivity theorems for generalized normal crossing varieties. It is mainly
because we can quickly reprove the main theorem of [Ka1] without appealing
these difficult vanishing and injectivity theorems once we know a generalized
version of Kodaira’s canonical bundle formula. For the details, see [F11] or
[F17].

We summarize the contents of this chapter. In Section 2.2, we collect basic
definitions and fix some notations. In Section 2.3, we prove a fundamental
cohomology injectivity theorem for simple normal crossing pairs. It is a very
special case of Ambro’s theorem. Our proof heavily depends on the E1-
degeneration of a certain Hodge to de Rham type spectral sequence. We
postpone the proof of the E1-degeneration in Section 2.4 since it is a purely
Hodge theoretic argument. Section 2.4 consists of a short survey of mixed
Hodge structures on various objects and the proof of the key E1-degeneration.
We could find no references on mixed Hodge structures which are appropriate
for our purposes. So, we write it for the reader’s convenience. Section 2.5
is devoted to the proofs of Ambro’s theorems for embedded simple normal
crossing pairs. We discuss various problems in [Am1, Section 3] and give
the first rigorous proofs to [Am1, Theorems 3.1, 3.2] for embedded simple
normal crossing pairs. We think that several indispensable arguments such
as Lemmas 2.33, 2.34, and 2.36 are missing in [Am1, Section 3]. We treat
some further generalizations of vanishing and torsion-free theorems in Section
2.6. In Section 2.7, we recover Ambro’s theorems in full generality. We
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recommend the reader to compare this chapter with [Am1]. We note that
Section 2.7 seems to be unnecessary for applications. Section 2.8 is devoted to
describe some examples. In Section 2.9, we will quickly review the structure
of our proofs of the injectivity, torsion-free, and vanishing theorems. It may
help the reader to understand the reason why our proofs are much longer
than the original proofs in [Am1, Section 3]. In Chapter 3, we will treat
the fundamental theorems of the LMMP for lc pairs as an application of
our vanishing and torsion-free theorems. The reader can find various other
applications of our new cohomological results in [F13], [F14], and [F15]. See
also Sections 4.4, 4.5, and 4.6.

We note that we will work over C, the complex number field, throughout
this chapter.

2.2 Preliminaries

We explain basic notion according to [Am1, Section 2].

Definition 2.8 (Normal and simple normal crossing varieties). A
variety X has normal crossing singularities if, for every closed point x ∈ X,

ÔX,x ≃ C[[x0, · · · , xN ]]

(x0 · · ·xk)

for some 0 ≤ k ≤ N , where N = dimX. Furthermore, if each irreducible
component of X is smooth, X is called a simple normal crossing variety.
If X is a normal crossing variety, then X has only Gorenstein singularities.
Thus, it has an invertible dualizing sheaf ωX . So, we can define the canonical

divisor KX such that ωX ≃ OX(KX). It is a Cartier divisor on X and is well
defined up to linear equivalence.

Definition 2.9 (Mayer–Vietoris simplicial resolution). LetX be a sim-
ple normal crossing variety with the irreducible decomposition X =

⋃
i∈I Xi.

Let In be the set of strictly increasing sequences (i0, · · · , in) in I and Xn =∐
In
Xi0 ∩ · · · ∩ Xin the disjoint union of the intersections of Xi. Let εn :

Xn → X be the disjoint union of the natural inclusions. Then {Xn, εn}n

has a natural semi-simplicial scheme structure. The face operator is induced
by λj,n, where λj,n : Xi0 ∩ · · · ∩ Xin → Xi0 ∩ · · · ∩ Xij−1

∩Xij+1
∩ · · · ∩ Xin

is the natural closed embedding for j ≤ n (cf. [E2, 3.5.5]). We denote it by
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ε : X• → X and call it the Mayer–Vietoris simplicial resolution of X. The
complex

0 → ε0∗OX0 → ε1∗OX1 → · · · → εk∗OXk → · · · ,
where the differential dk : εk∗OXk → εk+1∗OXk+1 is

∑k+1
j=0(−1)jλ∗j,k+1 for any

k ≥ 0, is denoted by OX• . It is easy to see that OX• is quasi-isomorphic to
OX . By tensoring L, any line bundle on X, to OX• , we obtain a complex

0 → ε0∗L0 → ε1∗L1 → · · · → εk∗Lk → · · · ,

where Ln = ε∗nL. It is denoted by L•. Of course, L• is quasi-isomorphic to L.
We note that Hq(X•,L•) is Hq(X,L•) by the definition and it is obviously
isomorphic to Hq(X,L) for any q ≥ 0 because L• is quasi-isomorphic to L.

Definition 2.10. Let X be a simple normal crossing variety. A stratum of
X is the image on X of some irreducible component of X•. Note that an
irreducible component of X is a stratum of X.

Definition 2.11 (Permissible and normal crossing divisors). Let X
be a simple normal crossing variety. A Cartier divisor D on X is called
permissible if it induces a Cartier divisor D• on X•. This means that Dn =
ε∗nD is a Cartier divisor on Xn for any n. It is equivalent to the condition
that D contains no strata of X in its support. We say that D is a normal

crossing divisor on X if, in the notation of Definition 2.8, we have

ÔD,x ≃ C[[x0, · · · , xN ]]

(x0 · · ·xk, xi1 · · ·xil)

for some {i1, · · · , il} ⊂ {k + 1, · · · , N}. It is equivalent to the condition
that Dn is a normal crossing divisor on Xn for any n in the usual sense.
Furthermore, let D be a normal crossing divisor on a simple normal crossing
variety X. If Dn is a simple normal crossing divisor on Xn for any n, then
D is called a simple normal crossing divisor on X.

The following lemma is easy but important. We will repeatedly use it in
Sections 2.3 and 2.5.

Lemma 2.12. Let X be a simple normal crossing variety and B a permis-

sible R-Cartier R-divisor on X, that is, B is an R-linear combination of

permissible Cartier divisor on X, such that xBy = 0. Let A be a Cartier di-

visor on X. Assume that A ∼R B. Then there exists a Q-Cartier Q-divisor

C on X such that A ∼Q C, xCy = 0, and SuppC = SuppB.
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Sketch of the proof. We can write B = A +
∑

i ri(fi), where fi ∈ Γ(X,K∗X)
and ri ∈ R for any i. Here, KX is the sheaf of total quotient ring of OX .
First, we assume that X is smooth. In this case, the claim is well known
and easy to check. Perturb ri’s suitably. Then we obtain a desired Q-Cartier
Q-divisor C on X. It is an elementary problem of the linear algebra. In the
general case, we take the normalization ε0 : X0 → X and apply the above
result to X0, ε∗0A, ε∗0B, and ε∗0(fi)’s. We note that ε0 : Xi → X is a closed
embedding for any irreducible component Xi of X0. So, we get a desired
Q-Cartier Q-divisor C on X.

Definition 2.13 (Simple normal crossing pair). We say that the pair
(X,B) is a simple normal crossing pair if the following conditions are satis-
fied.

(1) X is a simple normal crossing variety, and

(2) B is an R-Cartier R-divisor whose support is a simple normal crossing
divisor on X.

We say that a simple normal crossing pair (X,B) is embedded if there exists
a closed embedding ι : X → M , where M is a smooth variety of dimension
dimX + 1. We put KX0 + Θ = ε∗0(KX + B), where ε0 : X0 → X is the
normalization of X. From now on, we assume that B is a subboundary R-
divisor. A stratum of (X,B) is an irreducible component of X or the image
of some lc center of (X0,Θ) on X. It is compatible with Definition 2.10 when
B = 0. A Cartier divisor D on a simple normal crossing pair (X,B) is called
permissible with respect to (X,B) if D contains no strata of the pair (X,B).

Remark 2.14. Let (X,B) be a simple normal crossing pair. Assume that X
is smooth. Then (X,B) is embedded. It is because X is a divisor on X ×C,
where C is a smooth curve.

We give a typical example of embedded simple normal crossing pairs.

Example 2.15. Let M be a smooth variety and X a simple normal crossing
divisor onM . Let A be an R-Cartier R-divisor onM such that Supp(X+A) is
simple normal crossing on M and that X and A have no common irreducible
components. We put B = A|X . Then (X,B) is an embedded simple normal
crossing pair.
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The reader will find that it is very useful to introduce the notion of global

embedded simple normal crossing pairs.

Definition 2.16 (Global embedded simple normal crossing pairs).
Let Y be a simple normal crossing divisor on a smooth variety M and let D
be an R-divisor on M such that Supp(D+ Y ) is simple normal crossing and
that D and Y have no common irreducible components. We put BY = D|Y
and consider the pair (Y,BY ). We call (Y,BY ) a global embedded simple

normal crossing pair.

The following lemma is obvious.

Lemma 2.17. Let (X,S + B) be an embedded simple normal crossing pair

such that S + B is a boundary R-divisor, S is reduced, and xBy = 0. Let

M be the ambient space of X and f : N → M the blow-up along a smooth

irreducible component C of Supp(S + B). Let Y be the strict transform of

X on N . Then Y is a simple normal crossing divisor on N . We can write

KY +SY +BY = f ∗(KX +S+B), where SY +BY is a boundary R-Cartier R-

divisor on Y such that SY is reduced and xBY y = 0. In particular, (Y, SY +
BY ) is an embedded simple normal crossing pair. By the construction, we

can easily check the following properties.

(i) SY is the strict transform of S on Y if C ⊂ SuppB,

(ii) BY is the strict transform of B on Y if C ⊂ SuppS,

(iii) the f -image of any stratum of (Y, SY +BY ) is a stratum of (X,S+B),
and

(iv) Rif∗OY = 0 for i > 0 and f∗OY ≃ OX .

As a consequence of Lemma 2.17, we obtain a very useful lemma.

Lemma 2.18. Let (X,BX) be an embedded simple normal crossing pair,

BX a boundary R-divisor, and M the ambient space of X. Then there is a

projective birational morphism f : N → M , which is a sequence of blow-ups

as in Lemma 2.17, with the following properties.

(i) Let Y be the strict transform of X on N . We put KY +BY = f ∗(KX +
BX). Then (Y,BY ) is an embedded simple normal crossing pair. Note

that BY is a boundary R-divisor.
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(ii) f : Y → X is an isomorphism at the generic point of any stratum of

Y . f -image of any stratum of (Y,BY ) is a stratum of (X,BX).

(iii) Rif∗OY = 0 for any i > 0 and f∗OY ≃ OX.

(iv) There exists an R-divisor D on N such that D and Y have no common

irreducible components and Supp(D + Y ) is simple normal crossing

on N , and BY = D|Y . This means that the pair (Y,BY ) is a global

embedded simple normal crossing pair.

The next lemma is also easy to prove.

Lemma 2.19 (cf. [Am1, p.216 embedded log transformation]). Let

X be a simple normal crossing divisor on a smooth variety M and let D be

an R-divisor on M such that Supp(D + X) is simple normal crossing and

that D and X have no common irreducible components. We put B = D|X.

Then (X,B) is a global embedded simple normal crossing pair. Let C be a

smooth stratum of (X,B=1). Let σ : N → M be the blow-up along C. We

denote by Y the reduced structure of the total transform of X in N . we

put KY + BY = f ∗(KX + B), where f = σ|Y . Then we have the following

properties.

(i) (Y,BY ) is an embedded simple normal crossing pair.

(ii) f∗OY ≃ OX and Rif∗OY = 0 for any i > 0.

(iii) The strata of (X,B=1) are exactly the images of the strata of (Y,B=1
Y ).

(iv) σ−1(C) is a maximal (with respect to the inclusion) stratum of (Y,B=1
Y ).

(v) There exists an R-divisor E on N such that Supp(E+Y ) is simple nor-

mal crossing and that E and Y have no common irreducible components

such that BY = E|Y .

(vi) If B is a boundary R-divisor, then so is BY .

In general, normal crossing varieties are much more difficult than simple

normal crossing varieties. We postpone the definition of normal crossing

pairs in Section 2.7 to avoid unnecessary confusion. Let us recall the notion
of semi-ample R-divisors since we often use it in this book.
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2.20 (Semi-ample R-divisor). Let D be an R-Cartier R-divisor on a va-
riety X and π : X → S a proper morphism. Then, D is π-semi-ample if
D ∼R f ∗H , where f : X → Y is a proper morphism over S and H a rel-
atively ample R-Cartier R-divisor on Y . It is not difficult to see that D is
π-semi-ample if and only if D ∼R

∑
i aiDi, where ai is a positive real number

and Di is a π-semi-ample Cartier divisor on X for any i.

In the following sections, we have to treat algebraic varieties with quotient
singularities. All the V -manifolds in this book are obtained as cyclic covers
of smooth varieties whose ramification loci are contained in simple normal
crossing divisors. So, they also have toroidal structures. We collect basic
definitions according to [St, Section 1], which is the best reference for our
purposes.

2.21 (V -manifold). A V -manifold of dimension N is a complex analytic
space that admits an open covering {Ui} such that each Ui is analytically iso-
morphic to Vi/Gi, where Vi ⊂ CN is an open ball and Gi is a finite subgroup
of GL(N,C). In this paper, Gi is always a cyclic group for any i. Let X be

a V -manifold and Σ its singular locus. Then we define Ω̃•X = j∗Ω
•
X−Σ, where

j : X −Σ → X is the natural open immersion. A divisor D on X is called a
divisor with V -normal crossings if locally on X we have (X,D) ≃ (V,E)/G
with V ⊂ CN an open domain, G ⊂ GL(N,C) a small subgroup acting on
V , and E ⊂ V a G-invariant divisor with only normal crossing singularities.
We define Ω̃•X(logD) = j∗Ω

•
X−Σ(logD). Furthermore, if D is Cartier, then

we put Ω̃•X(logD)(−D) = Ω̃•X(logD) ⊗ OX(−D). This complex will play
crucial roles in Sections 2.3 and 2.4.

2.3 Fundamental injectivity theorems

The following proposition is a reformulation of the well-known result by
Esnault–Viehweg (cf. [EV, 3.2. Theorem. c), 5.1. b)]). Their proof in [EV]
depends on the characteristic p methods obtained by Deligne and Illusie.
Here, we give another proof for the later usage. Note that all we want to do
in this section is to generalize the following result for simple normal crossing
pairs.

Proposition 2.22 (Fundamental injectivity theorem I). Let X be a

proper smooth variety and S + B a boundary R-divisor on X such that the
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support of S +B is simple normal crossing, S is reduced, and xBy = 0. Let

L be a Cartier divisor on X and let D be an effective Cartier divisor whose

support is contained in SuppB. Assume that L ∼R KX + S + B. Then the

natural homomorphisms

Hq(X,OX(L)) → Hq(X,OX(L+D)),

which are induced by the inclusion OX → OX(D), are injective for all q.

Proof. We can assume that B is a Q-divisor and L ∼Q KX +S+B by Lemma
2.12. We put L = OX(L−KX−S). Let ν be the smallest positive integer such
that νL ∼ ν(KX + S +B). In particular, νB is an integral Weil divisor. We
take the ν-fold cyclic cover π′ : Y ′ = SpecX

⊕ν−1
i=0 L−i → X associated to the

section νB ∈ |Lν|. More precisely, let s ∈ H0(X,Lν) be a section whose zero
divisor is νB. Then the dual of s : OX → Lν defines a OX -algebra structure
on

⊕ν−1
i=0 L−i. For the details, see, for example, [EV, 3.5. Cyclic covers]. Let

Y → Y ′ be the normalization and π : Y → X the composition morphism.
Then Y has only quotient singularities because the support of νB is simple
normal crossing (cf. [EV, 3.24. Lemma]). We put T = π∗S. The usual

differential d : OY → Ω̃1
Y ⊂ Ω̃1

Y (log T ) gives the differential d : OY (−T ) →
Ω̃1

Y (logT )(−T ). This induces a natural connection π∗(d) : π∗OY (−T ) →
π∗(Ω̃

1
Y (logT )(−T )). It is easy to see that π∗(d) decomposes into ν eigen

components. One of them is ∇ : L−1(−S) → Ω1
X(log(S + B)) ⊗ L−1(−S)

(cf. [EV, 3.2. Theorem. c)]). It is well known and easy to check that the
inclusion Ω•X(log(S + B)) ⊗ L−1(−S − D) → Ω•X(log(S + B)) ⊗ L−1(−S)
is a quasi-isomorphism (cf. [EV, 2.9. Properties]). On the other hand, the
following spectral sequence

Epq
1 = Hq(X,Ωp

X(log(S +B)) ⊗L−1(−S))

=⇒ Hp+q(X,Ω•X(log(S +B)) ⊗ L−1(−S))

degenerates in E1. This follows from the E1-degeneration of

Hq(Y, Ω̃p
Y (logT )(−T )) =⇒ Hp+q(Y, Ω̃•Y (logT )(−T ))

where the right hand side is isomorphic to Hp+q
c (Y − T,C). We will discuss

this E1-degeneration in Section 2.4. For the details, see 2.31 in Section 2.4
below. We note that Ω•X(log(S + B)) ⊗ L−1(−S) is a direct summand of
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π∗(Ω̃
•
Y (log T )(−T )). We consider the following commutative diagram for any

q.

Hq(X,Ω•X(log(S +B)) ⊗ L−1(−S))
α−−−→ Hq(X,L−1(−S))xγ

xβ

Hq(X,Ω•X(log(S +B)) ⊗ L−1(−S −D)) −−−→ Hq(X,L−1(−S −D))

Since γ is an isomorphism by the above quasi-isomorphism and α is surjective
by the E1-degeneration, we obtain that β is surjective. By the Serre duality,
we obtain Hq(X,OX(KX)⊗L(S)) → Hq(X,OX(KX)⊗L(S+D)) is injective
for any q. This means that Hq(X,OX(L)) → Hq(X,OX(L+D)) is injective
for any q.

The next result is a key result of this chapter.

Proposition 2.23 (Fundamental injectivity theorem II). Let (X,S +
B) be a simple normal crossing pair such that X is proper, S+B is a boundary

R-divisor, S is reduced, and xBy = 0. Let L be a Cartier divisor on X and

let D be an effective Cartier divisor whose support is contained in SuppB.

Assume that L ∼R KX + S +B. Then the natural homomorphisms

Hq(X,OX(L)) → Hq(X,OX(L+D)),

which are induced by the inclusion OX → OX(D), are injective for all q.

Proof. We can assume that B is a Q-divisor and L ∼Q KX + S + B by
Lemma 2.12. Without loss of generality, we can assume that X is connected.
Let ε : X• → X be the Mayer–Vietoris simplicial resolution of X. Let
ν be the smallest positive integer such that νL ∼ ν(KX + S + B). We
put L = OX(L − KX − S). We take the ν-fold cyclic cover π′ : Y ′ → X

associated to νB ∈ |Lν| as in the proof of Proposition 2.22. Let Ỹ → Y ′ be

the normalization of Y ′. We can glue Ỹ naturally along the inverse image
of ε1(X

1) ⊂ X and then obtain a connected reducible variety Y and a finite
morphism π : Y → X. For a supplementary argument, see Remark 2.24
below. We can construct the Mayer–Vietoris simplicial resolution ε : Y • → Y
and a natural morphism π• : Y • → X•. Note that Definition 2.9 makes sense
without any modifications though Y has singularities. The finite morphism
π0 : Y 0 → X0 is essentially the same as the finite cover constructed in
Proposition 2.22. Note that the inverse image of an irreducible component
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Xi of X by π0 may be a disjoint union of copies of the finite cover constructed
in the proof of Proposition 2.22. More precisely, let V be any stratum of
X. Then π−1(V ) is not necessarily connected and π : π−1(V ) → V may
be a disjoint union of copies of the finite cover constructed in the proof of
the Proposition 2.22. Since Hq(X•, (L−1(−S − D))•) ≃ Hq(X,L−1(−S −
D)) and Hq(X•, (L−1(−S))•) ≃ Hq(X,L−1(−S)), it is sufficient to see that
Hq(X•, (L−1(−S−D))•) → Hq(X•, (L−1(−S))•) is surjective. First, we note
that the natural inclusion

Ω•Xn(log(Sn +Bn)) ⊗ (L−1(−S −D))n → Ω•Xn(log(Sn +Bn)) ⊗ (L−1(−S))n

is a quasi-isomorphism for any n ≥ 0 (cf. [EV, 2.9. Properties]). So,

Ω•X•(log(S• +B•)) ⊗ (L−1(−S −D))• → Ω•X•(log(S• +B•)) ⊗ (L−1(−S)•)

is a quasi-isomorphism. We put T = π∗S. Then Ω•Xn(log(Sn + Bn)) ⊗
(L−1(−S))n is a direct summand of πn∗Ω̃

•
Y (log T n)(−T n) for any n ≥ 0.

Next, we can check that

Epq
1 = Hq(Y •, Ω̃p

Y •(log T •)(−T •)) =⇒ Hp+q(Y, s(Ω̃•Y •(log T •)(−T •)))

degenerates in E1. We will discuss this E1-degeneration in Section 2.4. See
2.32 in Section 2.4. The right hand side is isomorphic to Hp+q

c (Y − T,C).
Therefore,

Epq
1 = Hq(X•,Ωp

X•(log(S• +B•)) ⊗ (L−1(−S))•)

=⇒ Hp+q(X, s(Ω•X•(log(S• +B•)) ⊗ (L−1(−S))•))

degenerates in E1. Thus, we have the following commutative diagram.

Hq(X, s(Ω•X•(log(S• +B•)) ⊗ (L−1(−S))•))
α−−−→ Hq(X•, (L−1(−S))•)xγ

xβ

Hq(X, s(Ω•X•(log(S• +B•)) ⊗ (L−1(−S −D))•)) −−−→ Hq(X•, (L−1(−S −D))•)

As in the proof of Proposition 2.22, γ is an isomorphism and α is surjective.
Thus, β is surjective. This implies the desired injectivity results.

Remark 2.24. For simplicity, we assume that X = X1 ∪ X2, where X1

and X2 are smooth, and that V = X1 ∩ X2 is irreducible. We consider the
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natural projection p : Ỹ → X. We note that Ỹ = Ỹ1

∐
Ỹ2, where Ỹi is the

inverse image of Xi by p for i = 1 and 2. We put pi = p|eYi
for i = 1 and

2. It is easy to see that p−1
1 (V ) is isomorphic to p−1

2 (V ) over V . We denote
it by W . We consider the following surjective OX-module homomorphism
µ : p∗OeY1

⊕ p∗OeY2
→ p∗OW : (f, g) 7→ f |W − g|W . Let A be the kernel of µ.

Then A is an OX -algebra and π : Y → X is nothing but SpecXA → X. We

can check that π−1(Xi) ≃ Ỹi for i = 1 and 2 and that π−1(V ) ≃W .

Remark 2.25. As pointed out in the introduction, the proof of [Am1, The-
orem 3.1] only implies that the homomorphisms

Hq(X,OX(L− S)) → Hq(X,OX(L− S +D))

are injective for all q. When S = 0, we do not need the mixed Hodge structure
on the cohomology with compact support. The mixed Hodge structure on
the usual singular cohomology is sufficient for the case when S = 0.

We close this section with an easy application of Proposition 2.23. The
following vanishing theorem is the Kodaira vanishing theorem for simple
normal crossing varieties.

Corollary 2.26. Let X be a projective simple normal crossing variety and

L an ample line bundle on X. Then Hq(X,OX(KX)⊗L) = 0 for any q > 0.

Proof. We take a general member B ∈ |Ll| for some l ≫ 0. Then we can find
a Cartier divisor M such that M ∼Q KX + 1

l
B and OX(KX)⊗L ≃ OX(M).

By Proposition 2.23, we obtain injections Hq(X,OX(M)) → Hq(X,OX(M+
mB)) for any q and any positive integer m. Since B is ample, Serre’s van-
ishing theorem implies the desired vanishing theorem.

2.4 E1-degenerations of Hodge to de Rham

type spectral sequences

From 2.27 to 2.29, we recall some well-known results on mixed Hodge struc-
tures. We use the notations in [D2] freely. The basic references on this topic
are [D2, Section 8], [E1, Part II], and [E2, Chapitres 2 and 3]. The recent
book [PS] may be useful. The starting point is the pure Hodge structures on
proper smooth algebraic varieties.
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2.27. (Hodge structures for proper smooth varieties). Let X be a proper
smooth algebraic variety over C. Then the triple (ZX , (Ω

•
X , F ), α), where

Ω•X is the holomorphic de Rham complex with the filtration bête F and
α : CX → Ω•X is the inclusion, is a cohomological Hodge complex (CHC, for
short) of weight zero.

The next one is also a fundamental example. For the details, see [E1, I.1.]
or [E2, 3.5].

2.28. (Mixed Hodge structures for proper simple normal crossing varieties).
Let D be a proper simple normal crossing algebraic variety over C. Let
ε : D• → D be the Mayer–Vietoris simplicial resolution (cf. Definition 2.9).
The following complex of sheaves, denoted by QD• ,

0 → ε0∗QD0 → ε1∗QD1 → · · · → εk∗QDk → · · · ,

is a resolution of QD. More explicitly, the differential dk : εk∗QDk →
εk+1∗QDk+1 is

∑k+1
j=0(−1)jλ∗j,k+1 for any k ≥ 0. For the details, see [E1,

I.1.] or [E2, 3.5.3]. We obtain the resolution Ω•D• of CD as follows,

0 → ε0∗Ω
•
D0 → ε1∗Ω

•
D1 → · · · → εk∗Ω

•
Dk → · · · .

Of course, dk : εk∗Ω
•
Dk → εk+1∗Ω

•
Dk+1 is

∑k+1
j=0(−1)jλ∗j,k+1. Let s(Ω•D•) be the

simple complex associated to the double complex Ω•D• . The Hodge filtration
F on s(Ω•D•) is defined by F p = s(0 → · · · → 0 → ε∗Ω

p
D• → ε∗Ω

p+1
D• → · · · ).

We note that ε∗Ω
p
D• = (0 → ε0∗Ω

p

D0 → ε1∗Ω
p

D1 → · · · → εk∗Ω
p

Dk →
· · · ). There exist natural weight filtrations W ’s on QD• and s(Ω•D•). We
omit the definition of the weight filtrations W ’s on QD• and s(Ω•D•) since
we do not need their explicit descriptions. See [E1, I.1.] or [E2, 3.5.6].
Then (ZD, (QD• ,W ), (s(Ω•D•),W, F )) is a cohomological mixed Hodge com-
plex (CMHC, for short). This CMHC induces a natural mixed Hodge struc-
ture on H•(D,Z).

For the precise definitions of CHC and CMHC (CHMC, in French), see
[D2, Section 8] or [E2, Chapitre 3]. The third example is not so standard
but is indispensable for our injectivity theorems.

2.29. (Mixed Hodge structure on the cohomology with compact support).
Let X be a proper smooth algebraic variety over C and D a simple normal
crossing divisor on X. We consider the mixed cone of QX → QD• with
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suitable shifts of complexes and weight filtrations (for the details, see [E1,
I.3.] or [E2, 3.7.14]). We obtain a complex QX−D• , which is quasi-isomorphic
to j!QX−D, where j : X−D → X is the natural open immersion, and a weight
filtration W on QX−D• . We define in the same way, that is, by taking a cone
of a morphism of complexes Ω•X → Ω•D• , a complex Ω•X−D• with filtrations W
and F . Then we obtain that the triple (j!ZX−D, (QX−D• ,W ), (Ω•X−D• ,W, F ))
is a CMHC. It defines a natural mixed Hodge structure on H•c (X − D,Z).
Since we can check that the complex

0 → Ω•X(logD)(−D) → Ω•X → ε0∗Ω
•
D0

→ ε1∗Ω
•
D1 → · · · → εk∗Ω

•
Dk → · · ·

is exact by direct local calculations, we see that (Ω•X−D• , F ) is quasi-isomorphic
to (Ω•X(logD)(−D), F ) in D+F (X,C), where

F pΩ•X(logD)(−D)

= (0 → · · · → 0 → Ωp
X(logD)(−D) → Ωp+1

X (logD)(−D) → · · · ).

Therefore, the spectral sequence

Epq
1 = Hq(X,Ωp

X(logD)(−D)) =⇒ Hp+q(X,Ω•X(logD)(−D))

degenerates in E1 and the right hand side is isomorphic to Hp+q
c (X −D,C).

From here, we treat mixed Hodge structures on much more complicated
algebraic varieties.

2.30. (Mixed Hodge structures for proper simple normal crossing pairs). Let
(X,D) be a proper simple normal crossing pair over C such thatD is reduced.
Let ε : X• → X be the Mayer–Vietoris simplicial resolution of X. As we saw
in the previous step, we have a CHMC

(jn!ZXn−Dn, (QXn−(Dn)• ,W ), (Ω•Xn−(Dn)• ,W, F ))

on Xn, where jn : Xn −Dn → Xn is the natural open immersion, and that
(Ω•Xn−(Dn)• , F ) is quasi-isomorphic to (Ω•Xn(logDn)(−Dn), F ) inD+F (Xn,C)
for any n ≥ 0. Therefore, by using the Mayer–Vietoris simplicial resolution
ε : X• → X, we can construct a CMHC (j!ZX−D, (KQ,W ), (KC,W, F )) on
X that induces a natural mixed Hodge structure on H•c (X − D,Z). We
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can see that (KC, F ) is quasi-isomorphic to (s(Ω•X•(logD•)(−D•)), F ) in
D+F (X,C), where

F p = s(0 → · · · → 0 → ε∗Ω
p
X•(logD•)(−D•)

→ ε∗Ω
p+1
X• (logD•)(−D•) → · · · ).

We note that Ω•X•(logD•)(−D•) is the double complex

0 → ε0∗Ω
•
X0(logD0)(−D0) → ε1∗Ω

•
X1(logD1)(−D1) → · · ·

→ εk∗Ω
•
Xk(logDk)(−Dk) → · · · .

Therefore, the spectral sequence

Epq
1 = Hq(X•,Ωp

X•(logD•)(−D•)) =⇒ Hp+q(X, s(Ω•X•(logD•)(−D•)))

degenerates in E1 and the right hand side is isomorphic to Hp+q
c (X −D,C).

Let us go to the proof of the E1-degeneration that we already used in the
proof of Proposition 2.22.

2.31 (E1-degeneration for Proposition 2.22). Here, we use the notation
in the proof of Proposition 2.22. In this case, Y has only quotient singu-
larities. Then (ZY , (Ω̃

•
Y , F ), α) is a CHC, where F is the filtration bête and

α : CY → Ω̃•Y is the inclusion. For the details, see [St, (1.6)]. It is easy
to see that T is a divisor with V -normal crossings on Y (see 2.21 or [St,
(1.16) Definition]). We can easily check that Y is singular only over the
singular locus of SuppB. Let ε : T • → T be the Mayer–Vietoris simplicial
resolution. Though T has singularities, Definition 2.9 makes sense without
any modifications. We note that T n has only quotient singularities for any
n ≥ 0 by the construction of π : Y → X. We can also check that the same
construction in 2.28 works with minor modifications and we have a CMHC
(ZT , (QT • ,W ), (s(Ω̃•T •),W, F )) that induces a natural mixed Hodge structure
on H•(T,Z). By the same arguments as in 2.29, we can construct a triple
(j!ZY−T , (QY−T • ,W ), (KC,W, F )), where j : Y − T → Y is the natural open
immersion. It is a CHMC that induces a natural mixed Hodge structure
on H•c (Y − T,Z) and (KC, F ) is quasi-isomorphic to (Ω̃•Y (log T )(−T ), F ) in
D+F (Y,C), where

F pΩ̃•Y (log T )(−T )

= (0 → · · · → 0 → Ω̃p
Y (log T )(−T ) → Ω̃p+1

Y (logT )(−T ) → · · · ).

42



Therefore, the spectral sequence

Epq
1 = Hq(Y, Ω̃p

Y (log T )(−T )) =⇒ Hp+q(Y,Ω•Y (logT )(−T ))

degenerates in E1 and the right hand side is isomorphic to Hp+q
c (Y − T,C).

The final one is the E1-degeneration that we used in the proof of Propo-
sition 2.23. It may be one of the main contributions of this chapter.

2.32 (E1-degeneration for Proposition 2.23). We use the notation in the
proof of Proposition 2.23. Let ε : Y • → Y be the Mayer–Vietoris simplicial
resolution. By the previous step, we can obtain a CHMC

(jn!ZY n−T n, (QY n−(T n)• ,W ), (KC,W, F ))

for each n ≥ 0. Of course, jn : Y n −T n → Y n is the natural open immersion
for any n ≥ 0. Therefore, we can construct a CMHC

(j!ZY−T , (KQ,W ), (KC,W, F ))

on Y . It induces a natural mixed Hodge structure on H•c (Y −T,Z). We note

that (KC, F ) is quasi-isomorphic to (s(Ω̃•Y •(log T •)(−T •)), F ) in D+F (Y,C),
where

F p = s(0 → · · · → 0 → ε∗Ω̃
p
Y •(log T •)(−T •)

→ ε∗Ω̃
p+1
Y • (log T •)(−T •) → · · · ).

See 2.30 above. Thus, the desired spectral sequence

Epq
1 = Hq(Y •, Ω̃p

Y •(logT •)(−T •)) =⇒ Hp+q(Y, s(Ω̃•Y •(log T •)(−T •)))

degenerates in E1. It is what we need in the proof of Proposition 2.23. Note
that Hp+q(Y, s(Ω̃•Y •(log T •)(−T •))) ≃ Hp+q

c (Y − T,C).

2.5 Vanishing and injectivity theorems

The main purpose of this section is to prove Ambro’s theorems (cf. [Am1,
Theorems 3.1 and 3.2]) for embedded simple normal crossing pairs. The next
lemma (cf. [F4, Proposition 1.11]) is missing in the proof of [Am1, Theorem
3.1]. It justifies the first three lines in the proof of [Am1, Theorem 3.1].
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Lemma 2.33 (Relative vanishing lemma). Let f : Y → X be a proper

morphism from a simple normal crossing pair (Y, T +D) such that T +D is

a boundary R-divisor, T is reduced, and xDy = 0. We assume that f is an

isomorphism at the generic point of any stratum of the pair (Y, T+D). Let L
be a Cartier divisor on Y such that L ∼R KY +T +D. Then Rqf∗OY (L) = 0
for q > 0.

Proof. By Lemma 2.12, we can assume that D is a Q-divisor and L ∼Q

KY + T +D. We divide the proof into two steps.

Step 1. We assume that Y is irreducible. In this case, L − (KY + T + D)
is nef and log big over X with respect to the pair (Y, T +D) (see Definition
2.46). Therefore, Rqf∗OY (L) = 0 for any q > 0 by the vanishing theorem
(see, for example, Lemma 4.10).

Step 2. Let Y1 be an irreducible component of Y and Y2 the union of the
other irreducible components of Y . Then we have a short exact sequence
0 → i∗OY1

(−Y2|Y1
) → OY → OY2

→ 0, where i : Y1 → Y is the natural
closed immersion (cf. [Am1, Remark 2.6]). We put L′ = L|Y1

− Y2|Y1
. Then

we have a short exact sequence 0 → i∗OY1
(L′) → OY (L) → OY2

(L|Y2
) → 0

and L′ ∼Q KY1
+T |Y1

+D|Y1
. On the other hand, we can check that L|Y2

∼Q

KY2
+ Y1|Y2

+ T |Y2
+ D|Y2

. We have already known that Rqf∗OY1
(L′) = 0

for any q > 0 by Step 1. By the induction on the number of the irreducible
components of Y , we have Rqf∗OY2

(L|Y2
) = 0 for any q > 0. Therefore,

Rqf∗OY (L) = 0 for any q > 0 by the exact sequence:

· · · → Rqf∗OY1
(L′) → Rqf∗OY (L) → Rqf∗OY2

(L|Y2
) → · · · .

So, we finish the proof of Lemma 2.33.

The following lemma is a variant of Szabó’s resolution lemma (see the
resolution lemma in 1.8).

Lemma 2.34. Let (X,B) be an embedded simple normal crossing pair and D
a permissible Cartier divisor on X. Let M be an ambient space of X. Assume

that there exists an R-divisor A on M such that Supp(A+X) is simple normal

crossing on M and that B = A|X. Then there exists a projective birational

morphism g : N → M from a smooth variety N with the following properties.

Let Y be the strict transform of X on N and f = g|Y : Y → X. Then we

have
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(i) g−1(D) is a divisor on N . Exc(g)∪g−1
∗ (A+X) is simple normal crossing

on N , where Exc(g) is the exceptional locus of g. In particular, Y is a

simple normal crossing divisor on N .

(ii) g and f are isomorphisms outside D, in particular, f∗OY ≃ OX.

(iii) f ∗(D+B) has a simple normal crossing support on Y . More precisely,

there exists an R-divisor A′ on N such that Supp(A′+Y ) is simple nor-

mal crossing on N , A′ and Y have no common irreducible components,

and that A′|Y = f ∗(D +B).

Proof. First, we take a blow-up M1 → M along D. Apply Hironaka’s desin-
gularization theorem to M1 and obtain a projective birational morphism
M2 → M1 from a smooth variety M2. Let F be the reduced divisor that
coincides with the support of the inverse image of D on M2. Apply Szabó’s
resolution lemma to Suppσ∗(A + X) ∪ F on M2 (see, for example, 1.8 or
[F7, 3.5. Resolution lemma]), where σ : M2 → M . Then, we obtain desired
projective birational morphisms g : N → M from a smooth variety N , and
f = g|Y : Y → X, where Y is the strict transform of X on N , such that Y is
a simple normal crossing divisor on N , g and f are isomorphisms outside D,
and f ∗(D+B) has a simple normal crossing support on Y . Since f is an iso-
morphism outside D and D is permissible on X, f is an isomorphism at the
generic point of any stratum of Y . Therefore, every fiber of f is connected
and then f∗OY ≃ OX .

Remark 2.35. In Lemma 2.34, we can directly check that f∗OY (KY ) ≃
OX(KX). By Lemma 5.1, Rqf∗OY (KY ) = 0 for q > 0. Therefore, we obtain
f∗OY ≃ OX and Rqf∗OY = 0 for any q > 0 by the Grothendieck duality.

Here, we treat the compactification problem. It is because we can use the
same technique as in the proof of Lemma 2.34. This lemma plays important
roles in this section.

Lemma 2.36. Let f : Z → X be a proper morphism from an embedded

simple normal crossing pair (Z,B). Let M be the ambient space of Z. As-

sume that there is an R-divisor A on M such that Supp(A + Z) is simple

normal crossing on M and that B = A|Z. Let X be a projective variety

such that X contains X as a Zariski open set. Then there exist a proper

embedded simple normal crossing pair (Z,B) that is a compactification of

(Z,B) and a proper morphism f : Z → X that compactifies f : Z → X.
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Moreover, SuppB ∪ Supp(Z \ Z) is a simple normal crossing divisor on Z,

and Z \ Z has no common irreducible components with B. We note that B
is R-Cartier. Let M , which is a compactification of M , be the ambient space

of (Z,B). Then, by the construction, we can find an R-divisor A on M such

that Supp(A+ Z) is simple normal crossing on M and that B = A|Z .

Proof. Let Z,A ⊂ M be any compactification. By blowing up M inside
Z \Z, we can assume that f : Z → X extends to f : Z → X. By Hironaka’s
desingularization and the resolution lemma, we can assume that M is smooth
and Supp(Z + A) ∪ Supp(M \ M) is a simple normal crossing divisor on
M . It is not difficult to see that the above compactification has the desired
properties.

Remark 2.37. There exists a big trouble to compactify normal crossing
varieties. When we treat normal crossing varieties, we can not directly com-
pactify them. For the details, see [F7, 3.6. Whitney umbrella], especially,
Corollary 3.6.10 and Remark 3.6.11 in [F7]. Therefore, the first two lines in
the proof of [Am1, Theorem 3.2] is nonsense.

It is the time to state the main injectivity theorem (cf. [Am1, Theorem
3.1]) for embedded simple normal crossing pairs. For applications, this for-
mulation seems to be sufficient. We note that we will recover [Am1, Theorem
3.1] in full generality in Section 2.7 (see Theorem 2.53).

Theorem 2.38 (cf. [Am1, Theorem 3.1]). Let (X,S+B) be an embedded

simple normal crossing pair such that X is proper, S + B is a boundary R-

divisor, S is reduced, and xBy = 0. Let L be a Cartier divisor on X and

D an effective Cartier divisor that is permissible with respect to (X,S +B).
Assume the following conditions.

(i) L ∼R KX + S +B +H,

(ii) H is a semi-ample R-Cartier R-divisor, and

(iii) tH ∼R D+D′ for some positive real number t, where D′ is an effective

R-Cartier R-divisor that is permissible with respect to (X,S +B).

Then the homomorphisms

Hq(X,OX(L)) → Hq(X,OX(L+D)),

which are induced by the natural inclusion OX → OX(D), are injective for

all q.
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Proof. First, we use Lemma 2.18. Thus, we can assume that there exists a
divisor A on M , where M is the ambient space of X, such that Supp(A+X)
is simple normal crossing on M and that A|X = S. Apply Lemma 2.34 to an
embedded simple normal crossing pair (X,S) and a divisor Supp(D+D′+B)
on X. Then we obtain a projective birational morphism f : Y → X from an
embedded simple normal crossing variety Y such that f is an isomorphism
outside Supp(D+D′+B), and that the union of the support of f ∗(S +B +
D+D′) and the exceptional locus of f has a simple normal crossing support
on Y . Let B′ be the strict transform of B on Y . We can assume that SuppB′

is disjoint from any strata of Y that are not irreducible components of Y by
taking blow-ups. We write KY + S ′ + B′ = f ∗(KX + S + B) + E, where
S ′ is the strict transform of S, and E is f -exceptional. By the construction
of f : Y → X, S ′ is Cartier and B′ is R-Cartier. Therefore, E is also R-
Cartier. It is easy to see that E+ = pEq ≥ 0. We put L′ = f ∗L + E+

and E− = E+ − E ≥ 0. We note that E+ is Cartier and E− is R-Cartier
because SuppE is simple normal crossing on Y . Since f ∗H is an R>0-linear
combination of semi-ample Cartier divisors, we can write f ∗H ∼R

∑
i aiHi,

where 0 < ai < 1 and Hi is a general Cartier divisor on Y for any i. We put
B′′ = B′ + E− + ε

t
f ∗(D +D′) + (1 − ε)

∑
i aiHi for some 0 < ε ≪ 1. Then

L′ ∼R KY +S ′+B′′. By the construction, xB′′y = 0, the support of S ′+B′′ is
simple normal crossing on Y , and SuppB′′ ⊃ Suppf ∗D. So, Proposition 2.23
implies that the homomorphisms Hq(Y,OY (L′)) → Hq(Y,OY (L′+f ∗D)) are
injective for all q. By Lemma 2.33, Rqf∗OY (L′) = 0 for any q > 0 and it
is easy to see that f∗OY (L′) ≃ OX(L). By the Leray spectral sequence, the
homomorphisms Hq(X,OX(L)) → Hq(X,OX(L + D)) are injective for all
q.

The following theorem is another main theorem of this section. It is
essentially the same as [Am1, Theorem 3.2]. We note that we assume that
(Y, S + B) is a simple normal crossing pair. It is a small but technically
important difference. For the full statement, see Theorem 2.54 below.

Theorem 2.39 (cf. [Am1, Theorem 3.2]). Let (Y, S+B) be an embedded

simple normal crossing pair such that S + B is a boundary R-divisor, S is

reduced, and xBy = 0. Let f : Y → X be a proper morphism and L a Cartier

divisor on Y such that H ∼R L− (KY + S +B) is f -semi-ample.

(i) every non-zero local section of Rqf∗OY (L) contains in its support the

f -image of some strata of (Y, S +B).
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(ii) let π : X → V be a projective morphism and assume that H ∼R f ∗H ′

for some π-ample R-Cartier R-divisor H ′ on X. Then Rqf∗OY (L) is

π∗-acyclic, that is, Rpπ∗R
qf∗OY (L) = 0 for any p > 0.

Proof. Let M be the ambient space of Y . Then, by Lemma 2.18, we can
assume that there exists an R-divisor D on M such that Supp(D + Y ) is
simple normal crossing on M and that D|Y = S +B. Therefore, we can use
Lemma 2.36 in Step 2 of (i) and Step 3 of (ii) below.

(i) We have already proved a very spacial case in Lemma 2.33. The
argument in Step 1 is not new and it is well known.

Step 1. First, we assume that X is projective. We can assume that H is
semi-ample by replacing L (resp. H) with L+f ∗A′ (resp. H+f ∗A′), where A′

is a very ample Cartier divisor. Assume that Rqf∗OY (L) has a local section
whose support does not contain the image of any (Y, S +B)-stratum. Then
we can find a very ample Cartier divisor A with the following properties.

(a) f ∗A is permissible with respect to (Y, S +B), and

(b) Rqf∗OY (L) → Rqf∗OY (L) ⊗OX(A) is not injective.

We can assume that H − f ∗A is semi-ample by replacing L (resp. H) with
L+f ∗A (resp. H+f ∗A). If necessary, we replace L (resp. H) with L+f ∗A′′

(resp. H + f ∗A′′), where A′′ is a very ample Cartier divisor. Then, we have
H0(X,Rqf∗OY (L)) ≃ Hq(Y,OY (L)) and H0(X,Rqf∗OY (L) ⊗ OX(A)) ≃
Hq(Y,OY (L+ f ∗A)). We obtain that

H0(X,Rqf∗OY (L)) → H0(X,Rqf∗OY (L) ⊗OX(A))

is not injective by (b) if A′′ is sufficiently ample. So, Hq(Y,OY (L)) →
Hq(Y,OY (L+ f ∗A)) is not injective. It contradicts Theorem 2.38. We finish
the proof when X is projective.

Step 2. Next, we assume that X is not projective. Note that the problem
is local. So, we can shrink X and assume that X is affine. By the argument
similar to the one in Step 1 in the proof of (ii) below, we can assume that H is
a semi-ample Q-Cartier Q-divisor. We compactify X and apply Lemma 2.36.
Then we obtain a compactification f : Y → X of f : Y → X. Let H be the
closure ofH on Y . IfH is not a semi-ample Q-Cartier Q-divisor, then we take
blowing-ups of Y inside Y \ Y and obtain a semi-ample Q-Cartier Q-divisor
H on Y such that H|Y = H . Let L (resp. B, S) be the closure of L (resp. B,
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S) on Y . We note that H ∼R L− (KY + S + B) does not necessarily hold.
We can write H +

∑
i ai(fi) = L− (KY + S +B), where ai is a real number

and fi ∈ Γ(Y,K∗Y ) for any i. We put E = H+
∑

i ai(fi)−(L−(KY +S+B)).
We replace L (resp. B) with L+ pEq (resp. B+ {−E}). Then we obtain the
desired property of Rqf ∗OY (L) since X is projective. We note that SuppE
is in Y \ Y . So, we finish the whole proof.

(ii) We divide the proof into three steps.

Step 1. We assume that dimV = 0. The following arguments are well
known and standard. We describe them for the reader’s convenience. In
this case, we can write H ′ ∼R H ′1 + H ′2, where H ′1 (resp. H ′2) is a π-ample
Q-Cartier Q-divisor (resp. π-ample R-Cartier R-divisor) on X. So, we can
write H ′2 ∼R

∑
i aiHi, where 0 < ai < 1 and Hi is a general very ample

Cartier divisor on X for any i. Replacing B (resp. H ′) with B +
∑

i aif
∗Hi

(resp. H ′1), we can assume that H ′ is a π-ample Q-Cartier Q-divisor. We take
a general member A ∈ |mH ′|, where m is a sufficiently large and divisible
integer, such that A′ = f ∗A and Rqf∗OY (L + A′) is π∗-acyclic for all q. By
(i), we have the following short exact sequences,

0 → Rqf∗OY (L) → Rqf∗OY (L+ A′) → Rqf∗OA′(L+ A′) → 0.

for any q. Note that Rqf∗OA′(L+A′) is π∗-acyclic by induction on dimX and
Rqf∗OY (L+ A′) is also π∗-acyclic by the above assumption. Thus, Epq

2 = 0
for p ≥ 2 in the following commutative diagram of spectral sequences.

Epq
2 = Rpπ∗R

qf∗OY (L)

ϕpq

��

+3 Rp+q(π ◦ f)∗OY (L)

ϕp+q

��

E
pq

2 = Rpπ∗R
qf∗OY (L+ A′) +3 Rp+q(π ◦ f)∗OY (L+ A′)

Since ϕ1+q is injective by Theorem 2.38, E1q
2 → R1+q(π◦f)∗OY (L) is injective

by the fact that Epq
2 = 0 for p ≥ 2, and E

1q

2 = 0 by the above assumption,
we have E1q

2 = 0. This implies that Rpπ∗R
qf∗OY (L) = 0 for any p > 0.

Step 2. We assume that V is projective. By replacing H ′ (resp. L) with
H ′ + π∗G (resp. L + (π ◦ f)∗G), where G is a very ample Cartier divisor
on V , we can assume that H ′ is an ample R-Cartier R-divisor. By the
same argument as in Step 1, we can assume that H ′ is ample Q-Cartier Q-
divisor and H ∼Q f ∗H ′. If G is a sufficiently ample Cartier divisor on V ,
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Hk(V,Rpπ∗R
qf∗OY (L)⊗G) = 0 for any k ≥ 1, H0(V,Rpπ∗R

qf∗OY (L)⊗G) ≃
Hp(X,Rqf∗OY (L)⊗π∗G), and Rpπ∗R

qf∗OY (L)⊗G is generated by its global
sections. Since H + f ∗π∗G ∼R L + f ∗π∗G− (KY + S + B), H + f ∗π∗G ∼Q

f ∗(H ′ + π∗G), and H ′ + π∗G is ample, we can apply Step 1 and obtain
Hp(X,Rqf∗OY (L+ f ∗π∗G)) = 0 for any p > 0. Thus, Rpπ∗R

qf∗OY (L) = 0
for any p > 0 by the above arguments.

Step 3. When V is not projective, we shrink V and assume that V is affine.
By the same argument as in Step 1 above, we can assume thatH ′ is Q-Cartier.
We compactify V and X, and can assume that V and X are projective. By
Lemma 2.36, we can reduce it to the case when V is projective. This step
is essentially the same as Step 2 in the proof of (i). So, we omit the details
here.

We finish the whole proof of (ii).

Remark 2.40. In Theorem 2.38, if X is smooth, then Proposition 2.22 is
enough for the proof of Theorem 2.38. In the proof of Theorem 2.39, if Y
is smooth, then Theorem 2.38 for a smooth X is sufficient. Lemmas 2.33,
2.34, and 2.36 are easy and well known for smooth varieties. Therefore, the
reader can find that our proof of Theorem 2.39 becomes much easier if we
assume that Y is smooth. Ambro’s original proof of [Am1, Theorem 3.2 (ii)]
used embedded simple normal crossing pairs even when Y is smooth (see (b)
in the proof of [Am1, Theorem 3.2 (ii)]). It may be a technically important
difference. I could not follow Ambro’s original argument in (a) in the proof
of [Am1, Theorem 3.2 (ii)].

Remark 2.41. It is easy to see that Theorem 2.38 is a generalization of
Kollár’s injectivity theorem. Theorem 2.39 (i) (resp. (ii)) is a generalization
of Kollár’s torsion-free (resp. vanishing) theorem.

We treat an easy vanishing theorem for lc pairs as an application of
Theorem 2.39 (ii). It seems to be buried in [Am1]. We note that we do not
need the notion of embedded simple normal crossing pairs to prove Theorem
2.42. See Remark 2.40.

Theorem 2.42 (Kodaira vanishing theorem for lc pairs). Let (X,B)
be an lc pair such that B is a boundary R-divisor. Let L be a Q-Cartier Weil

divisor on X such that L − (KX + B) is π-ample, where π : X → V is a

projective morphism. Then Rqπ∗OX(L) = 0 for any q > 0.
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Proof. Let f : Y → X be a log resolution of (X,B) such that KY = f ∗(KX +
B) +

∑
i aiEi with ai ≥ −1 for any i. We can assume that

∑
iEi ∪ Suppf ∗L

is a simple normal crossing divisor on Y . We put E =
∑

i aiEi and F =∑
aj=−1(1−bj)Ej , where bj = multEj

{f ∗L}. We note that A = L−(KX +B)

is π-ample by the assumption. So, we have f ∗A = f ∗L − f ∗(KX + B) =
pf ∗L+E + Fq− (KY + F + {−(f ∗L+E + F )}). We can easily check that
f∗OY (pf ∗L+E+Fq) ≃ OX(L) and that F +{−(f ∗L+E+F )} has a simple
normal crossing support and is a boundary R-divisor on Y . By Theorem 2.39
(ii), we obtain that OX(L) is π∗-acyclic. Thus, we have Rqπ∗OX(L) = 0 for
any q > 0.

We note that Theorem 2.42 contains a complete form of [Kv2, Theorem
0.3] as a corollary. For the related topics, see [KSS, Corollary 1.3].

Corollary 2.43 (Kodaira vanishing theorem for lc varieties). Let X
be a projective lc variety and L an ample Cartier divisor on X. Then

Hq(X,OX(KX + L)) = 0

for any q > 0. Furthermore, if we assume that X is Cohen–Macaulay, then

Hq(X,OX(−L)) = 0 for any q < dimX.

Remark 2.44. We can see that Corollary 2.43 is contained in [F4, Theorem
2.6], which is a very special case of Theorem 2.39 (ii). I forgot to state
Corollary 2.43 explicitly in [F4]. There, we do not need embedded simple
normal crossing pairs. We note that there are typos in the proof of [F4,
Theorem 2.6]. In the commutative diagram, Rif∗ωX(D)’s should be replaced
by Rjf∗ωX(D)’s.

We close this section with an easy example.

Example 2.45. Let X be a projective lc threefold which has the following
properties: (i) there exists a projective birational morphism f : Y → X from
a smooth projective threefold, and (ii) the exceptional locus E of f is an
Abelian surface with KY = f ∗KX − E. For example, X is a cone over a
normally projective Abelian surface in PN and f : Y → X is the blow-up
at the vertex of X. Let L be an ample Cartier divisor on X. By the Leray
spectral sequence, we have

0 → H1(X, f∗f
∗OX(−L)) → H1(Y, f ∗OX(−L)) → H0(X,R1f∗f

∗OX(−L))

→ H2(X, f∗f
∗OX(−L)) → H2(Y, f ∗OX(−L)) → · · · .
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Therefore, we obtain

H2(X,OX(−L)) ≃ H0(X,OX(−L) ⊗ R1f∗OY ),

because H1(Y, f ∗OX(−L)) = H2(Y, f ∗OX(−L)) = 0 by the Kawamata–
Viehweg vanishing theorem. On the other hand, we have Rqf∗OY ≃ Hq(E,OE)
for any q > 0 since Rqf∗OY (−E) = 0 for every q > 0. Thus, H2(X,OX(−L)) ≃
C2. In particular, H2(X,OX(−L)) 6= 0. We note that X is not Cohen–
Macaulay. In the above example, if we assume that E is a K3-surface, then
Hq(X,OX(−L)) = 0 for q < 3 and X is Cohen–Macaulay. For the details,
see the subsection 4.3.1, especially, Lemma 4.37.

2.6 Some further generalizations

Here, we treat some generalizations of Theorem 2.39. First, we introduce
the notion of nef and log big (resp. nef and log abundant) divisors. See also
Definition 3.37.

Definition 2.46. Let f : (Y,B) → X be a proper morphism from a simple
normal crossing pair (Y,B) such that B is a subboundary. Let π : X → V
be a proper morphism and H an R-Cartier R-divisor on X. We say that H
is nef and log big (resp. nef and log abundant) over V if and only if H|C is nef
and big (resp. nef and abundant) over V for any C, where C is the image of
a stratum of (Y,B). When (X,BX) is an lc pair, we choose a log resolution
of (X,BX) to be f : (Y,B) → X, where KY +B = f ∗(KX +BX).

We can generalize Theorem 2.39 as follows. It is [Am1, Theorem 7.4] for
embedded simple normal crossing pairs. His idea of the proof is very clever.

Theorem 2.47 (cf. [Am1, Theorem 7.4]). Let f : (Y, S + B) → X be

a proper morphism from an embedded simple normal crossing pair such that

S + B is a boundary R-divisor, S is reduced, and xBy = 0. Let L be a

Cartier divisor on Y and π : X → V a proper morphism. Assume that

f ∗H ∼R L− (KY + S +B), where H is nef and log big over V . Then

(i) every non-zero local section of Rqf∗OY (L) contains in its support the

f -image of some strata of (Y, S +B), and

(ii) Rqf∗OY (L) is π∗-acyclic.
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Proof. We note that we can assume that V is affine without loss of generality.
By using Lemma 2.18, we can assume that there exists a divisor D on M ,
where M is the ambient space of Y , such that Supp(D+Y ) is simple normal
crossing on M and that D|Y = S +B.

Step 1. We assume that each stratum of (Y, S + B) dominates some irre-
ducible component of X. By taking the Stein factorization, we can assume
that f has connected fibers. Then we can assume that X is irreducible and
each stratum of (Y, S + B) dominates X. By Chow’s lemma, there exists
a projective birational morphism µ : X ′ → X such that π′ : X ′ → V is
projective. By taking blow-ups ϕ : Y ′ → Y that is an isomorphism over the
generic point of any stratum of (Y, S+B), we have the following commutative
diagram.

Y ′
ϕ−−−→ Y

g

y
yf

X ′ −−−→
µ

X

Then, we can write

KY ′ + S ′ +B′ = ϕ∗(KY + S +B) + E,

where

(1) (Y ′, S ′ + B′) is a global embedded simple normal crossing pair such
that S ′ +B′ is a boundary R-divisor, S ′ is reduced, and xB′y = 0.

(2) E is an effective ϕ-exceptional Cartier divisor.

(3) Each stratum of (Y ′, S ′ +B′) dominates X ′.

We note that each stratum of (Y, S +B) dominates X. Therefore,

ϕ∗L+ E ∼R KY ′ + S ′ +B′ + ϕ∗f ∗H.

We note that ϕ∗OY ′(ϕ∗L+E) ≃ OY (L) and Riϕ∗OY ′(ϕ∗L+E) = 0 for any
i > 0 by Theorem 2.39 (i). Thus, we can assume that ϕ : Y ′ → Y is an
identity, that is, we have

Y Y

g

y
yf

X ′ −−−→
µ

X.
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We put F = Rqg∗OY (L). Since µ∗H is nef and big over V and π′ : X ′ → V
is projective, we can write µ∗H = E+A, where A is a π′-ample R-divisor on
X ′ and E is an effective R-divisor. By the same arguments as above, we take
some blow-ups and can assume that (Y, S +B + g∗E) is a global embedded
simple normal crossing pair. If k ≫ 1, then xB + 1

k
g∗Ey = 0,

µ∗H =
1

k
E +

1

k
A+

k − 1

k
µ∗H,

and
1

k
A +

k − 1

k
µ∗H

is π′-ample. Thus, F is µ∗-acyclic and (π ◦µ)∗ = π′∗-acyclic by Theorem 2.39
(ii). We note that

L−
(
KY + S +B +

1

k
g∗E

)
∼R g

∗
(1

k
A+

k − 1

k
µ∗H

)
.

So, we have Rqf∗OY (L) ≃ µ∗F and Rqf∗OY (L) is π∗-acyclic. It is easy to
see that F is torsion-free by Theorem 2.39 (i). Therefore, Rqf∗OY (L) is
also torsion-free. Thus, we finish the proof when each stratum of (Y, S +B)
dominates some irreducible component of X.

Step 2. We treat the general case by induction on dim f(Y ). By taking
embedded log transformation (see Lemma 2.19), we can decompose Y = Y ′∪
Y ′′ as follows: Y ′ is the union of all strata of (Y, S+B) that are not mapped
to irreducible components of X and Y ′′ = Y − Y ′. We put KY ′′ + BY ′′ =
(KY + S + B)|Y ′′ − Y ′|Y ′′ . Then f : (Y ′′, BY ′′) → X and L′′ = L|Y ′′ − Y ′|Y ′′

satisfy the assumption in Step 1. We consider the following short exact
sequence

0 → OY ′′(L′′) → OY (L) → OY ′(L) → 0.

By taking Rqf∗, we have short exact sequence

0 → Rqf∗OY ′′(L′′) → Rqf∗OY (L) → Rqf∗OY ′(L) → 0

for any q by Step 1. It is because the connecting homomorphisms Rqf∗OY ′(L) →
Rq+1f∗OY ′′(L′′) are zero maps by Step 1. Since (i) and (ii) hold for the first
and third members by Step 1 and by induction on dimension, respectively,
they also hold for Rqf∗OY (L).

So, we finish the proof.
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In Step 2 in the proof of Theorem 2.47, we used the embedded log trans-
formation and the dévissage (see [Am1, Remark 2.6]). So, we need the notion
of embedded simple normal crossing pairs to prove Theorem 2.47 even when
Y is smooth. It is a key point.

As a corollary of Theorem 2.47, we can prove the following vanishing
theorem, which is stated implicitly in the introduction of [Am1]. It is the
culmination of the works of several authors: Kawamata, Viehweg, Nadel,
Reid, Fukuda, Ambro, and many others (cf. [KMM, Theorem 1-2-5]).

Theorem 2.48. Let (X,B) be an lc pair such that B is a boundary R-divisor

and let L be a Q-Cartier Weil divisor on X. Assume that L − (KX + B)
is nef and log big over V , where π : X → V is a proper morphism. Then

Rqπ∗OX(L) = 0 for any q > 0.

As a special case, we have the Kawamata–Viehweg vanishing theorem.

Corollary 2.49 (Kawamata–Viehweg vanishing theorem). Let (X,B)
be a klt pair and let L be a Q-Cartier Weil divisor on X. Assume that

L− (KX +B) is nef and big over V , where π : X → V is a proper morphism.

Then Rqπ∗OX(L) = 0 for any q > 0.

The proof of Theorem 2.42 works for Theorem 2.48 without any changes
if we adopt Theorem 2.47. We add one example.

Example 2.50. Let Y be a projective surface which has the following prop-
erties: (i) there exists a projective birational morphism f : X → Y from
a smooth projective surface X, and (ii) the exceptional locus E of f is an
elliptic curve with KX +E = f ∗KY . For example, Y is a cone over a smooth
plane cubic curve and f : X → Y is the blow-up at the vertex of Y . We
note that (X,E) is a plt pair. Let H be an ample Cartier divisor on Y . We
consider a Cartier divisor L = f ∗H +KX +E on X. Then L− (KX +E) is
nef and big, but not log big. By the short exact sequence

0 → OX(f ∗H +KX) → OX(f ∗H +KX + E) → OE(KE) → 0,

we obtain

R1f∗OX(f ∗H +KX + E) ≃ H1(E,OE(KE)) ≃ C(P ),

where P = f(E). By the Leray spectral sequence, we have

0 → H1(Y, f∗OX(KX + E) ⊗OY (H)) → H1(X,OX(L)) → H0(Y,C(P ))

→ H2(Y, f∗OX(KX + E) ⊗OY (H)) → · · · .
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If H is sufficiently ample, then H1(X,OX(L)) ≃ H0(Y,C(P )) ≃ C(P ). In
particular, H1(X,OX(L)) 6= 0.

Remark 2.51. In Example 2.50, there exists an effective Q-divisor B on X
such that L− 1

k
B is ample for any k > 0 by Kodaira’s lemma. Since L·E = 0,

we have B · E < 0. In particular, (X,E + 1
k
B) is not lc for any k > 0. This

is the main reason why H1(X,OX(L)) 6= 0. If (X,E + 1
k
B) were lc, then the

ampleness of L− (KX + E + 1
k
B) would imply H1(X,OX(L)) = 0.

We modify the proof of Theorem 2.47. Then we can easily obtain the
following generalization of Theorem 2.39 (i). We leave the details for the
reader’s exercise.

Theorem 2.52. Let f : (Y, S + B) → X be a proper morphism from an

embedded simple normal crossing pair such that S + B is a boundary, S is

reduced, and xBy = 0. Let L be a Cartier divisor on Y and π : X → V a

proper morphism. Assume that f ∗H ∼R L− (KY + S + B), where H is nef

and log abundant over V . Then, every non-zero local section of Rqf∗OY (L)
contains in its support the f -image of some strata of (Y, S +B).

Sketch of the proof. In Step 1 in the proof of Theorem 2.47, we can write
µ∗H = E + A, where E is an effective R-divisor such that kµ∗H − E is
π′-semi-ample for any positive integer k (cf. [EV, 5.11. Lemma]). Therefore,
Theorem 2.52 holds when each stratum of (Y, S + B) dominates some irre-
ducible component of X. Step 2 in the proof of Theorem 2.47 works without
any changes.

2.7 From SNC pairs to NC pairs

In this section, we recover Ambro’s theorems from Theorems 2.38 and 2.39.
We repeat Ambro’s statements for the reader’s convenience.

Theorem 2.53 (cf. [Am1, Theorem 3.1]). Let (X,S+B) be an embedded

normal crossing pair such that X is proper, S+B is a boundary R-divisor, S
is reduced, and xBy = 0. Let L be a Cartier divisor on X and D an effective

Cartier divisor that is permissible with respect to (X,S + B). Assume the

following conditions.

(i) L ∼R KX + S +B +H,
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(ii) H is a semi-ample R-Cartier R-divisor, and

(iii) tH ∼R D+D′ for some positive real number t, where D′ is an effective

R-Cartier R-divisor that is permissible with respect to (X,S +B).

Then the homomorphisms

Hq(X,OX(L)) → Hq(X,OX(L+D)),

which are induced by the natural inclusion OX → OX(D), are injective for

all q.

Theorem 2.54 (cf. [Am1, Theorem 3.2]). Let (Y, S+B) be an embedded

normal crossing pair such that S +B is a boundary R-divisor, S is reduced,

and xBy = 0. Let f : Y → X be a proper morphism and L a Cartier divisor

on Y such that H ∼R L− (KY + S +B) is f -semi-ample.

(i) every non-zero local section of Rqf∗OY (L) contains in its support the

f -image of some strata of (Y, S +B).

(ii) let π : X → V be a projective morphism and assume that H ∼R f ∗H ′

for some π-ample R-Cartier R-divisor H ′ on X. Then Rqf∗OY (L) is

π∗-acyclic, that is, Rpπ∗R
qf∗OY (L) = 0 for any p > 0.

Before we go to the proof, let us recall the definition of normal cross-

ing pairs, which is a slight generalization of Definition 2.13. The following
definition is the same as [Am1, Definition 2.3] though it may look different.

Definition 2.55 (Normal crossing pair). Let X be a normal crossing
variety. We say that a reduced divisor D on X is normal crossing if, in the
notation of Definition 2.8, we have

ÔD,x ≃ C[[x0, · · · , xN ]]

(x0 · · ·xk, xi1 · · ·xil)

for some {i1, · · · , il} ⊂ {k + 1, · · · , N}. We say that the pair (X,B) is a
normal crossing pair if the following conditions are satisfied.

(1) X is a normal crossing variety, and

(2) B is an R-Cartier R-divisor whose support is normal crossing on X.
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We say that a normal crossing pair (X,B) is embedded if there exists a closed
embedding ι : X → M , where M is a smooth variety of dimension dimX+1.
We put KX0 + Θ = η∗(KX + B), where η : X0 → X is the normalization of
X. From now on, we assume that B is a subboundary R-divisor. A stratum

of (X,B) is an irreducible component of X or the image of some lc center of
(X0,Θ) on X. A Cartier divisor D on a normal crossing pair (X,B) is called
permissible with respect to (X,B) if D contains no strata of the pair (X,B).

The following three lemmas are easy to check. So, we omit the proofs.

Lemma 2.56. Let X be a normal crossing divisor on a smooth variety M .

Then there exists a sequence of blow-ups Mk → Mk−1 → · · · → M0 = M
with the following properties.

(i) σi+1 : Mi+1 → Mi is the blow-up along a smooth stratum of Xi for any

i ≥ 0,

(ii) X0 = X and Xi+1 is the inverse image of Xi with the reduced structure

for any i ≥ 0, and

(iii) Xk is a simple normal crossing divisor on Mk.

For each step σi+1, we can directly check that σi+1∗OXi+1
≃ OXi

and Rqσi+1∗OXi+1
=

0 for any i ≥ 0 and q ≥ 1. Let B be an R-Cartier R-divisor on X such

that SuppB is normal crossing. We put B0 = B and KXi+1
+ Bi+1 =

σ∗i+1(KXi
+ Bi) for all i ≥ 0. Then it is obvious that Bi is an R-Cartier

R-divisor and SuppBi is normal crossing on Xi for any i ≥ 0. We can also

check that Bi is a boundary R-divisor (resp. Q-divisor) for any i ≥ 0 if so is

B. If B is a boundary, then the σi+1-image of any stratum of (Xi+1, Bi+1) is

a stratum of (Xi, Bi).

Remark 2.57. Each step in Lemma 2.56 is called embedded log transforma-

tion in [Am1, Section 2]. See also Lemma 2.19.

Lemma 2.58. Let X be a simple normal crossing divisor on a smooth variety

M . Let S+B be a boundary R-Cartier R-divisor on X such that Supp(S+B)
is normal crossing, S is reduced, and xBy = 0. Then there exists a sequence

of blow-ups Mk →Mk−1 → · · · → M0 = M with the following properties.

(i) σi+1 : Mi+1 → Mi is the blow-up along a smooth stratum of (Xi, Si)
that is contained in Si for any i ≥ 0,
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(ii) we put X0 = X, S0 = S, and B0 = B, and Xi+1 is the strict transform

of Xi for any i ≥ 0,

(iii) we define KXi+1
+ Si+1 + Bi+1 = σ∗i+1(KXi

+ Si + Bi) for any i ≥ 0,
where Bi+1 is the strict transform of Bi on Xi+1,

(iv) the σi+1-image of any stratum of (Xi+1, Si+1 + Bi+1) is a stratum of

(Xi, Si +Bi), and

(v) Sk is a simple normal crossing divisor on Xk.

For each step σi+1, we can easily check that σi+1∗OXi+1
≃ OXi

and Rqσi+1∗OXi+1
=

0 for any i ≥ 0 and q ≥ 1. We note that Xi is simple normal crossing,

Supp(Si +Bi) is normal crossing on Xi, and Si is reduced for any i ≥ 0.

Lemma 2.59. Let X be a simple normal crossing divisor on a smooth variety

M . Let S+B be a boundary R-Cartier R-divisor on X such that Supp(S+B)
is normal crossing, S is reduced and simple normal crossing, and xBy = 0.
Then there exists a sequence of blow-ups Mk → Mk−1 → · · · → M0 = M
with the following properties.

(i) σi+1 : Mi+1 →Mi is the blow-up along a smooth stratum of (Xi, SuppBi)
that is contained in SuppBi for any i ≥ 0,

(ii) we put X0 = X, S0 = S, and B0 = B, and Xi+1 is the strict transform

of Xi for any i ≥ 0,

(iii) we define KXi+1
+ Si+1 + Bi+1 = σ∗i+1(KXi

+ Si + Bi) for any i ≥ 0,
where Si+1 is the strict transform of Si on Xi+1, and

(iv) Supp(Sk +Bk) is a simple normal crossing divisor on Xk.

We note that Xi is simple normal crossing on Mi and Supp(Si + Bi) is

normal crossing on Xi for any i ≥ 0. We can easily check that xBiy ≤ 0
for any i ≥ 0. The composition morphism Mk → M is denoted by σ. Let L
be any Cartier divisor on X. We put E = p−Bkq. Then E is an effective

σ-exceptional Cartier divisor on Xk and we obtain σ∗OXk
(σ∗L+E) ≃ OX(L)

and Rqσ∗OXk
(σ∗L + E) = 0 for any q ≥ 1 by Theorem 2.39 (i). We note

that σ∗L + E − (KXk
+ Sk + {Bk}) = σ∗L − σ∗(KX + S + B) is R-linearly

trivial over X and σ is an isomorphism at the generic point of any stratum

of (Xk, Sk + {Bk}).
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Let us go to the proof of Theorems 2.53 and 2.54.

Proof of Theorems 2.53 and 2.54. We take a sequence of blow-ups and ob-
tain a projective morphism σ : X ′ → X (resp. σ : Y ′ → Y ) from an embedded
simple normal crossing variety X ′ (resp. Y ′) in Theorem 2.53 (resp. Theorem
2.54) by Lemma 2.56. We can replace X (resp. Y ) and L with X ′ (resp. Y ′)
and σ∗L by Leray’s spectral sequence. So, we can assume that X (resp. Y )
is simple normal crossing. Similarly, we can assume that S is simple normal
crossing on X (resp. Y ) by applying Lemma 2.58. Finally, we use Lemma
2.59 and obtain a birational morphism σ : (X ′, S ′ + B′) → (X,S + B)
(resp. (Y ′, S ′+B′) → (Y, S+B)) from an embedded simple normal crossing
pair (X ′, S ′+B′) (resp. (Y ′, S ′+B′)) such thatKX′+S ′+B′ = σ∗(KX+S+B)
(resp. KY ′ +S ′+B′ = σ∗(KY +S+B)) as in Lemma 2.59. By Lemma 2.59,
we can replace (X,S + B) (resp. (Y, S + B)) and L with (X ′, S ′ + {B′})
(resp. (Y ′, S ′+ {B′})) and σ∗L+ p−B′q by Leray’s spectral sequence. Then
we apply Theorem 2.38 (resp. Theorem 2.39). Thus, we obtain Theorems
2.53 and 2.54.

2.8 Examples

In this section, we treat various supplementary examples.

2.60 (Examples for Section 2.3). Let X be a smooth projective variety
and let M be a Cartier divisor on X such that N ∼ mM , where N is a
simple normal crossing divisor on X and m ≥ 2. We put B = 1

m
N and

L = KX +M . In this setting, we can apply Proposition 2.22. If M is semi-
ample, then the existence of such N and m is obvious by Bertini. Here, we
give explicit examples where M is not nef.

Example 2.61. We consider the P1-bundle π : X = PP1(OP1⊕OP1(2)) → P1.
Let E and G be the sections of π such that E2 = −2 and G2 = 2. We note
that E + 2F ∼ G, where F is a fiber of π. We consider M = E + F . Then
2M = 2E + 2F ∼ E +G. In this case, M · E = −1. In particular, M is not
nef. Furthermore, we can easily check that H i(X,OX(KX +M)) = 0 for any
i. So, it is not interesting to apply Proposition 2.22.

Example 2.62. We consider the P1-bundle π : Y = PP1(OP1⊕OP1(4)) → P1.
Let G (resp. E) be the positive (resp. negative) section of π, that is, the
section corresponding to the projection OP1 ⊕OP1(4) → OP1(4) (resp. OP1 ⊕
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OP1(4) → OP1). We put M ′ = −F + 2G, where F is a fiber of π. Then M ′

is not nef and 2M ′ ∼ G + E + F1 + F2 + H , where F1 and F2 are distinct
fibers of π, and H is a general member of the free linear system |2G|. Note
that G + E + F1 + F2 + H is a reduced simple normal crossing divisor on
Y . We put X = Y × C, where C is an elliptic curve, and M = p∗M ′, where
p : X → Y is the projection. Then X is a smooth projective variety and M
is a Cartier divisor on X. We note that M is not nef and that we can find a
reduced simple normal crossing divisor such that N ∼ 2M . By the Künneth
formula, we have

H1(X,OX(KX +M)) ≃ H0(P1,OP1(1)) ≃ C2.

Therefore, X with L = KX +M satisfies the conditions in Proposition 2.22
and we have H1(X,OX(L)) 6= 0.

2.63 (Kodaira vanishing theorem for singular varieties). The follow-
ing example is due to Sommese (cf. [So, (0.2.4) Example]). It shows that the
Kodaira vanishing theorem does not necessarily hold for varieties with non-lc
singularities. Therefore, Corollary 2.43 is sharp.

Proposition 2.64 (Sommese). We consider the P3-bundle

π : Y = PP1(OP1 ⊕OP1(1)⊕3) → P1

over P1. Let M = OY (1) be the tautological line bundle of π : Y → P1.

We take a general member X of the linear system |(M ⊗ π∗OP1(−1))⊗4|.
Then X is a normal projective Gorenstein threefold and X is not lc. We

put L = M ⊗ π∗OP1(1). Then L is ample. In this case, we can check that

H2(X,L−1) = C. By the Serre duality, H1(X,OX(KX)⊗L) = C. Therefore,

the Kodaira vanishing theorem does not hold for X.

Proof. We consider the following short exact sequence

0 → L−1(−X) → L−1 → L−1|X → 0.

Then we have the long exact sequence

· · · → H i(Y,L−1(−X)) → H i(Y,L−1) → H i(X,L−1)

→ H i+1(Y,L−1(−X)) → · · · .
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Since H i(Y,L−1) = 0 for i < 4 by the original Kodaira vanishing theorem,
we obtain that H2(X,L−1) = H3(Y,L−1(−X)). Therefore, it is sufficient to
prove that H3(Y,L−1(−X)) = C.

We have

L−1(−X) = M−1 ⊗ π∗OP1(−1) ⊗M−4 ⊗ π∗OP1(4) = M−5 ⊗ π∗OP1(3).

We note that Riπ∗M−5 = 0 for i 6= 3 because M = OY (1). By the
Grothendieck duality,

RHom(Rπ∗M−5,OP1(KP1)[1]) = Rπ∗RHom(M−5,OY (KY )[4]).

By the Grothendieck duality again,

Rπ∗M−5 = RHom(Rπ∗RHom(M−5,OY (KY )[4]),OP1(KP1)[1])

= RHom(Rπ∗(OY (KY ) ⊗M5),OP1(KP1))[−3] = (∗).

By the definition, we have

OY (KY ) = π∗(OP1(KP1)⊗ det(OP1 ⊕OP1(1)⊕3))⊗M−4 = π∗OP1(1)⊗M−4.

By this formula, we obtain

OY (KY ) ⊗M5 = π∗OP1(1) ⊗M.

Thus, Riπ∗(OY (KY ) ⊗M5) = 0 for any i > 0. We note that

π∗(OY (KY ) ⊗M5) = OP1(1) ⊗ π∗M
= OP1(1) ⊗ (OP1 ⊕OP1(1)⊕3) = OP1(1) ⊕OP1(2)⊕3.

Therefore, we have

(∗) = RHom(OP1(1) ⊕OP1(2)⊕3,OP1(−2))[−3]

= (OP1(−3) ⊕OP1(−4)⊕3)[−3].

So, we obtainR3π∗M−5 = OP1(−3)⊕OP1(−4)⊕3. Thus, R3π∗M−5⊗OP1(3) =
OP1 ⊕OP1(−1)⊕3.

By the spectral sequence, we have

H3(Y,L−1(−X)) = H3(Y,M−5 ⊗ π∗OP1(3))

= H0(P1, R3π∗(M−5 ⊗ π∗OP1(3)))

= H0(P1,OP1 ⊕OP1(−1)⊕3) = C.
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Therefore, H2(X,L−1) = C.
Let us recall that X is a general member of the linear system |(M ⊗

π∗OP1(−1))⊗4|. Let C be the negative section of π : Y → P1, that is, the
section corresponding to the projection

OP1 ⊕OP1(1)⊕3 → OP1 → 0.

From now, we will check that |M ⊗ π∗OP1(−1)| is free outside C. Once we
checked it, we know that |(M⊗ π∗OP1(−1))⊗4| is free outside C. Then X is
smooth in codimension one. Since Y is smooth, X is normal and Gorenstein
by adjunction.

We take Z ∈ |M ⊗ π∗OP1(−1)| 6= ∅. Since H0(Y,M ⊗ π∗OP1(−1) ⊗
π∗OP1(−1)) = 0, Z can not have a fiber of π as an irreducible component,
that is, any irreducible component of Z is mapped onto P1 by π : Y → P1.
On the other hand, let l be a line in a fiber of π : Y → P1. Then Z · l = 1.
Therefore, Z is irreducible. Let F = P3 be a fiber of π : Y → P1. We consider

0 = H0(Y,M⊗ π∗OP1(−1) ⊗OY (−F )) → H0(Y,M⊗ π∗OP1(−1))

→ H0(F,OF (1)) → H1(Y,M⊗ π∗OP1(−1) ⊗OY (−F )) → · · · .

Since (M⊗π∗OP1(−1))·C = −1, every member of |M⊗π∗OP1(−1)| contains
C. We put P = F ∩ C. Then the image of

α : H0(Y,M⊗ π∗OP1(−1)) → H0(F,OF (1))

is H0(F,mP ⊗ OF (1)), where mP is the maximal ideal of P . It is because
the dimension of H0(Y,M⊗π∗OP1(−1)) is three. Thus, we know that |M⊗
π∗OP1(−1)| is free outside C. In particular, |(M ⊗ π∗OP1(−1))⊗4| is free
outside C.

More explicitly, the image of the injection

α : H0(Y,M⊗ π∗OP1(−1)) → H0(F,OF (1))

is H0(F,mP ⊗OF (1)). We note that

H0(Y,M⊗ π∗OP1(−1)) = H0(P1,OP1(−1) ⊕O⊕3
P1 ) = C3,

and

H0(Y, (M⊗ π∗OP1(−1))⊗4) = H0(P1, Sym4(OP1(−1) ⊕O⊕3
P1 )) = C15.

63



We can check that the restriction of H0(Y, (M ⊗ π∗OP1(−1))⊗4) to F is
Sym4H0(F,mP ⊗OF (1)). Thus, the general fiber f of π : X → P1 is a cone in
P3 on a smooth plane curve of degree 4 with the vertex P = f∩C. Therefore,
(Y,X) is not lc because the multiplicity of X along C is four. Thus, X is
not lc by the inversion of adjunction (cf. Corollary 4.47). Anyway, X is the
required variety.

Remark 2.65. We consider the Pk+1-bundle

π : Y = PP1(OP1 ⊕OP1(1)⊕(k+1)) → P1

over P1 for k ≥ 2. We put M = OY (1) and L = M ⊗ π∗OP1(1). Then
L is ample. We take a general member X of the linear system |(M ⊗
π∗OP1(−1))⊗(k+2)|. Then we can check the following properties.

(1) X is a normal projective Gorenstein (k + 1)-fold.

(2) X is not lc.

(3) We can check that Rk+1π∗M−(k+3) = OP1(−1−k)⊕OP1 (−2−k)⊕(k+1)

and that Riπ∗M−(k+3) = 0 for i 6= k + 1.

(4) Since L−1(−X) = M−(k+3) ⊗ π∗OP1(k + 1), we have

Hk+1(Y,L−1(−X)) = H0(P1, Rk+1π∗M−(k+3) ⊗OP1(k + 1))

= H0(P1,OP1 ⊕OP1(−1)⊕(k+1)) = C.

Thus, Hk(X,L−1) = Hk+1(Y,L−1(−X)) = C.

We note that the first cohomology group of an anti-ample line bundle on
a normal variety with dim ≥ 2 always vanishes by the following Mumford
vanishing theorem.

Theorem 2.66 (Mumford). Let V be a normal complete algebraic variety

and L be a semi-ample line bundle on V . Assume that κ(V,L) ≥ 2. Then

H1(V,L−1) = 0.

Proof. Let f : W → V be a resolution. By Leray’s spectral sequence,

0 → H1(V, f∗f
∗L−1) → H1(W, f ∗L−1) → · · · .

By the Kawamata–Viehweg vanishing theorem, H1(W, f ∗L−1) = 0. Thus,
H1(V,L−1) = H1(V, f∗f

∗L−1) = 0.
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2.67 (On the Kawamata–Viehweg vanishing theorem). The next ex-
ample shows that a naive generalization of the Kawamata–Viehweg vanishing
theorem does not necessarily hold for varieties with lc singularities.

Example 2.68. We put V = P2×P2. Let pi : V → P2 be the i-th projection
for i = 1 and 2. We define L = p∗1OP2(1) ⊗ p∗2OP2(1) and consider the P1-
bundle π : W = PV (L⊕OV ) → V . Let F = P2×P2 be the negative section of
π : W → V , that is, the section of π corresponding to L⊕OV → OV → 0. By
using the linear system |OW (1) ⊗ π∗p∗1OP2(1)|, we can contract F = P2 × P2

to P2 × {point}.
Next, we consider an elliptic curve C ⊂ P2 and put Z = C × C ⊂ V =

P2 × P2. Let π : Y → Z be the restriction of π : W → V to Z. The
restriction of the above contraction morphism Φ|OW (1)⊗π∗p∗

1
O

P2 (1)| : W → U
to Y is denoted by f : Y → X. Then, the exceptional locus of f : Y → X is
E = F |Y = C × C and f contracts E to C × {point}.

Let OW (1) be the tautological line bundle of the P1-bundle π : W → V .
By the construction, OW (1) = OW (D), where D is the positive section of π,
that is, the section corresponding to L ⊕OW → L → 0. By the definition,

OW (KW ) = π∗(OV (KV ) ⊗ L) ⊗OW (−2).

By adjunction,

OY (KY ) = π∗(OZ(KZ) ⊗ L|Z) ⊗OY (−2) = π∗(L|Z) ⊗OY (−2).

Therefore,
OY (KY + E) = π∗(L|Z) ⊗OY (−2) ⊗OY (E).

We note that E = F |Y . Since OY (E)⊗π∗(L|Z) ≃ OY (D), we have OY (−(KY +
E)) = OY (1) because OY (1) = OY (D). Thus, −(KY + E) is nef and big.

On the other hand, it is not difficult to see that X is a normal projective
Gorenstein threefold, X is lc but not klt along G = f(E), and that X is
smooth outside G. Since we can check that f ∗KX = KY + E, −KX is nef
and big.

Finally, we consider the short exact sequence

0 → J → OX → OX/J → 0,

where J is the multiplier ideal sheaf of X. In our case, we can easily check
that J = f∗OY (−E) = IG, where IG is the defining ideal sheaf of G on X.

65



Since −KX is nef and big, H i(X,J ) = 0 for any i > 0 by Nadel’s vanishing
theorem. Therefore, H i(X,OX) = H i(G,OG) for any i > 0. Since G is an
elliptic curve, H1(X,OX) = H1(G,OG) = C. We note that −KX is nef and
big but −KX is not log big with respect to X.

2.69 (On the injectivity theorem). The final example in this section
supplements Theorem 2.38.

Example 2.70. We consider the P1-bundle π : X = PP1(OP1⊕OP1(1)) → P1.
Let S (resp. H) be the negative (resp. positive) section of π, that is, the
section corresponding to the projection OP1 ⊕ OP1(1) → OP1 (resp. OP1 ⊕
OP1(1) → OP1(1)). Then H is semi-ample and S+F ∼ H , where F is a fiber
of π.

Claim. The homomorphism

H1(X,OX(KX + S +H)) → H1(X,OX(KX + S +H + S + F ))

induced by the natural inclusion OX → OX(S + F ) is not injective.

Proof of Claim. It is sufficient to see that the homomorphism

H1(X,OX(KX + S +H)) → H1(X,OX(KX + S +H + F ))

induced by the natural inclusion OX → OX(F ) is not injective. We consider
the short exact sequence

0 → OX(KX + S +H) → OX(KX + S +H + F )

→ OF (KF + (S +H)|F ) → 0.

We note that F ≃ P1 and OF (KF +(S+H)|F ) ≃ OP1. Therefore, we obtain
the following exact sequence

0 → C → H1(X,OX(KX + S +H)) → H1(X,OX(KX + S +H + F )) → 0.

Thus, H1(X,OX(KX + S + H)) → H1(X,OX(KX + S + H + F )) is not
injective. We note that S + F is not permissible with respect to (X,S).
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2.9 Review of the proofs

We close this chapter with the review of our proofs of Theorems 2.53 and
2.54. It may help the reader to compare this chapter with [Am1, Section 3].
We think that our proofs are not so long. Ambro’s proofs seem to be too
short.

2.71 (Review). We review our proofs of the injectivity, torsion-free, and
vanishing theorems.

Step 1. (E1-degeneration of a certain Hodge to de Rham type spectral se-
quence). We discuss this E1-degeneration in 2.32. As we pointed out in the
introduction, the appropriate spectral sequence was not chosen in [Am1]. It
is one of the crucial technical problems in [Am1, Section 3]. This step is
purely Hodge theoretic. We describe it in Section 2.4.

Step 2. (Fundamental injectivity theorem: Proposition 2.23). This is a very
special case of [Am1, Theorem 3.1] and follows from the E1-degeneration in
Step 1 by using covering arguments. This step is in Section 2.3.

Step 3. (Relative vanishing lemma: Lemma 2.33). This step is missing in
[Am1]. It is a very special case of [Am1, Theorem 3.2 (ii)]. However, we can
not use [Am1, Theorem 3.2 (ii)] in this stage. Our proof of this lemma does
not work directly for normal crossing pairs. So, we need to assume that the
varieties are simple normal crossing pairs.

Step 4. (Injectivity theorem for embedded simple normal crossing pairs: The-
orem 2.38). It is [Am1, Theorem 3.1] for embedded simple normal crossing
pairs. It follows easily from Step 2 since we already have the relative van-
ishing lemma in Step 3. A key point in this step is Lemma 2.34, which is
missing in [Am1] and works only for embedded simple normal crossing pairs.

Step 5. (Torsion-free and vanishing theorems for embedded simple normal
crossing pairs: Theorem 2.39). It is [Am1, Theorem 3.2] for embedded simple

normal crossing pairs. The proof uses the lemmas on desingularization and
compactification (see Lemmas 2.34 and 2.36), which hold only for embedded
simple normal crossing pairs, and the injectivity theorem proved for embed-
ded simple normal crossing pairs in Step 4. Therefore, this step also works
only for embedded simple normal crossing pairs. Our proof of the vanishing
theorem is slightly different from Ambro’s one. Compare Steps 2 and 3 in
the proof of Theorem 2.39 with (a) and (b) in the proof of [Am1, Theorem
3.2 (ii)]. See Remark 2.40.
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Step 6. (Ambro’s theorems: Theorems 2.53 and 2.54). In this final step,
we recover Ambro’s theorems, that is, [Am1, Theorems 3.1 and 3.2], in full
generality. Since we have already proved [Am1, Theorem 3.2 (i)] for embed-
ded simple normal crossing pairs in Step 5, we can reduce the problems to
the case when the varieties are embedded simple normal crossing pairs by
blow-ups and Leray’s spectral sequences. This step is described in Section
2.7.
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Chapter 3

Log Minimal Model Program
for lc pairs

In this chapter, we discuss the log minimal model program (LMMP, for short)
for log canonical pairs.

In Section 3.1, we will explicitly state the LMMP for lc pairs. We state
the cone and contraction theorems explicitly for lc pairs with the additional
estimate of lengths of extremal rays. We also write the flip conjectures for lc
pairs. We note that the flip conjecture I (existence of an lc flip) is still open
and that the flip conjecture II (termination of a sequence of lc flips) follows
from the termination of klt flips. We give a proof of the flip conjecture I in
dimension four.

Theorem 3.1 (cf. Theorem 3.13). Log canonical flips exist in dimension

four.

In Section 3.2, we introduce the notion of quasi-log varieties. We think
that the notion of quasi-log varieties is indispensable for investigating lc pairs.
The reader can find that the key points of the theory of quasi-log varieties
in [Am1] are adjunction and the vanishing theorem (see [Am1, Theorem 4.4]
and Theorem 3.39). Adjunction and the vanishing theorems for quasi-log
varieties follow from [Am1, 3. Vanishing Theorems]. However, Section 3 of
[Am1] contains various troubles. Now Chapter 2 gives us sufficiently powerful
vanishing and torsion-free theorems for the theory of quasi-log varieties. We
succeed in removing all the troublesome problems for the foundation of the
theory of quasi-log varieties. It is one of the main contributions of this
chapter and [F16]. We slightly change Ambro’s formulation. By this change,
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the theory of quasi-log varieties becomes more accessible. As a byproduct,
we have the following definition of quasi-log varieties.

Definition 3.2 (Quasi-log varieties). A quasi-log variety is a scheme X
endowed with an R-Cartier R-divisor ω, a proper closed subscheme X−∞ ⊂
X, and a finite collection {C} of reduced and irreducible subvarieties of X
such that there is a proper morphism f : Y → X from a simple normal
crossing divisor Y on a smooth variety M satisfying the following properties:

(0) there exists an R-divisor D on M such that Supp(D + Y ) is simple
normal crossing on M and that D and Y have no common irreducible
components.

(1) f ∗ω ∼R KY +BY , where BY = D|Y .

(2) The natural map OX → f∗OY (p−(B<1
Y )q) induces an isomorphism

IX−∞
→ f∗OY (p−(B<1

Y )q − xB>1
Y y),

where IX−∞
is the defining ideal sheaf of X−∞.

(3) The collection of subvarieties {C} coincides with the image of (Y,BY )-
strata that are not included in X−∞.

Definition 3.2 is equivalent to Ambro’s original definition (see [Am1, Def-
inition 4.1] and Definition 3.55). For the details, see the subsection 3.2.6.
However, we think Definition 3.2 is much better than Ambro’s. Once we
adopt Definition 3.2, we do not need the notion of normal crossing pairs to
define quasi-log varieties and get flexibility in the choice of quasi-log resolu-

tions f : Y → X by Proposition 3.52.
In Section 3.3, we will prove the fundamental theorems for the theory of

quasi-log varieties such as cone, contraction, rationality, and base point free
theorems.

The paper [F16] is a gentle introduction to the log minimal model program
for lc pairs. It may be better to see [F16] before reading this chapter.

3.1 LMMP for log canonical pairs

3.1.1 Log minimal model program

In this subsection, we explicitly state the log minimal model program (LMMP,
for short) for log canonical pairs. It is known to some experts but we can
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not find it in the standard literature. The following cone theorem is a con-
sequence of Ambro’s cone theorem for quasi-log varieties (see Theorem 5.10
in [Am1], Theorems 3.74 and 3.75 below) except for the existence of Cj with
0 < −(KX + B) · Cj ≤ 2 dimX in Theorem 3.3 (1). We will discuss the
estimate of lengths of extremal rays in the subsection 3.1.3.

Theorem 3.3 (Cone and contraction theorems). Let (X,B) be an lc

pair, B an R-divisor, and f : X → Y a projective morphism between algebraic

varieties. Then we have

(i) There are (countably many) rational curves Cj ⊂ X such that f(Cj) is

a point, 0 < −(KX +B) · Cj ≤ 2 dimX, and

NE(X/Y ) = NE(X/Y )(KX+B)≥0 +
∑

R≥0[Cj].

(ii) For any ε > 0 and f -ample R-divisor H,

NE(X/Y ) = NE(X/Y )(KX+B+εH)≥0 +
∑

finite

R≥0[Cj ].

(iii) Let F ⊂ NE(X/Y ) be a (KX +B)-negative extremal face. Then there

is a unique morphism ϕF : X → Z over Y such that (ϕF )∗OX ≃ OZ ,

Z is projective over Y , and an irreducible curve C ⊂ X is mapped

to a point by ϕF if and only if [C] ∈ F . The map ϕF is called the

contraction of F .

(iv) Let F and ϕF be as in (iii). Let L be a line bundle on X such that

L · C = 0 for every curve C with [C] ∈ F . Then there is a line bundle

LZ on Z such that L ≃ ϕ∗FLZ .

Remark 3.4 (Lengths of extremal rays). In Theorem 3.3 (i), the esti-
mate −(KX + B) · Cj ≤ 2 dimX should be replaced by −(KX + B) · Cj ≤
dimX + 1. For toric varieties, this conjectural estimate and some general-
izations were obtained in [F3] and [F5].

The following proposition is obvious. See, for example, [KM, Proposition
3.36].
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Proposition 3.5. Let (X,B) be a Q-factorial lc pair and let π : X → S be

a projective morphism. Let ϕR : X → Y be the contraction of a (KX + B)-
negative extremal ray R ⊂ NE(X/S). Assume that ϕR is either a divisorial

contraction (that is, ϕR contracts a divisor on X) or a Fano contraction (that
is, dimY < dimX). Then

(1) Y is Q-factorial, and

(2) ρ(Y/S) = ρ(X/S) − 1.

By the above cone and contraction theorems, we can easily see that the
LMMP, that is, a recursive procedure explained in [KM, 3.31] (see also the
subsection 1.6.4), works for Q-factorial log canonical pairs if the flip conjec-
tures (Flip Conjectures I and II) hold.

Conjecture 3.6. ((Log) Flip Conjecture I: The existence of a (log) flip).
Let ϕ : (X,B) →W be an extremal flipping contraction of an n-dimensional

pair, that is,

(1) (X,B) is lc, B is an R-divisor,

(2) ϕ is small projective and ϕ has only connected fibers,

(3) −(KX +B) is ϕ-ample,

(4) ρ(X/W ) = 1, and

(5) X is Q-factorial.

Then there should be a diagram:

X 99K X+

ց ւ
W

which satisfies the following conditions:

(i) X+ is a normal variety,

(ii) ϕ+ : X+ → W is small projective, and

(iii) KX+ +B+ is ϕ+-ample, where B+ is the strict transform of B.
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We call ϕ+ : (X+, B+) →W a (KX +B)-flip of ϕ.

We note the following proposition. See, for example, [KM, Proposition
3.37].

Proposition 3.7. Let (X,B) be a Q-factorial lc pair and let π : X → S be

a projective morphism. Let ϕR : X → Y be the contraction of a (KX + B)-
negative extremal ray R ⊂ NE(X/S). Let ϕR : X → Y be the flipping

contraction of R ⊂ NE(X/S) with flip ϕ+
R : X+ → Y . Then we have

(1) X+ is Q-factorial, and

(2) ρ(X+/S) = ρ(X/S).

Note that to prove Conjecture 3.6 we can assume that B is a Q-divisor, by
perturbing B slightly. It is known that Conjecture 3.6 holds when dimX = 3
(see [FA, Chapter 8]). Moreover, if there exists an R-divisor B′ on X such
that KX +B′ is klt and −(KX +B′) is ϕ-ample, then Conjecture 3.6 is true
by [BCHM]. The following famous conjecture is stronger than Conjecture
3.6. We will see it in Lemma 3.9.

Conjecture 3.8 (Finite generation). Let X be an n-dimensional smooth

projective variety and B a boundary Q-divisor on X such that SuppB is a

simple normal crossing divisor on X. Assume that KX +B is big. Then the

log canonical ring

R(X,KX +B) =
⊕

m≥0

H0(X,OX(xm(KX +B)y))

is a finitely generated C-algebra.

Note that if there exists a Q-divisor B′ on X such that KX +B′ is klt and
KX + B′ ∼Q KX + B, then Conjecture 3.8 holds by [BCHM]. See Remark
3.11.

Lemma 3.9. Let f : X → S be a proper surjective morphism between normal

varieties with connected fibers. We assume dimX = n. Let B be a Q-divisor

on X such that (X,B) is lc. Assume that KX +B is f -big. Then the relative

log canonical ring

R(X/S,KX +B) =
⊕

m≥0

f∗OX(xm(KX +B)y)

is a finitely generated OS-algebra if Conjecture 3.8 holds. In particular, Con-
jecture 3.8 implies Conjecture 3.6.
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The following conjecture is the most general one.

Conjecture 3.10 (Finite Generation Conjecture). Let f : X → S be a

proper surjective morphism between normal varieties. Let B be a Q-divisor

on X such that (X,B) is lc. Then the relative log canonical ring

R(X/S,KX +B) =
⊕

m≥0

f∗OX(xm(KX +B)y)

is a finitely generated OS-algebra.

When (X,B) is klt, we can reduce Conjecture 3.10 to the case when
KX + B is f -big by using a canonical bundle formula (see [FM]). Thus,
Conjecture 3.10 holds for klt pairs by [BCHM]. When (X,B) is lc but not
klt, we do not know if we can reduce it to the case when KX +B is f -big or
not.

Before we go to the proof of Lemma 3.9, we note one easy remark.

Remark 3.11. For a graded integral domain R =
⊕
m≥0

Rm and a positive

integer k, the truncated ring R(k) is defined by R(k) =
⊕
m≥0

Rkm. Then R is

finitely generated if and only if so is R(k). We consider ProjR when R is
finitely generated. We note that ProjR(k) = ProjR.

The following argument is well known to the experts.

Proof of Lemma 3.9. Since the problem is local, we can shrink S and assume
that S is affine. By compactifying X and S and by the desingularization
theorem, we can further assume that X and S are projective, X is smooth,
B is effective, and SuppB is a simple normal crossing divisor. Let A be a very
ample divisor on S and H ∈ |rA| a general member for r ≫ 0. Note that
KX +B + (r − 1)f ∗A is big for r ≫ 0 (cf. [KMM, Corollary 0-3-4]). Let m0

be a positive integer such that m0(KX +B+f ∗H) is Cartier. By Conjecture
3.8,

⊕
m≥0

H0(X,OX(mm0(KX + B + f ∗H))) is finitely generated. Thus, the

relative log canonical model X ′ over S exists. Indeed, by assuming that
m0 is sufficiently large and divisible, R(X,KX + B + f ∗H)(m0) is generated
by R(X,KX + B + f ∗H)m0

and |m0(KX + B + (r − 1)f ∗A)| 6= ∅. Then
X ′ = Proj

⊕
m≥0

H0(X,OX(mm0(KX + B + f ∗H))) and X ′ is the closure of

the image of X by the rational map defined by the complete linear system
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|m0(KX + B + rf ∗A)|. More precisely, let g : X ′′ → X be the elimination
of the indeterminacy of the rational map defined by |m0(KX + B + rf ∗A)|.
Let g′ : X ′′ → X ′ be the induced morphism and h : X ′′ → S the morphism
defined by the complete linear system |m0g

∗f ∗A|. Then it is not difficult to
see that h factors through X ′.

Therefore,
⊕
m≥0

f∗OX(mm0(KX + B)) is a finitely generated OS-algebra

by the existence of the relative log canonical model X ′ over S. We finish the
proof.

The next theorem is an easy consequence of [BCHM], [AHK], [F1], and
[F2].

Theorem 3.12. Let (X,B) be a proper four-dimensional lc pair such that

B is a Q-divisor and KX +B is big. Then the log canonical ring

⊕

m≥0

H0(X,OX(xm(KX +B)y))

is finitely generated.

Proof. Without loss of generality, we can assume that X is smooth projec-
tive and SuppB is simple normal crossing. Run a (KX + B)-LMMP. Then
we obtain a log minimal model (X ′, B′) by [Sh1], [HM] and [AHK] with
the aid of the special termination theorem (cf. [F8, Theorem 4.2.1]). By
[F2, Theorem 3.1], which is a consequence of the main theorem in [F1],
KX′ + B′ is semi-ample. In particular,

⊕
m≥0

H0(X,OX(xm(KX + B)y)) ≃
⊕
m≥0

H0(X ′,OX′(xm(KX′ +B′)y)) is finitely generated.

As a corollary, we obtain the next theorem by Lemma 3.9.

Theorem 3.13. Conjecture 3.6 is true if dimX ≤ 4.

More generally, we have the following theorem.

Theorem 3.14. Conjecture 3.10 is true if dimX ≤ 4.

For the proof, see [B], [F18], and [Fk2]. Let us go to the flip conjecture
II.
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Conjecture 3.15. ((Log) Flip Conjecture II: Termination of a sequence of
(log) flips). A sequence of (log) flips

(X0, B0) 99K (X1, B1) 99K (X2, B2) 99K · · ·

terminates after finitely many steps. Namely, there does not exist an infinite

sequence of (log) flips.

Note that it is sufficient to prove Conjecture 3.15 for any sequence of
klt flips. The termination of dlt flips with dimension ≤ n − 1 implies the
special termination in dimension n. Note that we use the formulation in
[F8, Theorem 4.2.1]. The special termination and the termination of klt
flips in dimension n implies the termination of dlt flips in dimension n. The
termination of dlt flips in dimension n implies the termination of lc flips in
dimension n. It is because we can use the LMMP for Q-factorial dlt pairs in
full generality by [BCHM] once we obtain the termination of dlt flips. The
reader can find all the necessary arguments in [F8, 4.2, 4.4].

Remark 3.16 (Analytic spaces). The proofs of the vanishing theorems in
Chapter 2 only work for algebraic varieties. Therefore, the cone, contraction,
and base point free theorems stated here for lc pairs hold only for algebraic
varieties. Of course, all the results should be proved for complex analytic
spaces that are projective over any fixed analytic spaces.

3.1.2 Non-Q-factorial log minimal model program

In this subsection, we explain the log minimal model program for non-Q-
factorial lc pairs. It is the most general log minimal model program. First,
let us recall the definition of log canonical models.

Definition 3.17 (Log canonical model). Let (X,∆) be a log canonical
pair and f : X → S a proper morphism. A pair (X ′,∆′) sitting in a diagram

X
φ

99K X ′

f ց ւf ′

S

is called a log canonical model of (X,∆) over S if

(1) f ′ is proper,
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(2) φ−1 has no exceptional divisors,

(3) ∆′ = φ∗∆,

(4) KX′ + ∆′ is f ′-ample, and

(5) a(E,X,∆) ≤ a(E,X ′,∆′) for every φ-exceptional divisor E ⊂ X.

Next, we explain the minimal model program for non-Q-factorial lc pairs
(cf. [F8, 4.4]).

3.18 (MMP for non-Q-factorial lc pairs). We start with a pair (X,∆) =
(X0,∆0). Let f0 : X0 → S be a projective morphism. The aim is to set up a
recursive procedure which creates intermediate pairs (Xi,∆i) and projective
morphisms fi : Xi → S. After some steps, it should stop with a final pair
(X ′,∆′) and f ′ : X ′ → S.

Step 0 (Initial datum). Assume that we already constructed (Xi,∆i) and
fi : Xi → S with the following properties:

(1) (Xi,∆i) is lc,

(2) fi is projective, and

(3) Xi is not necessarily Q-factorial.

If Xi is Q-factorial, then it is easy to see that Xk is also Q-factorial for any
k ≥ i. Even when Xi is not Q-factorial, Xi+1 sometimes becomes Q-factorial.
See, for example, Example 5.4 below.

Step 1 (Preparation). If KXi
+ ∆i is fi-nef, then we go directly to Step 3

(2). If KXi
+ ∆i is not fi-nef, then we establish two results:

(1) (Cone Theorem) We have the following equality.

NE(Xi/S) = NE(Xi/S)(KXi
+∆i)≥0 +

∑
R≥0[Ci].

(2) (Contraction Theorem) Any (KXi
+ ∆i)-negative extremal ray Ri ⊂

NE(Xi/S) can be contracted. Let ϕRi
: Xi → Yi denote the corre-

sponding contraction. It sits in a commutative diagram.

Xi

ϕRi−→ Yi

fi ց ւgi

S
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Step 2 (Birational transformations). If ϕRi
: Xi → Yi is birational,

then we can find an effective Q-divisor B on Xi such that (Xi, B) is log
canonical and −(KXi

+B) is ϕRi
-ample since ρ(Xi/S) = 1 (cf. Lemma 3.20).

Here, we assume that
⊕

m≥0(ϕRi
)∗OXi

(xm(KXi
+B)y) is a finitely generated

OYi
-algebra. We put

Xi+1 = ProjYi

⊕

m≥0

(ϕRi
)∗OXi

(xm(KXi
+B)y),

where ∆i+1 is the strict transform of (ϕRi
)∗∆i on Xi+1.

We note that (Xi+1,∆i+1) is the log canonical model of (Xi,∆i) over Yi

(see Definition 3.17). It can be checked easily that ϕ+
Ri

: Xi+1 → Yi is a
small projective morphism and that (Xi+1,∆i+1) is log canonical. Then we
go back to Step 0 with (Xi+1,∆i+1), fi+1 = gi ◦ ϕ+

Ri
and start anew.

If Xi is Q-factorial, then so is Xi+1. If Xi is Q-factorial and ϕRi
is

not small, then ϕ+
Ri

: Xi+1 → Yi is an isomorphism. It may happen that
ρ(Xi/S) < ρ(Xi+1/S) when Xi is not Q-factorial. See, for example, Example
5.4 below.

Step 3 (Final outcome). We expect that eventually the procedure stops,
and we get one of the following two possibilities:

(1) (Mori fiber space) If ϕRi
is a Fano contraction, that is, dimYi < dimXi,

then we set (X ′,∆′) = (Xi,∆i) and f ′ = fi.

(2) (Minimal model) If KXi
+ ∆i is fi-nef, then we again set (X ′,∆′) =

(Xi,∆i) and f ′ = fi. We can easily check that (X ′,∆′) is a log minimal
model of (X,∆) over S in the sense of Definition 1.23.

Therefore, all we have to do is to prove Conjecture 3.10 for birational
morphisms and Conjecture 3.15.

We close this subsection with an example of a non-Q-factorial log canon-
ical variety.

Example 3.19. Let C ⊂ P2 be a smooth cubic curve and Y ⊂ P3 be a cone
over C. Then Y is log canonical. In this case, Y is not Q-factorial. We can
check it as follows. Let f : X = PC(OC ⊕L) → Y be a resolution such that
KX + E = f ∗KY , where L = OP2(1)|C and E is the exceptional curve. We
take P,Q ∈ C such that OC(P −Q) is not a torsion in Pic0(C). We consider
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D = π∗P − π∗Q, where π : X = PC(OC ⊕ L) → C. We put D′ = f∗D. If
D′ is Q-Cartier, then mD = f ∗mD′ + aE for some a ∈ Z and m ∈ Z>0.
Restrict it to E. Then OC(m(P −Q)) ≃ OE(aE) ≃ (L−1)⊗a. Therefore, we
obtain that a = 0 and m(P −Q) ∼ 0. It is a contradiction. Thus, D′ is not
Q-Cartier. In particular, Y is not Q-factorial.

3.1.3 Lengths of extremal rays

In this subsection, we consider the estimate of lengths of extremal rays.
Related topics are in [BCHM]. Let us recall the following easy lemma.

Lemma 3.20 (cf. [Sh2, Lemma 1]). Let (X,B) be an lc pair, where B
is an R-divisor. Then there are positive real numbers ri and effective Q-

divisors Bi for 1 ≤ i ≤ l and a positive integer m such that
∑l

i=1 ri = 1,

KX + B =
∑l

i=1 ri(KX + Bi), (X,Bi) is lc, and m(KX + Bi) is Cartier for

any i.

The next result is essentially due to [Ka2] and [Sh2, Proposition 1].

Proposition 3.21. We use the notation in Lemma 3.20. Let (X,B) be an lc

pair, B an R-divisor, and f : X → Y a projective morphism between algebraic

varieteis. Let R be a (KX + B)-negative extremal ray of NE(X/Y ). Then

we can find a rational curve C on X such that [C] ∈ R and −(KX +Bi) ·C ≤
2 dimX for any i. In particular, −(KX +B) ·C ≤ 2 dimX. More precisely,

we can write −(KX + B) · C =
∑l

i=1
rini

m
, where ni ∈ Z and ni ≤ 2m dimX

for any i.

Proof. By replacing f : X → Y with the extremal contraction ϕR : X → W
over Y , we can assume that the relative Picard number ρ(X/Y ) = 1. In
particular, −(KX+B) is f -ample. Therefore, we can assume that −(KX+B1)
is f -ample and −(KX + Bi) = −si(KX + B1) in N1(X/Y ) with si ≤ 1 for
any i ≥ 2. Thus, it is sufficient to find a rational curve C such that f(C)
is a point and that −(KX + B1) · C ≤ 2 dimX. So, we can assume that
KX + B is Q-Cartier and lc. By [BCHM], there is a birational morphism
g : (W,BW ) → (X,B) such that KW +BW = g∗(KX +B), W is Q-factorial,
BW is effective, and (W, {BW}) is klt. By [Ka2, Theorem 1], we can find a
rational curve C ′ on W such that −(KW +BW )·C ′ ≤ 2 dimW = 2 dimX and
that C ′ spans a (KW + BW )-negative extremal ray. Note that Kawamata’s
proof works in the above situation with only small modifications. See the
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proof of Theorem 10-2-1 in [M] and Remark 3.22 below. By the projection
formula, the g-image of C ′ is a desired rational curve. So, we finish the
proof.

Remark 3.22. Let (X,D) be an lc pair, D an R-divisor. Let φ : X →
Y be a projective morphism and H a Cartier divisor on X. Assume that
H − (KX +D) is f -ample. By Theorem 2.48, Rqφ∗OX(H) = 0 for any q > 0
if X and Y are algebraic varieties. If this vanishing theorem holds for analytic
spaces X and Y , then Kawamata’s original argument in [Ka2] works directly
for lc pairs. In that case, we do not need the results in [BCHM] in the proof
of Proposition 3.21.

We consider the proof of [M, Theorem 10-2-1] when (X,D) is lc such
that (X, {D}) is klt. We need R1φ∗OX(H) = 0 after shrinking X and Y
analytically. In our situation, (X,D−εxDy) is klt for 0 < ε≪ 1. Therefore,
H − (KX +D − εxDy) is φ-ample and (X,D − εxDy) is klt for 0 < ε ≪ 1.
Thus, we can apply the analytic version of the relative Kawamata–Viehweg
vanishing theorem. So, we do not need the analytic version of Theorem 2.48.

By Proposition 3.21, Lemma 2.6 in [B] holds for lc pairs. For the proof,
see [B, Lemma 2.6]. It may be useful for the LMMP with scaling.

Proposition 3.23. Let (X,B) be an lc pair, B an R-divisor, and f : X → Y
a projective morphism between algebraic varieties. Let C be an effective R-

Cartier divisor on X such that KX + B + C is f -nef and (X,B + C) is lc.

Then, either KX +B is also f -nef or there is a (KX +B)-negative extremal

ray R such that (KX +B + λC) · R = 0, where

λ := inf{t ≥ 0 |KX +B + tC is f -nef }.

Of course, KX +B + λC is f -nef.

The following picture helps the reader understand Proposition 3.23.
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NE(X/Y )

R

KX +B + C = 0

KX +B + λC = 0

KX +B < 0

KX +B = 0
KX +B > 0

3.1.4 Log canonical flops

The following theorem is an easy consequence of [BCHM].

Theorem 3.24. Let (X,∆) be a klt pair and D a Q-divisor on X. Then⊕
m≥0 OX(xmDy) is a finitely generated OX-algebra.

Sketch of the proof. If D is Q-Cartier, then the claim is obvious. So, we as-
sume that D is not Q-Cartier. We can also assume thatX is quasi-projective.
By [BCHM], we take a birational morphism f : Y → X such that Y is
Q-factorial, f is small projective, and (Y,∆Y ) is klt, where KY + ∆Y =
f ∗(KX + ∆). Then the strict transform DY of D on Y is Q-Cartier. Let
ε be a small positive number. By applying the MMP with scaling for the
pair (Y,∆Y + εDY ) over X, we can assume that DY is f -nef, Therefore, by
the base point free theorem,

⊕
m≥0 f∗OY (xmDY y) ≃ ⊕

m≥0 OX(xmDy) is
finitely generated as an OX-algebra.

The next example shows that Theorem 3.24 is not true for lc pairs. In
other words, if (X,∆) is lc, then

⊕
m≥0 OX(xmDy) is not necessarily finitely

generated as an OX-algebra.

Example 3.25 (cf. [Ko5, Exercise 95]). Let E ⊂ P2 be a smooth cubic
curve. Let S be a surface obtained by blowing up nine general points on E
and ES ⊂ S the strict transform of E. Let H be a very ample divisor on S
giving a projectively normal embedding S ⊂ Pn. Let X ⊂ An+1 be the cone
over S and D ⊂ X the cone over ES. Then (X,D) is lc since KS + ES ∼ 0
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(cf. Proposition 4.38). Let P ∈ D ⊂ X be the vertex of the cones D and X.
Since X is normal, we have

H0(X,OX(mD)) = H0(X \ P,OX(mD))

≃
⊕

r∈Z

H0(S,OS(mES + rH)).

By the construction, OS(mES) has only the obvious section which vanishes
along mES for any m > 0. It can be checked by the induction on m using
the following exact sequence

0 → H0(X,OS((m−1)ES)) → H0(S,OS(mES)) → H0(ES,OES
(mES)) → · · ·

since OES
(ES) is not a torsion element in Pic0(ES). Therefore, H0(S,OS(mES+

rH)) = 0 for any r < 0. So, we have

⊕

m≥0

OX(mD) ≃
⊕

m≥0

⊕

r≥0

H0(S,OS(mES + rH)).

Since ES is nef, OS(mES + 4H) ≃ OS(KS +ES +mES + 4H) is very ample
for any m ≥ 0. Therefore, by replacing H with 4H , we can assume that
OS(mES + rH) is very ample for any m ≥ 0 and r > 0. In this setting, the
multiplication maps

m−1⊕

a=0

H0(S,OS(aES +H)) ⊗H0(S,OS((m− a)ES))

→ H0(S,OS(mES +H))

are never surjective. This implies that
⊕

m≥0 OX(mD) is not finitely gener-
ated as an OX-algebra.

Let us recall the definition of log canonical flops (cf. [FA, 6.8 Definition]).

Definition 3.26 (Log canonical flop). Let (X,B) be an lc pair. Let H
be a Cartier divisor on X. Let f : X → Z be a small contraction such that
KX +B is numerically f -trivial and −H is f -ample. The opposite of f with
respect to H is called an H-flop with respect to KX + B or simply say an
H-flop.

The following example shows that log canonical flops do not always exist.
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Example 3.27 (cf. [Ko5, Exercise 96]). Let E be an elliptic curve and
L a degree zero line bundle on E. We put S = PE(OE ⊕ L). Let C1 and C2

be the sections of the P1-bundle p : S → E. We note that KS +C1 +C2 ∼ 0.
As in Example 3.25, we take a sufficiently ample divisor H = aF + bC1

on S giving a projectively normal embedding S ⊂ Pn, where F is a fiber
of the P1-bundle p : S → E, a > 0, and b > 0. We can assume that
OS(mCi + rH) is very ample for any i, m ≥ 0, and r > 0. Moreover, we
can assume that OS(M + rH) is very ample for any nef divisor M and any
r > 0. Let X ⊂ An+1 be a cone over S and Di ⊂ X the cones over Ci. Since
KS +C1 +C2 ∼ 0, (X,D1 +D2) is lc and KX +D1 +D2 ∼ 0 (cf. Proposition
4.38). By the same arguments as in Example 3.25, we can prove the following
statement.

Claim 1. If L is a non-torsion element in Pic0(E), then
⊕

m≥0 OX(mDi) is

not a finitely generated sheaf of OX-algebra for i = 1 and 2.

We note that OS(mCi) has only the obvious section which vanishes along
mCi for any m > 0. Let B ⊂ X be the cone over F . Then we have the
following result.

Claim 2. The graded OX-algebra
⊕

m≥0 OX(mB) is a finitely generated OX-

algebra.

Proof of Claim 2. By the same arguments as in Example 3.25, we have

⊕

m≥0

OX(mB) ≃
⊕

m≥0

⊕

r≥0

H0(S,OS(mF + rH)).

We consider V = PS(OS(F ) ⊕OS(H)). Then OV (1) is semi-ample. There-
fore, ⊕

n≥0

H0(V,OV (n)) ≃
⊕

m≥0

⊕

r≥0

H0(S,OS(mF + rH))

is finitely generated.

Let P ∈ X be the vertex of the cone X and let f : Y → X be the blow-up
at P . Let A ≃ S be the exceptional divisor of f . We consider the P1-bundle
π : PS(OS ⊕OS(H)) → S. Then Y ≃ PS(OS ⊕OS(H)) \ G, where G is the
section of π corresponding to OS ⊕OS(H) → OS(H) → 0. We consider π∗F
on Y . Then OY (π∗F ) is f -semi-ample. So, we obtain a contraction morphism
g : Y → Z over X. It is easy to see that Z ≃ ProjX

⊕
m≥0 OX(mB)
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and that h : Z → X is a small projective contraction. On Y , we have
−A ∼ π∗H = aπ∗F + bπ∗C1. Therefore, we obtain aB + bD1 ∼ 0 on X. If L
is not a torsion element, then the flop of h : Z → X with respect to D1 does
not exist since

⊕
m≥0 OX(mD1) is not finitely generated as an OX -algebra.

Let C be any Cartier divisor on Z such that −C is h-ample. Then the
flop of h : Z → X with respect to C exists if and only if

⊕
m≥0 h∗OZ(mC) is

a finitely generated OX -algebra. We can find a positive constant m0 and
a degree zero Cartier divisor N on E such that the finite generation of⊕

m≥0 h∗OZ(mC) is equivalent to that of
⊕

m≥0 OX(m(m0D1 + Ñ)), where

Ñ ⊂ X is the cone over p∗N ⊂ S.

Claim 3. If L is not a torsion element in Pic0(E), then
⊕

m≥0 OX(m(m0D1+

Ñ)) is not finitely generated as an OX-algebra. In particular, the flop of

h : Z → X with respect to C does not exist.

Proof of Claim 3. By the same arguments as in Example 3.25, we have

⊕

m≥0

OX(m(m0D1 + Ñ))

≃
⊕

m≥0

⊕

r∈Z

H0(S,OS(m(m0C1 + p∗N) + rH)).

Since dimH0(S,OS(m(m0C1+p
∗N))) ≤ 1 for any m ≥ 0, we can easily check

that the above OX -algebra is not finitely generated. See the arguments in
Example 3.25. We note that OS(m(m0C1 + p∗N) + rH) is very ample for
any m ≥ 0 and r > 0 because m0C1 + p∗N is nef.

Anyway, if L is not a torsion element in Pic0(E), then the flop of h : Z →
X does not exist.

In the above setting, we assume that L is a torsion element in Pic0(E).
Then OY (π∗C1) is f -semi-ample. So, we obtain a contraction morphism g′ :
Y → Z+ over X. It is easy to see that

⊕
m≥0 OX(mDi) is finitely generated

as an OX -algebra for i = 1, 2 (cf. Claim 2), Z+ ≃ ProjX
⊕

m≥0 OX(mD1),
and that Z+ → X is the flop of Z → X with respect to D1.

Let C be any Cartier divisor on Z such that −C is h-ample. If −C ∼Q,h

cB for some positive rational number c, then it is obvious that the above
Z+ → X is the flop of h : Z → X with respect to C. Otherwise, the flop of h :
Z → X with respect to C does not exist. As above, we can find a positive con-
stant m0 and a non-torsion element N in Pic0(E) such that

⊕
m≥0 h∗OZ(mC)
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is finitely generated if and only if so is
⊕

m≥0 OX(m(m0D1 + Ñ)), where

Ñ ⊂ X is the cone over p∗N ⊂ S. By the same arguments as in the proof of
Claim 3, we can easily check that

⊕
m≥0 OX(m(m0D1+Ñ)) is not finitely gen-

erated as an OX -algebra. We note that dimH0(S,OS(m(m0D1 +p∗N))) = 0
for any m > 0 since N is a non-torsion element and L is a torsion element
in Pic0(E).

3.2 Quasi-log varieties

3.2.1 Definition of quasi-log varieties

In this subsection, we introduce the notion of quasi-log varieties according to
[Am1]. Our definition requires slightly stronger assumptions than Ambro’s
original one. However, we will check that our definition is equivalent to
Ambro’s in the subsection 3.2.6.

Let us recall the definition of global embedded simple normal crossing
pairs (see Definition 2.16).

Definition 3.28 (Global embedded simple normal crossing pairs).
Let Y be a simple normal crossing divisor on a smooth variety M and let D
be an R-divisor on M such that Supp(D+ Y ) is simple normal crossing and
that D and Y have no common irreducible components. We put BY = D|Y
and consider the pair (Y,BY ). We call (Y,BY ) a global embedded simple

normal crossing pair.

It’s time for us to define quasi-log varieties.

Definition 3.29 (Quasi-log varieties). A quasi-log variety is a scheme X
endowed with an R-Cartier R-divisor ω, a proper closed subscheme X−∞ ⊂
X, and a finite collection {C} of reduced and irreducible subvarieties of
X such that there is a proper morphism f : (Y,BY ) → X from a global
embedded simple normal crossing pair satisfying the following properties:

(1) f ∗ω ∼R KY +BY .

(2) The natural map OX → f∗OY (p−(B<1
Y )q) induces an isomorphism

IX−∞
→ f∗OY (p−(B<1

Y )q − xB>1
Y y),

where IX−∞
is the defining ideal sheaf of X−∞.
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(3) The collection of subvarieties {C} coincides with the image of (Y,BY )-
strata that are not included in X−∞.

We sometimes simply say that [X,ω] is a quasi-log pair. We use the following
terminology according to Ambro. The subvarieties C are the qlc centers of X,
X−∞ is the non-qlc locus of X, and f : (Y,BY ) → X is a quasi-log resolution

of X. We say that X has qlc singularities if X−∞ = ∅. Assume that [X,ω] is
a quasi-log pair with X−∞ = ∅. Then we simply say that [X,ω] is a qlc pair.
Note that a quasi-log variety X is the union of its qlc centers and X−∞. A
relative quasi-log variety X/S is a quasi-log variety X endowed with a proper
morphism π : X → S.

Remark 3.30 (Quasi-log canonical class). In Definition 3.29, we assume
that ω is an R-Cartier R-divisor. However, it may be better to see ω ∈
Pic(X) ⊗Z R. It is because the quasi-log canonical class ω is defined up to
R-linear equivalence and we often restrict ω to a subvariety of X.

Example 3.31. LetX be a normal variety and let B be an effective R-divisor
on X such that KX +B is R-Cartier. We take a resolution f : Y → X such
that KY + BY = f ∗(KX + B) and that SuppBY is a simple normal crossing
divisor on Y . Then the pair [X,KX +B] is a quasi-log variety with a quasi-
log resolution f : (Y,BY ) → X. By this quasi-log structure, [X,KX + B] is
qlc if and only if (X,B) is lc. See also Corollary 3.51.

Remark 3.32. By Definition 3.29, X has only qlc singularities if and only if
BY is a subboundary. In this case, f∗OY ≃ OX since OX ≃ f∗OY (p−(B<1

Y )q).
In particular, f is surjective when X has only qlc singularities.

Remark 3.33 (Semi-normality). In general, we have

OX\X−∞
≃ f∗Of−1(X\X−∞)(p−(B<1

Y )q−xB>1
Y y) = f∗Of−1(X\X−∞)(p−(B<1

Y )q).

This implies that OX\X−∞
≃ f∗Of−1(X\X−∞). Therefore, X \ X−∞ is semi-

normal since f−1(X \X−∞) is a simple normal crossing variety.

Remark 3.34. To prove the cone and contraction theorems for lc pairs, it is
enough to treat quasi-log varieties with only qlc singularities. For the details,
see [F16].

We close this subsection with an obvious lemma.

Lemma 3.35. Let [X,ω] be a quasi-log pair. Assume that X = V ∪ X−∞
and V ∩X−∞ = ∅. Then [V, ω′] is a qlc pair, where ω′ = ω|V .
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3.2.2 Quick review of vanishing and torsion-free theo-
rems

In this subsection, we quickly review Ambro’s formulation of torsion-free and
vanishing theorems in a simplified form. For more advanced topics and the
proof, see Chapter 2.

We consider a global embedded simple normal crossing pair (Y,B). More
precisely, let Y be a simple normal crossing divisor on a smooth variety M
and let D be an R-divisor on M such that Supp(D + Y ) is simple normal
crossing and that D and Y have no common irreducible components. We put
B = D|Y and consider the pair (Y,B). Let ν : Y ν → Y be the normalization.
We put KY ν + Θ = ν∗(KY + B). A stratum of (Y,B) is an irreducible
component of Y or the image of some lc center of (Y ν ,Θ=1).

When Y is smooth and B is an R-divisor on Y such that SuppB is
simple normal crossing, we put M = Y × A1 and D = B × A1. Then
(Y,B) ≃ (Y × {0}, B × {0}) satisfies the above conditions.

The following theorem is a special case of Theorem 2.39.

Theorem 3.36. Let (Y,B) be as above. Assume that B is a boundary R-

divisor. Let f : Y → X be a proper morphism and L a Cartier divisor on

Y .

(1) Assume that H ∼R L− (KY +B) is f -semi-ample. Then every non-

zero local section of Rqf∗OY (L) contains in its support the f -image of some

strata of (Y,B).
(2) Let π : X → V be a proper morphism and assume that H ∼R f

∗H ′ for
some π-ample R-Cartier R-divisor H ′ on X. Then, Rqf∗OY (L) is π∗-acyclic,
that is, Rpπ∗R

qf∗OY (L) = 0 for any p > 0.

We need a slight generalization of Theorem 3.36 in Section 4.1. Let us
recall the definition of nef and log big divisors for the vanishing theorem.

Definition 3.37 (Nef and log big divisors). Let f : (Y,BY ) → X be a
proper morphism from a simple normal crossing pair (Y,BY ). Let π : X → V
be a proper morphism and H an R-Cartier R-divisor on X. We say that H
is nef and log big over V if and only if H|C is nef and big over V for any C,
where

(i) C is a qlc center when X is a quasi-log variety and f : (Y,BY ) → X is
a quasi-log resolution, or
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(ii) C is the image of a stratum of (Y,BY ) when BY is a subboundary.

If X is a quasi-log variety with only qlc singularities and f : (Y,BY ) →
X is a quasi-log resolution, then the above two cases (i) and (ii) coincide.
When (X,BX) is an lc pair, we choose a log resolution of (X,BX) to be
f : (Y,BY ) → X, where KY + BY = f ∗(KX + BX). We note that if H is
ample over V then it is obvious that H is nef and log big over V .

Theorem 3.38 (cf. Theorem 2.47). Let (Y,B) be as above. Assume that

B is a boundary R-divisor. Let f : Y → X be a proper morphism and L
a Cartier divisor on Y . We put H ∼R L − (KX + B). Let π : X → V
be a proper morphism and assume that H ∼R f ∗H ′ for some π-nef and π-
log big R-Cartier R-divisor H ′ on X. Then, every non-zero local section of

Rqf∗OY (L) contains in its support the f -image of some strata of (Y,B), and

Rqf∗OY (L) is π∗-acyclic, that is, Rpπ∗R
qf∗OY (L) = 0 for any p > 0.

For the proof, see Theorem 2.47.

3.2.3 Adjunction and Vanishing Theorem

The following theorem is one of the key results in the theory of quasi-log
varieties (cf. [Am1, Theorem 4.4]).

Theorem 3.39 (Adjunction and vanishing theorem). Let [X,ω] be a

quasi-log pair and X ′ the union of X−∞ with a (possibly empty) union of

some qlc centers of [X,ω].

(i) Assume that X ′ 6= X−∞. Then X ′ is a quasi-log variety, with ω′ = ω|X′

and X ′−∞ = X−∞. Moreover, the qlc centers of [X ′, ω′] are exactly the

qlc centers of [X,ω] that are included in X ′.

(ii) Assume that π : X → S is proper. Let L be a Cartier divisor on X such

that L− ω is nef and log big over S. Then IX′ ⊗OX(L) is π∗-acyclic,
where IX′ is the defining ideal sheaf of X ′ on X.

Theorem 3.39 is the hardest part to prove in the theory of quasi-log
varieties. It is because it depends on the non-trivial vanishing and torsion-
free theorems for simple normal crossing pairs. The adjunction for normal
divisors on normal varieties is investigated in [F15]. See also Section 4.5.
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Proof. By blowing up the ambient space M of Y , we can assume that the
union of all strata of (Y,BY ) mapped to X ′, which is denoted by Y ′, is
a union of irreducible components of Y (cf. Lemma 2.19). We will justify
this reduction in a more general setting in Proposition 3.50 below. We put
KY ′ + BY ′ = (KY + BY )|Y ′ and Y ′′ = Y − Y ′. We claim that [X ′, ω′] is a
quasi-log pair and that f : (Y ′, BY ′) → X ′ is a quasi-log resolution. By the
construction, f ∗ω′ ∼R KY ′ + BY ′ on Y ′ is obvious. We put A = p−(B<1

Y )q
and N = xB>1

Y y. We consider the following short exact sequence

0 → OY ′′(−Y ′) → OY → OY ′ → 0.

By applying ⊗OY (A−N), we have

0 → OY ′′(A−N − Y ′) → OY (A−N) → OY ′(A−N) → 0.

By applying f∗, we obtain

0 → f∗OY ′′(A−N − Y ′) → f∗OY (A−N) → f∗OY ′(A−N)

→ R1f∗OY ′′(A−N − Y ′) → · · · .

By Theorem 3.36 (i), the support of any non-zero local section ofR1f∗OY ′′(A−
N − Y ′) can not be contained in X ′ = f(Y ′). We note that

(A−N−Y ′)|Y ′′ −(KY ′′ +{BY ′′}+B=1
Y ′′ −Y ′|Y ′′) = −(KY ′′ +BY ′′) ∼R f

∗ω|Y ′′ ,

where KY ′′+BY ′′ = (KY +BY )|Y ′′ . Therefore, the connecting homomorphism
f∗OY ′(A−N) → R1f∗OY ′′(A−N − Y ′) is a zero map. Thus,

0 → f∗OY ′′(A−N − Y ′) → IX−∞
→ f∗OY ′(A−N) → 0

is exact. We put IX′ = f∗OY ′′(A − N − Y ′). Then IX′ defines a scheme
structure on X ′. We define IX′

−∞

= IX−∞
/IX′ . Then IX′

−∞

≃ f∗OY ′(A−N)
by the above exact sequence. By the following diagram:

0 // f∗OY ′′(A−N − Y ′)

��

// f∗OY (A−N)

��

// f∗OY ′(A−N) //

��

0

0 // f∗OY ′′(A− Y ′) // f∗OY (A) // f∗OY ′(A)

0 // IX′

OO

// OX

OO

// OX′
//

OO

0,
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we can see that OX′ → f∗OY ′(p−(B<1
Y ′ )q) induces an isomorphism IX′

−∞

→
f∗OY ′(p−(B<1

Y ′ )q − xB>1
Y ′ y). Therefore, [X ′, ω′] is a quasi-log pair such that

X ′−∞ = X−∞. By the construction, the property about qlc centers are obvi-
ous. So, we finish the proof of (i).

Let f : (Y,BY ) → X be a quasi-log resolution as in the proof of (i). Then
f ∗(L−ω) ∼R f

∗L− (KY ′′ +BY ′′) on Y ′′, where KY ′′ +BY ′′ = (KY +BY )|Y ′′.
Note that

f ∗L− (KY ′′ +BY ′′) = (f ∗L+A−N −Y ′)|Y ′′ − (KY ′′ +{BY ′′}+B=1
Y ′′ −Y ′|Y ′′)

and that any stratum of (Y ′′, B=1
Y ′′ − Y ′|Y ′′) is not mapped to X−∞ = X ′−∞.

Then by Theorem 3.38 (Theorem 3.36 (ii) when L− ω is π-ample),

Rpπ∗(f∗OY ′′(f ∗L+ A−N − Y ′)) = Rpπ∗(IX′ ⊗OX(L)) = 0

for any p > 0. Thus, we finish the proof of (ii).

Remark 3.40. We make a few comments on Theorem 3.39 for the reader’s
convenience. We slightly changed the big diagram in the proof of [Am1,
Theorem 4.4] and incorporated [Am1, Theorem 7.3] into [Am1, Theorem
4.4]. Please compare Theorem 3.39 with the original statements in [Am1].

Corollary 3.41. Let [X,ω] be a qlc pair and let X ′ be an irreducible compo-

nent of X. Then [X ′, ω′], where ω′ = ω|X′, is a qlc pair.

Proof. It is because X ′ is a qlc center of [X,ω] by Remark 3.32.

The next example shows that the definition of quasi-log varieties is rea-
sonable.

Example 3.42. Let (X,BX) be an lc pair. Let f : Y → (X,BX) be a
resolution such that KY + S + B = f ∗(KX + BX), where Supp(S + B) is
simple normal crossing, S is reduced, and xBy ≤ 0. We put KS + BS =
(KX + S +B)|S and consider the short exact sequence

0 → OY (p−Bq − S) → OY (p−Bq) → OS(p−BSq) → 0.

Note thatBS = B|S since Y is smooth. By the Kawamata–Viehweg vanishing
theorem, R1f∗OY (p−Bq − S) = 0. This implies that f∗OS(p−BSq) ≃ Of(S)

since f∗OY (p−Bq) ≃ OX . This argument is well known as the proof of the
connectedness lemma. We put W = f(S) and ω = (KX + BX)|W . Then
[W,ω] is a quasi-log pair with only qlc singularities and f : (S,BS) → W is
a quasi-log resolution.

90



Example 3.42 is a very special case of Theorem 3.39 (i), that is, adjunction
from [X,KX + BX ] to [W,ω]. For other examples, see [F12, §5] or Section
4.4, where we treat toric polyhedra as quasi-log varieties. In the proof of
Theorem 3.39 (i), we used Theorem 3.36 (i), which is a generalization of
Kollár’s theorem, instead of the Kawamata–Viehweg vanishing theorem.

3.2.4 Miscellanies on qlc centers

The notion of lcs locus is important for X-method on quasi-log varieties.

Definition 3.43 (LCS locus). The LCS locus of a quasi-log pair [X,ω],
denoted by LCS(X) or LCS(X,ω), is the union of X−∞ with all qlc centers
of X that are not maximal with respect to the inclusion. The subscheme
structure is defined in Theorem 3.39 (i), and we have a natural embed-
ding X−∞ ⊆ LCS(X). In this book and [F16], LCS(X,ω) is denoted by
Nqklt(X,ω).

When X is normal and B is an effective R-divisor such that KX + B
is R-Cartier, Nqklt(X,KX + B) is denoted by Nklt(X,B) and is called the
non-klt locus of the pair (X,B).

The next proposition is easy to prove. However, in some applications, it
may be useful.

Proposition 3.44 (cf. [Am1, Proposition 4.7]). Let X be a quasi-log

variety whose LCS locus is empty. Then X is normal.

Proof. Let f : (Y,BY ) → X be a quasi-log resolution. By the assumption,
every stratum of Y dominates X. Therefore, f : Y → X passes through
the normalization Xν → X of X. This implies that X is normal since
f∗OY ≃ OX by Remark 3.32.

Theorem 3.45 (cf. [Am1, Proposition 4.8]). Assume that [X,ω] is a qlc

pair. We have the following properties:

(i) The intersection of two qlc centers is a union of qlc centers.

(ii) For any point P ∈ X, the set of all qlc centers passing through P has

a unique element W . Moreover, W is normal at P .
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Proof. Let C1 and C2 be two qlc centers of [X,ω]. We fix P ∈ C1 ∩ C2. It
is enough to find a qlc center C such that P ∈ C ⊂ C1 ∩ C2. The union
X ′ = C1∪C2 with ω′ = ω|X′ is a qlc pair having two irreducible components.
Hence, it is not normal at P . By Proposition 3.44, P ∈ Nqklt(X ′, ω′).
Therefore, there exists a qlc center C ⊂ C1 with dimC < dimC1 such that
P ∈ C ∩ C2. If C ⊂ C2, we are done. Otherwise, we repeat the argument
with C1 = C and reach the conclusion in a finite number of steps. So, we
finish the proof of (i). The uniqueness of the minimal qlc center follows from
(i) and the normality of the minimal center follows from Proposition 3.44.
Thus, we have (ii).

Theorem 3.46 (cf. [Am2, Theorem 1.1]). We assume that (X,B) is log

canonical. Then we have the following properties.

(1) (X,B) has at most finitely many lc centers.

(2) An intersection of two lc centers is a union of lc centers.

(3) Any union of lc centers of (X,B) is semi-normal.

(4) Let x ∈ X be a closed point such that (X,B) is log canonical but not

Kawamata log terminal at x. Then there is a unique minimal lc center

Wx passing through x, and Wx is normal at x.

Proof. Let f : (Y,BY ) → (X,B) be a resolution such that KY + BY =
f ∗(KX + B) and SuppBY is a simple normal crossing divisor. Then an lc
center of (X,B) is the image of some stratum of a simple normal crossing
variety B=1

Y . Therefore, (X,B) has at most finitely many lc centers. This is
(1). The statements (2) and (4) are obvious by Theorem 3.45. Let {Ci}i∈I

be a set of lc centers of (X,B). We put X ′ =
⋃

i∈I Ci and ω′ = (KX +B)|X′.
Then [X ′, ω′] is a qlc pair. Therefore, X ′ is semi-normal by Remarks 3.32
and 3.33. This is (3).

The following result is an easy consequence of adjunction and the vanish-
ing theorem: Theorem 3.39.

Theorem 3.47 (cf. [Am1, Theorem 6.6]). Let [X,ω] be a quasi-log pair

and let π : X → S be a proper morphism such that π∗OX ≃ OS and −ω is

nef and log big over S. Let P ∈ S be a closed point.

(i) Assume that X−∞ ∩ π−1(P ) 6= ∅ and C is a qlc center such that C ∩
π−1(P ) 6= ∅. Then C ∩X−∞ ∩ π−1(P ) 6= ∅.
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(ii) Assume that [X,ω] is a qlc pair. Then the set of all qlc centers inter-

secting π−1(P ) has a unique minimal element with respect to inclusion.

Proof. Let C be a qlc center of [X,ω] such that P ∈ π(C) ∩ π(X−∞). Then
X ′ = C ∪X−∞ with ω′ = ω|X′ is a quasi-log variety and the restriction map
π∗OX → π∗OX′ is surjective by Theorem 3.39. Since π∗OX ≃ OS, X−∞ and
C intersect over a neighborhood of P . So, we have (i).

Assume that [X,ω] is a qlc pair, that is, X−∞ = ∅. Let C1 and C2 be
two qlc centers of [X,ω] such that P ∈ π(C1) ∩ π(C2). The union X ′ =
C1 ∪ C2 with ω′ = ω|X′ is a qlc pair and the restriction map π∗OX →
π∗OX′ is surjective. Therefore, C1 and C2 intersect over P . Furthermore, the
intersection C1 ∩C2 is a union of qlc centers by Proposition 3.45. Therefore,
there exists a unique qlc center CP over a neighborhood of P such that
CP ⊂ C for every qlc center C with P ∈ π(C). So, we finish the proof of
(ii).

The following corollary is obvious by Theorem 3.47.

Corollary 3.48. Let (X,B) be a proper lc pair. Assume that −(KX +B) is

nef and log big and that (X,B) is not klt. Then there exists a unique minimal

lc center C0 such that every lc center contains C0. In particular, Nklt(X,B)
is connected.

The next theorem easily follows from [F1, Section 2].

Theorem 3.49. Let (X,B) be a projective lc pair. Assume that KX +B is

numerically trivial. Then Nklt(X,B) has at most two connected components.

Proof. By [BCHM], there is a birational morphism f : (Y,BY ) → (X,B)
such that KY + BY = f ∗(KX + B), Y is projective and Q-factorial, BY

is effective, and (Y, {BY }) is klt. Therefore, it is sufficient to prove that
xBY y has at most two connected components. We assume that xBY y 6= 0.
Then KY + {BY } is Q-factorial klt and is not pseudo-effective. Apply the
arguments in [F1, Proposition 2.1] with using the LMMP with scaling (see
[BCHM]). Then we obtain that xBY y and Nklt(X,B) have at most two
connected components.

3.2.5 Useful lemmas

In this subsection, we prepare some useful lemmas for making quasi-log res-
olutions with good properties.
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Proposition 3.50. Let f : Z → Y be a proper birational morphism between

smooth varieties and let BY be an R-divisor on Y such that SuppBY is simple

normal crossing. Assume that KZ +BZ = f ∗(KY +BY ) and that SuppBZ is

simple normal crossing. Then we have

f∗OZ(p−(B<1
Z )q − xB>1

Z y) ≃ OY (p−(B<1
Y )q − xB>1

Y y).

Furthermore, let S be a simple normal crossing divisor on Y such that S ⊂
SuppB=1

Y . Let T be the union of the irreducible components of B=1
Z that are

mapped into S by f . Assume that Suppf−1
∗ BY ∪ Exc(f) is simple normal

crossing on Z. Then we have

f∗OT (p−(B<1
T )q − xB>1

T y) ≃ OS(p−(B<1
S )q − xB>1

S y),

where (KZ +BZ)|T = KT +BT and (KY +BY )|S = KS +BS.

Proof. By KZ +BZ = f ∗(KY +BY ), we obtain

KZ =f ∗(KY +B=1
Y + {BY })

+ f ∗(xB<1
Y y + xB>1

Y y) − (xB<1
Z y + xB>1

Z y) − B=1
Z − {BZ}.

If a(ν, Y, B=1
Y + {BY }) = −1 for a prime divisor ν over Y , then we can

check that a(ν, Y, BY ) = −1 by using [KM, Lemma 2.45]. Since f ∗(xB<1
Y y +

xB>1
Y y) − (xB<1

Z y + xB>1
Z y) is Cartier, we can easily see that f ∗(xB<1

Y y +
xB>1

Y y) = xB<1
Z y+ xB>1

Z y+E, where E is an effective f -exceptional divisor.
Thus, we obtain

f∗OZ(p−(B<1
Z )q − xB>1

Z y) ≃ OY (p−(B<1
Y )q − xB>1

Y y).

Next, we consider

0 → OZ(p−(B<1
Z )q − xB>1

Z y − T )

→ OZ(p−(B<1
Z )q − xB>1

Z y) → OT (p−(B<1
T )q − xB>1

T y) → 0.

Since T = f ∗S − F , where F is an effective f -exceptional divisor, we can
easily see that

f∗OZ(p−(B<1
Z )q − xB>1

Z y − T ) ≃ OY (p−(B<1
Y )q − xB>1

Y y − S).

We note that

(p−(B<1
Z )q − xB>1

Z y − T ) − (KZ + {BZ} +B=1
Z − T )

= −f ∗(KY +BY ).
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Therefore, every local section of R1f∗OZ(p−(B<1
Z )q−xB>1

Z y−T ) contains in
its support the f -image of some strata of (Z, {BZ} +B=1

Z − T ) by Theorem
3.36 (i).

Claim. No strata of (Z, {BZ} +B=1
Z − T ) are mapped into S by f .

Proof of Claim. Assume that there is a stratum C of (Z, {BZ} + B=1
Z − T )

such that f(C) ⊂ S. Note that Suppf ∗S ⊂ Suppf−1
∗ BY ∪ Exc(f) and

SuppB=1
Z ⊂ Suppf−1

∗ BY ∪Exc(f). Since C is also a stratum of (Z,B=1
Z ) and

C ⊂ Suppf ∗S, there exists an irreducible component G of B=1
Z such that

C ⊂ G ⊂ Suppf ∗S. Therefore, by the definition of T , G is an irreducible
component of T because f(G) ⊂ S and G is an irreducible component of B=1

Z .
So, C is not a stratum of (Z, {BZ} +B=1

Z − T ). It is a contradiction.

On the other hand, f(T ) ⊂ S. Therefore,

f∗OT (p−(B<1
T )q − xB>1

T y) → R1f∗OZ(p−(B<1
Z )q − xB>1

Z y − T )

is a zero map by the assumption on the strata of (Z,B=1
Z − T ). Thus,

f∗OT (p−(B<1
T )q − xB>1

T y) ≃ OS(p−(B<1
S )q − xB>1

S y).

We finish the proof.

The following corollary is obvious by Proposition 3.50.

Corollary 3.51. Let X be a normal variety and let B be an effective R-

divisor on X such that KX +B is R-Cartier. Let fi : Yi → X be a resolution

of (X,B) for i = 1, 2. We put KYi
+ BYi

= f ∗i (KX + B) and assume that

SuppBYi
is simple normal crossing. Then fi : (Yi, BYi

) → X defines a quasi-

log structure on [X,KX +B] for i = 1, 2. By taking a common log resolution

of (Y1, BY1
) and (Y2, BY2

) suitably and applying Proposition 3.50, we can see

that these two quasi-log structures coincide. Moreover, let X ′ be the union

of X−∞ with a union of some qlc centers of [X,KX + B]. Then we can see

that f1 : (Y1, BY1
) → X and f2 : (Y2, BY2

) → X induce the same quasi-log

structure on [X ′, (KX +B)|X′] by Proposition 3.50.

The final results in this section are very useful and indispensable for some
applications.
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Proposition 3.52. Let [X,ω] be a quasi-log pair and let f : (Y,BY ) → X be

a quasi-log resolution. Assume that (Y,BY ) is a global embedded simple nor-

mal crossing pair as in Definition 3.28. Let σ : N →M be a proper birational

morphism from a smooth variety N . We define KN +DN = σ∗(KM +D+Y )
and assume that Suppσ−1

∗ (D+ Y )∪Exc(σ) is simple normal crossing on N .

Let Z be the union of the irreducible components of D=1
N that are mapped into

Y by σ. Then f ◦ σ : (Z,BZ) → X is a quasi-log resolution of [X,ω], where

KZ +BZ = (KN +DN)|Z.

The proof of Proposition 3.52 is obvious by Proposition 3.50.

Remark 3.53. In Proposition 3.52, σ : (Z,BZ) → (Y,BY ) is not necessarily
a composition of embedded log transformations and blow-ups whose centers
contain no strata of the pair (Y,B=1

Y ) (see [Am1, Section 2]). Compare
Proposition 3.52 with [Am1, Remark 4.2.(iv)].

The final proposition in this subsection will play very important roles in
the following sections.

Proposition 3.54. Let f : (Y,BY ) → X be a quasi-log resolution of a quasi-

log pair [X,ω], where (Y,BY ) is a global embedded simple normal crossing

pair as in Definition 3.28. Let E be a Cartier divisor on X such that SuppE
contains no qlc centers of [X,ω]. By blowing up M , the ambient space of

Y , inside Suppf ∗E, we can assume that (Y,BY + f ∗E) is a global embedded

simple normal crossing pair.

Proof. First, we take a blow-up of M along f ∗E and apply Hironaka’s resolu-
tion theorem to M . Then we can assume that there exists a Cartier divisor F
on M such that Supp(F ∩Y ) = Suppf ∗E. Next, we apply Szabó’s resolution
lemma to Supp(D + Y + F ) on M . Thus, we obtain the desired properties
by Proposition 3.50.

3.2.6 Ambro’s original formulation

Let us recall Ambro’s original definition of quasi-log varieties.

Definition 3.55 (Quasi-log varieties). A quasi-log variety is a scheme X
endowed with an R-Cartier R-divisor ω, a proper closed subscheme X−∞ ⊂
X, and a finite collection {C} of reduced and irreducible subvarieties of X
such that there is a proper morphism f : (Y,BY ) → X from an embedded

normal crossing pair satisfying the following properties:
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(1) f ∗ω ∼R KY +BY .

(2) The natural map OX → f∗OY (p−(B<1
Y )q) induces an isomorphism

IX−∞
→ f∗OY (p−(B<1

Y )q − xB>1
Y y),

where IX−∞
is the defining ideal sheaf of X−∞.

(3) The collection of subvarieties {C} coincides with the image of (Y,BY )-
strata that are not included in X−∞.

For the definition of normal crossing pairs, see Definition 2.55.

Remark 3.56. We can always construct an embedded simple normal cross-
ing pair (Y ′, BY ′) and a proper morphism f ′ : (Y ′, BY ′) → X with the above
conditions (1), (2), and (3) by blowing up M suitably, where M is the ambi-
ent space of Y (see [Am1, p.218, embedded log transformations, and Remark
4.2.(iv)]). We leave the details for the reader’s exercies (see also Lemmas
2.56, 2.58, and 2.59, and the proof of Proposition 3.50). Therefore, we can
assume that (Y,BY ) is a simple normal crossing pair in Definition 3.55. We
note that the proofs of the vanishing and injectivity theorems on normal
crossing pairs are much harder than on simple normal crossing pairs (see
Chapter 2). Therefore, there are no advantages to adopt normal crossing

pairs in the definition of quasi-log varieties.

The next proposition is the main result in this section. Proposition 3.50
becomes very powerful if it is combined with Proposition 3.57. See Proposi-
tion 3.52.

Proposition 3.57. We assume that (Y,BY ) is an embedded simple normal

crossing pair in Definition 3.55. Let M be the ambient space of Y . We can

assume that there exists an R-divisor D on M such that Supp(D + Y ) is

simple normal crossing and BY = D|Y .

Proof. We can construct a sequence of blow-ups Mk →Mk−1 → · · · → M0 =
M with the following properties.

(i) σi+1 : Mi+1 →Mi is the blow-up along a smooth irreducible component
of SuppBYi

for any i ≥ 0,

(ii) we put Y0 = Y , BY0
= BY , and Yi+1 is the strict transform of Yi for

any i ≥ 0,
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(iii) we define KYi+1
+BYi+1

= σ∗i+1(KYi
+BYi

) for any i ≥ 0,

(iv) there exists an R-divisor D on Mk such that Supp(Yk + D) is simple
normal crossing on Mk and that D|Yk

= BYk
, and

(v) σ∗OYk
(p−(B<1

Yk
)q−xB>1

Yk
y) ≃ OY (p−(B<1

Y )q−xB>1
Y y), where σ : Mk →

Mk−1 → · · · →M0 = M .

We note that we can directly check σi+1∗OYi+1
(p−(B<1

Yi+1
)q − xB>1

Yi+1
y) ≃

OYi
(p−(B<1

Yi
)q − xB>1

Yi
y) for any i ≥ 0 by computations similar to the proof

of Proposition 3.50. We replace M and (Y,BY ) with Mk and (Yk, BYk
).

Remark 3.58. In the proof of Proposition 3.57, Mk and (Yk, BYk
) depend on

the order of blow-ups. If we change the order of blow-ups, we have another
tower of blow-ups σ′ : M ′k → M ′k−1 → · · · → M ′

0 = M , D′, Y ′k on M ′k, and
D′|Y ′

k
= BY ′

k
with the desired properties. The relationship between Mk, Yk, D

and M ′k, Y
′
k , D

′ is not clear.

Remark 3.59 (Multicrossing vs simple normal crossing). In [Am1,
Section 2], Ambro discussed multicrossing singularities and multicrossing

pairs. However, we think that simple normal crossing varieties and sim-

ple normal crossing divisors on them are sufficient for the later arguments in
[Am1]. Therefore, we did not introduce the notion of multicrossing singular-

ities and their simplicial resolutions. For the theory of quasi-log varieties, we
may not even need the notion of simple normal crossing pairs. The notion
of global embedded simple normal crossing pairs seems to be sufficient.

3.2.7 A remark on the ambient space

In this subsection, we make a remark on the ambient space M of a quasi-log
resolution f : (Y,BY ) → X in Definition 3.29.

The following lemma is essentially the same as Proposition 3.57. We
repeat it here since it is important. The proof is obvious.

Lemma 3.60. Let (Y,BY ) be a simple normal crossing pair. Let V be a

smooth variety such that Y ⊂ V . Then we can construct a sequence of blow-

ups

Vk → Vk−1 → · · · → V0 = V

with the following properties.
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(1) σi+1 : Vi+1 → Vi is the blow-up along a smooth irreducible component

of SuppBYi
for any i ≥ 0,

(2) we put Y0 = Y , BY0
= BY , and Yi+1 is the strict transform of Yi for

any i ≥ 0,

(3) we define KYi+1
+BYi+1

= σ∗i+1(KYi
+BYi

) for any i ≥ 0,

(4) there exists an R-divisor D on Vk such that D|Yk
= BYk

, and

(5) σ∗OYk
(p−(B<1

Yk
)q−xB>1

Yk
y) ≃ OY (p−(B<1

Y )q−xB>1
Y y), where σ : Vk →

Vk−1 → · · · → V0 = V .

When a simple normal crossing variety Y is quasi-projective, we can make
a singular ambient space whose singular locus dose not contain any strata of
Y .

Lemma 3.61. Let Y be a simple normal crossing variety. Let V be a smooth

quasi-projective variety such that Y ⊂ V . Let {Pi} be any finite set of closed

points of Y . Then we can find a quasi-projecive variety W such that Y ⊂
W ⊂ V , dimW = dimY + 1, and W is smooth at Pi for any i.

Proof. Let IY be the defining ideal sheaf of Y on V . Let H be an ample
Cartier divisor. Then IY ⊗OY (dH) is generated by global sections for d≫ 0.
We can further assume that

H0(V, IY ⊗OV (dH)) → IY ⊗OV (dH) ⊗OV /m
2
Pi

is surjective for any i, where mPi
is the maximal ideal corresponding to Pi.

By taking a complete intersection of (dim V − dimY − 1) general members
in H0(V, IY ⊗OV (dH)), we obtain a desired variety W .

Of course, we can not always make W smooth in Lemma 3.61.

Example 3.62. Let V ⊂ P5 be the Segre embedding of P1 × P2. In this
case, there are no smooth hypersurfaces of P5 containing V . We can check
it as follows. If there exists a smooth hypersurface S such that V ⊂ S ⊂ P5,
then ρ(V ) = ρ(S) = ρ(P5) = 1 by the Lefschetz hyperplane theorem. It is a
contradiction.

By the above lemmas, we can prove the final lemma.
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Lemma 3.63. Let (Y,BY ) be a simple normal crossing pair such that Y is

quasi-projective. Then there exist a global embedded simple normal crossing

pair (Z,BZ) and a morphism σ : Z → Y such that

σ∗OZ(p−(B<1
Z )q − xB>1

Z y) ≃ OY (p−(B<1
Y )q − xB>1

Y y).

Proof. Let V be a smooth quasi-projective variety such that Y ⊂ V . By
Lemma 3.60, we can assume that there exists an R-divisor D on V such
that D|Y = BY . Then we apply Lemma 3.61. We can find a quasi-projectie
variety W such that Y ⊂ W ⊂ V , dimW = dimY + 1, and W is smooth
at the generic point of any stratum of (Y,BY ). Of course, we can make
W 6⊂ SuppD (see the proof of Lemma 3.61). We apply Hironaka’s resolution
to W and use Szabó’s resolution lemma. Then we obtain a desired global
embedded simple normal crossing pair (Z,BZ).

Therefore, we obtain the following statement.

Theorem 3.64. In Definition 3.29, it is sufficient to assume that (Y,BY ) is

a simple normal crossing pair if Y is quasi-projective.

We note that we have a natural quasi-projective ambient space M in
almost all the applications of the theory of quasi-log varieties to log canonical
pairs. Therefore, Definition 3.29 seems to be reasonable.

We close this subsection with a remark on Chow’s lemma. Proposition
3.65 is a bottleneck to construct a good ambient space of a simple normal
crossing pair.

Proposition 3.65. There exists a complete simple normal crossing variety

Y with the following property. If f : Z → Y is a proper surjective morphism

from a simple normal crossing variety Z such that f is an isomorphism at

the generic point of any stratum of Z, then Z is non-projective.

Proof. We take a smooth complete non-projective toric variety X (cf. Ex-
ample 1.14). We put V = X × P1. Then V is a toric variety. We consider
Y = V \T , where T is the big torus of V . We will see that Y has the desired
property. By the above construction, there is an irreducible component Y ′ of
Y that is isomorphic to X. Let Z ′ be the irreducible component of Z mapped
onto Y ′ by f . So, it is sufficient to see that Z ′ is not projective. On Y ′ ≃ X,
there is an torus invariant effective one cycle C such that C is numerically
trivial. By the construction and the assumption, g = f |Z′ : Z ′ → Y ′ ≃ X is
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birational and an isomorphism over the generic point of any torus invariant
curve on Y ′ ≃ X. We note that any torus invariant curve on Y ′ ≃ X is a
stratum of Y . We assume that Z ′ is projective, then there is a very ample
effective divisor A on Z ′ such that A does not contain any irreducible compo-
nents of the inverse image of C. Then B = f∗A is an effective Cartier divisor
on Y ′ ≃ X such that SuppB contains no irreducible components of C. It is
a contradiction because SuppB ∩ C 6= ∅ and C is numerically trivial.

The phenomenon described in Proposition 3.65 is annoying when we treat
non-normal varieties.

3.3 Fundamental Theorems

In this section, we will prove the fundamental theorems for quasi-log pairs.
First, we prove the base point free theorem for quasi-log pairs in the sub-
section 3.3.1. The reader can find that the notion of quasi-log pairs is very
useful for inductive arguments. Next, we give a proof to the rationality the-
orem for quasi-log pairs in the subsection 3.3.2. Our proof is essentially the
same as the proof for klt pairs. In the subsection 3.3.3, we prove the cone
theorem for quasi-log varieties. The cone and contraction theorems are the
main results in this section.

3.3.1 Base Point Free Theorem

The next theorem is the main theorem of this subsection. It is [Am1, Theo-
rem 5.1]. This formulation is useful for the inductive treatment of log canon-
ical pairs.

Theorem 3.66 (Base Point Free Theorem). Let [X,ω] be a quasi-log

pair and let π : X → S be a projective morphism. Let L be a π-nef Cartier

divisor on X. Assume that

(i) qL− ω is π-ample for some real number q > 0, and

(ii) OX−∞
(mL) is π|X−∞

-generated for m≫ 0.

Then OX(mL) is π-generated for m ≫ 0, that is, there exists a positive

number m0 such that OX(mL) is π-generated for any m ≥ m0.

Proof. Without loss of generality, we can assume that S is affine.

101



Claim 1. OX(mL) is π-generated around Nqklt(X,ω) for m≫ 0.

We put X ′ = Nqklt(X,ω). Then [X ′, ω′], where ω′ = ω|X′, is a quasi-log
pair by adjunction (see Theorem 3.39 (i)). If X ′ = X−∞, then OX′(mL) is
π-generated for m≫ 0 by the assumption (ii). If X ′ 6= X−∞, then OX′(mL)
is π-generated for m≫ 0 by the induction on the dimension of X \X−∞. By
the following commutative diagram:

π∗π∗OX(mL)

��

α // π∗π∗OX′(mL)

��

// 0

OX(mL) // OX′(mL) // 0,

we know that OX(mL) is π-generated around X ′ for m≫ 0.

Claim 2. OX(mL) is π-generated on a non-empty Zariski open set for m≫
0.

By Claim 1, we can assume that Nqklt(X,ω) is empty. We will see that
we can also assume thatX is irreducible. Let X ′ be an irreducible component
of X. Then X ′ with ω′ = ω|X′ has a natural quasi-log structure induced by
[X,ω] by adjunction (see Corollary 3.41). By the vanishing theorem (see
Theorem 3.39 (ii)), we have R1π∗(IX′ ⊗ OX(mL)) = 0 for any m ≥ q. We
consider the following commutative diagram.

π∗π∗OX(mL)

��

α // π∗π∗OX′(mL)

��

// 0

OX(mL) // OX′(mL) // 0

Since α is surjective for m ≥ q, we can assume that X is irreducible when
we prove this claim.

If L is π-numerically trivial, then π∗OX(L) is not zero. It is because
h0(Xη,OXη

(L)) = χ(Xη,OXη
(L)) = χ(Xη,OXη

) = h0(Xη,OXη
) > 0 by

Theorem 3.39 (ii) and by [Kl, Chapter II §2 Theorem 1], where Xη is the
generic fiber of π : X → S. Let D be a general member of |L|. Let
f : (Y,BY ) → X be a quasi-log resolution. By blowing up M , we can
assume that (Y,BY +f ∗D) is a global embedded simple normal crossing pair
by Proposition 3.54. We note that any stratum of (Y,BY ) is mapped onto
X by the assumption. We can take a positive real number c ≤ 1 such that
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BY + cf ∗D is a subboundary and some stratum of (Y,BY + cf ∗D) does not
dominate X. Note that f∗OY (p−(B<1

Y )q) ≃ OX . Then the pair [X,ω + cD]
is qlc and f : (Y,BY + cf ∗D) → X is a quasi-log resolution. We note that
qL − (ω + cD) is π-ample. By Claim 1, OX(mL) is π-generated around
Nqklt(X,ω+ cD) for m≫ 0. So, we can assume that L is not π-numerically
trivial.

Let x ∈ X be a general smooth point. Then we can take an R-divisor D
such that multxD > dimX and that D ∼R (q + r)L− ω for some r > 0 (see
[KM, 3.5 Step 2]). By blowing up M , we can assume that (Y,BY + f ∗D)
is a global embedded simple normal crossing pair by Proposition 3.54. By
the construction of D, we can find a positive real number c < 1 such that
BY + cf ∗D is a subboundary and some stratum of (Y,BY + cf ∗D) does not
dominate X. Note that f∗OY (p−(B<1

Y )q) ≃ OX . Then the pair [X,ω + cD]
is qlc and f : (Y,BY + cf ∗D) → X is a quasi-log resolution. We note that
q′L− (ω + cD) is π-ample by c < 1, where q′ = q + cr. By the construction,
Nqklt(X,ω+cD) is non-empty. Therefore, by applying Claim 1 to [X,ω+cD],
OX(mL) is π-generated around Nqklt(X,ω + cD) for m ≫ 0. So, we finish
the proof of Claim 2.

Let p be a prime number and let l be a large integer. Then π∗OX(plL) 6= 0
by Claim 2 and OX(plL) is π-generated around Nqklt(X,ω) by Claim 1.

Claim 3. If the relative base locus Bsπ|plL| (with reduced scheme structure)
is not empty, then Bsπ|plL| is not contained in Bsπ|pl′L| for l′ ≫ l.

Let f : (Y,BY ) → X be a quasi-log resolution. We take a general
member D ∈ |plL|. We note that S is affine and |plL| is free around
Nqklt(X,ω). Thus, f ∗D intersects any strata of (Y, SuppBY ) transversally
over X \Bsπ|plL| by Bertini and f ∗D contains no strata of (Y,BY ). By tak-
ing blow-ups of M suitably, we can assume that (Y,BY + f ∗D) is a global
embedded simple normal crossing pair. See the proofs of Propositions 3.54
and 3.50. We take the maximal positive real number c such that BY + cf ∗D
is a subboundary over X \ X−∞. We note that c ≤ 1. Here, we used
OX ≃ f∗OY (p−(B<1

Y )q) over X \X−∞. Then f : (Y,BY + cf ∗D) → X is a
quasi-log resolution of [X,ω′ = ω + cD]. Note that [X,ω′] has a qlc center
C that intersects Bsπ|plL| by the construction. By the induction, OC(mL)
is π-generated for m≫ 0 since (q+ cpl)L− (ω+ cD) is π-ample. We can lift
the sections of OC(mL) to X for m ≥ q + cpl by Theorem 3.39 (ii). Then
we obtain that OX(mL) is π-generated around C for m ≫ 0. Therefore,
Bsπ|pl′L| is strictly smaller than Bsπ|plL| for l′ ≫ l.
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Claim 4. OX(mL) is π-generated for m≫ 0.

By Claim 3 and the noetherian induction, OX(plL) and OX(p′l
′

L) are π-
generated for large l and l′, where p and p′ are prime numbers and they are
relatively prime. So, there exists a positive number m0 such that OX(mL)
is π-generated for any m ≥ m0.

The next corollary is a special case of Theorem 3.66.

Corollary 3.67 (Base Point Free Theorem for lc pairs). Let (X,B)
be an lc pair and let π : X → S be a projective morphism. Let L be a π-nef

Cartier divisor on X. Assume that qL − (KX + B) is π-ample for some

positive real number q. Then OX(mL) is π-generated for m≫ 0.

3.3.2 Rationality Theorem

In this subsection, we prove the following rationality theorem (cf. [Am1,
Theorem 5.9]).

Theorem 3.68 (Rationality Theorem). Assume that [X,ω] is a quasi-

log pair such that ω is Q-Cartier. We note that this means ω is R-linearly

equivalent to a Q-Cartier divisor on X (see Remark 3.30). Let π : X → S be

a projective morphism and let H be a π-ample Cartier divisor on X. Assume

that r is a positive number such that

(1) H + rω is π-nef but not π-ample, and

(2) (H + rω)|X−∞
is π|X−∞

-ample.

Then r is a rational number, and in reduced form, r has denominator at most

a(dimX + 1), where aω is R-linearly equivalent to a Cartier divisor on X.

Before we go to the proof, we recall the following lemmas.

Lemma 3.69 (cf. [KM, Lemma 3.19]). Let P (x, y) be a non-trivial poly-

nomial of degree ≤ n and assume that P vanishes for all sufficiently large

integral solutions of 0 < ay − rx < ε for some fixed positive integer a and

positive ε for some r ∈ R. Then r is rational, and in reduced form, r has

denominator ≤ a(n+ 1)/ε.

For the proof, see [KM, Lemma 3.19].
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Lemma 3.70 (cf. [KM, 3.4 Step 2]). Let [Y, ω] be a projective qlc pair

and let {Di} be a finite collection of Cartier divisors. Consider the Hilbert

polynomial

P (u1, · · · , uk) = χ(Y,OY (

k∑

i=1

uiDi)).

Suppose that for some values of the ui,
∑k

i=1 uiDi is nef and
∑k

i=1 uiDi − ω
is ample. Then P (u1, · · · , uk) is not identically zero by the base point free

theorem for qlc pairs (see Theorem 3.66) and the vanishing theorem (see
Theorem 3.39 (ii)), and its degree is ≤ dimY .

Note that the arguments in [KM, 3.4 Step 2] work for our setting.

Proof of Theorem 3.68. By using mH with various large m in place of H ,
we can assume that H is very ample over S (cf. [KM, 3.4 Step 1]). For each
(p, q) ∈ Z2, let L(p, q) denote the relative base locus of the linear system
M(p, q) on X (with reduced scheme structure), that is,

L(p, q) = Supp(Coker(π∗π∗OX(M(p, q)) → OX(M(p, q)))),

where M(p, q) = pH + qD, where D is a Cartier divisor such that D ∼R aω.
By the definition, L(p, q) = X if and only if π∗OX(M(p, q)) = 0.

Claim 1 (cf. [KM, Claim 3.20]). Let ε be a positive number. For (p, q)
sufficiently large and 0 < aq − rp < ε, L(p, q) is the same subset of X. We

call this subset L0. We let I ⊂ Z2 be the set of (p, q) for which 0 < aq−rp < 1
and L(p, q) = L0. We note that I contains all sufficiently large (p, q) with

0 < aq − rp < 1.

For the proof, see [KM, Claim 3.20]. See also the proof of Claim 2 below.

Claim 2. We have L0 ∩X−∞ = ∅.

Proof of Claim 2. We take (α, β) ∈ Q2 such that α > 0, β > 0, and βa/α > r
is sufficiently close to r. Then (αH + βaω)|X−∞

is π|X−∞
-ample because

(H + rω)|X−∞
is π|X−∞

-ample. If 0 < aq − rp < 1 and (p, q) ∈ Z2 is
sufficiently large, then M(p, q) = mM(α, β) + (M(p, q) − mM(α, β)) such
that M(p, q) − mM(α, β) is π-very ample and that m(αH + βD)|X−∞

is
also π|X−∞

-very ample. Therefore, OX−∞
(M(p, q)) is π-very ample. Since

π∗OX(M(p, q)) → π∗OX−∞
(M(p, q)) is surjective by the vanishing theorem

(see Theorem 3.39 (ii)), L(p, q) ∩ X−∞ = ∅. We note that M(p, q) − ω is
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π-ample because (p, q) is sufficiently large and aq − rp < 1. By Claim 1, we
have L0 ∩X−∞ = ∅.

Claim 3. We assume that r is not rational or that r is rational and has

denominator > a(n+ 1) in reduced form, where n = dimX. Then, for (p, q)
sufficiently large and 0 < aq − rp < 1, OX(M(p, q)) is π-generated at the

generic point of any qlc center of [X,ω].

Proof of Claim 3. We note thatM(p, q)−ω ∼R pH+(qa−1)ω. If aq−rp < 1
and (p, q) is sufficiently large, then M(p, q) − ω is π-ample. Let C be a qlc
center of [X,ω]. We note that we can assume C ∩ X−∞ = ∅ by Claim 2.
Then PCη

(p, q) = χ(Cη,OCη
(M(p, q))) is a non-zero polynomial of degree at

most dimCη ≤ dimX by Lemma 3.70 (see also Lemma 3.35). Note that
Cη is the generic fiber of C → π(C). By Lemma 3.69, there exists (p, q)
such that PCη

(p, q) 6= 0 and that (p, q) sufficiently large and 0 < aq − rp <
1. By the π-ampleness of M(p, q) − ω, PCη

(p, q) = χ(Cη,OCη
(M(p, q))) =

h0(Cη,OCη
(M(p, q))) and π∗OX(M(p, q)) → π∗OC(M(p, q)) is surjective. We

note that C ′ = C ∪X−∞ has a natural quasi-log structure induced by [X,ω]
and that C∩X−∞ = ∅. Therefore, OX(M(p, q)) is π-generated at the generic
point of C. By combining this with Claim 1, OX(M(p, q)) is π-generated at
the generic point of any qlc center of [X,ω] if (p, q) is sufficiently large with
0 < aq − rp < 1. So, we obtain Claim 2.

Note that OX(M(p, q)) is not π-generated for (p, q) ∈ I because M(p, q)
is not π-nef. Therefore, L0 6= ∅. We shrink S to an affine open subset inter-
secting π(L0). Let D1, · · · , Dn+1 be general members of π∗OX(M(p0, q0)) =
H0(X,OX(M(p0, q0))) with (p0, q0) ∈ I. Around the generic point of any
irreducible component of L0, by taking general hyperplane cuts and apply-
ing Lemma 3.71 below, we can check that ω +

∑n+1
i=1 Di is not qlc at the

generic point of any irreducible component of L0. Thus, ω +
∑n+1

i=1 Di is
not qlc at the generic point of any irreducible component of L0 and is qlc
outside L0 ∪ X−∞. Let 0 < c < 1 be the maximal real number such that
ω + c

∑n+1
i=1 Di is qlc outside X−∞. Note that c > 0 by Claim 3. Thus, the

quasi-log pair [X,ω + c
∑n+1

i=1 Di] has some qlc centers contained in L0. Let
C be a qlc center contained in L0. We note that C ∩X−∞ = ∅. We consider

ω′ = ω + c

n+1∑

i=1

Di ∼R c(n + 1)p0H + (1 + c(n + 1)q0a)ω.
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Thus we have

pH + qaω − ω′ ∼R (p− c(n+ 1)p0)H + (qa− (1 + c(n+ 1)q0a))ω.

If p and q are large enough and 0 < aq− rp ≤ aq0 − rp0, then pH + qaω−ω′

is π-ample. It is because

(p− c(n+ 1)p0)H + (qa− (1 + c(n+ 1)q0a))ω

= (p− (1 + c(n+ 1))p0)H + (qa− (1 + c(n+ 1))q0a)ω + p0H + (q0a− 1)ω.

Suppose that r is not rational. There must be arbitrarily large (p, q)
such that 0 < aq − rp < ε = aq0 − rp0 and H0(Cη,OCη

(M(p, q))) 6= 0 by
Lemma 3.69. It is because M(p, q)−ω′ is π-ample by 0 < aq−rp < aq0−rp0,
PCη

(p, q) = χ(Cη,OCη
(M(p, q))) is a non-trivial polynomial of degree at most

dimCη by Lemma 3.70, and χ(Cη,OCη
(M(p, q))) = h0(Cη,OCη

(M(p, q))) by
the ampleness of M(p, q)−ω′. By the vanishing theorem, π∗OX(M(p, q)) →
π∗OC(M(p, q)) is surjective because M(p, q) − ω′ is π-ample. We note that
C ′ = C ∪X−∞ has a natural quasi-log structure induced by [X,ω′] and that
C ∩ X−∞ = ∅. Thus C is not contained in L(p, q). Therefore, L(p, q) is a
proper subset of L(p0, q0) = L0, giving the desired contradiction. So now we
know that r is rational.

We next suppose that the assertion of the theorem concerning the de-
nominator of r is false. Choose (p0, q0) ∈ I such that aq0 − rp0 is the
maximum, say it is equal to d/v. If 0 < aq − rp ≤ d/v and (p, q) is
sufficiently large, then χ(Cη,OCη

(M(p, q))) = h0(Cη,OCη
(M(p, q))) since

M(p, q) − ω′ is π-ample. There exists sufficiently large (p, q) in the strip
0 < aq − rp < 1 with ε = 1 for which h0(Cη,OCη

(M(p, q))) 6= 0 by Lemma
3.69. Note that aq− rp ≤ d/v = aq0 − rp0 holds automatically for (p, q) ∈ I.
Since π∗OX(M(p, q)) → π∗OC(M(p, q)) is surjective by the π-ampleness of
M(p, q)−ω′, we obtain the desired contradiction by the same reason as above.
So, we finish the proof of the rationality theorem.

We used the following lemma in the proof of Theorem 3.68.

Lemma 3.71. Let [X,ω] be a qlc pair and x ∈ X a closed point. Let

D1, · · · , Dm be effective Cartier divisors passing through x. If [X,ω+
∑m

i=1Di]
is qlc, then m ≤ dimX.

Proof. First, we assume dimX = 1. If x ∈ X is a qlc center of [X,ω], then m
must be zero. So, we can assume that x ∈ X is not a qlc center of [X,ω]. Let
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f : (Y,BY ) → X be a quasi-log resolution of [X,ω]. By shrinking X around
x, we can assume that any stratum of Y dominates X and that X is smooth
by Proposition 3.44. Since f∗OY (p−(B<1

Y )q) ≃ OX , we can easily check that
m ≤ 1 = dimX. In general, [X,ω + D1] is qlc. Let V be the union of qlc
centers of [X,ω +D1] contained in SuppD1. Then both [V, (ω +D1)|V ] and
[V, (ω +D1)|V +

∑m

i=2Di|V ] are qlc by adjunction. By the induction on the
dimension, m− 1 ≤ dimV . Therefore, we obtain m ≤ dimX.

3.3.3 Cone Theorem

The main theorem of this subsection is the cone theorem for quasi-log vari-
eties (cf. [Am1, Theorem 5.10]). Before we state the main theorem, let us fix
the notation.

Definition 3.72. Let [X,ω] be a quasi-log pair with the non-qlc locus X−∞.
Let π : X → S be a projective morphism. We put

NE(X/S)−∞ = Im(NE(X−∞/S) → NE(X/S)).

For an R-Cartier divisor D, we define

D≥0 = {z ∈ N1(X/S) | D · z ≥ 0}.

Similarly, we can define D>0, D≤0, and D<0. We also define

D⊥ = {z ∈ N1(X/S) | D · z = 0}.

We use the following notation

NE(X/S)D≥0 = NE(X/S) ∩D≥0,

and similarly for > 0, ≤ 0, and < 0.

Definition 3.73. An extremal face of NE(X/S) is a non-zero subcone F ⊂
NE(X/S) such that z, z′ ∈ F and z + z′ ∈ F imply that z, z′ ∈ F . Equiv-
alently, F = NE(X/S) ∩ H⊥ for some π-nef R-divisor H , which is called
a supporting function of F . An extremal ray is a one-dimensional extremal
face.

(1) An extremal face F is called ω-negative if F ∩NE(X/S)≥0 = {0}.
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(2) An extremal face F is called rational if we can choose a π-nef Q-divisor
H as a support function of F .

(3) An extremal face F is called relatively ample at infinity if F∩NE(X/S)−∞ =
{0}. Equivalently, H|X−∞

is π|X−∞
-ample for any supporting function

H of F .

(4) An extremal face F is called contractible at infinity if it has a rational
supporting function H such that H|X−∞

is π|X−∞
-semi-ample.

The following theorem is a direct consequence of Theorem 3.66.

Theorem 3.74 (Contraction Theorem). Let [X,ω] be a quasi-log pair

and let π : X → S be a projective morphism. Let H be a π-nef Cartier

divisor such that F = H⊥ ∩ NE(X/S) is ω-negative and contractible at

infinity. Then there exists a projective morphism ϕF : X → Y over S with

the following properties.

(1) Let C be an integral curve on X such that π(C) is a point. Then ϕF (C)
is a point if and only if [C] ∈ F .

(2) OY ≃ (ϕF )∗OX.

(3) Let L be a line bundle on X such that L ·C = 0 for every curve C with

[C] ∈ F . Then there is a line bundle LY on Y such that L ≃ ϕ∗FLY .

Proof. By the assumption, qH−ω is π-ample for some positive integer q and
H|X−∞

is π|X−∞
-semi-ample. By Theorem 3.66, OX(mH) is π-generated for

m ≫ 0. We take the Stein factorization of the associated morphism. Then,
we have the contraction morphism ϕF : X → Y with the properties (1) and
(2).

We consider ϕF : X → Y and NE(X/Y ). Then NE(X/Y ) = F , L is
numerically trivial over Y , and −ω is ϕF -ample. Applying the base point
free theorem (cf. Theorem 3.66) over Y , both L⊗m and L⊗(m+1) are pull-
backs of line bundles on Y . Their difference gives a line bundle LY such that
L ≃ ϕ∗FLY .

Theorem 3.75 (Cone Theorem). Let [X,ω] be a quasi-log pair and let

π : X → S be a projective morphism. Then we have the following properties.
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(1) NE(X/S) = NE(X/S)ω≥0 +NE(X/S)−∞+
∑
Rj, where Rj’s are the

ω-negative extremal rays of NE(X/S) that are rational and relatively

ample at infinity. In particular, each Rj is spanned by an integral curve

Cj on X such that π(Cj) is a point.

(2) Let H be a π-ample R-divisor on X. Then there are only finitely many

Rj’s included in (ω +H)<0. In particular, the Rj’s are discrete in the

half-space ω<0.

(3) Let F be an ω-negative extremal face of NE(X/S) that is relatively

ample at infinity. Then F is a rational face. In particular, F is con-

tractible at infinity.

Proof. First, we assume that ω is Q-Cartier. This means that ω is R-linearly
equivalent to a Q-Cartier divisor. We can assume that dimRN1(X/S) ≥ 2
and ω is not π-nef. Otherwise, the theorem is obvious.

Step 1. We have

NE(X/S) = NE(X/S)ω≥0 +NE(X/S)−∞ +
∑

F

F ,

where F ’s vary among all rational proper ω-negative faces that are relatively
ample at infinity and —– denotes the closure with respect to the real topol-
ogy.

Proof. We put

B = NE(X/S)ω≥0 +NE(X/S)−∞ +
∑

F

F .

It is clear that NE(X/S) ⊃ B. We note that each F is spanned by curves on
X mapped to points on S by Theorem 3.74 (1). Supposing NE(X/S) 6= B,
we shall derive a contradiction. There is a separating function M which is
Cartier and is not a multiple of ω in N1(X/S) such thatM > 0 on B\{0} and
M ·z0 < 0 for some z0 ∈ NE(X/S). Let C be the dual cone of NE(X/S)ω≥0,
that is,

C = {D ∈ N1(X/S) | D · z ≥ 0 for z ∈ NE(X/S)ω≥0}.

Then C is generated by π-nef divisors and ω. Since M > 0 on NE(X/S)ω≥0\
{0}, M is in the interior of C, and hence there exists a π-ample Q-Cartier
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divisor A such that M − A = L′ + pω in N1(X/S), where L′ is a π-nef Q-
Cartier divisor on X and p is a non-negative rational number. Therefore, M
is expressed in the form M = H + pω in N1(X/S), where H = A+L′ is a π-
ample Q-Cartier divisor. The rationality theorem (see Theorem 3.68) implies
that there exists a positive rational number r < p such that L = H + rω
is π-nef but not π-ample, and L|X−∞

is π|X−∞
-ample. Note that L 6= 0

in N1(X/S), since M is not a multiple of ω. Thus the extremal face FL

associated to the supporting function L is contained in B, which implies
M > 0 on FL. Therefore, p < r. It is a contradiction. This completes the
proof of our first claim.

Step 2. In the equality of Step 1, we may take such L that has the extremal
face FL of dimension one.

Proof. Let F be a rational proper ω-negative extremal face that is relatively
ample at infinity, and assume that dimF ≥ 2. Let ϕF : X → W be the
associated contraction. Note that −ω is ϕF -ample. By Step 1, we obtain

F = NE(X/W ) =
∑

G

G,

where theG’s are the rational proper ω-negative extremal faces ofNE(X/W ).
We note that NE(X/W )−∞ = 0 because ϕF embeds X−∞ into W . The G’s
are also ω-negative extremal faces of NE(X/S) that are ample at infinity,
and dimG < dimF . By induction, we obtain

NE(X/S) = NE(X/S)ω≥0 +NE(X/S)−∞ +
∑

Rj , (3.1)

where the Rj ’s are ω-negative rational extremal rays. Note that each Rj does
not intersect NE(X/S)−∞.

Step 3. The contraction theorem (cf. Theorem 3.74) guarantees that for
each extremal ray Rj there exists a reduced irreducible curve Cj on X such
that [Cj] ∈ Rj . Let ψj : X → Wj be the contraction morphism of Rj , and
let A be a π-ample Cartier divisor. We set

rj = −A · Cj

ω · Cj

.

Then A+rjω is ψj-nef but not ψj-ample, and (A+rjω)|X−∞
is ψj |X−∞

-ample.
By the rationality theorem (see Theorem 3.68), expressing rj = uj/vj with
uj, vj ∈ Z>0 and (uj, vj) = 1, we have the inequality vj ≤ a(dimX + 1).
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Step 4. Now take π-ample Cartier divisors H1, H2, · · · , Hρ−1 such that ω
and the Hi’s form a basis of N1(X/S), where ρ = dimRN

1(X/S). By Step
3, the intersection of the extremal rays Rj with the hyperplane

{z ∈ N1(X/S) | aω · z = −1}

in N1(X/S) lie on the lattice

Λ = {z ∈ N1(X/S) | aω · z = −1, Hi · z ∈ (a(a(dimX + 1))!)−1Z}.

This implies that the extremal rays are discrete in the half space

{z ∈ N1(X/S) | ω · z < 0}.

Thus we can omit the closure sign —– from the formula (3.1) and this
completes the proof of (1) when ω is Q-Cartier.

Step 5. Let H be a π-ample R-divisor on X. We choose 0 < εi ≪ 1 for
1 ≤ i ≤ ρ − 1 such that H − ∑ρ−1

i=1 εiHi is π-ample. Then the Rj ’s included
in (ω + H)<0 correspond to some elements of the above lattice Λ for which∑ρ−1

i=1 εiHi · z < 1/a. Therefore, we obtain (2).

Step 6. The vector space V = F⊥ ⊂ N1(X/S) is defined over Q because F
is generated by some of the Rj ’s. There exists a π-ample R-divisor H such
that F is contained in (ω + H)<0. Let 〈F 〉 be the vector space spanned by
F . We put

WF = NE(X/S)ω+H≥0 +NE(X/S)−∞ +
∑

Rj 6⊂F

Rj .

Then WF is a closed cone, NE(X/S) = WF + F , and WF ∩ 〈F 〉 = {0}. The
supporting functions of F are the elements of V that are positive on WF \{0}.
This is a non-empty open set and thus it contains a rational element that,
after scaling, gives a π-nef Cartier divisor L such that F = L⊥ ∩NE(X/S).
Therefore, F is rational. So, we have (3).

From now on, ω is R-Cartier.

Step 7. Let H be a π-ample R-divisor on X. We shall prove (2). We assume
that there are infinitely many Rj ’s in (ω + H)<0 and get a contradiction.
There exists an affine open subset U of S such that NE(π−1(U)/U) has
infinitely many (ω + H)-negative extremal rays. So, we shrink S and can
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assume that S is affine. We can write H = E + H ′, where H ′ is π-ample,
[X,ω +E] is a quasi-log pair with the same qlc centers and non-qlc locus as
[X,ω], and ω + E is Q-Cartier. Since ω +H = ω + E +H ′, we have

NE(X/S) = NE(X/S)ω+H≥0 +NE(X/S)−∞ +
∑

finite

Rj .

It is a contradiction. Thus, we obtain (2). The statement (1) is a direct
consequence of (2). Of course, (3) holds by Step 6 once we obtain (1).

So, we finish the proof of the cone theorem.

We close this subsection with the following non-trivial example.

Example 3.76. We consider the first projection p : P1×P1 → P1. We take a
blow-up µ : Z → P1×P1 at (0,∞). Let A∞ (resp. A0) be the strict transform
of P1×{∞} (resp. P1×{0}) on Z. We define M = PZ(OZ ⊕OZ(A0)) and X
is the restriction of M on (p ◦ µ)−1(0). Then X is a simple normal crossing
divisor on M . More explicitly, X is a P1-bundle over (p ◦ µ)−1(0) and is
obtained by gluing X1 = P1 × P1 and X2 = PP1(OP1 ⊕OP1(1)) along a fiber.
In particular, [X,KX ] is a quasi-log pair with only qlc singularities. By the
construction, M → Z has two sections. Let D+ (resp. D−) be the restriction
of the section of M → Z corresponding to OZ ⊕ OZ(A0) → OZ(A0) → 0
(resp. OZ ⊕ OZ(A0) → OZ → 0). Then it is easy to see that D+ is a nef
Cartier divisor on X and that the linear system |mD+| is free for any m > 0
by Remark 3.77 below. We take a general member B0 ∈ |mD+| with m ≥ 2.
We consider KX + B with B = D− + B0 + B1 + B2, where B1 and B2 are
general fibers of X1 = P1 × P1 ⊂ X. We note that B0 does not intersect
D−. Then (X,B) is an embedded simple normal crossing pair. In particular,
[X,KX + B] is a quasi-log pair with X−∞ = ∅. It is easy to see that there
exists only one integral curve C on X2 = PP1(OP1 ⊕OP1(1)) ⊂ X such that
C · (KX + B) < 0. Note that (KX + B)|X1

is ample on X1. By the cone
theorem, we obtain

NE(X) = NE(X)(KX+B)≥0 + R≥0[C].

By the contraction theorem, we have ϕ : X → W which contracts C. We
can easily see that W is a simple normal crossing surface but KW + BW ,
where BW = ϕ∗B, is not Q-Cartier. Therefore, we can not run the LMMP
for reducible varieties.
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The above example implies that the cone and contraction theorems for
quasi-log varieties do not directly produce the LMMP for quasi-log varieties.

Remark 3.77. In Example 3.76, M is a projective toric variety. Let E be
the section of M → Z corresponding to OZ ⊕OZ(A0) → OZ(A0) → 0. Then,
it is easy to see that E is a nef Cartier divisor on M . Therefore, the linear
system |E| is free. In particular, |D+| is free on X. Note that D+ = E|X .
So, |mD+| is free for any m ≥ 0.
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Chapter 4

Related Topics

In this chapter, we treat related topics. In Section 4.1, we discuss the base
point free theorem of Reid–Fukuda type. In Section 4.2, we prove that the
non-klt locus of a dlt pair is Cohen–Macaulay as an application of Lemma
2.33. Section 4.3 is a description of Alexeev’s criterion for Serre’s S3 con-
dition. It is a clever application of Theorem 2.39 (i). Section 4.4 is an
introduction to the theory of toric polyhedra. A toric polyhedron has a nat-
ural quasi-log structure. In Section 4.5, we quickly explain the notion of
non-lc ideal sheaves and the restriction theorem in [F15]. It is related to
the inversion of adjunction on log canonicity. In the final section, we state
effective base point free theorems for log canonical pairs. We give no proofs
there.

4.1 Base Point Free Theorem of Reid–Fukuda

type

One of my motivations to study [Am1] is to understand [Am1, Theorem 7.2],
which is a complete generalization of [F2]. The following theorem is a special
case of Theorem 7.2 in [Am1], which was stated without proof. Here, we will
reduce it to Theorem 3.66 by using Kodaira’s lemma.

Theorem 4.1 (Base point free theorem of Reid–Fukuda type). Let

[X,ω] be a quasi-log pair with X−∞ = ∅, π : X → S a projective morphism,

and L a π-nef Cartier divisor on X such that qL− ω is nef and log big over

S for some positive real number q. Then OX(mL) is π-generated for m≫ 0.
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Remark 4.2. In [Am1, Section 7], Ambro said that the proof of [Am1,
Theorem 7.2] is parallel to [Am1, Theorem 5.1]. However, I could not check
it. Steps 1, 2, and 4 in the proof of [Am1, Theorem 5.1] work without any
modifications. In Step 3 (see Claim 3 in the proof of Theorem 3.66), q′L−ω′
is π-nef, but I think that q′L − ω′ = qL − ω is not always log big over S
with respect to [X,ω′], where ω′ = ω + cD and q′ = q + cpl. So, we can not
directly apply the argument in Step 1 (see Claim 1 in the proof of Theorem
3.66) to this new quasi-log pair [X,ω′].

Proof. We divide the proof into three steps.

Step 1. We take an irreducible component X ′ of X. Then X ′ has a natural
quasi-log structure induced by X (see Theorem 3.39 (i)). By the vanishing
theorem (see Theorem 3.39 (ii)), we have R1π∗(IX′⊗OX(mL)) = 0 form ≥ q.
Therefore, we obtain that π∗OX(mL) → π∗OX′(mL) is surjective for m ≥ q.
Thus, we can assume that X is irreducible for the proof of this theorem by
the following commutative diagram.

π∗π∗OX(mL) −−−→ π∗π∗OX′(mL) −−−→ 0y
y

OX(mL) −−−→ OX′(mL) −−−→ 0

Step 2. Without loss of generality, we can assume that S is affine. Since
qL − ω is nef and big over S, we can write qL − ω ∼R A + E by Kodaira’s
lemma, where A is a π-ample Q-Cartier Q-divisor on X and E is an effective
R-Cartier R-divisor on X. We note that X is projective over S and that X
is not necessarily normal. By Lemma 4.3 below, we have a new quasi-log
structure on [X, ω̃], where ω̃ = ω + εE, for 0 < ε ≪ 1.

Step 3. By the induction on the dimension, ONqklt(X,ω)(mL) is π-generated
for m≫ 0. Note that π∗OX(mL) → π∗ONqklt(X,ω)(mL) is surjective for m ≥
q by the vanishing theorem (see Theorem 3.39 (ii)). Then ONqklt(X,eω)(mL)
is π-generated for m ≫ 0 by the above lifting result and by Lemma 4.3. In
particular, O eX−∞

(mL) is π-generated for m ≫ 0. We note that qL − ω̃ ∼R

(1−ε)(qL−ω)+εA is π-ample. Therefore, by Theorem 3.66, we obtain that
OX(mL) is π-generated for m≫ 0.

We finish the proof.
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Lemma 4.3. Let [X,ω] be a quasi-log pair with X−∞ = ∅. Let E be an

effective R-Cartier R-divisor on X. Then [X,ω+εE] is a quasi-log pair with

the following properties for 0 < ε ≪ 1.

(i) We put [X, ω̃] = [X,ω + εE]. Then [X, ω̃] is a quasi-log pair and

Nqklt(X, ω̃) = Nqklt(X,ω) as closed subsets of X.

(ii) There exist natural surjective homomorphisms ONqklt(X,eω) → ONqklt(X,ω) →
0 and ONqklt(X,eω) → O eX−∞

→ 0, that is, Nqklt(X,ω) and X̃−∞ are

closed subschemes of Nqklt(X, ω̃), where X̃−∞ is the non-qlc locus of

[X, ω̃].

Proof. Let f : (Y,BY ) → X be a quasi-log resolution of [X,ω], where (Y,BY )
is a global embedded simple normal crossing pair. We can assume that the
union of all strata of (Y,BY ) mapped into Nqklt(X,ω), which we denote by
Y ′, is a union of irreducible components of Y . We put Y ′′ = Y −Y ′. Then we
obtain that f∗OY ′′(A − Y ′|Y ′′) is INqklt(X,ω), that is, the defining ideal sheaf
of Nqklt(X,ω) on X, where A = p−(B<1

Y )q. For the details, see the proof of
Theorem 3.39 (i). Let M be the ambient space of Y and BY = D|Y .

Claim. By modifying M birationally, we can assume that there exists a sim-

ple normal crossing divisor F on M such that Supp(Y + D + F ) is simple

normal crossing, F and Y ′′ have no common irreducible components, and

F |Y ′′ = (f ′′)∗E, where f ′′ = f |Y ′′. Of course, (f ′′)∗E + BY ′′ has a simple

normal crossing support on Y ′′, where KY ′′ + BY ′′ = (KY + BY )|Y ′′. In

general, F may have common irreducible components with D and Y ′.

Proof of Claim. First, we note that (f ′′)∗E contains no strata of Y ′′. We can

construct a proper birational morphism h : M̃ → M from a smooth variety
M̃ such that KfM

+DfM
= h∗(KM + Y +D), h−1((f ′′)∗E) is a divisor on M̃ ,

and Exc(h)∪ Supph−1
∗ (Y +D)∪ h−1((f ′′)∗E) is a simple normal crossing on

M̃ as in the proof of Proposition 3.54. We note that we can assume that h is
an isomorphism outside h−1((f ′′)∗E) by Szabó’s resolution lemma. Let Ỹ be
the union of the irreducible components of D=1

fM
that are mapped into Y . By

Proposition 3.50, we can replace M , Y , and D with M̃ , Ỹ , and D̃ = DfM
− Ỹ .

We finish the proof.

Let us go back to the proof of Lemma 4.3. Let Y2 be the union of all the
irreducible components of Y that are contained in SuppF . We put Y1 = Y −
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Y2 and B̃ = F |Y1
. We consider f1 : (Y1, BY1

+ εB̃) → X for 0 < ε ≪ 1, where
KY1

+BY1
= (KY +BY )|Y1

and f1 = f |Y1
. Then, we have f ∗1 (ω+εE) ∼R KY1

+

BY1
+εB̃. Moreover, the natural inclusion OX → f1∗OY1

(p−((BY1
+εB̃)<1)q)

defines an ideal I eX−∞

= f1∗OY1
(p−((BY1

+ εB̃)<1)q− x(BY1
+ εB̃)>1

y). It is
because

f1∗OY1
(p−((BY1

+ εB̃)<1)q − x(BY1
+ εB̃)>1

y) ⊂ f∗OY (p−(BY )<1
q) ≃ OX

when 0 < ε ≪ 1. We note that x(BY1
+ εB̃)>1

y ≥ Y2|Y1
. Namely, the pair

[X, ω̃] has a quasi-log structure with a quasi-log resolution f1 : (Y1, BY1
+

εB̃) → X. By the construction and the definition, it is obvious that there ex-
ist surjective homomorphisms ONqklt(X,eω) → ONqklt(X,ω) → 0 and ONqklt(X,eω) →
O eX−∞

→ 0. It is not difficult to see that Nqklt(X,ω) = Nqklt(X, ω̃) as closed
subsets of X for 0 < ε≪ 1. We finish the proof.

As a special case, we obtain the following base point free theorem of
Reid–Fukuda type for log canonical pairs.

Theorem 4.4. (Base point free theorem of Reid–Fukuda type for lc pairs).
Let (X,B) be an lc pair. Let L be a π-nef Cartier divisor on X, where

π : X → S is a projective morphism. Assume that qL − (KX + B) is π-nef

and π-log big for some positive real number q. Then OX(mL) is π-generated

for m≫ 0.

We believe that the above theorem holds under the assumption that π is
only proper. However, our proof needs projectivity of π.

Remark 4.5. In Theorem 4.4, if Nklt(X,B) is projective over S, then we
can prove Theorem 4.4 under the weaker assumption that π : X → S is only
proper. It is because we can apply Theorem 4.1 to Nklt(X,B). So, we can
assume that OX(mL) is π-generated on a non-empty open subset containing
Nklt(X,B). In this case, we can prove Theorem 4.4 by applying the usual
X-method to L on (X,B). We note that Nklt(X,B) is always projective over
S when dim Nklt(X,B) ≤ 1. The reader can find a different proof in [Fk1]
when (X,B) is a log canonical surface, where Fukuda used the LMMP with
scaling for dlt surfaces.

Finally, we explain the reason why we assumed that X−∞ = ∅ and π is
projective in Theorem 4.1.

118



Remark 4.6 (Why X−∞ is empty?). Let C be a qlc center of [X,ω].
Then we have to consider a quasi-log variety X ′ = C∪X−∞ for the inductive
arguments. In general, X ′ is reducible. It sometimes happens that dimC <
dimX−∞. We do not know how to apply Kodaira’s lemma to reducible
varieties. So, we assume that X−∞ = ∅ in Theorem 4.1.

Remark 4.7 (Why π is projective?). We assume that S is a point in
Theorem 4.1 for simplicity. If X−∞ = ∅, then it is enough to treat irreducible
quasi-log varieties by Step 1. Thus, we can assume that X is irreducible. Let
f : Y → X be a proper birational morphism from a smooth projective variety.
If X is normal, then H0(X,OX(mL)) ≃ H0(Y,OY (mf ∗L)) for any m ≥ 0.
However, X is not always normal (see Example 4.8 below). So, it sometimes
happens that OY (mf ∗L) has many global sections but OX(mL) has only a
few global sections. Therefore, we can not easily reduce the problem to the
case when X is projective. This is the reason why we assume that π : X → S
is projective. See also Proposition 3.65.

Example 4.8. Let M = P2 and let X be a nodal curve on M . Then (M,X)
is an lc pair. By Example 3.31, [X,KX ] is a quasi-log variety with only qlc
singularities. In this case, X is irreducible, but it is not normal.

4.2 Basic properties of dlt pairs

In this section, we prove supplementary results on dlt pairs. First, let us
reprove the following well-known theorem.

Theorem 4.9. Let (X,D) be a dlt pair. Then X has only rational singular-

ities.

Proof. (cf. [N, Chapter VII, 1.1.Theorem]). By the definition of dlt, we can
take a resolution f : Y → X such that Exc(f) and Exc(f) ∪ Suppf−1

∗ D are
both simple normal crossing divisors on Y and that KY + f−1

∗ D = f ∗(KX +
D) + E with pEq ≥ 0. We can take an effective f -exceptional divisor A
on Y such −A is f -ample (see, for example, [F7, Proposition 3.7.7]). Then
pEq − (KY + f−1

∗ D + {−E} + εA) = −f ∗(KX + D) − εA is f -ample for
ε > 0. If 0 < ε ≪ 1, then (Y, f−1

∗ D + {−E} + εA) is dlt. Therefore,
Rif∗OY (pEq) = 0 for i > 0 (see [KMM, Theorem 1-2-5], Theorem 2.42, or
Lemma 4.10 below) and f∗OY (pEq) ≃ OX . Note that pEq is effective and f -
exceptional. Thus, the composition OX → Rf∗OY → Rf∗OY (pEq) ≃ OX is
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a quasi-isomorphism. So, X has only rational singularities by [Kv3, Theorem
1].

In the above proof, we used the next lemma.

Lemma 4.10 (Vanishing lemma of Reid–Fukuda type). Let V be a

smooth variety and let B be a boundary R-divisor on V such that SuppB is a

simple normal crossing divisor. Let f : V →W be a proper morphism onto a

variety W . Assume that D is a Cartier divisor on V such that D− (KV +B)
is f -nef and f -log big. Then Rif∗OV (D) = 0 for any i > 0.

Proof. We use the induction on the number of irreducible components of
xBy and on the dimension of V . If xBy = 0, then the lemma follows from
the Kawamata–Viehweg vanishing theorem. Therefore, we can assume that
there is an irreducible divisor S ⊂ xBy. We consider the following short
exact sequence

0 → OV (D − S) → OV (D) → OS(D) → 0.

By induction, we see that Rif∗OV (D − S) = 0 and Rif∗OS(D) = 0 for any
i > 0. Thus, we have Rif∗OV (D) = 0 for i > 0.

4.11 (Weak log-terminal singularities). The proof of Theorem 4.9 works
for weak log-terminal singularities in the sense of [KMM]. For the definition,
see [KMM, Definition 0-2-10]. Thus, we can recover [KMM, Theorem 1-3-6],
that is, we obtain the following statement.

Theorem 4.12 (cf. [KMM, Theorem 1-3-6]). All weak log-terminal sin-

gularities are rational.

We think that this theorem is one of the most difficult results in [KMM].
We do not need the difficult vanishing theorem due to Elkik and Fujita (see
[KMM, Theorem 1-3-1]) to obtain the above theorem. In Theorem 4.9, if we
assume that (X,D) is only weak log-terminal, then we can not necessarily
make Exc(f) and Exc(f) ∪ Suppf−1

∗ D simple normal crossing divisors. We
can only make them normal crossing divisors. However, [KMM, Theorem
1-2-5] and Theorem 2.42 work in this setting. Thus, the proof of Theorem
4.9 works for weak log-terminal. Anyway, the notion of weak log-terminal
singularities is not useful in the recent log minimal model program. So, we
do not discuss weak log-terminal singularities here.
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Remark 4.13. The proofs of Theorem 4.14 and Theorem 4.17 also work for
weak log-terminal pairs once we adopt suitable vanishing theorems such as
Theorem 2.42 and Theorem 2.54.

The following theorem generalizes [FA, 17.5 Corollary], where it was only
proved that S is semi-normal and satisfies Serre’s S2 condition. We use
Lemma 2.33 in the proof.

Theorem 4.14. Let X be a normal variety and S+B a boundary R-divisor

such that (X,S+B) is dlt, S is reduced, and xBy = 0. Let S = S1 + · · ·+Sk

be the irreducible decomposition and T = S1 + · · · + Sl for 1 ≤ l ≤ k. Then

T is semi-normal, Cohen–Macaulay, and has only Du Bois singularities.

Proof. Let f : Y → X be a resolution such that KY +S ′+B′ = f ∗(KX +S+
B)+E with the following properties: (i) S ′ (resp. B′) is the strict transform
of S (resp. B), (ii) Supp(S ′ + B′) ∪ Exc(f) and Exc(f) are simple normal
crossing divisors on Y , (iii) f is an isomorphism over the generic point of
any lc center of (X,S + B), and (iv) pEq ≥ 0. We write S = T + U . Let
T ′ (resp. U ′) be the strict transform of T (resp. U) on Y . We consider the
following short exact sequence

0 → OY (−T ′ + pEq) → OY (pEq) → OT ′(pE|T ′q) → 0.

Since −T ′ + E ∼R,f KY + U ′ + B′ and E ∼R,f KY + S ′ + B′, we have
−T ′ + pEq ∼R,f KY +U ′ +B′ + {−E} and pEq ∼R,f KY + S ′+B′+ {−E}.
By the vanishing theorem, Rif∗OY (−T ′+ pEq) = Rif∗OY (pEq) = 0 for any
i > 0. Note that we used the vanishing lemma of Reid–Fukuda type (see
Lemma 4.10). Therefore, we have

0 → f∗OY (−T ′ + pEq) → OX → f∗OT ′(pE|T ′q) → 0

and Rif∗OT ′(pE|T ′q) = 0 for all i > 0. Note that pEq is effective and f -
exceptional. Thus, OT ≃ f∗OT ′ ≃ f∗OT ′(pE|T ′q). Since T ′ is a simple normal
crossing divisor, T is semi-normal. By the above vanishing result, we obtain
Rf∗OT ′(pE|T ′q) ≃ OT in the derived category. Therefore, the composition
OT → Rf∗OT ′ → Rf∗OT ′(pE|T ′q) ≃ OT is a quasi-isomorphism. Apply
RHomT ( , ω•T ) to the quasi-isomorphism OT → Rf∗OT ′ → OT . Then the
composition ω•T → Rf∗ω

•
T ′ → ω•T is a quasi-isomorphism by the Grothendieck

duality. By the vanishing theorem (see, for example, Lemma 2.33), Rif∗ωT ′ =
0 for i > 0. Hence, hi(ω•T ) ⊆ Rif∗ω

•
T ′ ≃ Ri+df∗ωT ′, where d = dim T =
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dimT ′. Therefore, hi(ω•T ) = 0 for i 6= −d. Thus, T is Cohen–Macaulay.
This argument is the same as the proof of Theorem 1 in [Kv3]. Since T ′

is a simple normal crossing divisor, T ′ has only Du Bois singularities. The
quasi-isomorphism OT → Rf∗OT ′ → OT implies that T has only Du Bois
singularities (cf. [Kv1, Corollary 2.4]). Since the composition ωT → f∗ωT ′ →
ωT is an isomorphism, we obtain f∗ωT ′ ≃ ωT . By the Grothendieck duality,
Rf∗OT ′ ≃ RHomT (Rf∗ω

•
T ′, ω•T ) ≃ RHomT (ω•T , ω

•
T ) ≃ OT . So, Rif∗OT ′ = 0

for all i > 0.

We obtained the following vanishing theorem in the proof of Theorem
4.14.

Corollary 4.15. Under the notation in the proof of Theorem 4.14, Rif∗OT ′ =
0 for any i > 0 and f∗OT ′ ≃ OT .

We close this section with a non-trivial example.

Example 4.16 (cf. [KMM, Remark 0-2-11. (4)]). We consider the P2-
bundle

π : V = PP2(OP2 ⊕OP2(1) ⊕OP2(1)) → P2.

Let F1 = PP2(OP2⊕OP2(1)) and F2 = PP2(OP2⊕OP2(1)) be two hypersurfaces
of V which correspond to projections OP2 ⊕OP2(1)⊕OP2(1) → OP2 ⊕OP2(1)
given by (x, y, z) 7→ (x, y) and (x, y, z) 7→ (x, z). Let Φ : V → W be the
flipping contraction that contracts the negative section of π : V → P2, that is,
the section corresponding to the projection OP2⊕OP2(1)⊕OP2(1) → OP2 → 0.
Let C ⊂ P2 be an elliptic curve. We put Y = π−1(C), D1 = F1|Y , and
D2 = F2|Y . Let f : Y → X be the Stein factorization of Φ|Y : Y → Φ(Y ).
Then the exceptional locus of f is E = D1 ∩D2. We note that Y is smooth,
D1 +D2 is a simple normal crossing divisor, and E ≃ C is an elliptic curve.
Let g : Z → Y be the blow-up along E. Then

KZ +D′1 +D′2 +D = g∗(KY +D1 +D2),

where D′1 (resp. D′2) is the strict transform of D1 (resp. D2) and D is the
exceptional divisor of g. Note that D ≃ C × P1. Since

−D + (KZ +D′1 +D′2 +D) − (KZ +D′1 +D′2) = 0,

we obtain that Rif∗(g∗OZ(−D + KZ + D′1 + D′2 + D)) = 0 for any i > 0
by Theorem 2.47 or Theorem 3.38. We note that f ◦ g is an isomorphism

122



outside D. We consider the following short exact sequence

0 → IE → OX → OE → 0,

where IE is the defining ideal sheaf of E. Since IE = g∗OZ(−D), we obtain
that

0 → f∗(IE ⊗OY (KY +D1 +D2)) → f∗OY (KY +D1 +D2)

→ f∗OE(KY +D1 +D2) → 0

by R1f∗(IE ⊗OY (KY +D1 +D2)) = 0. By adjunction, OE(KY +D1 +D2) ≃
OE . Therefore, OY (KY +D1 +D2) is f -free. In particular, KY +D1 +D2 =
f ∗(KX + B1 + B2), where B1 = f∗D1 and B2 = f∗D2. Thus, −D − (KZ +
D′1 +D′2) ∼f◦g 0. So, we have Rif∗IE = Rif∗(g∗OZ(−D)) = 0 for any i > 0
by Theorem 2.47 or Theorem 3.38. This implies that Rif∗OY ≃ Rif∗OE for
every i > 0. Thus, R1f∗OY ≃ C(P ), where P = f(E). We consider the
following spectral sequence

Epq = Hp(X,Rqf∗OY ⊗OX(−mA)) ⇒ Hp+q(Y,OY (−mA)),

where A is an ample Cartier divisor on X and m is any positive integer. Since
H1(Y,OY (−mf ∗A)) = H2(Y,OY (−mf ∗A)) = 0 by the Kawamata–Viehweg
vanishing theorem, we have

H0(X,R1f∗OY ⊗OX(−mA)) ≃ H2(X,OX(−mA)).

If we assume that X is Cohen–Macaulay, then we have H2(X,OX(−mA)) =
0 for m ≫ 0 by the Serre duality and the Serre vanishing theorem. On
the other hand, H0(X,R1f∗OY ⊗ OX(−mA)) ≃ C(P ) because R1f∗OY ≃
C(P ). It is a contradiction. Thus, X is not Cohen–Macaulay. In particular,
(X,B1 +B2) is lc but not dlt. We note that Exc(f) = E is not a divisor on
Y . See Definition 1.7.

Let us recall that Φ : V →W is a flipping contraction. Let Φ+ : V + →W
be the flip of Φ. We can check that V + = PP1(OP1⊕OP1(1)⊕OP1(1)⊕OP1(1))
and the flipped curve E+ ≃ P1 is the negative section of π+ : V + → P1,
that is, the section corresponding to the projection OP1 ⊕OP1(1)⊕OP1(1)⊕
OP1(1) → OP1 → 0. Let Y + be the strict transform of Y on V +. Then Y + is
Gorenstein, lc along E+ ⊂ Y +, and smooth outside E+. Let D+

1 (resp. D+
2 )

be the strict transform of D1 (resp. D2) on Y +. If we take a Cartier divisor
B on Y suitably, then (Y,D1 + D2) 99K (Y +, D+

1 + D+
2 ) is the B-flop of

f : Y → X. We note that (Y,D1 +D2) is dlt. However, (Y +, D+
1 +D+

2 ) is lc
but not dlt.
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4.2.1 Appendix: Rational singularities

In this subsection, we give a proof to the following well-known theorem again
(see Theorem 4.9).

Theorem 4.17. Let (X,D) be a dlt pair. Then X has only rational singu-

larities.

Our proof is a combination of the proofs in [KM, Theorem 5.22] and
[Ko4, Section 11]. We need no difficult duality theorems. The arguments
here will be used in Section 4.3. First, let us recall the definition of the
rational singularities.

Definition 4.18 (Rational singularities). A variety X has rational sin-

gularities if there is a resolution f : Y → X such that f∗OY ≃ OX and
Rif∗OY = 0 for all i > 0.

Next, we give a dual form of the Grauert–Riemenschneider vanishing
theorem.

Lemma 4.19. Let f : Y → X be a proper birational morphism from a

smooth variety Y to a variety X. Let x ∈ X be a closed point. We put

F = f−1(x). Then we have

H i
F (Y,OY ) = 0

for any i < n = dimX.

Proof. We take a proper birational morphism g : Z → Y from a smooth
variety Z such that f ◦ g is projective. We consider the following spectral
sequence

Epq
2 = Hp

F (Y,Rqg∗OZ) ⇒ Hp+q
E (Z,OZ),

where E = g−1(F ) = (f ◦ g)−1(x). Since Rqg∗OZ = 0 for q > 0 and g∗OZ ≃
OY , we have Hp

F (Y,OY ) ≃ Hp
E(Z,OZ) for any p. Therefore, we can replace Y

with Z and assume that f : Y → X is projective. Without loss of generality,
we can assume that X is affine. Then we compactify X and assume that X
and Y are projective. It is well known that

H i
F (Y,OY ) ≃ lim

−→
m

Exti(OmF ,OY )
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(see [G, Theorem 2.8]) and that

Hom(Exti(OmF ,OY ),C) ≃ Hn−i(Y,OmF ⊗ ωY )

by duality on a smooth projective variety Y (see [H2, Theorem 7.6 (a)]).
Therefore,

Hom(H i
F (Y,OY ),C) ≃ Hom(lim

−→
m

Exti(OmF ,OY ),C)

≃ lim
←−
m

Hn−i(Y,OmF ⊗ ωY )

≃ (Rn−if∗ωY )∧x

by the theorem on formal functions (see [H2, Theorem 11.1]), where (Rn−if∗ωY )∧x
is the completion of Rn−if∗ωY at x ∈ X. On the other hand, Rn−if∗ωY =
0 for i < n by the Grauert–Riemenschneider vanishing theorem. Thus,
H i

F (Y,OY ) = 0 for i < n.

Remark 4.20. Lemma 4.19 holds true even when Y has rational singulari-
ties. It is because Rqg∗OZ = 0 for q > 0 and g∗OZ ≃ OY holds in the proof
of Lemma 4.19.

Let us go to the proof of Theorem 4.17.

Proof of Theorem 4.17. Without loss of generality, we can assume that X
is affine. Moreover, by taking generic hyperplane sections of X, we can
also assume that X has only rational singularities outside a closed point
x ∈ X. By the definition of dlt, we can take a resolution f : Y → X
such that Exc(f) and Exc(f) ∪ Suppf−1

∗ D are both simple normal crossing
divisors on Y , KY + f−1

∗ D = f ∗(KX +D) + E with pEq ≥ 0, and that f is
projective. Moreover, we can make f an isomorphism over the generic point
of any lc center of (X,D). Therefore, by Lemma 4.10, we can check that
Rif∗OY (pEq) = 0 for any i > 0. See also the proof of Theorem 4.9. We
note that f∗OY (pEq) ≃ OX since pEq is effective and f -exceptional. For
any i > 0, by the above assumption, Rif∗OY is supported at a point x ∈ X
if it ever has a non-empty support at all. We put F = f−1(x). Then we have
a spectral sequence

Eij
2 = H i

x(X,R
jf∗OY (pEq)) ⇒ H i+j

F (Y,OY (pEq)).
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By the above vanishing result, we have

H i
x(X,OX) ≃ H i

F (Y,OY (pEq))

for every i ≥ 0. We obtain a commutative diagram

H i
F (Y,OY ) −−−→ H i

F (Y,OY (pEq))

α

x
xβ

H i
x(X,OX) H i

x(X,OX).

We have already checked that β is an isomorphism for every i and that
H i

F (Y,OY ) = 0 for i < n (see Lemma 4.19). Therefore, H i
x(X,OX) = 0 for

any i < n = dimX. Thus, X is Cohen–Macaulay. For i = n, we obtain that

α : Hn
x (X,OX) → Hn

F (Y,OY )

is injective. We consider the following spectral sequence

Eij
2 = H i

x(X,R
jf∗OY ) ⇒ H i+j

F (Y,OY ).

We note thatH i
x(X,R

jf∗OY ) = 0 for any i > 0 and j > 0 since SuppRjf∗OY ⊂
{x} for j > 0. On the other hand, Ei0

2 = H i
x(X,OX) = 0 for any i < n.

Therefore, H0
x(X,Rjf∗OY ) ≃ Hj

x(X,OX) = 0 for all j ≤ n − 2. Thus,
Rjf∗OY = 0 for 1 ≤ j ≤ n− 2. Since Hn−1

x (X,OX) = 0, we obtain that

0 → H0
x(X,Rn−1f∗OY ) → Hn

x (X,OX)
α→ Hn

F (Y,OY ) → 0

is exact. We have already checked that α is injective. So, we obtain that
H0

x(X,Rn−1f∗OY ) = 0. This means that Rn−1f∗OY = 0. Thus, we have
Rif∗OY = 0 for any i > 0. We complete the proof.

4.3 Alexeev’s criterion for S3 condition

In this section, we explain Alexeev’s criterion for Serre’s S3 condition (see
Theorem 4.21). It is a clever application of Theorem 2.39 (i). In general,
log canonical singularities are not Cohen–Macaulay. So, the results in this
section will be useful for the study of lc pairs.
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Theorem 4.21 (cf. [Al, Lemma 3.2]). Let (X,B) be an lc pair with

dimX = n ≥ 3 and let P ∈ X be a scheme theoretic point such that

dim {P} ≤ n − 3. Assume that {P} is not an lc center of (X,B). Then

the local ring OX,P satisfies Serre’s S3 condition.

We slightly changed the original formulation. The following proof is essen-
tially the same as Alexeev’s. We use local cohomologies to calculate depths.

Proof. We note that OX,P satisfies Serre’s S2 condition because X is normal.
Since the assertion is local, we can assume that X is affine. Let f : Y → X
be a resolution of X such that Exc(f)∪Suppf−1

∗ B is a simple normal crossing
divisor on Y . Then we can write

KY +BY = f ∗(KX +B)

such that SuppBY is a simple normal crossing divisor on Y . We put A =
p−(B<1

Y )q ≥ 0. Then we obtain

A = KY +B=1
Y + {BY } − f ∗(KX +B).

Therefore, by Theorem 2.39 (i), the support of every non-zero local section
of the sheaf R1f∗OY (A) contains some lc centers of (X,B). Thus, P is not
an associated point of R1f∗OY (A).

We put XP = SpecOX,P and YP = Y ×X XP . Then P is a closed point of
XP and it is sufficient to prove that H2

P (XP ,OXP
) = 0. We put F = f−1(P ),

where f : YP → XP . Then we have the following vanishing theorem. It is
nothing but Lemma 4.19 when P is a closed point of X.

Lemma 4.22 (cf. Lemma 4.19). We have H i
F (YP ,OYP

) = 0 for i < n −
dim {P}.

Proof of Lemma 4.22. Let I denote an injective hull of OXP
/mP as an OXP

-
module, where mP is the maximal ideal corresponding to P . We have

RΓFOYP
≃ RΓP (Rf∗OYP

)

≃ Hom(RHom(Rf∗OYP
, ω•XP

), I)

≃ Hom(Rf∗OY (KY ) ⊗OXP
[n−m], I),

where m = dim {P}, by the local duality theorem ([H1, Chapter V, Theorem
6.2]) and the Grothendieck duality theorem ([H1, Chapter VII, Theorem
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3.3]). We note the shift that normalize the dualizing complex ω•XP
. Therefore,

we obtain H i
F (YP ,OYP

) = 0 for i < n−m because Rjf∗OY (KY ) = 0 for any
j > 0 by the Grauert–Riemenschneider vanishing theorem.

Let us go back to the proof of the theorem. We consider the following
spectral sequences

Epq
2 = Hp

P (XP , R
qf∗OYP

(A)) ⇒ Hp+q
F (YP ,OYP

(A)),

and
′Epq

2 = Hp
P (XP , R

qf∗OYP
) ⇒ Hp+q

F (YP ,OYP
).

By the above spectral sequences, we have the next commutative diagram.

H2
F (YP ,OYP

) // H2
F (YP ,OYP

(A))

H2
P (XP , f∗OYP

)

OO

H2
P (XP , f∗OYP

(A))

φ

OO

H2
P

(
XP ,OXP

) H2
P

(
XP ,OXP

)

Since P is not an associated point of R1f∗OY (A), we have

E0,1
2 = H0

P (XP , R
1f∗OYP

(A)) = 0.

By the edge sequence

0 → E1,0
2 → E1 → E0,1

2 → E2,0
2

φ→ E2 → · · · ,

we know that φ : E2,0
2 → E2 is injective. Therefore, H2

P (XP ,OXP
) →

H2
F (YP ,OYP

) is injective by the above big commutative diagram. Thus, we
obtain H2

P (XP ,OXP
) = 0 since H2

F (YP ,OYP
) = 0 by Lemma 4.22.

Remark 4.23. The original argument in the proof of [Al, Lemma 3.2] has
some compactification problems when X is not projective. Our proof does
not need any compactifications of X.

As an easy application of Theorem 4.21, we have the following result. It
is [Al, Theorem 3.4].
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Theorem 4.24 (cf. [Al, Theorem 3.4]). Let (X,B) be an lc pair and let

D be an effective Cartier divisor. Assume that the pair (X,B+ εD) is lc for

some ε > 0. Then D is S2.

Proof. Without loss of generality, we can assume that dimX = n ≥ 3. Let
P ∈ D ⊂ X be a scheme theoretic point such that dim {P} ≤ n − 3. We
localize X at P and assume that X = SpecOX,P . By the assumption, {P} is
not an lc center of (X,B). By Theorem 4.21, we obtain that H i

P (X,OX) = 0
for i < 3. Therefore, H i

P (D,OD) = 0 for i < 2 by the long exact sequence

· · · → H i
P (X,OX(−D)) → H i

P (X,OX) → H i
P (D,OD) → · · · .

We note thatH i
P (X,OX(−D)) ≃ H i

P (X,OX) = 0 for i < 3. Thus, D satisfies
Serre’s S2 condition.

We give a supplement to adjunction (see Theorem 3.39 (i)). It may be
useful for the study of limits of stable pairs (see [Al]).

Theorem 4.25 (Adjunction for Cartier divisors on lc pairs). Let

(X,B) be an lc pair and let D be an effective Cartier divisor on X such

that (X,B + D) is log canonical. Let V be a union of lc centers of (X,B).
We consider V as a reduced closed subscheme of X. We define a scheme

structure on V ∩D by the following short exact sequence

0 → OV (−D) → OV → OV ∩D → 0.

Then, OV ∩D is reduced and semi-normal.

Proof. First, we note that V ∩ D is a union of lc centers of (X,B + D)
(see Theorem 3.46). Let f : Y → X be a resolution such that Exc(f) ∪
Suppf−1

∗ (B +D) is a simple normal crossing divisor on Y . We can write

KY +BY = f ∗(KX +B +D)

such that SuppBY is a simple normal crossing divisor on Y . We take more
blow-ups and can assume that f−1(V ∩ D) and f−1(V ) are simple normal
crossing divisors. Then the union of all strata of B=1

Y mapped to V ∩ D
(resp. V ), which is denoted by W (resp. U +W ), is a divisor on Y . We put
A = p−(B<1

Y )q ≥ 0 and consider the following commutative diagram.

0 // OY (A− U −W )

��

// OY (A) // OU+W (A)

��

// 0

0 // OY (A−W ) // OY (A) // OW (A) // 0
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By applying f∗, we obtain the next big diagram by Theorem 2.39 (i) and
Theorem 3.39 (i).

0

��
0

��

f∗OU(A−W )

��
0 // f∗OY (A− U −W )

��

// OX
// OV

��

// 0

0 // f∗OY (A−W )

��

// OX
// OV ∩D

��

// 0

f∗OU(A−W )

��

0

0

A key point is that the connecting homomorphism

f∗OU(A−W ) → R1f∗OY (A− U −W )

is a zero map by Theorem 2.39 (i). We note that OV and OV ∩D in the
above diagram are the structure sheaves of qlc pairs V and V ∩D induced by
(X,B + D). In particular, OV ≃ f∗OU+W and OV ∩D ≃ f∗OW . So, OV and
OV ∩D are reduced and semi-normal since W and U +W are simple normal
crossing divisors on Y .

Therefore, to prove this theorem, it is sufficient to see that f∗OU (A−W ) ≃
OV (−D). We can write

A = KY +B=1
Y + {BY } − f ∗(KX +B +D)

and
f ∗D = W + E + f−1

∗ D,

where E is an effective f -exceptional divisor. We note that f−1
∗ D ∩ U = ∅.

Since A −W = A − f ∗D + E + f−1
∗ D, it is enough to see that f∗OU(A +

E + f−1
∗ D) ≃ f∗OU(A + E) ≃ OV . We consider the following short exact

sequence

0 → OY (A+ E − U) → OY (A+ E) → OU(A+ E) → 0.
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Note that

A+ E − U = KY +B=1
Y − f−1

∗ D − U −W + {BY } − f ∗(KX +B).

Thus, the connecting homomorphism f∗OU(A+ E) → R1f∗OY (A+ E − U)
is a zero map by Theorem 2.39 (i). Therefore, we obtain that

0 → f∗OY (A+ E − U) → OX → f∗OU (A+ E) → 0.

So, we have f∗OU(A+ E) ≃ OV . We finish the proof of this theorem.

The next corollary is one of the main results in [Al]. The original proof
in [Al] depends on the S2-fication. Our proof uses adjunction (see Theorem
4.25). As a result, we obtain the semi-normality of xBy ∩D.

Corollary 4.26 (cf. [Al, Theorem 4.1]). Let (X,B) be an lc pair and let

D be an effective Cartier divisor on D such that (X,B +D) is lc. Then D
is S2 and the scheme xBy ∩D is reduced and semi-normal.

Proof. By Theorem 4.24, D satisfies Serre’s S2 condition. By Theorem 4.25,
xBy ∩D is reduced and semi-normal.

The following proposition may be useful. So, we contain it here. It is [Al,
Lemma 3.1] with slight modifications as Theorem 4.21.

Proposition 4.27 (cf. [Al, Lemma 3.1]). Let X be a normal variety with

dimX = n ≥ 3 and let f : Y → X be a resolution of singularities. Let

P ∈ X be a scheme theoretic point such that dim {P} ≤ n − 3. Then the

local ring OX,P is S3 if and only if P is not an associated point of R1f∗OY .

Proof. We put XP = SpecOX,P , YP = Y ×X XP , and F = f−1(P ), where
f : YP → XP . We consider the following spectral sequence

Eij
2 = H i

P (X,Rjf∗OYP
) ⇒ H i+j

F (YP ,OYP
).

Since H1
F (YP ,OYP

) = H2
F (YP ,OYP

) = 0 by Lemma 4.22, we have an isomor-
phism H0

P (XP , R
1f∗OYP

) ≃ H2
P (XP ,OXP

). Therefore, the depth of OX,P is
≥ 3 if and only if H2

P (XP ,OXP
) = H0

P (XP , R
1f∗OYP

) = 0. It is equivalent
to the condition that P is not an associated point of R1f∗OY .

4.28 (Supplements). Here, we give a slight generalization of [Al, Theorem
3.5]. We can prove it by a similar method to the proof of Theorem 4.21.
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Theorem 4.29 (cf. [Al, Theorem 3.5]). Let (X,B) be an lc pair and D
an effective Cartier divisor on X such that (X,B+ εD) is lc for some ε > 0.
Let V be a union of some lc centers of (X,B). We consider V as a reduced

closed subscheme of X. We can define a scheme structure on V ∩D by the

following exact sequence

0 → OV (−D) → OV → OV ∩D → 0.

Then the scheme V ∩D satisfies Serre’s S1 condition. In particular, xBy∩D
has no embedded point.

Proof. Without loss of generality, we can assume that X is affine. We take
a resolution f : Y → X such that Exc(f) ∪ Suppf−1

∗ B is a simple normal
crossing divisor on Y . Then we can write

KY +BY = f ∗(KX +B)

such that SuppBY is a simple normal crossing divisor on Y . We take more
blow-ups and can assume that the union of all strata of B=1

Y mapped to V ,
which is denoted by W , is a divisor on Y . Moreover, for any lc center C of
(X,B) contained in V , we can assume that f−1(C) is a divisor on Y . We
consider the following short exact sequence

0 → OY (A−W ) → OY (A) → OW (A) → 0,

where A = p−(B<1
Y )q ≥ 0. By taking higher direct images, we obtain

0 → f∗OY (A−W ) → OX → f∗OW (A) → R1f∗OY (A−W ) → · · · .

By Theorem 2.39 (i), we have that f∗OW (A) → R1f∗OY (A −W ) is a zero
map, f∗OW (A) ≃ OV , and f∗OY (A − W ) ≃ IV , the defining ideal sheaf
of V on X. We note that f∗OW ≃ OV . In particular, OV is reduced and
semi-normal. For the details, see Theorem 3.39 (i).

Let P ∈ V ∩ D be a scheme theoretic point such that the height of P
in OV ∩D is ≥ 1. We can assume that dimV ≥ 2 around P . Otherwise, the
theorem is trivial. We put VP = SpecOV,P , WP = W×V VP , and F = f−1(P ),
where f : WP → VP . We denote the pull back of D on VP by D for simplicity.
To check this theorem, it is sufficient to see that H0

P (VP ∩ D,OVP∩D) = 0.
First, we note that H0

P (VP ,OVP
) = H0

F (WP ,OWP
) = 0 by f∗OW ≃ OV .
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Next, as in the proof of Lemma 4.22, we have

RΓFOWP
≃ RΓP (Rf∗OWP

)

≃ Hom(RHom(Rf∗OWP
, ω•VP

), I)

≃ Hom(Rf∗OW (KW ) ⊗OVP
[n− 1 −m], I),

where n = dimX, m = dim {P}, and I is an injective hull of OVP
/mP as an

OVP
-module such that mP is the maximal ideal corresponding to P . Once we

obtain Rn−m−2f∗OW (KW ) ⊗ OVP
= 0, then H1

F (WP ,OWP
) = 0. It implies

that H1
P (VP ,OVP

) = 0 since H1
P (VP ,OVP

) ⊂ H1
F (WP ,OWP

). By the long
exact sequence

· · · → H0
P (VP ,OVP

) → H0
P (VP ∩D,OVP∩D)

→ H1
P (VP ,OVP

(−D)) → · · · ,

we obtain H0
P (VP ∩ D,OVP∩D) = 0. It is because H0

P (VP ,OVP
) = 0 and

H1
P (VP ,OVP

(−D)) ≃ H1
P (VP ,OVP

) = 0. So, it is sufficient to see that
Rn−m−2f∗OW (KW ) ⊗OVP

= 0.
To check the vanishing of Rn−m−2f∗OW (KW ) ⊗ OVP

, by taking general
hyperplane cuts m times, we can assume that m = 0 and P ∈ X is a closed
point. We note that the dimension of any irreducible component of V passing
through P is ≥ 2 since P is not an lc center of (X,B) (see Theorem 3.46).

On the other hand, we can write W = U1 + U2 such that U2 is the union
of all the irreducible components of W whose images by f have dimensions
≥ 2 and U1 = W − U2. We note that the dimension of the image of any
stratum of U2 by f is ≥ 2 by the construction of f : Y → X. We consider
the following exact sequence

· · · → Rn−2f∗OU2
(KU2

) → Rn−2f∗OW (KW )

→ Rn−2f∗OU1
(KU1

+ U2|U1
) → Rn−1f∗OU2

(KU2
) → · · · .

We have Rn−2f∗OU2
(KU2

) = Rn−1f∗OU2
(KU2

) = 0 around P since the di-
mension of general fibers of f : U2 → f(U2) is ≤ n − 3. Thus, we obtain
Rn−2f∗OW (KW ) ≃ Rn−2f∗OU1

(KU1
+ U2|U1

) around P . Therefore, the sup-
port of Rn−2f∗OW (KW ) around P is contained in one-dimensional lc centers
of (X,B) in V and Rn−2f∗OW (KW ) has no zero-dimensional associated point
around P by Theorem 2.39 (i). By taking a general hyperplane cut of X
again, we have the vanishing of Rn−2f∗OW (KW ) around P by Lemma 4.30
below. So, we finish the proof.
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We used the following lemma in the proof of Theorem 4.29.

Lemma 4.30. Let (Z,∆) be an n-dimensional lc pair and let x ∈ Z be a

closed point such that x is an lc center of (Z,∆). Let V be a union of some

lc centers of (X,B) such that dimV > 0, x ∈ V , and x is not isolated in V .

Let f : Y → Z be a resolution such that f−1(x) and f−1(V ) are divisors on

Y and that Exc(f) ∪ Suppf−1
∗ ∆ is a simple normal crossing divisor on Y .

We can write

KY +BY = f ∗(KZ + ∆)

such that SuppBY is a simple normal crossing divisor on Y . Let W be

the union of all the irreducible components of B=1
Y mapped to V . Then

Rn−1f∗OW (KW ) = 0 around x.

Proof. We can write W = W1 + W2, where W2 is the union of all the irre-
ducible components of W mapped to x by f and W1 = W −W2. We consider
the following short exact sequence

0 → OY (KY ) → OY (KY +W ) → OW (KW ) → 0.

By the Grauert–Riemenschneider vanishing theorem, we obtain that

Rn−1f∗OY (KY +W ) ≃ Rn−1f∗OW (KW ).

Next, we consider the short exact sequence

0 → OY (KY +W1) → OY (KY +W ) → OW2
(KW2

+W1|W2
) → 0.

Around x, the image of any irreducible component of W1 by f is positive
dimensional. Therefore, Rn−1f∗OY (KY +W1) = 0 near x. It can be checked
by the induction on the number of irreducible components using the following
exact sequence

· · · → Rn−1f∗OY (KY +W1 − S) → Rn−1f∗OY (KY +W1)

→ Rn−1f∗OS(KS + (W1 − S)|S) → · · · ,
where S is an irreducible component of W1. On the other hand, we have

Rn−1f∗OW2
(KW2

+W1|W2
) ≃ Hn−1(W2,OW2

(KW2
+W1|W2

))

and Hn−1(W2,OW2
(KW2

+W1|W2
)) is dual to H0(W2,OW2

(−W1|W2
)). Note

that f∗OW2
≃ Ox and f∗OW ≃ OV by the usual argument on adjunction

(see Theorem 3.39 (i)). Since W2 and W = W1 + W2 are connected over
x, H0(W2,OW2

(−W1|W2
)) = 0. We note that W1|W2

6= 0 since x is not
isolated in V . This means that Rn−1f∗OW (KW ) = 0 around x by the above
arguments.
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4.3.1 Appendix: Cone singularities

In this subsection, we collect some basic facts on cone singularities for the
reader’s convenience. First, we give two lemmas which can be proved by the
same method as in Section 4.3. We think that these lemmas will be useful
for the study of log canonical singularities.

Lemma 4.31. Let X be an n-dimensional normal variety and let f : Y → X
be a resolution of singularities. Assume that Rif∗OY = 0 for 1 ≤ i ≤ n− 2.
Then X is Cohen–Macaulay.

Proof. We can assume that n ≥ 3. Since SuppRn−1f∗OY is zero-dimensional,
we can assume that there exists a closed point x ∈ X such that X has only
rational singularities outside x by shrinking X around x. Therefore, it is
sufficient to see that the depth of OX,x is ≥ n = dimX. We consider the
following spectral sequence

Eij
2 = H i

x(X,R
jf∗OY ) ⇒ H i+j

F (Y,OY ),

where F = f−1(x). Then H i
x(X,OX) = Ei0

2 ≃ Ei0
∞ = 0 for i ≤ n − 1. It is

because H i
F (Y,OY ) = 0 for i ≤ n− 1 by Lemma 4.19. This means that the

depth of OX,x is ≥ n. So, we have that X is Cohen–Macaulay.

Lemma 4.32. Let X be an n-dimensional normal variety and let f : Y → X
be a resolution of singularities. Let x ∈ X be a closed point. Assume that

X is Cohen-Macaulay and that X has only rational singularities outside x.
Then Rif∗OY = 0 for 1 ≤ i ≤ n− 2.

Proof. We can assume that n ≥ 3. By the assumption, SuppRif∗OY ⊂ {x}
for 1 ≤ i ≤ n− 1. We consider the following spectral sequence

Eij
2 = H i

x(X,R
jf∗OY ) ⇒ H i+j

F (Y,OY ),

where F = f−1(x). Then H0
x(X,Rjf∗OY ) = E0j

2 ≃ E0j
∞ = 0 for j ≤ n − 2

since Eij
2 = 0 for i > 0 and j > 0, Ei0

2 = 0 for i ≤ n− 1, and Hj
F (Y,OY ) = 0

for j < n. Therefore, Rif∗OY = 0 for 1 ≤ i ≤ n− 2.

We point out the following fact explicitly for the reader’s convenience. It
is [Ko4, 11.2 Theorem. (11.2.5)].

Lemma 4.33. Let f : Y → X be a proper morphism, x ∈ X a closed point,

F = f−1(x) and G a sheaf on Y . If SuppRjf∗G ⊂ {x} for 1 ≤ i < k and

H i
F (Y,G) = 0 for i ≤ k, then Rjf∗G ≃ Hj+1

x (X, f∗G) for j = 1, · · · , k − 1.
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The assumptions in Lemma 4.32 are satisfied for n-dimensional isolated
Cohen–Macaulay singularities. Therefore, we have the following corollary of
Lemmas 4.31 and 4.32.

Corollary 4.34. Let x ∈ X be an n-dimensional normal isolated singularity.

Then x ∈ X is Cohen–Macaulay if and only if Rif∗OY = 0 for 1 ≤ i ≤ n−2,
where f : Y → X is a resolution of singularities.

We note the following easy example.

Example 4.35. Let V be a cone over a smooth plane cubic curve and let ϕ :
W → V be the blow-up at the vertex. Then W is smooth and KW = ϕ∗KV −
E, where E is an elliptic curve. In particular, V is log canonical. Let C be a
smooth curve. We put Y = W ×C, X = V ×C, and f = ϕ× idC : Y → X,
where idC is the identity map of C. By the construction, X is a log canonical
threefold. We can check that X is Cohen–Macaulay by Theorem 4.21 or
Proposition 4.27. We note that R1f∗OY 6= 0 and that R1f∗OY has no zero-
dimensional associated components. Therefore, the Cohen–Macaulayness of
X does not necessarily imply the vanishing of R1f∗OY .

Let us go to cone singularities (cf. [Ko4, 3.8 Example] and [Ko5, Exercises
70, 71]).

Lemma 4.36 (Projective normality). Let X ⊂ PN be a normal projective

irreducible variety and V ⊂ AN+1 the cone over X. Then V is normal if and

only if H0(PN ,OPN (m)) → H0(X,OX(m)) is surjective for any m ≥ 0. In

this case, X ⊂ PN is said to be projectively normal.

Proof. Without loss of generality, we can assume that dimX ≥ 1. Let P ∈ V
be the vertex of V . By the construction, we have H0

P (V,OV ) = 0. We
consider the following commutative diagram.

0 // H0(AN+1,OAN+1)

��

// H0(AN+1 \ P,OAN+1)

��

// 0

0 // H0(V,OV )

��

// H0(V \ P,OV ) // H1
P (V,OV ) // 0

0

We note that H i(V,OV ) = 0 for any i > 0 since V is affine. By the above
commutative diagram, it is easy to see that the following conditions are
equivalent.
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(a) V is normal.

(b) the depth of OV,P is ≥ 2.

(c) H1
P (V,OV ) = 0.

(d) H0(AN+1 \ P,OAN+1) → H0(V \ P,OV ) is surjective.

The condition (d) is equivalent to the condition that H0(PN ,OPN (m)) →
H0(X,OX(m)) is surjective for any m ≥ 0. We note that

H0(AN+1 \ P,OAN+1) ≃
⊕

m≥0

H0(PN ,OPN (m))

and
H0(V \ P,OV ) ≃

⊕

m≥0

H0(X,OX(m)).

So, we finish the proof.

The next lemma is more or less well known to the experts.

Lemma 4.37. Let X ⊂ PN be a normal projective irreducible variety and

V ⊂ AN+1 the cone over X. Assume that X is projectively normal and that

X has only rational singularities. Then we have the following properties.

(1) V is Cohen–Macaulay if and only if H i(X,OX(m)) = 0 for any 0 <
i < dimX and m ≥ 0.

(2) V has only rational singularities if and only if H i(X,OX(m)) = 0 for

any i > 0 and m ≥ 0.

Proof. We put n = dimX and can assume n ≥ 1. For (1), it is sufficient to
prove that H i

P (V,OV ) = 0 for 2 ≤ i ≤ n if and only if H i(X,OX(m)) = 0
for any 0 < i < n and m ≥ 0 since V is normal, where P ∈ V is the vertex
of V . Let f : W → V be the blow-up at P and E ≃ X the exceptional
divisor of f . We note that W is the total space of OX(−1) over E ≃ X
and that W has only rational singularities. Since V is affine, we obtain
H i(V \ P,OV ) ≃ H i+1

P (V,OV ) for any i ≥ 1. Since W has only rational
singularities, we have H i

E(W,OW ) = 0 for i < n + 1 (cf. Lemma 4.19 and
Remark 4.20). Therefore,

H i(V \ P,OV ) ≃ H i(W \ E,OW ) ≃ H i(W,OW )
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for i ≤ n− 1. Thus,

H i
P (V,OV ) ≃ H i−1(V \ P,OV ) ≃ H i−1(W,OW ) ≃

⊕

m≥0

H i−1(X,OX(m))

for 2 ≤ i ≤ n. So, we obtain the desired equivalence.
For (2), we consider the following commutative diagram.

0 // Hn(V \ P,OV )

≃

��

// Hn+1
P (V,OV )

α

��

// 0

0 // Hn(W,OW ) // Hn(W \ E,OW ) // Hn+1
E (W,OW )

We note that V is Cohen–Macaulay if and only if Rif∗OW = 0 for 1 ≤ i ≤
n − 1 (cf. Lemmas 4.31 and 4.32) since W has only rational singularities.
From now on, we assume that V is Cohen–Macaulay. Then, V has only
rational singularities if and only if Rnf∗OW = 0. By the same argument
as in the proof of Theorem 4.17, the kernel of α is H0

P (V,Rnf∗OW ). Thus,
Rnf∗OW = 0 if and only if Hn(W,OW ) ≃ ⊕

m≥0 H
n(X,OX(m)) = 0 by the

above commutative diagram. So, we obtain the statement (2).

The following proposition is very useful when we construct some exam-
ples. We have already used it in this book.

Proposition 4.38. Let X ⊂ PN be a normal projective irreducible variety

and V ⊂ AN+1 the cone over X. Assume that X is projectively normal. Let

∆ be an effective R-divisor on Xand B the cone over ∆. Then, we have the

following properties.

(1) KV + B is R-Cartier if and only if KX + ∆ ∼R rH for some r ∈ R,

where H ⊂ X is the hyperplane divisor on X ⊂ PN .

(2) If KX + ∆ ∼R rH, then (V,B) is

(a) terminal if and only if r < −1 and (X,∆) is terminal,

(b) canonical if and only if r ≤ −1 and (X,∆) is canonical,

(c) klt if and only if r < 0 and (X,∆) is klt, and

(d) lc if and only if r ≤ 0 and (X,∆) is lc.
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Proof. Let f : W → V be the blow-up at the vertex P ∈ V and E ≃ X
the exceptional divisor of f . If KV + B is R-Cartier, then KW + f−1

∗ B ∼R

f ∗(KV + B) + aE for some a ∈ R. By restricting it to E, we obtain that
KX + ∆ ∼R −(a + 1)H . On the other hand, if KX + ∆ ∼R rH , then
KW + f−1

∗ B ∼R −(r + 1)E. Therefore, KV + B ∼R 0 on V . Thus, we have
the statement (1). For (2), it is sufficient to note that

KW + f−1
∗ B = f ∗(KX +B) − (r + 1)E

and that W is the total space of OX(−1) over E ≃ X.

4.4 Toric Polyhedron

In this section, we freely use the basic notation of the toric geometry. See,
for example, [Fl].

Definition 4.39. For a subset Φ of a fan ∆, we say that Φ is star closed if
σ ∈ Φ, τ ∈ ∆ and σ ≺ τ imply τ ∈ Φ.

Definition 4.40 (Toric Polyhedron). For a star closed subset Φ of a fan
∆, we denote by Y = Y (Φ) the subscheme

⋃
σ∈Φ V (σ) of X = X(∆), and we

call it the toric polyhedron associated to Φ.

Let X = X(∆) be a toric variety and let D be the complement of the big
torus. Then the following property is well known.

Proposition 4.41. The pair (X,D) is log canonical and KX +D ∼ 0. Let

W be a closed subvariety of X. Then, W is an lc center of (X,D) if and

only if W = V (σ) for some σ ∈ ∆ \ {0}.
Therefore, we have the next theorem by adjunction (see Theorem 3.39

(i)).

Theorem 4.42. Let Y = Y (Φ) be a toric polyhedron on X = X(∆). Then,

the log canonical pair (X,D) induces a natural quasi-log structure on [Y, 0].
Note that [Y, 0] has only qlc singularities. Let W be a closed subvariety of Y .

Then, W is a qlc center of [Y, 0] if and only if W = V (σ) for some σ ∈ Φ.

Thus, we can use the theory of quasi-log varieties to investigate toric
varieties and toric polyhedra. For example, we have the following result as a
special case of Theorem 3.39 (ii).
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Corollary 4.43. We use the same notation as in Theorem 4.42. Assume

that X is projective and L is an ample Cartier divisor. Then H i(X, IY ⊗
OX(L)) = 0 for any i > 0, where IY is the defining ideal sheaf of Y on X.

In particular, H0(X,OX(L)) → H0(Y,OY (L)) is surjective.

We can prove various vanishing theorems for toric varieties and toric
polyhedra without appealing the results in Chapter 2. For the details, see
[F12].

4.5 Non-lc ideal sheaves

In [F15], we introduced the notion of non-lc ideal sheaves and proved the
restriction theorem. In this section, we quickly review the results in [F15].

Definition 4.44 (Non-lc ideal sheaf). Let X be a normal variety and let
∆ be an R-divisor on X such that KX +∆ is R-Cartier. Let f : Y → X be a
resolution with KY +∆Y = f ∗(KX +∆) such that Supp∆Y is simple normal
crossing. Then we put

JNLC(X,∆) = f∗OY (p−(∆<1
Y )q − x∆>1

Y y) = f∗OY (−x∆Y y + ∆=1
Y )

and call it the non-lc ideal sheaf associated to (X,∆).

In Definition 4.44, the ideal JNLC(X,∆) coincides with IX−∞
for the

quasi-log pair [X,KX + ∆] when ∆ is effective.

Remark 4.45. In the same notation as in Definition 4.44, we put

J (X,∆) = f∗OY (−x∆Y y) = f∗OY (KY − xf ∗(KX + ∆)y).

It is nothing but the well-known multiplier ideal sheaf. It is obvious that
J (X,∆) ⊆ JNLC(X,∆).

The following theorem is the main theorem of [F15]. We hope that it will
have many applications. For the proof, see [F15].

Theorem 4.46 (Restriction Theorem). Let X be a normal variety and

let S + B be an effective R-divisor on X such that S is reduced and normal

and that S and B have no common irreducible components. Assume that

KX + S + B is R-Cartier. We put KS + BS = (KX + S + B)|S. Then we

obtain that

JNLC(S,BS) = JNLC(X,S +B)|S.
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Theorem 4.46 is a generalization of the inversion of adjunction on log
canonicity in some sense.

Corollary 4.47 (Inversion of Adjunction). We use the notation as in

Theorem 4.46. Then, (S,BS) is lc if and only if (X,S +B) is lc around S.

In [Kw], Kawakita proved the inversion of adjunction on log canonicity
without assuming that S is normal.

4.6 Effective Base Point Free Theorems

In this section, we state effective base point free theorems for log canonical
pairs without proof. First, we state Angehrn–Siu type effective base point
free theorems (see [AS] and [Ko4]). For the details of Theorems 4.48 and
4.49, see [F14].

Theorem 4.48 (Effective Freeness). Let (X,∆) be a projective log canon-
ical pair such that ∆ is an effective Q-divisor and let M be a line bundle on

X. Assume that M ≡ KX + ∆ + N , where N is an ample Q-divisor on X.

Let x ∈ X be a closed point and assume that there are positive numbers c(k)
with the following properties:

(1) If x ∈ Z ⊂ X is an irreducible (positive dimensional) subvariety, then

(Ndim Z · Z) > c(dimZ)dimZ .

(2) The numbers c(k) satisfy the inequality

dimX∑

k=1

k

c(k)
≤ 1.

Then M has a global section not vanishing at x.

Theorem 4.49 (Effective Point Separation). Let (X,∆) be a projective

log canonical pair such that ∆ is an effective Q-divisor and let M be a line

bundle on X. Assume that M ≡ KX + ∆ + N , where N is an ample Q-

divisor on X. Let x1, x2 ∈ X be closed points and assume that there are

positive numbers c(k) with the following properties:
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(1) If Z ⊂ X is an irreducible (positive dimensional) subvariety which

contains x1 or x2, then

(Ndim Z · Z) > c(dimZ)dim Z .

(2) The numbers c(k) satisfy the inequality

dimX∑

k=1

k
√

2
k

c(k)
≤ 1.

Then global sections of M separates x1 and x2.

The key points of the proofs of Theorems 4.48 and 4.49 are the vanish-
ing theorem (see Theorem 3.39 (ii)) and the inversion of adjunction on log
canonicity (see Corollary 4.47 and [Kw]).

The final theorem in this book is a generalization of Kollár’s effective base
point freeness (see [Ko2]). The proof is essentially the same as Kollár’s once
we adopt Theorem 3.39 (ii) and Theorem 4.4. For the details, see [F13].

Theorem 4.50. Let (X,∆) be a log canonical pair with dimX = n and

let π : X → V be a projective surjective morphism. Note that ∆ is an

effective Q-divisor on X. Let L be a π-nef Cartier divisor on X. Assume

that aL− (KX +∆) is π-nef and π-log big for some a ≥ 0. Then there exists

a positive integer m = m(n, a), which only depends on n and a, such that

OX(mL) is π-generated.
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Chapter 5

Appendix

In this final chapter, we will explain some sample computations of flips. We
use the toric geometry to construct explicit examples here.

5.1 Francia’s flip revisited

We give an example of Francia’s flip on a projective toric variety explicitly. It
is a monumental example (see [Fr]). So, we contain it here. Our description
looks slightly different from the usual one because we use the toric geometry.

Example 5.1. We fix a lattice N ≃ Z3 and consider the lattice points e1 =
(1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), e4 = (1, 1,−2), and e5 = (−1,−1, 1).
First, we consider the complete fan ∆1 spanned by e1, e2, e4, and e5. Since
e1 + e2 + e4 +2e5 = 0, X1 = X(∆1) is P(1, 1, 1, 2). Next, we take the blow-up
f : X2 = X(∆2) → X1 along the ray e3 = (0, 0, 1). ThenX2 is a projective Q-
factorial toric variety with only one 1

2
(1, 1, 1)-singular point. Since ρ(X2) = 2,

we have one more contraction morphism ϕ : X2 → X3 = X(∆3). This
contraction morphism ϕ corresponds to the removal of the wall 〈e1, e2〉 from
∆2. We can easily check that ϕ is a flipping contraction. By adding the wall
〈e3, e4〉 to ∆3, we obtain a flipping diagram.

X2 99K X4

ց ւ
X3

It is an example of Francia’s flip. We can easily check that X4 ≃ PP1(OP1 ⊕
OP1(1) ⊕ OP1(2)) and that the flipped curve C ≃ P1 is the section of π :
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PP1(OP1 ⊕OP1(1) ⊕OP1(2)) → P1 defined by the projection OP1 ⊕OP1(1) ⊕
OP1(2) → OP1 → 0.

By taking double covers, we have an interesting example (cf. [Fr]).

Example 5.2. We use the same notation as in Example 5.1. Let g : X5 → X2

be the blow-up along the ray e6 = (1, 1,−1). Then X5 is a smooth projective
toric variety. Let OX4

(1) be the tautological line bundle of the P2-bundle
π : X4 = PP1(OP1 ⊕ OP1(1) ⊕ OP1(2)) → P1. It is easy to see that OX4

(1)
is nef and OX4

(1) · C = 0. Therefore, there exists a line bundle L on X3

such that OX4
(1) ≃ ψ∗L, where ψ : X4 → X3. We take a general member

D ∈ |L⊗8|. We note that |L| is free since L is nef. We take a double cover
X → X4 (resp. Y → X5) ramifying along Suppψ−1D (resp. Supp(ϕ◦g)−1D).
Then X is a smooth projective variety such that KX is ample. It is obvious
that Y is a smooth projective variety and is birational to X. So, X is the
unique minimal model of Y . We need flips to obtain the minimal model X
from Y by running the MMP.

5.2 A sample computation of a log flip

Here, we treat an example of threefold log flips. In general, it is difficult
to know what happens around the flipping curve. Therefore, the following
nontrivial example is valuable because we can see the behavior of the flip
explicitly. It helps us understand the proof of the special termination in
[F8].

Example 5.3. We fix a lattice N = Z3. We put e1 = (1, 0, 0), e2 = (−1, 2, 0),
e3 = (0, 0, 1), and e4 = (−1, 3,−3). We consider the fan

∆ = {〈e1, e3, e4〉, 〈e2, e3, e4〉, and their faces}.

We put X = X(∆), that is, X is the toric variety associated to the fan ∆.
We define torus invariant prime divisors Di = V (ei) for 1 ≤ i ≤ 4. We can
easily check the following claim.

Claim. The pair (X,D1 +D3) is a Q-factorial dlt pair.

We put C = V (〈e3, e4〉) ≃ P1, which is a torus invariant irreducible
curve on X. Since 〈e2, e3, e4〉 is a non-singular cone, the intersection number
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D2 ·C = 1. Therefore, C ·D4 = −2
3

and −(KX +D1 +D3) ·C = 1
3
. We note

the linear relation e1 + 3e2 − 6e3 − 2e4 = 0. We put Y = X(〈e1, e2, e3, e4〉),
that is, Y is the affine toric variety associated to the cone 〈e1, e2, e3, e4〉. Then
we have the next claim.

Claim. The birational map f : X → Y is an elementary pl flipping contrac-

tion with respect to KX +D1 +D3.

For the definition of pl flipping contractions, see [F8, Definition 4.3.1]. We
note the intersection numbers C ·D1 = 1

3
and D3 ·C = −2. Let ϕ : X 99K X+

be the flip of f . We note that the flip ϕ is an isomorphism around any generic
points of lc centers of (X,D1 +D3). We restrict the flipping diagram

X 99K X+

ց ւ
Y

to D3. Then we have the following diagram.

D3 99K D+
3

ց ւ
f(D3)

It is not difficult to see that D+
3 → f(D3) is an isomorphism. We put

(KX + D1 + D3)|D3
= KD3

+ B. Then f : D3 → f(D3) is an extremal
divisorial contraction with respect to KD3

+B. We note that B = D1|D3
.

Claim. The birational morphism f : D3 → f(D3) contracts E ≃ P1 to a

point Q on D+
3 ≃ f(D3) and Q is a 1

2
(1, 1)-singular point on D+

3 ≃ f(D3).
The surface D3 has a 1

3
(1, 1)-singular point P , which is the intersection of E

and B. We also have the adjunction formula (KD3
+B)|B = KB + 2

3
P .

Let D+
i be the torus invariant prime divisor V (ei) on X+ for all i and B+

the strict transform of B on D+
3 .

Claim. We have

(KX+ +D+
1 +D+

3 )|D+

3
= KD+

3
+B+

and

(KD+

3
+B+)|B+ = KB+ +

1

2
Q.
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We note that f+ : D+
3 → f(D3) is an isomorphism. In particular,

D3 99K D+
3

ց ւ
f(D3)

is of type (DS) in the sense of [F8, Definition 4.2.6]. Moreover, f : B → B+ is
an isomorphism but f : (B, 2

3
P ) → (B+, 1

2
Q) is not an isomorphism of pairs

(see [F8, Definition 4.2.5]). We note that B is an lc center of (X,D1 +D3).
So, we need [F8, Lemma 4.2.15]. Next, we restrict the flipping diagram to
D1. Then we obtain the diagram.

D1 99K D+
1

ց ւ
f(D1)

In this case, f : D1 → f(D1) is an isomorphism.

Claim. The surfaces D1 and D+
1 are smooth.

It can be directly checked. Moreover, we obtain the following adjunction
formulas.

Claim. We have

(KX +D1 +D3)|D1
= KD1

+B +
2

3
B′,

where B (resp. B′) comes from the intersection of D1 and D3 (resp. D4). We

also obtain

(KX+ +D+
1 +D+

3 )|D+

1
= KD+

1
+B+ +

2

3
B′

+
+

1

2
F,

where B+ (resp. B′+) is the strict transform of B (resp. B′) and F is the

exceptional curve of f+ : D+
1 → f(D1).

Claim. The birational morphism f+ : D+
1 → f(D1) ≃ D1 is the blow-up at

P = B ∩B′.

We can easily check that

KD+

1
+B+ +

2

3
B′

+
+

1

2
F = f+∗(KD1

+B +
2

3
B′) − 1

6
F.
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It is obvious that KD+

1
+B+ + 2

3
B′+ + 1

2
F is f+-ample. Note that F comes

from the intersection of D+
1 and D+

2 . Note that the diagram

D1 99K D+
1

ց ւ
f(D1)

is of type (SD) in the sense of [F8, Definition 4.2.6].

5.3 A non-Q-factorial flip

I apologize for the mistake in [F7, Example 4.4.2]. We give an example of
a three-dimensional non-Q-factorial canonical Gorenstein toric flip. See also
[FSTU]. We think that it is difficult to construct such examples without
using the toric geometry.

Example 5.4 (Non-Q-factorial canonical Gorenstein toric flip). We
fix a lattice N = Z3. Let n be a positive integer with n ≥ 2. We take lattice
points e0 = (0,−1, 0), ei = (n + 1 − i,

∑n−1
k=n+1−i k, 1) for 1 ≤ i ≤ n + 1, and

en+2 = (−1, 0, 1). We consider the following fans.

∆X = {〈e0, e1, en+2〉, 〈e1, e2, · · · , en+1, en+2〉, and their faces},
∆W = {〈e0, e1, · · · , en+1, en+2〉, and its faces}, and

∆X+ = {〈e0, ei, ei+1〉, for i = 1, · · · , n + 1, and their faces}.

We define X = X(∆X), X+ = X(∆X+), and W = X(∆W ). Then we have a
diagram of toric varieties.

X 99K X+

ց ւ
W

We can easily check the following properties.

(i) X has only canonical Gorenstein singularities.

(ii) X is not Q-factorial.

(iii) X+ is smooth.
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(iv) −KX is ϕ-ample and KX+ is ϕ+-ample.

(v) ϕ : X → W and ϕ+ : X+ → W are small projective toric morphisms.

(vi) ρ(X/W ) = 1 and ρ(X+/W ) = n.

Therefore, the above diagram is a desired flipping diagram. We note that
ei + ei+2 = 2ei+1 + e0 for i = 1, · · · , n− 1 and en + en+2 = 2en+1 + n(n−1)

2
e0.

We recommend the reader to draw pictures of ∆X and ∆X+ .

By this example, we see that a flip sometimes increases the Picard number
when the variety is not Q-factorial.
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orem, 55

Kleiman’s criterion, 14
Kleiman–Mori cone, 14
Kodaira vanishing theorem, 50

lc center, 13
lcs locus, 91
log canonical, 13, 17
log canonical flop, 82
log canonical model, 76
log minimal model, 22

multicrossing pair, 98
multicrossing singularity, 98
multiplier ideal sheaf, 8, 140
Mumford vanishing theorem, 64

Nadel vanishing theorem, 8, 66
nef, 14
nef and log abundant divisor, 52
nef and log big divisor, 52, 87
non-klt locus, 91
non-lc ideal sheaf, 140
non-qlc locus, 86
non-vanishing theorem, 18
normal crossing divisor, 31
normal crossing pair, 57
normal crossing variety, 30

permissible divisor, 31, 32, 58
projectively normal, 136
purely log terminal, 17

qlc center, 86
qlc pair, 6, 86
qlc singularity, 86
quasi-log canonical class, 86
quasi-log pair, 86

quasi-log resolution, 86
quasi-log variety, 70, 85, 96

rational singularity, 124
rationality theorem, 18, 104
relatively ample at infinity, 109
relatively nef, 14
resolution lemma, 13
restriction theorem, 140
round-down, 12
round-up, 12

semi-ample R-divisor, 35
semi-normal, 86
simple normal crossing divisor, 31
simple normal crossing pair, 32
simple normal crossing variety, 30
small, 22
Sommese’s example, 61
stratum, 31, 32, 58
subboundary R-divisor, 12
support, 12
supporting function, 108

terminal, 17
toric polyhedron, 139

weak log-terminal singularity, 120

X-method, 6, 19, 25
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