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Abstract

We describe the foundation of the log minimal model program for log canon-
ical pairs according to Ambro’s idea. We generalize Kollar’s vanishing and
torsion-free theorems for embedded simple normal crossing pairs. Then we
prove the cone and contraction theorems for quasi-log varieties, especially,
for log canonical pairs.
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Chapter 1

Introduction

In this book, we describe the foundation of the log minimal model program
(L MP or MMP, for short) for log canonical pairs. We follow Ambro’s idea
in mIL Elrs}’g we generalize Kollar’s vanishing and torsion-free theorems
(cf. [Ko or embedded normal crossing pairs. Next, we introduce the no-
tion of quasi-log varieties. The key points of the theory of quasi-log varieties
are adjunction and the vanishing theorem, which directly follow from Kollar’s
vanishing and torsion-free theorems for embedded normal crossing pairs. Fi-
nally, we prove the cone and contraction theorems for quasi-log varieties. The
proofs are more or less routine works for experts once We v,g adjunction
and the vanishing theo I, Ifl(())r quasi-log zﬂriegies Chapter 1S an e E)ande(;cl
version of my preprint and Chapter B1s based on the preprint %ﬁﬂjﬁ

After [KM] appeared, the log minim lﬁgodel program has developed dras-
ticall .o§161£)kurov’s epoch-making paper gave us various new ideas. The
book [Book| explains some of them in details. Now, we have HM] where
the log minimal model program for Kawamata log terminal pairs is estab-
lished on opne mild assumptions. In this book, we explain nothing on the
results i EBC'H . It is because man; Survey arthcles were &nd y&gglné)eet writ-
ten for HM]. See, for example, %C’FI‘K M], D], and [F19]. Here, we
concentrate basu:s of the log minimal model program for log canonical pairs.

We do not discuss the log minimal model program for toric varieties. It is
because we have already establishe% échde %O%éndation of the oric Mori ,E(l)ifory.
We recommend the reader to see hapter 14], , , and so
on. Note that we will freely use the toric geometry to construct nontrivial
examples explicitly.

The main ingredient of this book is the theory of mixed Hodge struc-
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tures. All the basic results for Kawamata log terminal pairs can be proved
without it. I think that the classical Hodge theory and the theory of varia-
tion of Hodge structures are sufficient for Kawamata log terminal pairs. For
log canonical pairs, the theory of mixed Hodge structures seems to be indis-
pensable. In this book, we do not discuss the theory of variation of Hodge
structures nor canonical bundle formulas.

Apologies. After I finished writing a preliminary version of this book, I
found a more direc ua}%pgoach to the log minimal model program for log
canonical pairs. In A . I obtained a correct generalization of Shokurov’s
non-vanishing theorem for log canonical paris. It directly implies the base
point free theorem for log canonical pairs. I also proved the rationality theo-
rem and the cone theorem for log canonical pairs without using the framework
1fl quasi-log varieties. The vanishing and torsion-free theorems we n d in
hgﬁ'iﬂ‘are essentially contained in [EV]. The reader can learn them by :
where I gave a short, easy, and almost self-contained proof to them. There-
fore, now we can prove some of the results i t&qils_gook in a more elementary
manner. However, tj%rqg’%hod developed in can be applied only to log
%ng_rgcal pairs. So, will not decrease the value of this book. Instead,
will complement the theory of quasi-log varieties. I am sorry that I do

not discuss that new approach here.

Acknowledgments. First, I express my gratitude to Professors Shigefumi
Mori, Yoichi Miyaoka, Noboru Nakayama, Daisuke Matsushita, and Hiraku
Kawanoue, who were the members of my seminars when I was a graduate stu-
dent at RIMS. In those seminars, I learned the foundation of the log minimal
m

model program according to a draft of [KM]. T was partially supported by
the Grant-in-Aid for Young Scientists (A) #20684001 from JSPS. I was also
supported by the Inamori Foundation. I thank Professors Noboru Nakayama,
Hiromichi Takagi, Florin Ambro, Hiroshi Sato, Takeshi Abe and Masayuki
Kawakita for discussions, comments, and questions. I would like to thank
Professor Janos Kollar for giving me many comments on the preliminary ver-
sion of this book and showing me many examples. I also thank Natsuo Saito
for drawing a beautiful picture of a Kleiman—Mori cone. Finally, I thank
Professors Shigefumi Mori, Shigeyuki Kondo, Takeshi Abe, and Yukari Ito
for warm encouragement.



1.1 What is a quasi-log variety 7

In this section, we informally explain why it is natural to consider quasi-log
varieties.
Let (Z, Bz) be a log canonical pair and let f : V' — Z be a resolution
with
Ky +S+B=f"(Kz+ Bz),

where Supp(S + B) is a simple normal crossing divisor, S is reduced, and
LB < 0. It is very important to consider the locus of log canonical singular-
ities W of the pair (Z, Bz), that is, W = f(5). By the Kawamata—Viehweg
vanishing theorem, we can easily check that

Ow ~ f.Os("—Bs"),

where Kg + Bs = (Ky + S + B)|s. In our case, Bg = Blg. Therefore, it is

natural to introduce the following notion. Precisely spe kuigsgi,_ixo lc pair is a
quasi-log pair with only qlc singularities (see Definition E%.ZQ ).

Definition 1.1 (Qlc pairs). A glc pair [X,w] is a scheme X endowed with
an R-Cartier R-divisor w such that there is a proper morphism f : (Y, By) —
X satisfying the following conditions.

(1) Y is a simple normal crossing divisor on a smooth variety M and there
exists an R-divisor D on M such that Supp(D +Y') is a simple normal
crossing divisor, Y and D have no common irreducible components,
and By = Dly.

(2) f*w ~R KY + By.
(3) By is a subboundary, that is, b; < 1 for any ¢ when By = > b;B;.
(4) Ox ~ f.Oy("—(B5")"), where By' =37, _| b;B;.

It is easy to see that the pair [W,w], where w = (Kx + B)|w, with
f (S, Bs) — W satisfies the definition of glc pairs. We note that the pair
[Z, K7+ Bz] with f: (V, S+ B) — Z is also a qlc pair since f.Oy("—B") ~
Oz. Therefore, we can treat log canonical pairs and loci of log canonical sin-
gularities in the same framework once we introduce the notion of glc pairs.
Ambro found that a modified version of X-method, that is, the method in-
troduced by Kawamata and used by him to prove the foundational results
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of the log minimal model program for Kawamata log terminal pairs, works
for glc pairs if we generalize Kollar’s vanishing and to si%Il;afree theorems for
embedded normal crossing pairs. It is the key idea of [AmT].

1.2 A sample computation

The following theorem must motivate the reader to study our new framework.

adj-th
Theorem 1.2 (cf. Theorem Wu)) Let X be a normal projective va-
riety and B a boundary R-divisor on X such that (X, B) is log canonical.
Let L be a Cartier divisor on X. Assume that L — (Kx + B) is ample. Let
{Ci} be any set of lc centers of the pair (X, B). We put W = |JC; with a

reduced scheme structure. Then we have
Hi(X,IW ®Ox(L) =0

for any i > 0, where Ly, is the defining ideal sheaf of W on X . In particular,
the restriction map

HY(X,0x(L)) — H(W, Ow (L))

is surjective. Therefore, if (X, B) has a zero-dimensional lc center, then the
linear system |L| is not empty and the base locus of |L| contains no zero-
dimensional lc centers of (X, B).

Let us see a simple setting to understand the difference between our new
framework and the traditional one.

1.3. Let X be a smooth projective surface and let 'y and C be smooth
curves on X. Assume that C; and C5 intersect only at a point P transversally.
Let L be a Cartier divisor on X such that L — (Kx + B) is ample, where
B = () + (5. It is obvious th to(t)lfI B) is log canonical and P is an lc center
of (X, B). Then, by Theorem .2, we can directly obtain

H'(X,Ip ® Ox(L)) =0

for any ¢ > 0, where Zp is the defining ideal sheaf of P on X.

In the classical framework, we prove it as follows. Let C be a general
curve passing through P. We take small positive rational numbers ¢ and
d such that (X, (1 —e)B + 6C) is log canonical at P and is Kawamata log
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terminal outside P. Since ¢ and § are small, L — (Kx + (1 —¢)B + §C) is
still ample. By the Nadel vanishing theorem, we obtain

H'(X,Ip ® Ox(L)) =0

for any ¢ > 0. We note that Zp is nothing but the multiplier ideal sheaf
associated to the pair (X, (1 —¢e)B + 0C).

By our new vanishing theorem, the reader will be released from annoyance
of perturbing coefficients of boundary divisors.

We give a sample computation here. It may explain the reason why
Kollar’s torsion-free and vanishing theor ms Appear in the study of log canon-
ical pairs. The actual proof of Theorem [T.2 depends on much more sophisti-
cated arguments on the theory of mixed Hodge structures.

Example 1.4. Let S be a normal projective surface which has only one
simple elliptic Gorenstein singularity @ € S. We put X = S x P! and
B = S x {0}. Then the pair (X, B) is log canonical. It is easy to see that
P = (Q,0) € X is an lc center of (X, B). Let L be a Cartier divisor on X
such that L — (Kx + B) is ample. We have

H'(X,Tp ® Ox(L)) = 0

for any ¢ > 0, where Zp is the defining ideal sheaf of P on X. We note that
X is not Kawamata log terminal and that P is not an isolated lc center of

(X, B).

Proof. Let ¢ : T'— S be the minimal resolution. Then we can write Kr +
C = ¢*Kg, where C is the p-exceptional elliptic curve on 7. We put Y =
TxPland f = ¢ xidp : Y — X, where idp : P — P! is the identity. Then
f is a resolution of X and we can write

Ky + By + E = f"(Kx + B),

where By is the strict transform of Bon Y and E ~ C x P! is the exceptional
divisor of f. Let g : Z — Y be the blow-up along £ N By. Then we can
write

Kz + Bz + Ez + F =g"(Ky + By + E) = h"(Kx + B),

where h = fog, By (resp. Ey) is the strict transform of By (resp. E) on Z,
and F' is the g-exceptional divisor. We note that

Ip ~ h*OZ(—F) - h*OZ ~ Ox.
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Since —F = Kz + By + Ez — h*(Kx + B), we have
Ip @ Ox(L) ~ h,Oz(Kz+ Bz + Ez) @ Ox(L — (Kx + B)).
So, it is sufficient to prove that
HY(X,h,Oz(Kz;+ Bz +Ez)®@L) =0

for any ¢ > 0 and any ample line bundle £ on X. We consider the short
exact sequence

00— OZ<KZ) — OZ(KZ —+ Ez) — OEZ(KEZ) — 0.
We can easily check that
0 — h*OZ(Kz) — h*OZ(KZ + Ez) — h*OEZ(KEZ) — 0

is exact and ‘ ‘
R'hOz(Kz+ Ez) ~ R'h,Og,(Kg,)

for any ¢ > 0 by the Grauert—Riemenschneider vanishing theorem. We can
directly check that

th*OEZ(KEZ) ~ le*OE(KE) ~ OD(KD),

where D = Q x P! € X. Therefore, R'h,Oz(Kz + Ez) ~ Op(Kp) is a
torsion sheaf on X. However, it is torsion-free as a sheaf on D. It is a
generalization of Kollar’s torsion-free theorem. We consider

0—-0z(Kz+Eyz) — Oz(Kz+ Bz + Ez) — Op,(Kg,) — 0.
We note that B; N E; = (). Thus, we have

0— h*OZ(KZ + Ez) — h*Oz(KZ + BZ + Ez) — h*OBZ(KBZ)
i) th*OZ(KZ + Ez) —r .

Since Supph.Op,(Kp,) = B, ¢ is a zero map by R'h.0z(K; + Bz) ~
Op(Kp). Therefore, we know that the following sequence

0 — h.Oz(Kz + Ez) — h.Oz(Kz + Bz + Ez) — h.Op,(Kp,) — 0
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is exact. By Kollar’s vanishing theorem on By, it is sufficient to prove that
H(X,h,0z(Kz+ Ez)® L) =0 for any i > 0 and any ample line bundle L.
We have

HY(X,h0z(Kz)®L) = H(X,h.Op,(Kg,) ® L) =0
for any ¢ > 0 by Kollar’s vanishing theorem. By the following exact sequence

= HY (X, h,Oz(Kz) ® L) — H(X,h,Oz(Kz + Ez))
- Hi(X’ h*OEz(KEz)) oy

we obtain the desired vanishing theorem. Anyway, we have
H'(X,Tp ® Ox(L)) =0

for any ¢ > 0. O

1.3 Overview

We summarize the conteﬁcgg this book.

In the rest of Chapter [T, we collect some preliminary results and notations.
Moreover, we qlé}l%k]é/ review the classical log minimal model program.

In Chapter b,_v% discuss Ambro’s generalizations of Kollar’s injectivity,
vanishing, and torsion-free theorems for embedded normal crossing pairs.
These results are indispensable for the theory of quasi-log varieties. To prove
them, we r gﬁ%l gome resulfs on the mixed Hodge structures. For t ghgegails
of Chapter 2] s%%_asrgction I, which is the introduction of Chapter 2.

In Chapter 3] we treat the log minimal model program for log canonical
pairs. In Section me explicitly state the cone and contraction theorems
for log canonical pairs and prove the log flip conjecture I for log canonical
pairs in dimension four. We also discuss the length of ec}gnremal rays for log
gagonical pairs with the aid of the recent result by %BCHM] Subsection

.I.4 contains Kollar’s various exa%%}eg.s e\éVe prove that a log canonical flop

does not always exist. In Section B2, we introduce the notion of quasi-log
varieties and prove basic results, for exa Ql%,egdjunction and the vanishing
theorem, for quasi-log varieties. Section 3.3 1s devoted to the proofs of the

fundamental theorems for quasi-log varieties. First, we prove the base point
free theorem for quasi-log varieties. Then, we prove the rationality theorem
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and the cone theorem for quasi-log varieties. Once we understand the notion
of quasi-log varieties and how to use adjunction and the vanishing theorem,
there are no difﬁ(ilulties to prove the above fundamental theorems.
cha . . 34-sec
In Chapter B, we discuss some supplementary results. Section iZLI is
devoted 'to the propf of 'the base pomt free 'tl'rleorem of Reld—blfglfy_ds%ctype
for quasi-log varieties with only glc singularities. In Section iZI.Q, we prove
that thg ngn—klt locus of a dlt pair i g)ghepfh/{ggg_%]féfx as an appllcat}og of
the vanishing theorem in Chapter 2. Section #.371s a detailed description
of Alexeev’s criterion for Serre’s Ss conditiggrol;selct is an application of the
generalized torsion-free theorem. In Section lZLZI, we recall the notion of toric
polyhedra. We can easil Sc_lslg(czk that a toric polyhedron has a natural quasi-
log structure. Section %.5 is a short survey of the theory of non-lc ideal
sheaves. In the finial section, we mention effective base point free theorems
for log canonical pairs. chans . o
In the final chapter: Chapter b, we collect various examples of toric flips.

1.4 How to read this book ?

We assume that the reader is familiar wit H’lche classical log minimal model
program, at the level of Chapters 2 and 3 in [KM]. Tt is not a good idea to read
thi aklcggrlf without studying the classical results discussed in 1, 1,

or [M].~ We Ylvlilluguickly review the ?lassical log minimal model progr m in
Section II.G for the reader’s convenience. If the reader understands [KM,
Chapters 2 and 3], then it is not difficult to read , which is a gentle

introduction to le log minimal model program for lc pairs and written in
’gﬁg spme style as [KM]. After these preparations, the reader ca crt?aa% Chapter
3 1n this book W&léogt any difficulties. We 'note tha‘t Chapter iicﬁngb'e read
before Chapter 2. The hardest part of this book is Chapter 2. is very
technical,  So, the reader should have strong motivations before attacking

hap?2
Chapter 5.
1.5 Notation and Preliminaries
We will work over the complex number field C throughout this book. But we
note that by using Lefschetz principle, we can extend almost everything to

the case where the base field is an algebraically closed field of characteristic
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zero. Note that every scheme in this book is assumed to be separated. We
deal not only with the usual divisors but also with the divisors with rational
and real coefficients, which turn out to be fruitful and natural.

1.5 (Divisors, Q-divisors, and R-divisors). For an R-Weil divisor D =
E;_ d;D; such that D; # D; for ¢« # j, we define the round-up "D =
Ej:ll—dj—le (resp. the round- down LDy = 77 udjaDj), where for any
real number z, "x7 (resp. Lzl) is the integer defined by x < "z < z + 1
(resp. ¢ — 1 < taxa < z). The fractional part {D} of D denotes D — D ..

We define

='=>"D;, D= d;D;
dj=1

d;<1

= Z dej7 and D>1 = Z dej-

d;<1 d;j>1

The supportof D = Z;Zl d;D;, denoted by SuppD, is the subscheme Udﬂéo D
We call D a boundary (resp. subboundary) R-divisor if 0 < d; <1 (resp. d; <
1) for any j. Q-linear equivalence (resp. R-linear equivalence) of two Q-
divisors (resp. R-divisors) By and Bs is denoted by By ~g By (resp. By ~g
Bs). Let f: X — Y be a morphism and By and B, two R-divisors on X.
We say that they are linearly f-equivalent (denoted by By ~; B,) if and
only if there is a Cartier divisor B on Y such that By ~ By + f*B. We
can define Q-linear (resp. R-linear) f-equivalence (denoted by By ~q 5 B
(resp. By ~g s Bs)) similarly.

Let X be a normal variety. Then X is called Q-factorial if every Q-divisor
is Q-Cartier.

We quic 13/ rev1ew t%e notbon of singularities of p 16r§ For the details, see
H%M §2.3], K04J find [E /J See also the subsection ! 1,

1.6 (Singularities of pairs). For a proper birational morphism f : X — Y,
the exceptional locus Exc(f) C X is the locus where f is not an isomorphism.
Let X be a normal variety and let B be an R-divisor on X such that Kx + B
is R-Cartier. Let f : Y — X be a resolution such that Exc(f)U f, !B has
a simple normal crossing support, where f !B is the strict transform of B
on Y. We write Ky = f*(Kx + B) + >, a;E; and a(E;, X, B) = a;. We say
that (X, B) is sub log canonical (resp. sub Kawamata log terminal) (sub lc
(resp. sub kit), for short) if and only if a; > —1 (resp. a; > —1) for any 7. If
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(X, B) is sub lc (resp. sub klt) and B is effective, then (X, B) is called log
canonical (resp. Kawamata log terminal) (lc (resp. klt), for short). Note that
the discrepancy a(E, X, B) € R can be defined for any prime divisor £ over
X. Let (X, B) be a sub lc pair. If E is a prime divisor over X such that
a(E, X, B) = —1, then the center cx(F) is called an lc center of (X, B).

Definition 1.7 (Divisorial log terminal pairs). Let X be a normal va-
riety and B a boundary R-divisor such that Ky + B is R-Cartier. If there
exists a resolution f :Y — X such that

(i) both Exc(f) and Exc(f) U Supp(f,'B) are simple normal crossing di-
visors on Y, and

(ii) a(E, X, B) > —1 for every exceptional divisor £ C Y,
then (X, B) is called divisorial log terminal (dlt, for short).

b-dlt-
For the details of dlt E‘ﬂr_sde%ee Section iZI.Q. tl Sﬁzcassumption LH%% XEXC( f)

is a divisor in Definition [[.7 (1) 1s very important. See Example &. elow.

We often use resolution of singularities. We need the followin, Strong
[%Eat%%]oent. We sometimes call it Szabd’s resolution lemma (see ;Sz and

1.8 (Resolution lemma). Let X be a smooth variety and D a reduced
divisor on X. Then there exists a proper birational morphism f :Y — X
with the following properties:

(1) f is a composition of blow-ups of smooth subvarieties,
(2) Y is smooth,

(3) f1D UExc(f) is a simple normal crossing divisor, where f;1D is the
strict transform of D on Y, and

(4) f is an isomorphism over U, where U is the largest open set of X such
that the restriction D|y is a simple normal crossing divisor on U.

Note that f is projective and the exceptional locus Exc(f) is of pure codi-
mension one in Y since f is a composition of blowing-ups.

The Kleiman—Mori cone is the basic object to study in the log minimal
model program.
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1.9 (Kleiman—Mori cone). Let X be an algebraic scheme over C and let
7w : X — S be a proper morphism to an algebraic scheme S. Let Pic(X)
be the group of line bundles on X. Take a complete curve on X which is
mapped to a point by m. For £ € Pic(X), we define the intersection number
L C = degg f*L, where f : C — C is the normalization of C. Via this
intersection pairing, we introduce a bilinear form

- Pie(X) x Z,(X/S) — Z,

where Z1(X/S) is the free abelian group generated by integral curves which
are mapped to points on S by 7.

Now we have the notion of numerical equivalence both in Z;(X/S) and
in Pic(X), which is denoted by =, and we obtain a perfect pairing

NY(X/S) x Ni(X/S) — R,
where
NY(X/S) = {Pic(X)/ =} @R and N (X/S)={Z/(X/S)/=}R,

namely N'(X/S) and N;(X/S) are dual to each other through this intersec-
tion pairing. It is well known that dimg N'(X/S) = dimg N;(X/S) < oo. We
write p(X/S) = dimg N'(X/S) = dimg N;(X/S). We define the Kleiman—
Mori cone NE(X/S) as the closed convex cone in N;(X/S) generated by in-
tegral curves on X which are mapped to points on .S by 7. When S = SpecC,
we drop /SpecC from the notation, e.g., we simply write N;(X) in stead of
N1(X/SpecC).

Definition 1.10. An element D € N'(X/S) is called m-nef (or relatively nef
for ), if D >0 on NE(X/S). When S = SpecC, we simply say that D is
nef.

Theorem 1.11 (Kleiman’s criterion for ampleness). Let 7 : X — S
be a projective morphism between algebraic schemes. Then L € Pic(X) is
w-ample if and only if the numerical class of L in N*(X/S) gives a positive
function on NE(X/S) \ {0}.

klei-th . . . .
In Theorem [I.TT, we have to assume that 7 : X — S is projective since

there are complete non-projective algebraic varieties for whic g(l%iglﬁﬁl’s
criterion does not hold. We recall the explicit example gi%lelni}l% or the

reader’s convenience. For the details of this example, see , Section 3).
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fp-example

fujino-km
Example 1.12 (cf. [F6, Section 3]). We fix a lattice N = Z3. We take
lattice points

v = (1,0,1), v = (0,1,1), vy = (—1,-1,1),
ve = (1,0,-1), vs = (0,1, -1), vs = (—1, -1, -1).
We consider the following fan
<U1,'U2,'U4>, <U2,’U4,'U5>, <1)2,1)3,U5,'U6>,
A - <'U1,U3,U4,U6>, <’U1,'UQ,'U3>, <’U4,'U5,'U6>,

and their faces

Then the toric variety X = X (A) has the following properties.
(i) X is a non-projective complete toric variety with p(X) = 1.

(ii) There exists a Cartier divisor D on X such that D is positive on
NE(X)\{0}. In particular, NE(X) is a half line.

Therefore, Kleiman’s criterion for ampleness does not hold for this X. We
note that X is not Q-factorial and that there is a torus invariant curve C' ~ P!
on X such that C' is numerically equivalent to zero.

If X has only mil ksliglg_l%{]arities, for example, X is Q-factorial, then it is
known that Theorem IT. olds even when 7 : X — S is proper. However,
the Kleiman—Mori cone may not have enough informations when 7 is only
proper.

fuji-pa
Example 1.13 (cf. [E b ; There exists a smooth complete toric threefold
X such that NE(X) = Ni(X).

. . . u ji- a
The description below helps the reader understand examples in [F bt

Example 1.14. Let A be the fan in R? whose rays are generated by v; =
(17 07 0)7,02 = (07 17 0)7 V3 = (07 07 1)7105 = (_17 07 _1>7U6 = (_27 _17 O) and
whose maximal cones are

<’U1, Vg, U3>7 <U17 U3, U6>7 <’U1, 027v5>7 <’U1,’U5,'U6>, <’U2,’U3,'U5>, <U3,’U5, UG)'

Then the associated toric variety X; = X (A) is Pp1(Op1 & Op1(2) & Op1(2)).
We take a sequence of blow-ups

v ox B xS x

15
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where f; is the blow-up along the ray vy = (0, —1, —1) = 3v; + v5 + v, fo is
along

1
vy =(-1,-1,-1) = §(204 + v5 + vg),
and the final blow-up f3 is along the ray

1
vg = (—2,-1,-1) = 5(”5 + v + V7).

Then we can directly check that Y is a smooth projective toric variety with
p(Y) =5.

Finally, we remove the wall (v1,vs) and add the new wall (vy,v4). Then
we obtain a flop ¢ : Y --» X. We note that p ity — V1 — U5 = 0. The
toric variety X is nothing but X (X) given in %F'fj,_%fxample 1]. Thus, X
is a smooth complete toric variety with p(X) = 5 and NE(X) = Ny (X).
Therefore, a simple flop ¢ : Y --+ X completely destroys the projectivity of
Y.

We use the following convention throughout this book.

1.15. R.g (resp. Rsp) denotes the set of positive (resp. non-negative) real
numbers. Z-( denotes the set of positive integers.

1.6 Quick review of the classical MMP

In this section, we quickly review the classical MMP, at the level of EM,
Chapters 2 and 3], fo m’gnhe reader’s convenience. For the details, see [KM,
Chapters 2 and 3| or M]. Almost all the results explained here will be
described in more general settings in subsequent chapters.

1.6.1 Singularities of pairs

We quickly review singularities of pairs in the log minimal model program.
Basically, we will only use the notion of log canonical pairs in this book. So,
the reader does not have to worry about the various notions of log terminal.

Definition 1.16 (Discrepancy). Let (X, A) be a pair where X is a normal
variety and A an R-divisor on X such that Kx + A is R-Cartier. Suppose
f:Y — X is a resolution. Then, we can write

Ky = f*(Kx +A)+ ) _a(E;, X, A)E;.

16
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This formula means that
£.0O_a(E, X, A)E;) = -A

and that > . a(E;, X, A)E; is numerically equivalent to Ky over X. The real
number a(F, X, A) is called discrepancy of E with respect to (X, A). The
discrepancy of (X, A) is given by

discrep(X, A) = i%f{a(E, X,A) | E is an exceptional divisor over X }.
We note that it is indispensable to understand how to calculate discrep-
ancies for the study of the log minimal model program.

Definition 1.17 (Singularities of pairs). Let (X, A) be a pair where X
is a normal variety and A an effective R-divisor on X such that Kx + A is
R-Cartier. We say that (X, A) is

(terminal (> 0,
canonical >0,
klt if discrep(X, A) >—1 and LAL=0,
plt > —1,

klc \ > —1.

Here, plt is short for purely log terminal.

. . . I lko-sing  fujino0
The basic references on this topic are HSKM, 2.3], [Ko4], and [F7].

1.6.2 Basic results for klt pairs

In this subsection, we assume that X is a projective variety and A is an
effective Q-divisor for simplicity. Let us recall the basic results for klt pairs.
A starting point is the following vanishing theorem.

Theorem 1.18 (Vanishing theorem). Let X be a smooth projective vari-
ety, D a Q-divisor such that Supp{D} is a simple normal crossing divisor
on X. Assume that D is ample. Then

H'(X,0x(Kx+"™D7) =0

fori>0.

17
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It is a special case of the Kawamata—Viehweg vanishing theorem. It easily
ollows from the Kodaira vanishing EEgoEem by using the covering trick (see
M, Theorem 2.64]). In Chapter }2,_‘)78 will prove more general vanishing
theorems. See, for example, Theorem 2.39. The next theorem is Shokurov’s
non-vanishing theorem.

Theorem 1.19 (Non-vanishig theorem). Let X be a projective variety,
D a nef Cartier dwisor and G a Q-divisor. Suppose

(1) aD 4+ G — Kx is Q-Cartier, ample for some a > 0, and
(2) (X, —GQ) is sub klt.
Then, for allm >0, H*(X,Ox(mD +"G™)) # 0.

It plays important roles in the proof of the base point free and rationality
t%gogems below. In the theory of quasi-log varieties described in Chapter
b,_tpﬁe non-vanishing theorem will be absorbed into the proof of the base
point free theorem for quasi-log varieties. The following two fundamental

theorems for kit B%g_stﬁvai%l_ge gefgg%@%ig_egl for qlﬂc%saiﬁlng varieties in Chapter
3 §ee Theorems B.66, B3.68, and ¥.T in Chapter 4.

I3

O

Theorem 1.20 (Base point free theorem). Let (X, A) be a projective kit
pair. Let D be a nef Cartier divisor such that aD — (Kx + A) is ample for
some a > 0. Then |bD| has no base points for all b > 0.

Theorem 1.21 (Rationality theorem). Let (X, A) be a projective kit pair
such that Kx + A is not nef. Let a > 0 be an integer such that a(Kx + A)
1s Cartier. Let H be an ample Cartier divisor, and define

r=max{t € R|H +t(Kx + A) is nef }.
Then r is a rational number of the form u/v (u,v € Z) where
0<ov<a(dimX +1).

The final theorem is the cone theorem. It easily follows from the base
point free and rationality theorems.

Theorem 1.22 (Cone theorem). Let (X, A) be a projective kit pair. Then
we have the following properties.

18



(1) There are (countably many) rational curves C; C X such that
NE(X) = NE(X)xy+a)20 + Y Rxo[C}]

(2) Let R C NE(X) be a (Kx + A)-negative extremal ray. Then there
15 a unique morphism pgr : X — Z to a projective variety such that
(pr)«Ox ~ Oz and an irreducible curve C' C X is mapped to a point
by pr if and only if [C] € R.

We note that the cone t eorem can be proved for dlt pairs in the relative

setting. See, for example, M]. We omit it here. Tt is because we will
give a co Cgrlleét_@c 1%leneraulization of the cone theorem for quasi-log varieties in
Theorem [; [65)

1.6.3 X-method

Int isbs section, we give a proof to the base point free theorem és%% Theo-
rem by assuming the non-vanishing theo em (see Theorem . The
followmg proof is taken almost verbatim from M 3.2 Basepoint- free The-
orem]. This type of argument is sometimes called X-method. It has various
applications in many different contexts. So, the reader should understand
X-method.

Proof of t]%e base point free theorem. We prove the base point free theorem: The-

orem ﬁ_é)%

Step 1. In this step, we establish that |[mD| # () for every m > 0. We can
construct a resolution f :Y — X such that

(1) Ky = f*(KX + A) + Zaij with all a; > -1,

(2) f*(aD—(Kx+A))—> p;F; is ample for some a > 0 and for suitable
0<p; <1, and

(3) > Fj(D Exc(f)USuppf,tA) is a simple normal crossing divisor on Y.

We note that the Fj is not necessarily f-exceptional. On Y, we write

fr(aD = (Kx + A) =Y " pF)

:af*D+Z aj—pj j—<f (KX‘FA)_’_ZG’J'FJ)
=af*D+ G — Ky,
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where G = > (a; — p;)Fj. By the assumption, "G is an effective f-
exceptional divisor, af*D + G — Ky is ample, and

H(Y,Oy(mf*D +"G") ~ H*(X,Ox(mD)).

We can now apply the non-vanishing theorem (see Theorem T Qoi to get that
H°(X,Ox(mD)) # 0 for all m > 0.

Step 2. For a positive integer s, let B(s) denote the reduced base locus
of |[sD|. Clearly, we have B(s") C B(s") for any positive integers u > v.
Noetherian induction implies that the sequence B(s") stabilizes, and we call
the limit B,. So either B; is non-empty for some s or B, and By are empty
for two relatively prime integers s and s’. In the latter case, take v and v such
that B(s*) and B(s'") are empty, and use the fact that every sufficiently large
integer is a linear combination of s and s’ with non-negative coefficients to
conclude that |mD| is base point free for all m > 0. So, we must show that
the assumption that some By is non-empty leads to a contradiction. We let
m = s* such that By = B(m) and assume that this set is pion-empty.

Starting with the linear system obtained from Step h,_v%eican bchVg up
further to obtain a new f : Y — X for which the conditions of Step [T hold,
and, for some m > 0,

f*ImD| = |L| (moving part) + Z'r’ij (fixed part)

such that |L| is base point free. Therefore, |J{f(F})|r; > 0} is the base
locus of [mD|. Note that f~!Bs|mD| = Bs|mf*D|. We obtain the desired
contradiction by finding some F; with r; > 0 such that, for all b > 0, Fj is
not contained in the base locus of |bf*D|.

Step 3. For an integer b > 0 and a rational number ¢ > 0 such that b >
cm + a, we define divisors:

N(b,c) = bf'D—Ky+ > (—crj+a;—p)F,
= (b—em—a)f*D  (nef)
+e(mf*D — Z r;F;)  (base point free)
+f*(aD — (Kx + A)) — ijFj (ample).

ZT_I%%%,iN(b, c¢) is ample for b > ¢m + a. If that is the case then, by Theorem
TS (Y, Oy ("N (b, )7 + Ky)) = 0, and

"N(b,e)T=bf*D+ T—crj+a;—p;F; — Ky,
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Step 4. ¢ and p; can be chosen so that

> (=erj+a;—p)F;=A-F

for some F' = F}, where "A™ is effective and A does not have F' as a com-

ponent. In fact, we choose ¢ > 0 so that

min(—cr; +a; —p;) = —L.
J

If this last condition does not single out a unique j, we wiggle the p; slightly to
achieve the desired uniquene SsﬁeT_}%ig j satisfies r; > 0 and "N (b,¢) '+ Ky =
bf*D+"A"7— F. Now Step )3 implies that

HY(Y,Oy(bf*D +"A7)) — H(F,Op(bf*D +"A"))

is surjective for b > cm + a. If F; appears in "A™, then a; > 0, so Fj is
f-exceptional. Thus, "A™7is f-exceptional.

Step 5. Notice that
Z—1no
So we can apply the non-vanishing theorem (see Theorem I.lgi on F' to get
HOY(F,Op(bf*D +"A7)) #£0.

Thus, H(Y, Oy (bf*D +"A™)) has a section not vanishing on F. Since "A™
is f-exceptional and effective,

HO(Y,Oy(bf*D +TA") ~ H(X, Ox(bD)).
Therefore, f(F') is not contained in the base locus of |bD| for all b > 0.

This completes the proof of the base point free theorem. O

. 331-ssec . .
In the subsection lB.S. [, we will prove the base point free theorem for quasi-
og_\é%rieties. We recommend the reader to compare the proof of Theorem
.66 with the arguments explained here.
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1.6.4 MMP for QQ-factorial dlt pairs

In this subsection, we explain the log minimal model program for Q-factorial
dlt pairs. First, let us recall the definition of the log minimal model.

Definition 1.23 (Log minimal model). Let (X, A) be a log canonical pair
and f: X — S a proper morphism. A pair (X', A’) sitting in a diagram

o\ e

is called a log minimal model of (X, A) over S if

1) f’is proper,

(1)
(2) ¢
(3) A
(4)
()

~1 has no exceptional divisors,

4) Kx + A’ is f'-nef, and

5) a(F, X,A) <a(E, X', A") for every ¢-exceptional divisor £ C X.

h
Next, we recall the flip theorem for dlt pairs in BC(mIHM] and %M] We

need the notion of small morphisms to treat flips.

Definition 1.24 (Small morphism). Let f : X — Y be a proper birational
morphism between normal varieties. If Exc(f) has codimension > 2, then f
is called small.

Theorem 1.25 (Log flip for dlt pairs). Let ¢ : (X,A) — W be an ez-

tremal flipping contraction, that is,
1) (X,A) is dlt,

2) @ is small projective and ¢ has only connected fibers,

4

(1)
(2)
(3) —(Kx +A) is p-ample,
(4) p(X/W) =1, and
(5)

5) X 1s Q-factorial.
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Then we have the following diagram:
X - Xt
N\ /
w
(i) X is a normal variety,
(i) ot : XT — W is small projective, and
(i) Kx+ + AT is ot -ample, where A" is the strict transform of A.

We call ot : (XT,AT) = W a (Kx + A)-flip of ¢.

Let us explain the relative log minimal model program for Q-factorial dlt
pairs.

1.26 (MMP for Q-factorial dlt pairs). We start with a pair (X, A) =
(Xo,Aq). Let fo: Xo — S be a projective morphism. The aim is to set up a
recursive procedure which creates intermediate pairs (X;, ;) and projective
morphisms f; : X; — S. After some steps, it should stop with a final pair
(X',A")and f': X' — S.

Step 0 (Initial datum). Assume that we already constructed (X;, A;) and
fi + X; — S with the following properties:

(1) X; is Q-factorial,
(2) (X“AZ) is dlt, and
(3) fi is projective.

3st
Step 1 (Preparation). If Kx, + A; is f;-nef, then we go directly to Step bs .
(2). If Kx, + A, is not f;-nef, then we establish two results:

(1) (Cone Theorem) We have the following equality.
NE(X;/S) = NE(Xi/S)(xx, +a020 + > Rso[Ci].
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(2) (Contraction Theorem) Any (Kx, + A;)-negative extremal ray R; C
NE(X;/S) can be contracted. Let g, : X; — Y; denote the corre-
sponding contraction. It sits in a commutative diagram.

fi ™\ / 9i

Step 2 (Birational transformations). If pp, : X; — Y, is birational, then
we produce a new pair (X;.1, A;y1) as follows.

(1) (Divisorial contraction) If ¢p, is a divisorial contraction, that is, ¢g,
contracts a divisor, then we set X;.1 = VY;, fix1 = ¢;, and Ay =

(0r,)«A.

(2) (Flipping contraction) If ¢g, is a flipping contraction, that is, ¢g, is
small, then we set (X; 1, A1) = (X, AJF ). yhere ( (X, Af) is the flip
of pg,, and fi;1 =g; 0 cpjg See Theorem [25.

In both cases, we can prove that X;,; is Q-f SE%HI’ fir1 is projective and
(Xit1,Ai41) is dlt. Then we go back to Step kl with (X1, A1) and start
anew.

Step 3 (Final outcome). We expect that eventually the procedure stops,
and we get one of the following two possibilities:

(1) (Mori fiber space) If ¢g, is a Fano contraction, that is, dim Y; < dim X,
then we set (X', A') = (X;,4;) and f' = f;.

(2) (Minimal model) If Kx, + A; is f;-nef, then we again set (X', A') =
(X, A;) and f" = f;. We can easily check that (X’ _Ang s aJog minimal
model of (X, A) over S in the sense of Definition WS

hm
By the results in %@HM] and %M], all we have to do is to prove that
there are no infinite sequence of flips in the above process.

We will discuss the log iiqisrgcal model program for (not necessarily Q-
factorial) lc pairs in Section
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Chapter 2

Vanishing and Injectivity
Theorems for LMIMP

2.1 Introduction

. . . . . m
The following diagra 1 is 1Y\{el&iknown and described, for example, in HEKM,
3.1]. See also Section II.6.

Cone, contraction, rationality,
and base point free theorems
for klt pairs

Kawamata—Viehweg vanishing
theorem

This means that the Kawamata—Viehweg vanishing theorem produces the
fundamental theorems of the log minimal model program (LMMP, for short)
for kIt pairs. This method is sometimes called X-method an nowy classical.
It is sufficient for the LMMP for Q-factorial dlt pairs. In Amn ], Ambro
obtained the same diagram for quasi-log varieties. Note that the class of
quasi-log varieties naturally contains lc pairs. Ambro introduced the notion
of quasi-log varieties for the inductive treatments of lc pairs.

Kollar’s torsion-free and van-
ishing theorems for embedded

normal crossing pairs

Cone, contraction, rationality,
and base point free theorems
for quasi-log varieties
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Namely, if we obtain Kollar’s torsion-free and vanishing theorems for
embedded normal crossing pairs, then X-method works and we obtain the
fundamental theorems of the LMMP for quasi-log varieties. So, there exists
an important problem for the LMMP for lc pairs.

Problem 2.1. Are the injectivity, torsion-free and vanishing theorems for
embedded normal crossing pairs true?

Ambro gave an answer to Problem Zuiin I Section 3. Un orgunately,
Ami

the proofs of injectivity, torsion-free, and Vamshmg theorems in , Sec-
tion 3] cont n \é%rious gaps. S0, in this chapter, we give an affirmative answer
to Problem 271 again.

Theorem 2.2. Ambro’s formulation of Kolldr’s injectivity, torsion-free, and
vanishing theorems for embedded normal crossing pairs hold true.

a-th

Once we have Theorem Effwe can obtain the fundamental theorems

of the LMM gor lc pairs. The X-method for quasi-log varie 1%5 ézvhlch was
explained in , Section 5] and will be described in Chapter 3] 15 essentially
the same as tt% kl 1S€. It L may be more or less a routine work for the experts
(see Chapter “We note that Kawamata used Kollar’s injectivity,
va, 1sh1n§15 aind torsion- free thechgems for generalized normal crossing varieties
&%}@FM the details, see [Kal] or [KMM, Chapter 6]. We think that

a

1s the first place where X- method was used for reducible varieties.

Ag%lgro’s proofs of the injectivity, torsion-free, and vanishing theorems
in FAnﬁ[] do not work even for smooth varieties. So, we need new ideas
to prove the desired injectivity, torsion-free, vanishing theorems. It is the
m 1nbsubJect of this chapter. We will explain various troubles in the proofs
in , Section 3] below for the reader’s convenience. Here, we give an
apphcatlon of Ambro’s theorems to motivate the reader. It is the culmination
of the works of several authors: Kawamata, Viehweg, Nadel, Reid, Fukuda,
Ambro, and many others. It is the first time that the following theorem is
stated explicitly in the literature.

kvn
Theorem 2.3 (cf. Theorem }2748) Let (X, B) be a proper lc pair such
that B is a boundary R-divisor and let L be a Q-Cartier Weil divisor on X.
Assume that L — (Kx + B) is nef and log big. Then H1(X,Ox (L)) =0 for
any q > 0.

It also contains a complete form of Kovacs’ Kodaira vanishing t eorem
for lc pairs (see Corollary 2.43). Let us explain the main trouble in [AmT,
Section 3| by the following simple example.
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[0] Example 2.4. Let X be a smooth projective variety and H a Cartier divisor

r-1

on X. Let A be a smooth irreducible member of |2H| and S a smooth divisor
on X such that S and A are disjoint. We put B = %AJFS and L = H+Kx+S.
Then L ~q FBand 2L ~ 2(Kx+B). We deﬁneS:(’)X(—LJrKX%airi?n
the proof of [AmI, Theorem 3.1]. Apply the argument in the proof of [AmlI,
Theorem 3.1]. Then we have a double cover 7 : Y — X corresponding to
2B € |€7%|. Then 7, (log 7* B) ~ QF (log B)®Qk (log B)®E(S). Note that
O (log B) ® € is not a direct summand of 7.0 (log7*B). Theorem 3.1 in
%\m%[] claims that the homomorphisms H(X, Ox (L)) — H(X,Ox(L+ D))
are injective for all . Here, we used the notation in [Am1, Theorem 3.1]. In
our case, D = mA for some positive integer m. However, Ambro’s argument
just implies that H4(X, Ox(L—LB1)) — HY(X, Ox(L—_B.+D)) is injective
for any ¢q. Therefore, his proof works only for the case when L By = 0 even if
X is smooth.

This trouble is crucial in several applications on the LMMP. Ambro’s
proof is based on the mixed Hodge structure of H(Y — 7*B,Z). It is a
standard technique for vanishing theorems in the LMMP. In this chapter,
we use the mixed Hodge structure of H (Y — 7*S,Z), where H/(Y — 7*S,Z)
is the cohomology group with compact support. Let us explain the main
idea of this chapter. Let X be a smooth projective variety with dim X =n
and D a simple normal crossing divisor on X. The main ingredient of our
arguments is the decomposition

HI(X = D,C) = @) HI(X, 9% (log D) & Ox(—D)).
p+q=i
The dual statement
H (X = D,C) = @ H" (X, 95 "(log D)),
pt+q=t

which is well known and is commonly used f(_)rrganishing theorems, is not
useful for our purposes. To solve Problem 2.', we have to carry out this
simple idea for reducible varieties.

b
Remark 2.5. In the proof of %Hrlol, Theorem 3.1], if we assume that X is
smooth, B’ = S is a reduced smooth divisor on X, and T" ~ 0, then we need
the Ei-degeneration of

BV = HY(X, 0% (log §) ® Ox (~5)) = H*(X, % (log §) @ Ox (~S)).
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However, Ambro seemed to confuse it with the Ej-degeneration of
EY = HI(X, 0% (log S)) = HPT(X, Q% (log S)).

. . bro
Some problems on the Hodge theory seem to exist in the proof of Arn ,
Theorem 3.1].

bro2
Remark 2.6. In %m?, Theorem 3.1}, Ambro repr vek()ir olais theorem under
some extra assumptions. H?% We use the notation in %m?, Theorem 3.1]. In

the last line of the proof of Theorem 3.1], he used the F;-degeneration
of some spectral sequence. It seems to be the E1 degeneration of

Y= HO(X, P log 3 ) = BP9, g 3 1)

eligne0
since he cited [DT, Corollary 3.2.13]. Or, he applied the same type of E;-
degeneration to a desingularization of X’. However, we think that the F;-
degeneration of

B = HY(X', (% (log(m" R+ Y _ E})) ® Ox/(—7"R))

— HH(X, Q% (log(m* R + Y E}))) ® Oxi(—7"R))

bro2
is the appropriate one in his proof. If we assume that T ~ 0 in [Am?2,

Theorem 3.1], then Ambro’s proof seems to imply that the Fj-degeneration
of

B} = H(X, 0% (log R) ® Ox(~ R)) — HPH1(X, 0% (log R) ® Ox(~F))
follows from the usual F;-degeneration of
EY = HI(X,0%) = HY(X,0%).

bro2
Anyway, there are some problems in the proof of %Hrloz, Theorem 3.1]. In
this chapter, we adopt the following spectral sequence

EM = HY(X' O, (logm*R) @ Ox/(—7*R))
— HPHI(X, Qk,(log mR) @ Ox/(—7"R))

. . . . sec2 5%£§
and prove its Fj-degeneration. For the details, see Sections 2.3 and 2.4.
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One of the main contributions of this chapter is the rigorous proof of
Proposition 2.23, which we call a fundamental injectivity theorem. Even if
we prove this proposition, there are still several technical difficulties to recover
Ambrg s result PN injectivity, torsion-free, and vanishing theorer%sr:oTheo-
rems b‘53 and 4 Some important arguments re missing in [Am ]. We

will discuss the other froubles on the arguments mTﬁL{_[] throughout Section

>, 5 See also Section 2.9.
2.7 (Background, history, and related topics). The standard refj{s:(g)rffglsr
o )

for vanishing, torsion-free, and injectivity theorems for the LMI\{[IP are
Part III Vanishing Theorems| and the first half of the book ,, In this
chapter, we closely follow the presentation of }FEV %and thhat gf ml|. Some
sp c1al cases of Ambro’s theorems were proved in ection 2|. Chapter 1
M] is still a good source for vanishing theorems for the LMMP. We
note that one of the origins of Ambro’s results is GPEKEZ_SECUOH 4]. However,
we do not treat Kawamata’s generalizations of vanishing, torsion-free, and
injectivity theorems for generalized normal crossing aargqietide:sa. 1It is mainly be-
cause we can quickly reprove the main theorem of I%Kiaﬂwhout appealing
these difficult vanishing and injectivity theorems once we know a ge ll;a;izceéi
%grgii_ci{% of Kodaira’s canonical bundle formula. For the details, seerlﬁfﬂ_%

sec—pre

We summarize the contents of this chapter. Isescgetion bf?,_%eollect basic
definitions and fix some notations. In Section 2.3, we prove a fundamental
cohomology injectivity theorem for simple normal crossing pairs. It is a very
special case of Ambro’s theorem. Our proof heavily depends on the FEi-
degeneration of a certain Hodge to de Rham type Sg%%ral sequence. We
postpone the proof of the El—degeneggiign in Section since it is a purely
Hodge theoretic argument. Section consists of a short survey of mixed
Hodge structures on various objects and the proof of the key F-degeneration.
We could find no references on mixed Hodge structures which are appropri%g%
for our purposes. So, we write it for the reader’s convenience. Section
is devoted to the proofs of Ambro’s theorems fo ebrnbedded simple normal
crossing pairs. We discuss Vagir%us problems in [AmI, Section 3] and give
the first rigorous proofs to [AmI, Theorems 3.1, 3.2] for embedded simple
normal cros 1ng,;) 1r§ We think that several 1nd1%1%ensable arguments such

as Lemmas and b_?{g are missing in , Section 3]. We treat
some further gen rahgatrons of vanishing and torsmn free theorems in Section
b3 "1n Section we recover Ambro’s theorems in full generality. We
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recom end6 the reader to compare this chapter with FAH_T We note that
Section seems to be unnecessary Sg_asg]:c)hcatlons Sectlon 1s devoted to
describe some examples. In Section 2.9, we will quickly review the structure
of our proofs of the injectivity, torsion-free, and vanishing theorems. It may
help the reader to understa db’lggle reason why our proofs Crt?aIguCh longer
than the original proofs in [AmI, Section 3]. In Chapter EZ we will treat
the fundamental theorems of the LMMP for lc pairs as an application of
our vanishing and torsion-free theorems. The re%de{ng %]gindg Var&ous otllber
applications % ouy ew cohﬁmologlcal results in [F13], [F14], and [[F 15] See
also Sections #.4, 1.5, and 4.6

We note that we will Work over C, the complex number field, throughout

this chapter.

2.2 Preliminaries

sec-pre

. . . . bro .
We explain basic notion according to JAnmI, Section 2].

Definition 2.8 (Normal and simple normal crossing varieties). A va-
riety X has normal crossing singularities if, for every closed point z € X,

C[[$07 e >$N]]
(xo .. ;L»k)

OX,x =

for some 0 < k < N, where N = dim X. Furthermore, if each irreducible
component of X is smooth, X is called a simple normal crossing variety.
If X is a normal crossing variety, then X has only Gorenstein singularities.
Thus, it has an invertible dualizing sheaf wx. So, we can define the canonical
divisor K x such that wy ~ Ox(Kx). It is a Cartier divisor on X and is well
defined up to linear equivalence.

011| Definition 2.9 (Mayer—Vietoris simplicial resolution). Let X be a sim-
ple normal crossing variety with the irreducible decomposition X = (J,.; X
Let I, be the set of strictly increasing sequences (ig,- - ,4,) in I and X" =
Hln X, N---NX;, the disjoint union of the intersections of X;. Let ¢, :
X" — X be the disjoint union of the natural inclusions. Then {X", ¢,},
has a natural semi-simplicial scheme structure. The face operator is induced
by Ajn, where A;, : X;oN---NX;, — X;,N- 1Qe§2 N X N X;,
is the natural closed embedding for j < n (cf. thZ_3_5 5]) We denote it by
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e: X* — X and call it the Mayer—Vietoris simplicial resolution of X. The
complex
0 — €0:O0x0 — €1,.O0x1 — -+ = g Oxp — -+,

where the differential dj, : €. Oxr — €r41.Oxrt1 is Zkﬂ( 1)7X5 ., for any
k >0, is denoted by Ox.. It is easy to see that Ox. is quasi-isomorphic to
Ox. By tensoring £, any line bundle on X, to Ox., we obtain a complex

0_)50*20_)51*‘61_)"'_)gk*ﬁk_)"'7

where £ = ¢ L. It is denoted by L*. Of course, L* is quasi-isomorphic to L.
We note that H?(X*, £*) is HY(X, L*) by the definition and it is obviously
isomorphic to H4(X, L) for any ¢ > 0 because L* is quasi-isomorphic to L.

Definition 2.10. Let X be a simple normal crossing variety. A stratum of
X is the image on X of some irreducible component of X°. Note that an
irreducible component of X is a stratum of X.

Definition 2.11 (Permissible and normal crossing divisors). Let X be
a simple normal crossing variety. A Cartier divisor D on X is called permis-
stble if it induces a Cartier divisor D® on X*. This means that D" =€) D is
a Cartier divisor on X, for any n. It is equivalent to the condition that D
contains no strata of X in its support. We s 1 that D is a normal crossing
divisor on X if, in the notation of Definition 2.8, we have

C[[$07 e 7xN]]

(xo...xk’xil x”)

OD,x =

for some {iy,---,4} € {k+1,---,N}. It is equivalent to the condition
that D™ is a normal crossing divisor on X" for any n in the usual sense.
Furthermore, let D be a normal crossing divisor on a simple normal crossing
variety X. If D" is a simple normal crossing divisor on X" for any n, then
D is called a simple normal crossing divisor on X.

The follogvmg len&lma is easy but important. We will repeatedly use it in
Sections and

Lemma 2.12. Let X be a simple normal crossing variety and B a permis-
sible R-Cartier R-divisor on X, that is, B is an R-linear combination of
permissible Cartier divisor on X, such that _.BLo = 0. Let A be a Cartier di-
visor on X. Assume that A ~g B. Then there exists a Q-Cartier Q-divisor
C on X such that A ~qg C, LC1 =0, and SuppC = SuppB.
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Sketch of the proof. We can write B = A+ ) _.r:i(f;), where f; € I'(X, %)
and r; € R for any 7. Here, Iy is the sheaf of total quotient ring of Ox.
First, we assume that X is smooth. In this case, the claim is well known
and easy to check. Perturb r;’s suitably. Then we obtain a desired Q-Cartier
Q-divisor C' on X. It is an elementary problem of the linear algebra. In the
general case, we take the normalization ¢y : X° — X and apply the above
result to XO, efA, e5B, and £5(f;)’s. We note that gy : X; — X is a closed
embedding for any irreducible component X; of X°. So, we get a desired

Q-Cartier Q-divisor C' on X. O

Definition 2.13 (Simple normal crossing pair). We say that the pair
(X, B) is a simple normal crossing pair if the following conditions are satis-

fied.
(1) X is a simple normal crossing variety, and

(2) B is an R-Cartier R-divisor whose support is a simple normal crossing
divisor on X.

We say that a simple normal crossing pair (X, B) is embedded if there exists
a closed embedding ¢ : X — M, where M is a smooth variety of dimension
dim X + 1. We put Kxo + © = gj(Kx + B), where gy : X° — X is the
normalization of X. From now on, we assume that B is a subboundary R-
divisor. A stratum of (X, B) is an irreducible component of X or Blil? Jmage
of some Ic center of (X° ©) on X. It is compatible with Definition 2.10 when
B = 0. A Cartier divisor D on a simple normal crossing pair (X, B) is called
permissible with respect to (X, B) if D contains no strata of the pair (X, B).

Remark 2.14. Let (X, B) be a simple normal crossing pair. Assume that
X is smooth. Then (X, B) is embedded. It is because X is a divisor on
X x C, where C'is a smooth curve.

We give a typical example of embedded simple normal crossing pairs.

Example 2.15. Let M be a smooth variety and X a simple normal crossing
divisor on M. Let A be an R-Cartier R-divisor on M such that Supp(X+A) is
simple normal crossing on M and that X and A have no common irreducible
components. We put B = A|x. Then (X, B) is an embedded simple normal
crossing pair.
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The reader will find that it is very useful to introduce the notion of global
embedded simple normal crossing pairs.

Definition 2.16 (Global embedded simple normal crossing pairs). Let
Y be a simple normal crossing divisor on a smooth variety M and let D be
an R-divisor on M such that Supp(D+Y) is simple normal crossing and that
D and Y have no common irreducible components. We put By = D|y and
consider the pair (Y, By ). We call (Y, By) a global embedded simple normal
CToS8SINng pair.

The following lemma is obvious.

use|] Lemma 2.17. Let (X,S + B) be an embedded simple normal crossing pair
such that S + B is a boundary R-divisor, S is reduced, and _.By = 0. Let
M be the ambient space of X and f : N — M the blow-up along a smooth
irreducible component C of Supp(S + B). Let Y be the strict transform of
X on N. Then'Y is a simple normal crossing divisor on N. We can write
Ky +Sy+ By = f*(Kx+S+ B), where Sy + By is a boundary R-Cartier R-
divisor on' Y such that Sy is reduced and . By 1= 0. In particular, (Y, Sy +
By) is an embedded simple normal crossing pair. By the construction, we
can easily check the following properties.

(i) Sy is the strict transform of S on'Y if C' C SuppB,
(ii) By is the strict transform of B on'Y if C' C SuppS,

(iii) the f-image of any stratum of (Y, Sy + By) is a stratum of (X, S+ B),
and

(iv) R f,.Oy =0 fori>0 and f.Oy ~ Ox.

use
As a consequence of Lemma 2.17, we obtain a very useful lemma.

useful-lemma| Lemma 2.18. Let (X, Bx) be an embedded simple normal crossing pair, Bx

a boundary R-divisor, and M the ambient space of X. Then there is a pro-
jective bz’r%z’soenal morphism f : N — M, which is a sequence of blow-ups as
in Lemma 2.17, with the following properties.

(i) LetY be the strict transform of X on N. We put Ky + By = f*(Kx+
Bx). Then (Y, By) is an embedded simple normal crossing pair. Note
that By is a boundary R-divisor.
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(i) f:Y — X is an isomorphism at the generic point of any stratum of
Y. f-image of any stratum of (Y, By) is a stratum of (X, Bx).

(iii) R'f,Oy =0 for any i > 0 and f.Oy ~ Ox.

(iv) There exists an R-divisor D on N such that D andY have no common
irreducible components and Supp(D + Y') is simple normal crossing
on N, and By = Dly. This means that the pair (Y, By) is a global
embedded simple normal crossing pair.

The next lemma is also easy to prove.

ambro
Lemma 2.19 (cf. [Am1, p.216 embedded log transformation]). Let X

be a simple normal crossing divisor on a smooth variety M and let D be an
R-divisor on M such that Supp(D + X) is simple normal crossing and that
D and X have no common irreducible components. We put B = D|x. Then
(X, B) is a global embedded simple normal crossing pair. Let C' be a smooth
stratum of (X, B~Y). Let 0 : N — M be the blow-up along C. We de-
note by Y the reduced structure of the total transform of X in N. we put
Ky + By = f*(Kx + B), where f = oly. Then we have the following
properties.

(i) (Y, By) is an embedded simple normal crossing pair.

(ii) f.Oy ~ Ox and R f.Oy =0 for any i > 0.
(iii) The strata of (X, B=') are exactly the images of the strata of (Y, By').
(iv) o= H(C) is a mazimal (with respect to the inclusion) stratum of (Y, By').

(v) There ezists an R-divisor E on N such that Supp(E+Y') is simple nor-

mal crossing and that E andY have no common irreducible components
such that By = Ely.

(vi) If B is a boundary R-divisor, then so is By.

In general, normal crossing varieties are much more difficult than simple
normal crossing S\é%%ieties. We postpone the definition of normal crossing
pairs in Section 2.7 to avoid unnecessary confusion. Let us recall the notion
of semi-ample R-divisors since we often use it in this book.
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2.20 (Semi-ample R-divisor). Let D be an R-Cartier R-divisor on a va-
riety X and 7 : X — S a proper morphism. Then, D is w-semi-ample if
D ~g f*H, where f : X — Y is a proper morphism over S and H a rel-
atively ample R-Cartier R-divisor on Y. It is not difficult to see that D is
m-semi-ample if and only if D ~g Y. a;D;, where q; is a positive real number
and D; is a m-semi-ample Cartier divisor on X for any .

In the following sections, we have to treat algebraic varieties with quotient
singularities. All the V-manifolds in this book are obtained as cyclic covers
of smooth varieties whose ramification loci are contained in simple normal
crossing divisors. So, tje%/e 3&%‘31%"6 toroidal structures. We collect basic
definitions according to [St; Section 1], which is the best reference for our
purposes.

v-n| 2.21 (V-manifold). A V-manifold of dimension N is a complex analytic
space that admits an open covering {U;} such that each U; is analytically iso-
morphic to V;/G;, where V; C CV is an open ball and G; is a finite subgroup
of GL(N,C). In this paper, G; is always a cyclic group for any i. Let X be
a V-manifold and ¥ its singular locus. Then we define Q% = 7,Q%_y., where
j: X —X — X is the natural open immersion. A divisor D on X is called a
divisor with V -normal crossings if locally on X we have (X, D) ~ (V, E)/G
with V' C CV an open domain, G C GL(N,C) a small subgroup acting on
V,and E C V a G-invariant divisor with only normal crossing singularities.
We define Q% (log D) = j*QX s (log D). Furthermore if D is Cartier, then

we put Qs % (log D)(— = Ioglg ® Ox(—D). This complex will play
an

crucial roles in Sectrons

2.3 Fundamental injectivity theorems

The following proposition is a reformulation of the well-known result_ by
Esnault—Viehweg (cf. thV, 3.2. Theorem. c), 5.1. b)]). Their proof in thVV]
depends on the characteristic p methods obtained by Deligne and Illusie.
Here, we give another proof for the later usage. Note that all we want to do
in this section is to generalize the following result for simple normal crossing
pairs.

Proposition 2.22 (Fundamental injectivity theorem I). Let X be a proper
smooth variety and S + B a boundary R-divisor on X such that the support
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of S+ B is simple normal crossing, S is reduced, and LB, = 0. Let L be a
Cartier divisor on X and let D be an effective Cartier divisor whose support
is contained in SuppB. Assume that L ~g Kx + S + B. Then the natural
homomorphisms

Hq(X7 OX(L)) - Hq(Xa OX(L + D))7
which are induced by the inclusion Ox — Ox (D), are injective for all q.

é’mof, We can assume that B is a Q-divisor and L ~qg Kx+ S5+ B by Lemma
b.12. We put £ = Ox(L—Kx—S). Let v be the smallest positive integer such
that vL ~ v(Kx + S+ B). In particular, vB is an integral Weil divisor. We
take the v-fold cyclic cover 7’ : Y’ = SpecXGBZA":_O1 L~ — X associated to the
section vB € |L¥|. More precisely, let s € H*(X, L) be a section whose zero
divisor is ¥B. Then the dual of s : Ox — LY deﬁnes a Ox-algebra structure
on P 01 L7, For the details, see, for example, V 3.5. Cyclic covers|. Let
Y — Y’ be the normalization and 7 : ¥ — X the composition morphism.
Then Y has only quotient singularities because the support of vB is simple
normal crossing (cf. thV 3.24. Lemma]). We put T = 7*S. The usual
differential d : Oy — QL C QL(logT) gives the differential d : Oy (=T) —
QL (logT)(—=T). This induces a natural connection ,(d) : m,Oy(~=T) —
ﬁ*(ﬁ%,(log T)(=T)). It is easy to see that m.(d) decomposes into v eigen
components. One of them is V : L7(=S) — Q%(log(S + B)) ® L7Y(-9)
(cf. [EV, 3.2. Theorem. c)]). It is well known and easy to check that the
inclusion Q% (log(S + B)) ® gil(—S — D) — Q% (log(S + B)) ® L71(-9)
is a quasi-isomorphism (cf. [EV, 2.9. Properties]). On the other hand, the
following spectral sequence

EP? = HY(X, % (log(S + B)) ® L71(=9))
= HPT(X, 0% (log(S + B)) @ L7'(—5))

degenerates in F;. This follows from the E\-degeneration of

HUY, % (log T)(~T)) = H*(Y, 03 (log T) (~T))
Where the right hz‘md ‘side is ‘iso norphic to f*q(Y - T,CL We will fiisc 1SS
this Ej-degeneration in Section E 4. For the details, see 2.31 in Section E !

below. We note that Q% (log(S + B)) ® £L71(—9) is a direct summand of
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7. (Q2 (log T)(—T)). We consider the following commutative diagram for any
q.

HY(X, Q% (log(S + B)) ® L7H(=S))  ——  HIYX,L7(=5))

K [
(X, 0 (oB(S + B)) & L7~ — D)) —— HI(X,£7/(~S - D)

Since v is an isomorphism by the above quasi-isomorphism and « is surjective
by the F;-degeneration, we obtain that [ is surjective. By the Serre duality,
we obtain H1(X, Ox(Kx)®L(S)) - HY(X,Ox(Kx)®L(S+D)) is injective
for any g. This means that H(X, Ox (L)) — HY(X, Ox(L+ D)) is injective
for any q. O

The next result is a key result of this chapter.

Proposition 2.23 (Fundamental injectivity theorem II). Let (X, S +
B) be a simple normal crossing pair such that X is proper, S+ B is a boundary
R-divisor, S is reduced, and _.B1 = 0. Let L be a Cartier divisor on X and
let D be an effective Cartier divisor whose support is contained in SuppB.
Assume that L ~g Kx + S + B. Then the natural homomorphisms

HI(X, 0x(L)) — HI(X, Ox(L + D))
which are induced by the inclusion Ox — Ox (D), are injective for all q.

Proof. Vye can assume that B is a Q-divisor and L ~p Kx + S + B by
Lemma 2.12. Without loss of generality, we can assume that X is connected.
Let ¢ : X* — X be the Mayer—Vietoris simplicial resolution of X. Let
v be the smallest positive integer such that vL ~ v(Kx + S + B). We
put L = Ox(L — Kx — S). We take the v-fold cyclic1 cover 7’ 1 Y — X
associated to vB € |L¥] as in the proof of Proposition 2.22. Let Y — Y be
the normalization of Y’. We can glue Y naturally along the inverse image
of £;(X') C X and then obtain a connected reducible variety Y and a finite
morphism 7 : Y — X. For a supplementary argument, see Remark 2.24
below. We can construct the Mayer—Vietoris simplicial resolutione : Y* — Y
and a natural morphism 7, : Y* — X*. Note that Definition 2.9 makes sense
without any modifications though Y has singularities. The finite morphism
o : YY — XY is essentially the same as the finite cover constructed in
Proposition b.22. Note that the inverse image of an irreducible component
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X; of X by mp may be a disjoj jpt union of copies of the finite cover constructed
in the proof of Proposition 12.22. More precisely, let V' be any stratum of
X. Then 7=(V) is not necessarily connected and 7 : 7='(V) — V may
be a disjoint un on of copies of the finite cover constructed in the proof of
the Pl"OpOSlthHI]Q22 Since HY(X*, (L™! ( S —D))*) ~ HI(X,L(-5 —
D)) and HY(X* (L71(=8))*) ~ HI(X, L~}(-29)), it is sufficient to see that
HI(X* (LY(=S—D))*) — HI(X*, (LY(—9))*) is surjective. First, we note
that the natural inclusion

Vn(log(S™ + B")) @ (L7H(=5 = D))" — Q%u(log(S™ + B")) @ (L7(=9))"
is a quasi-isomorphism for any n > 0 (cf. }‘FEV)V, 2.9. Properties|). So,
Ve (log(S* + B*)) @ (L7(=5 = D))* — Q. (log(S* + B*)) @ (L7'(=9)°*)

is a quasi-isomorphism. We put 7" = 7*S. Then Q%.(log(S" + B")) ®
(L71(=S))" is a direct summand of 7,,Q%(logT™)(=T") for any n > 0.
Next, we can check that

EP = HUY*, Q0. (log T*)(=T*)) = H*I(Y, s(Q%. (log T*)(=T")))

ggenerates in s]e PyVe will discuss this Fj-degeneration in Section ZSeZ[C See
b_32 in Section The right hand side is isomorphic to HP*4(Y — T, C).
Therefore,

B = HY(X*, Q4. (log(S* + B*)) @ (L71(-9))*)
— HP*(X, 5(Q%. (log(S* + B*)) ® (L71(=9))*))

degenerates in ;. Thus, we have the following commutative diagram.

HI(X, (. (log($* + BY) @ (L7(=5)"))  —%—  HIX*, (L7(-5))")
[+ [#
HI(X, 5(Qe (log(S* + B*) @ (L71(~S — D))*)) —— HIX*, (L7 (-5 — D))*)

1
As in the proof of Proposition b.22, v is an isomorphism and « is surjective.
Thus, [ is surjective. This implies the desired injectivity results. O

Remark 2.24. For simplicity, we assume that X = X; U X5, where X,
and X, are smooth, and that V' = X; N X5 is irreducible. We consider the
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natural projection p : Y — X. We note that Y = 171 ]_[}72, where 172 is the
inverse image of X; by p for ¢ = 1 and 2. We put p; = p\?i for i = 1 and
2. It is easy to see that p;*(V) is isomorphic to p,* (V) over V. We denote
it by W. We consider the following surjective Ox-module homomorphism
1 pOz © p.Oy, — p.Ow = (f,9) = flw — glw. Let A be the kernel of 4.
Then A is an Ox-algebra and 7 : Y — X is nothing but Specy A — X. We
can check that 7=1(X;) ~Y; for i = 1 and 2 and that 7= (V) ~ W.

. . . . bro
Remark 2.25. As pointed out in the introduction, the proof of Arii] , The-
orem 3.1] only implies that the homomorphisms

HYX,Ox(L — S)) — HU(X,Ox(L — S + D))

are injective for all . When S = 0, we do not need the mixed Hodge structure
on the cohomology with compact support. The mixed Hodge structure on
the usual singular cohomology is sufficient for the case when S = 0.

2
We close this section with an easy application of Proposition 5.23. The
following vanishing theorem is the Kodaira vanishing theorem for simple
normal crossing varieties.

Corollary 2.26. Let X be a projective simple normal crossing variety and
L an ample line bundle on X. Then H1(X,Ox(Kx)®L) =0 for any g > 0.

Proof. We take a general member B € |£!| for some [ >> 0. Then we can find
a Cartier divisop M such that M ~g Kx + 1B and Ox(Kx)® L ~ Ox(M).
By Proposition 2.23, we obtain injections H4(X, Ox(M)) — HY(X, Ox (M +
mB)) for any ¢ and any positive integer m. Since B is ample, Serre’s van-
ishing theorem implies the desired vanishing theorem. O

2.4 F,-degenerations of Hodge to de Rham
type spectral sequences

si s3
From b_27 to b_29 we recall so ) well-known results on mixed Hodge struc-
tureg, \We use the notations m%ﬁ he basic references on this topic
areeb?D'Zs_gSTectlon 8] art I1] ande%fz_@'hapltres 2 and 3|. The recent
book [PS] may be useful. The startmg point is the pure Hodge structures on
proper smooth algebraic varieties.
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2.27. (Hodge structures for proper smooth varieties). Let X be a proper
smooth algebraic variety over C. Then the triple (Zy, (2%, F'), ), where
2% is the holomorphic de Rham complex with the filtration béte F' and
a: Cx — QY% is the inclusion, is a cohomological Hodge complex (CHC, for
short) of weight zero.

I is also a fund 1 le. For the details, see [ET- L1
Tzeei%z}](t one 1Is also a fTundamental example. For the details, see , L1
or ;3.0

2.28. (Mixed Hodge structures for proper simple normal crossing varieties).
Let D be a proper simple normal crossing algebraic variety over C. %et
e : D* — D be the Mayer—Vietoris simplicial resolution (cf. Definition 2.9).
The following complex of sheaves, denoted by Qpe,

0 _)EO*QDO - El*QDl — e _)EIC*(QD]‘C o,

is a resolution of Qp. More explicitly, the differential d; : . Qpx

H
. 1zein
5k+1*Q5ﬁ +Zle}%22fiol(—1)3)\;k+l for any k& > 0. For the details, see [ET,

I.1] or .5.3]. We obtain the resolution Q,. of Cp as follows,
0 — €0.80250 — €1, 01 — -+ = €1, 0 — -+

Of course, dj, : €527 — k14023541 18 Z;té(—l)j)\;kﬂ. Let s(£2%.) be the
simple complex associated to the double complex €2%,.. The Hodge filtration
F on 5(Q%.) is defined by F? = 5(0 — --- — 0 — &,V — £, QP — ..0),
We note that €.Q). = (0 — 0.0 — €. — -+ — .00, —

-+). There exist natural weight filtrations W’s on Qpe and s(Q%.). We

omit the definition of the weight filtrations W's %le@ﬁ- and stq;,e.j?ngince

we do not need their explicit descriptions. See , 1.1.] or , 3.5.6].
Then (Zp, (Qpe, W), (5(2%.), W, F)) is a cohomological mixed Hodge com-
plex (CMHC, for short). This CMHC induces a natural mixed Hodge struc-
ture on H*(D,Z).

For the precise definitjons of CHC and CMHC (CHMC, in French), see

eligne
D2, Section 8] or thZ,_Cﬁapitre 3]. The third example is not so standard
but is indispensable for our injectivity theorems.

2.29. (Mixed Hodge structure on the cohomology with compact support).
Let X be a proper smooth algebraic variety over C and D a simple normal
crossing divisor on X. We consider the mixed cone of Qx — Qp. with
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. . . . . lzein
suitabl igléfltr%of complexes and weight filtrations (for the details, see [ET,
1.3.] or[E2,3.7.14]). We obtain a complex Qx_ pe, which is quasi-isomorphic

to 1Qx_p, where j : X—D — X is the natural open immersion, and a weight
filtration W on Qx_p.. We define in the same way, that is, by taking a cone
of a morphism of complexes Q0§ — Q%., a complex Q% _ 5. with filtrations W
and F. Then we obtain that the triple (/iZx_p, (Qx_ps, W), (Q%_pe, W, F))
is a CMHC. It defines a natural mixed Hodge structure on H?(X — D,Z).
Since we can check that the complex

0 — Q% (log D)(~D) — 0 — 0. o

e W — = e A — -

is exact by direct local calculations, we see that (Q%_p., F) is quasi-isomorphic
to (Q%(log D)(—D), F) in DT F(X,C), where
FrQ% (log D)(~ D)
= (0= = 0~ D (log D)(~D) — O (log D)(~D) = ).

Therefore, the spectral sequence
B! = HY(X, Q% (log D)(—D)) = H'™(X, Q% (log D)(—D))
degenerates in F; and the right hand side is isomorphic to H?*4(X — D, C).

From here, we treat mixed Hodge structures on much more complicated
algebraic varieties.

2.30. (Mixed Hodge structures for proper simple normal crossing pairs). Let
(X, D) be a proper simple normal crossing pair over C such that D is reduced.
Let € : X* — X be the Mayer—Vietoris simplicial resolution of X. As we saw
in the previous step, we have a CHMC

(jn!ZanDnu (QX"—(D")'7 W>7 (QB(”—(D")‘7 VI/? F))

on X", where j, : X" — D™ — X" is the natural open immersion, and that
(Q2%n_(pnye: I) is quasi-isomorphic to (2% (log D")(—D"), F) in D*F(X", C)
for any n > 0. Therefore, by using the Mayer—Vietoris simplicial resolution
e: X* — X, we can construct a CMHC (jiZx_p, (Kg, W), (K¢, W, F)) on
X that induces a natural mixed Hodge structure on H2(X — D,Z). We
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can see that (K¢, F') is quasi-isomorphic to (s(Q%.(log D*)(—D*)), F) in
D*F(X,C), where

FP=50—--—0— 0% (logD*)(—D°*)
— £, 0% log D*)(=D*) — ---).
We note that 2%.(log D*)(—D*) is the double complex
0 — £0,Q2%o0(log D°)(=D°%) — &1, Q% (log D')(=D") — -+
— 4. Q% (log DF)(—D*) —
Therefore, the spectral sequence
EY = HY(X* Of.(log D*)(—D*)) = HP"(X, s(Q%. (log D*)(—D*)))

degenerates in F; and the right hand side is isomorphic to H?™4(X — D, C).

Let us go to the {oof of the F-degeneration that we already used in the
proof of Proposition 2.22.

1
2.31 (E)-degeneration foy Proposition 5.22). Here, we use the notation
in the proof of Proposition 2.22. In this case, Y has only quotient singular-
ities. Then (Zy, (2%, F),«) is a CHC, where F' is the filtration béte and

teenbri

a: Cy — QF is the inclusion. For the details, see )], It is 5 638Y_ brink

to see that 7' is a divisor with V-normal crossings on Y (see u 71 or ST,
(1.16) Definition]). We can easily check that Y is singular only over the
singular locus of SuppB. Let ¢ : T* — T be the fﬁ/er—\/ietoris simplicial
resolution. Though T has singularities, Definition 2.9 makes sense without
any modifications. We note that 7™ has only quotient singularities for any
n > 0 by the congtruction of m: Y — X. We can also check that the same
construction in b_28 works with minor modifications and we have a CMHC
(Zg, (Qpe, W), (s(Q%.), W, F)) that induces a natural mixed Hodge structure
on H*(T,Z). By the same arguments as in 2.29, we can construct a triple
(WZy 1, (Qy_7e, W), (K¢, W, F)), where j : Y —T — Y is the natural open
immersion. It is a CHMC that induces a natural mixed Hodge structure
on H(Y —T,7Z) and (K¢, F) is quasi-isomorphic to (25 (logT)(—=T), F’) in
DTF(Y,C), where

FPQ% (log T)(-T)
=(0— - —0— B (logT)(~T) — B (log T)(~=T) — - -+).
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Therefore, the spectral sequence
EY" = HY(Y, 9 (log T)(=T)) = H**(Y, 05 (log T)(~T))
degenerates in E; and the right hand side is isomorphic to H**4(Y — T, C).

The final one is the E;-degeneration that we used in the proof of Propo-
sition 2.23. It may be one of the main contributions of this chapter.

2
2.32 (E;-degeneration for Proposition 5.23). We use the notation in
the proof of Proposition 2.23. Let ¢ : Y* — Y be the Mayer—Vietoris simpli-
cial resolution. By the previous step, we can obtain a CHMC

(jn!ZYn,TrH (@Y"*(T”)'u W)7 (K(C7 VI/? F))

for each n > 0. Of course, 7, : Y —T" — Y™ is the natural open immersion
for any n > 0. Therefore, we can construct a CMHC

(j!ZY—Tv (K@v W)v (KCv VV7 F))

on Y. It induces a natural mixed Hodge structure on H? (Y —T,7Z). We note
that (K¢, F) is quasi-isomorphic to (s(Q$.(logT*)(=T*)), F) in DTF(Y,C),
where

Fp — S(O e — 0 — 6*5/2];/. (log T.)(_T.)
R 5*52’;:1(10g T.)(—T.) [ )

s4
See }2730 above. Thus, the desired spectral sequence
Ept = HY(Y*, Q. (log T*)(=T*)) = HPH(Y, (0 (log T*)(—T*)))

2
degenerates in ;. Tt is what we need in the proof of Proposition b.23. Note
that HPT9(Y, s(Q5.(log T*)(—=T*))) ~ H*(Y — T, C).

2.5 Vanishing and injectivity theorems

The main purpose of this section is to prove Ambro’s theorems (cf. FAnbﬁrof,
Theorems 1 and %2 1)1 for embedded simple normal crossing ablrs The next
lemma ( rop051t1on 1.11]) is missing in the {)oof of , Theorem
3.1]. It Justlﬁes the first three hnes in the proof of [AmI, Theorem 3.1].
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Lemma 2.33 (Relative vanishing lemma). Let f : Y — X be a proper

morphism from a simple normal crossing pair (Y, T + D) such that T + D 1is
a boundary R-divisor, T" is reduced, and . D1 = 0. We assume that f is an
isomorphism at the generic point of any stratum of the pair (Y, T+ D). Let L
be a Cartier divisor on'Y such that L ~g Ky +T+ D. Then R f.Oy (L) =0
forq > 0.

7
Proof. By Lemma b.l?, we can assume that D is a Q-divisor and L ~q
Ky +T + D. We divide the proof into two steps.

Step 1. We assume that Y is irreducible. In this case, L — (Ky + 717 + D)

s pef and log big over X with respect to the pair (Y, T + D) (see Definition
’57[6) Therefore, R? f*(’)ylgl)li?r iO_ﬁca)r any q¢ > 0 by the vanishing theorem

(see, for example, Lemma K.

Step 2. Let Y; be an irreducible component of Y and Y, the union of the
other irreducible components of Y. Then we have a short exact sequence
0 — .0y, (—Yaly,) — (bQ% — Oy, — 0, where i : Y] — Y is the natural
closed immersion (cf. [AmI, Remark 2.6]). We put L' = Ll|y; — Ya|y;. Then
we have a short exact sequence 0 — 4,0y, (L") — Oy (L) — Oy,(Lly,) — 0
and L' ~g Ky, +T|y, + Dly;. On the other hand, we can check that L|y, ~q
Ky, + Yily, + Ty, + ﬁﬁé We have already known that RIf.Oy, (L") =0
for any ¢ > 0 by Step T. By the induction on the number of the irreducible
components of Y, we have R1f,.Oy,(Ll|y,) = 0 for any ¢ > 0. Therefore,
R1f,Oy (L) = 0 for any ¢ > 0 by the exact sequence:

= RSOy (L) — R[.Oy (L) = R'f.Oy,(Lly,) — -+ .
- '_1
So, we finish the proof of Lemma E%g.a B O

The following lerﬁgna is a variant of Szabd’s resolution lemma (see the
—reso

resolution lemma in [I.87.

Lemma 2.34. Let (X, B) be an embedded simple normal crossing pair and D
a permissible Cartier divisor on X. Let M be an ambient space of X. Assume
that there exists an R-divisor A on M such that Supp(A+X) is simple normal
crossing on M and that B = Alx. Then there exists a projective birational
morphism g : N — M from a smooth variety N with the following properties.
Let Y be the strict transform of X on N and f = gly : Y — X. Then we
have
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(i) g7'(D) is a divisor on N. Exc(g)Ug; (A+X) is simple normal crossing
on N, where Exc(g) is the exceptional locus of g. In particular, Y is a
simple normal crossing divisor on N.

(ii) g and f are isomorphisms outside D, in particular, f.Oy ~ Ox.

(iii) f*(D+ B) has a simple normal crossing support on'Y . More precisely,
there ezists an R-divisor A" on N such that Supp(A’'+Y') is simple nor-
mal crossing on N, A" and 'Y have no common irreducible components,
and that A'ly = f*(D + B).

Proof. First, we take a blow-up M; — M along D. Apply Hironaka’s desin-
gularization theorem to M; and obtain a projective birational morphism
M, — M; from a smooth variety M,. Let F' be the reduced divisor that
coincides with the support of the inverse image of D on Ms. Apply S %l_)g(’ess ol
esqlution lemma to Suppo*(A + X) U F on M, (see, for example, i 8 or
, 3.5. Resolution lemmal), where o : My — M. Then, we obtain desired
projective birational morphisms g : N — M from a smooth variety N, and
f=gly:Y — X, where Y is the strict transform of X on N, such that Y is
a simple normal crossing divisor on N, g and f are isomorphisms outside D,
and f*(D + B) has a simple normal crossing support on Y. Since f is an iso-
morphism outside D and D is permissible on X, f is an isomorphism at the
generic point of any stratum of Y. Therefore, every fiber of f is connected
and then f,0Oy ~ Ox. Ol

6
Remark 2.35. In Lemma 5.34, we can directly check that f.Oy(Ky) =~
Ox(Kx). By Lemma 5.1, R1f,Oy(Ky) = 0 for ¢ > 0. Therefore, we obtain
f:Oy ~ Ox and R?f,Oy = 0 for any ¢ > 0 by the Grothendieck duality.

Here, we treat the compactification problem. It is because we can use the
same technique as in the proof of Lemma 2.34. This lemma plays important
roles in this section.

Lemma 2.36. Let f : Z — X be a proper morphism from an embedded
simple normal crossing pair (Z, B). Let M be the ambient space of Z. As-
sume that there is an R-divisor A on M such that Supp(A + Z) is simple
normal crossing on M and that B = A|z. Let X be a projective variety
such that X contains X as a Zariski open set. Then there exist a proper
embedded simple normal crossing pair (Z, B) that is a compactification of
(Z,B) and a proper morphism f : Z — X that compactifies f : 7 — X.
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Moreover, SuppB U Supp(Z \ Z) is a simple normal crossing divisor on Z,
and Z \ Z has no common irreducible components with B. We note that B
is R-Cartier. Let M, which is a compactification of M, be the ambient space
of (Z,B). Then, by the construction, we can find an R-divisor A on M such
that Supp(A + Z) is simple normal crossing on M and that B = Al.

Proof. Let Z,A C M be any compactification. By blowing up M inside
7\ Z, we can assume that f : Z — X extends to f : Z — X. By Hironaka’s
desingularization and the resolution lemma, we can assume that M is smooth
and Supp(Z + A) U Supp(M \ M) is a simple normal crossing divisor on
M. Tt is not difficult to see that the above compactification has the desired
properties. U

Remark 2.37. There exists a big trouble to compactify normal crossing
varieties. When we treat normal cr giri%o%arieties, we can not directly com-
pactify them. For the details, seeCFF"}_uB.._GﬁoXVhitney umbrellal, especially,
Corollary 3. .1Qr§nd Remark 3.6.11 in . Therefore, the first two lines in

the proof of [AmI, Theorem 3.2] is nonsense.

bro
It is the time to state the main injectivity theorem (cf. [AmI, Theorem

3.1]) for embedded simple normal crossing pairs. For applicatjb(%%s, this for-
mulation seems to be sufficient. \é\éec pote that we W%q recover [AmI, Theorem
3.1] in full generality in Section 2.7 (see Theorem b_53)

ambro
Theorem 2.38 (cf. ml, Theorem 3.1]). Let (X, S + B) be an embed-
ded simple normal crossing pair such that X is proper, S+ B is a boundary
R-divisor, S is reduced, and . By = 0. Let L be a Cartier divisor on X and
D an effective Cartier divisor that is permissible with respect to (X, S + B).
Assume the following conditions.

(i) L~g Kx+ S+ B+ H,
(ii) H is a semi-ample R-Cartier R-divisor, and

(iii) tH ~g D+ D' for some positive real number t, where D' is an effective
R-Cartier R-divisor that is permissible with respect to (X, S + B).

Then the homomorphisms
HI(X, 0x(L)) — H(X, Ox(L + D))

which are induced by the natural inclusion Ox — Ox(D), are injective for
all q.
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Proof. First, we use Lemma B%.u_l%%%nsriawe can assume that there exists a
divisor A on M, where M is the ambient space of X, such that Supp(A + X)
is simple normal crossing on M and that A|x = S. Apply Lemma 2.34 to an
embedded simple normal crossing pair (X, S) and a divisor Supp(D+ D'+ B)
on X. Then we obtain a projective birational morphism f : Y — X from an
embedded simple normal crossing variety Y such that f is an isomorphism
outside Supp(D + D’ + B), and that the union of the support of f*(S + B +
D + D’) and the exceptional locus of f has a simple normal crossing support
onY. Let B’ be the strict transform of B on Y. We can assume that SuppB’
is disjoint from any strata of Y that are not irreducible components of Y by
taking blow-ups. We write Ky + 58"+ B' = f*(Kx + S + B) + E, where
S’ is the strict transform of S, and F is f-exceptional. By the construction
of f:Y — X, S is Cartier and B’ is R-Cartier. Therefore, E is also R-
Cartier. It is easy to see that £, = "E" > 0. We put L' = f*L + E,
and F_ = FE, — F > 0. We note that F, is Cartier and F_ is R-Cartier
because SuppF is simple normal crossing on Y. Since f*H is an R.y-linear
combination of semi-ample Cartier divisors, we can write f*H ~g > .a,H;,
where 0 < a; < 1 and H; is a general Cartier divisor on Y for any 7. We put
B"=B"+E_+2f*(D+ D)+ (1—¢)>,a;H; for some 0 < ¢ < 1. Then
L' ~g Ky+S5+B". By the construction, L B”_ = 0, the support of 8"+ B" is
simple normal crossing on Y, and SuppB” D Suppf*D. So, Proposition 2.23
implies that the homomorphismg H4(Y, Oy (L')) — HY(Y, Oy (L' + f*D)) are
injective for all ¢. By Lemma b.BS, R7f.Oy (L) = 0 for any ¢ > 0 and it
is easy to see that f.Oy (L") ~ Ox(L). By the Leray spectral sequence, the
homomorphisms H(X,Ox (L)) — HY(X,Ox(L + D)) are injective for all
q. ]

The following theor H})rig another main theorem of this section. It is
essentially the same as [AmI, Theorem 3.2]. We note that we assume that
(Y,S + B) is a simple normal crossing pair. It is a sma 2but technically
important difference. For the full statement, see Theorem 2:54 below.

ambro
Theorem 2.39 (cf. ml, Theorem 3.2]). Let (Y, S+B) be an embedded
simple normal crossing pair such that S + B is a boundary R-divisor, S is
reduced, and LB = 0. Let f : Y — X be a proper morphism and L a Cartier
divisor on'Y such that H ~gx L — (Ky + S + B) is f-semi-ample.

(i) every non-zero local section of RIf,Oy (L) contains in its support the
f-image of some strata of (Y,S + B).
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(i) let m: X — V be a projective morphism and assume that H ~g f*H’
for some w-ample R-Cartier R-divisor H' on X. Then RIf,Oy (L) is
me-acyclic, that is, RP7,RIf,Oy (L) =0 for any p > 0.

seful-lemma

Proof. Let M be the ambient space of Y. Then, by Lemma bu. [8, we can
assume that there exists an R-divisor D on M such that Supp(D +Y) is
simple normal crossing on M and tha ly = S + B. Therefore, we can use
Lemma 36 in Step 27of (i) and Step B of (ii? below. ' e—vani-lem

(i) We have already proved a very spacial case in Lemma 2.33. The

argument in Step 1 is not new and it is well known.

Step 1. First, we assume that X is projective. We can assume that H is
semi-ample by replacing L (resp. H) with L+ f*A’ (resp. H+ f*A’), where A’
is a very ample Cartier divisor. Assume that R?f,Oy (L) has a local section
whose support does not contain the image of any (Y, S 4+ B)-stratum. Then
we can find a very ample Cartier divisor A with the following properties.

(a) f*A is permissible with respect to (Y,.S + B), and
(b) ROy (L) — Rf.Oy (L) ® Ox(A) is not injective.

We can assume that H — f*A is semi-ample by replacing L (resp. H) with
L+ f*A (resp. H+ f*A). If necessary, we replace L (resp. H) with L+ f*A”
(resp. H + f*A"), where A” is a very ample Cartier divisor. Then, we have
HYX, Rif,Oy(L)) ~ HYY,Oy(L)) and H°(X, R1f,Oy(L) @ Ox(A)) =~
HYY,Oy(L+ f*A)). We obtain that

H(X, R1f,0y (L)) — H°(X, R1£.Oy (L) ® Ox(A))

is not injective by (b) if A” is sufficiently ample. So, H ‘15(
HYY,Oy(L+ f*A)) is not injective. It contradicts Theorem E_SB We ﬁnlsh
the proof when X is projective.

Step 2. Next, we assume that X is not projective. Note that the problem
is local. So, we can shrink X and assume that X is affine. By the argument
similar to the one in Step 1 in the proof of (ii) below, we can assume that M s
a semi-ample Q-Cartier Q-divisor. We compactify X and apply Lemma

Then we obtain a compactification f:Y — X of f:Y — X. Let H be the
closure of H on Y. If H is not a semi-ample Q-Cartier Q-divisor, then we take
blowing-ups of Y inside Y \ Y and obtain a semi-ample Q-Cartier Q-divisor
H onY such that H|y = H. Let L (resp. B, S) be the closure of L (resp. B,
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S) on Y. We note that H ~g L — (K5 + S + B) does not necessarily hold.
We can write H 4+ ). a;(f;) = L — (Ky + S+ B), where q; is a real number
and f; € D(Y,K3) for any i. We put E = H+ Y, a;(fi)— (L— (Ky+ S+ B)).
We replace L (resp. B) with L+"E™ (resp. B+ {—E}). Then we obtain the
desired property of R?f,O(L) since X is projective. We note that SuppFE
is in Y\ Y. So, we finish the whole proof.

(ii) We divide the proof into three steps.

Step 1. We assume that dimV = 0. The following arguments are well
known and standard. We describe them for the reader’s convenience. In
this case, we can write H ~gr Hj + H), where H{ (resp. H}) is a m-ample
Q-Cartier Q-divisor (resp. m-ample R-Cartier R-divisor) on X. So, we can
write H) ~r > .a;H;, where 0 < a; < 1 and H; is a general very ample
Cartier divisor on X for any i. Replacing B (resp. H') with B + >, a;f*H;
(resp. H1), we can assume that H' is a m-ample Q-Cartier Q-divisor. We take
a general member A € |mH'|, where m is a sufficiently large and divisible
integer, such that A" = f*A and RIf.Oy (L + A’) is m.-acyclic for all ¢. By
(1), we have the following short exact sequences,

O — qu*OY<L> — qu*OY(L + A/) — qu*OA/<L —|— AI> — O

for any ¢. Note that R?f,O4 (L+ A’) is m.-acyclic by induction on dim X and
RIf,Oy (L + A’) is also m,-acyclic by the above assumption. Thus, EY? =
for p > 2 in the following commutative diagram of spectral sequences.

EY = RP,R1f,Oy (L) ———= RP*(m o [).Oy(L)

SOPQ l LPP‘HZ l/

EY' = RPr RUf.Oy (L + A) == R\ (7 o f).Oy (L + A"

5.1
Since ! is injective by Theorem }‘275’8, B — RYi(1of),0y (L) is injective
by the fact that EY? = 0 for p > 2, and E;q = 0 by the above assumption,
we have E4¢ = 0. This implies that RPm, R f,Oy (L) = 0 for any p > 0.

Step 2. We assume that V is projective. By replacing H' (resp. L) with
H' 4+ 7*G (resp. L + (m o f)*G), where G is a very ample Cartier divisor
on V, we can assume that H’ is an ample R-Cartier R-divisor. By the
same argument as in Step 1, we can assume that H’ is ample Q-Cartier Q-
divisor and H ~g f*H'. If G is a sufficiently ample Cartier divisor on V/,
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HE(V, RPm,RIf, Oy (L)®G) = 0 for any k > 1, H(V, RP1, R f,Oy (L)RG) ~
H?(X, R1f,Oy(L)®7*G), and RPm, R f.Oy(L)®G is generated by its global
sections. Since H + f*n*G ~g L+ f*1*G — (Ky + S+ B), H + f*1*G ~q
f*(H 4+ m*G), and H' + 7*G is ample, we can apply Step 1 and obtain
H?(X,R1f.Oy(L+ f*r*G)) = 0 for any p > 0. Thus, RPm, R f.Oy (L) =0
for any p > 0 by the above arguments.

Step 3. When V is not projective, we shrink V' and assume that V' is affine.
By the same argument as in Step 1 above, we can assume that H' is Q-Cartier.
We com %I%tify V and X, and can assume that V' and X are projective. By

Lemma 2.36, we can reduce it to the case when V' is projective. This step
is essentially the same as Step 2 in the proof of (i). So, we omit the details
here.

We finish the whole proof of (ii). O

Remark 2.40. In Theorem BT'318, gle is smooth, then Propositign 5.22 is
enough for the proof of T eqrem }2_38 In the proof of Theorem 2.39, rig_%/ani_lem
is smooth - gI%len Theorem 2.38 for a smooth X is sufficient. Lemmas 5_33,7
.34, and E_Sg are easy and well known for gnooth varieties. Therefore, the
reader can find that our proof of Theorem [2.39 be omes much easier if we
assume that Y is smooth. Ambro’s original proof of [AmI, Theorem 3.2 (ii)]
used embedded simple normal crossing pairs even when Y is smooth (see (b)
in the proof of [AmI, Theorem 3.2 (ii)]). It may be a technically important
di erence. I could not follow Ambro’s original argument in (a) in the proof
of [AmI, Theorem 3.2 (ii)].

5.1
9-1| Remark 2.41. It is easy to see that T'heorem b‘38 is a generalization of
Kolldr’s injectivity theorem. Theorem 2.39 (i) (resp. (ii)) is a generalization
of Kollar’s torsion-free (resp. vanishing) theorem.

We treat an easy vanishing theorem for L(% opairs as an application of
Theorem 2.39 (ii). It seems to be buried in [AmI]. We note that we do not
eed the notion of er%lgg(li_(%%d simple normal crossing pairs to prove Theorem

.C42. See Remark QSI.nZIU.

Theorem 2.42 (Kodaira vanishing theorem for lc pairs). Let (X, B) be
an lc pair such that B is a boundary R-divisor. Let L be a Q-Cartier Weil
divisor on X such that L — (Kx + B) is m-ample, where m : X — V is a
projective morphism. Then Rit,Ox(L) =0 for any q > 0.
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Proof. Let f:Y — X be alog resolution of (X, B) such that Ky = f*(Kx+
B) +3,a;E; with a; > —1 for any i. We can assume that >, E; USuppf*L
is a simple normal crossing divisor on Y. We put E = ) . a;E; and F' =
Zaj:—1(1 —b;)E;, where b; = multg, {f*L}. We note that A = L —(Kx +B)
is m-ample by the assumption. So, we have f*A = f*L — f*(Kx + B) =
"fFL+E+F"—(Ky+F+{—(f*L+ E+ F)}). We can easily check that
[0y ("f*L+E+F7) ~ Ox(L) and that F'+{—(f*L+ E+ F)} has a siple
normal crossing support and is a boundary R-divisor on Y. By Theorem 2.39
(ii), we obtain that Ox (L) is m.-acyclic. Thus, we have Ri7,Ox (L) = 0 for
any q > 0. U

lc ovacs
We note that Theorem ﬁ42 contains a co glete form of [KvZ, Theorem

S

0.3] as a corollary. For the related topics, see S, Corollary 1.3].

Corollary 2.43 (Kodaira vanishing theorem for lc varieties). Let X be
a projective lc variety and L an ample Cartier divisor on X. Then

HY(X,0x(Kx + L)) =0

for any q > 0. Furthermore, if we assume that X is Cohen—Macaulay, then
HY(X,0x(—=L)) =0 for any ¢ < dim X .

1 jino-high
Remark 2.44. We can see that Corollary 743 i, contained in Fugl,lnloﬁegrem
2.6], Whic@ Js a very special case of Theorem .39 (ii). I forgot to state

Corollary 243 explicitly in ; ere, we do not need embedded si Ele1 no-hieh
normal crossing pairs. We note that there are typos in the proof of FQI,
Theorem 2.6]. In the commutative diagram, R f,wx(D)’s should be replaced
by R’ f,wx(D)’s.

We close this section with an easy example.

Example 2.45. Let X be a projective lc threefold which has the following
properties: (i) there exists a projective birational morphism f : Y — X from
a smooth projective threefold, and (ii) the exceptional locus E of f is an
Abelian surface with Ky = f*Kx — E. For example, X is a cone over a
normally projective Abelian surface in PV and f : Y — X is the blow-up
at the vertex of X. Let L be an ample Cartier divisor on X. By the Leray
spectral sequence, we have

0— HYX, f.f*Ox(—=L)) — HY(Y, f*Ox(~L)) — H*(X, R f.[*Ox(—L))
— H*(X, f.f*Ox(=L)) — H*(Y, f*Ox(=L)) — - -- .

ol



Therefore, we obtain
HQ(Xa OX(_L)) = HO(X7 OX(_L) ® le*OY)a

because HY(Y, f*Ox(—L)) = H?*(Y, f*Ox(—L)) = 0 by the Kawamata—
Viehweg vanishing theorem. On the other hand, we have R?f, Oy ~ HY(E, Op)
for any ¢ > 0 since R1f,Oy(—E) = 0 for every ¢ > 0. Thus, H*(X,Ox(—L)) ~
C?% In particular, H*(X,Ox(—L)) # 0. We note that X is not Cohen-
Macaulay. In the above example, if we assume that F is a K3-surface, then
HY(X,Ox(—L)) =0.for ¢ < 3and X is C —Macaulay. For the details,
see(the sub(sect)ig)n Ei%.‘sl%especially, Lemma%ﬁ.ﬂn

2.6 Some further generalizations

8
Here, we treat some generalizations of Theorem b.39. First, we introduce
the notion Ig)fbr_lgg tand log big (resp. nef and log abundant) divisors. See also
Definition B.37.

Definition 2.46. Let f : (Y, B) — X be a proper morphism from a simple
normal crossing pair (Y, B) such that B is a subboundary. Let 7 : X — V
be a proper morphism and H an R-Cartier R-divisor on X. We say that H
is nef and log big (resp. nef and log abundant) over V if and only if H | is nef
and big (resp. nef and abundant) over V for any C, where C' is the image of
a stratum of (Y, B). When (X, Bx) is an lc pair, we choose a log resolution
of (X, Bx) tobe f:(Y,B) — X, where Ky + B = f*(Kx + By).

. E . bro
We can generalize Theorem 2.39 as follows. It is Z&nml, Theorem 7.4] for
embedded simple normal crossing pairs. His idea of the proof is very clever.

ambro
Theorem 2.47 (cf. [Am1, Theorem 7.4]). Let f : (Y,S + B) — X be a
proper morphism from an embedded simple normal crossing pair such that
S + B is a boundary R-divisor, S is reduced, and .B1 = 0. Let L be a

Cartier divisor on' Y and m : X — V a proper morphism. Assume that
f*H ~g L — (Ky + S + B), where H is nef and log big over V. Then

(i) every non-zero local section of R1f.Oy (L) contains in its support the
f-image of some strata of (Y,S + B), and

(ii) RIf.Oy (L) is m.-acyclic.
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so-no-1

Proof. We note that we can assume that V' is affine without loss of generality.
By using Lemma g [8, we can assume that there exists a divisor D on M,

where M is the ambient space of Y, such that Supp(D +Y) is simple normal
crossing on M and that D]y = S + B.

Step 1. We assume that each stratum of (Y,S + B) dominates some irre-
ducible component of X. By taking the Stein factorization, we can assume
that f has connected fibers. Then we can assume that X is irreducible and
each stratum of (Y, S + B) dominates X. By Chow’s lemma, there exists
a projective birational morphism g : X’ — X such that #’ : X' — V is
projective. By taking blow-ups ¢ : Y’ — Y that is an isomorphism over the
generic point of any stratum of (Y, S+ B), we have the following commutative
diagram.
v 2 Y

gl lf
X — X

m
Then, we can write

Ky +S8+B =¢*(Ky+S+B)+ E,
where

(1) (Y',S8"+ B’) is a global embedded simple normal crossing pair such
that S + B’ is a boundary R-divisor, S’ is reduced, and .B’J = 0.

(2) E is an effective p-exceptional Cartier divisor.
(3) Each stratum of (Y, S" + B’) dominates X'.
We note that each stratum of (Y, S + B) dominates X. Therefore,
'L+ E ~gp Ky + 5 +B' + ¢ fH.

We note that ¢,Oyfp*L + E) ~ Oy(L) and R, Oy:(p*L+ E) = 0 for any
¢ > 0 by Theorem 5.39 (i). Thus, we can assume that ¢ : Y/ — Y is an
identity, that is, we have

Y p— Y

o

X — X.
o
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We put F = R, Oy (L). Since p*H is nef and big over V and 7’ : X' — V
is projective, we can write u*H = F + A, where A is a n’-ample R-divisor on
X’ and F is an effective R-divisor. By the same arguments as above, we take
some blow-ups and can assume that (Y, S + B + ¢*F) is a global embedded
simple normal crossing pair. If £ > 1, then LB + %Q*EJ =0,

1 E—1

1
*H=-E+-A+——u*H

and . b1
ALY Tl
T i
is m'-ample. Thus, F is u.-acyclic and (7o p), = ml-acyclic by Theorem b.39

(ii). We note that

1 k—1

Ly )
TR

So, we have R'f.Oy(L) ~ p,F and R1LOy(L) is m-acyclic. It is easy to
see that F is torsion-free by Theorem 2.39 (i). Therefore, R?f.Oy (L) is
also torsion-free. Thus, we finish the proof when each stratum of (Y, S + B)
dominates some irreducible component of X.

Step 2. We treat the general case by inducfion on dim f(Y). By taking
embedded log transformation (see Lemmaﬁmn decompose Y = Y'U
Y" as follows: Y is the union of all strata of (Y, S+ B) that are not mapped
to irreducible components of X and Y =Y —Y’. We put Ky» + Byn =
(Ky -+ S + B)|y// - Yl|y//. Then S’i)-:n(t)}-/l/’ By//) — X and L” = L|y// — Yl|y//
satisfy the assumption in Step h.—% consider the following short exact
sequence

1
L—(KY+S+B+E9*E> NRg*<

0— Oy//(LI/) — Oy(L) — Oy/(L) — 0.
By taking R?f,, we have short exact sequence
0— qu*Oy//<L”) — qu*(/)y(L) — qu*Oy/<L) — 0

for any ¢ by Step [I. 1t is because the conpecting homomorphisms R?f,Oy. (L) —
Rt f,Oyn (L") are zero ma s by Step II.7Smce (i) and (ii) hold for the first
and third members by Step I and by induction on dimension, respectively,

they also hold for R7f,Oy(L).
So, we finish the proof. O
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so-no-2 74

In Step m proof of The rebr{rlobll?, we used the embedded log trans-
formation and the dévissage (see [AmI, Remark 2.6]). So, we peed the notion
of embedded simple normal crossing pairs to prove Theorem [2.47 even when
Y is smooth. It is a key point. ”

As a corollary of Theorem }‘;7.47, we can prove the fol%gl?g vanishing
theorem, which is stated implicitly in the introduction of [AmI]. It is the
culmination of the works of several authors: Kawamata, Viehweg, Nadel,
Reid, Fukuda, Ambro, and many others (cf. M, Theorem 1-2-5]).

Theorem 2.48. Let (X, B) be an lc pair such that B is a boundary R-divisor
and let L be a Q-Cartier Weil divisor on X. Assume that L — (Kx + B)
is nef and log big over V, where m : X — V is a proper morphism. Then
Rit,Ox(L) =0 for any q > 0.

As a special case, we have the Kawamata—Viehweg vanishing theorem.
Corollary 2.49 (Kawamata—Viehweg vanishing theorem). Let (X, B)
be a kit pair and let L be a Q-Cartier Weil divisor on X. Assume that

L —(Kx + B) is nef and big over V', where m : X — V' is a proper morphism.
Then Rim,Ox (L) =0 for any q > 0.

1lc kvn
The proof of Theolgg‘m }‘;7.42 works for Theorem }‘218 without any changes
if we adopt Theorem bél?. We add one example.

Example 2.50. Let Y be a projective surface which has the following prop-
erties: (i) there exists a projective birational morphism f : X — Y from
a smooth projective surface X, and (ii) the exceptional locus E of f is an
elliptic curve with Ky + F = f*Ky. For example, Y is a cone over a smooth
plane cubic curve and f : X — Y is the blow-up at the vertex of Y. We
note that (X, E) is a plt pair. Let H be an ample Cartier divisor on Y. We
consider a Cartier divisor L = f*H + Kx + E on X. Then L — (Kx + FE) is
nef and big, but not log big. By the short exact sequence

0—-Ox(ffH+Kx) — Ox(f"H+ Kx + E) — Og(Kg) — 0,
we obtain
R'f.Ox(f*H+ Kx + E) ~ H\(E, Og(Kg)) ~ C(P),
where P = f(FE). By the Leray spectral sequence, we have

0— HY(Y, f,Ox(Kx + E) ® Oy(H)) — H'(X,0x(L)) — H°(Y,C(P))
— H*(Y, f,Ox(Kx + E) ® Oy(H)) — - .

25



nef—labun—th|

If H is sufficiently ample, then H'(X,Ox (L)) ~ H°(Y,C(P)) ~ C(P). In
particular, H'(X, Ox(L)) # 0.

ex111
Remark 2.51. In Example bTSCﬁthere exists an effective Q-divisor B on X
such that L — %B is ample for any k£ > 0 by Kodaira’s lemma. Since L-FE = 0,
we have B - E < 0. In particular, (X, E + +B) is not lc for any k& > 0. This
is the main reason why H'(X, Ox(L)) # 0. If (X, E + +B) were lc, then the
ampleness of L — (Kx + E + 1 B) would imply H'(X,Ox(L)) = 0.

74
We modify the proof of TheoremS}Téﬁ. Then we can easily obtain the
following generalization of Theorem 2.39 (i). We leave the details for the
reader’s exercise.

Theorem 2.52. Let [ : (Y, S+ B) — X be a proper morphism from an
embedded simple normal crossing pair such that S + B is a boundary, S is
reduced, and LB, = 0. Let L be a Cartier divisor on' Y and 7 : X — V a
proper morphism. Assume that f*H ~g L — (Ky + S + B), where H is nef
and log abundant over V.. Then, every non-zero local section of R?f,Oy (L)
contains in its support the f-image of some strata of (Y, S + B).

so-no-1 Eﬁ .
Sketch of the proof. In Step T in the proof of Theorem 2.47, we can write
wH = E + A, where E is an effective R-divisor such that ku*H — E is

ﬂ’—semi—axgnggglgogu%p ; positive integer & (cf. h%\/, 5.11. Lemma]). Therefore,

Theorem . olds when eac _stratym of (Y, S + B) daminates some irre-
ducible component of X. Step 2in the proof of Theorem 2.47 works without
any changes. O

2.7 From SNC pairs to NC pairs

' ‘ 5.1 8
In this section, we recover Ambro’s theorems from Theorems 2.38 and 2.39.
We repeat Ambro’s statements for the reader’s convenience.

ambro
Theorem 2.53 (cf. ml, Theorem 3.1]). Let (X, S + B) be an embed-
ded normal crossing pair such that X is proper, S+ B s a boundary R-divisor,
S is reduced, and LB1 = 0. Let L be a Cartier divisor on X and D an effec-
tive Cartier divisor that is permissible with respect to (X, S + B). Assume
the following conditions.

(i) L~g Kx+S+B+H,

o6
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(ii) H is a semi-ample R-Cartier R-divisor, and

(iii) tH ~g D+ D' for some positive real number t, where D" is an effective
R-Cartier R-divisor that is permissible with respect to (X, S + B).

Then the homomorphisms
Hq(X7 OX(L)) - HQ(X’ OX(L + D))v

which are induced by the natural inclusion Ox — Ox (D), are injective for
all q.

ambro
Theorem 2.54 (cf. ml, Theorem 3.2]). Let (Y, S+B) be an embedded
normal crossing pair such that S + B is a boundary R-diwvisor, S is reduced,
and LB1=0. Let f:Y — X be a proper morphism and L a Cartier divisor
on'Y such that H ~g L — (Ky + S+ B) is f-semi-ample.

(1) every non-zero local section of RIf,Oy (L) contains in its support the
f-image of some strata of (Y,S + B).

(i) let m: X — V be a projective morphism and assume that H ~g f*H’
for some mw-ample R-Cartier R-divisor H on X. Then RIf.Oy (L) is
me-acyclic, that is, RP1,RIf,Oy (L) =0 for any p > 0.

Before we go to the proof, let us recall the definitinpy of normal cross-
ing pairs, which is a slig tb%%neralization of Definition 2.13. The following
definition is the same as [AmI, Definition 2.3] though it may look different.

Definition 2.55 (Normal crossing pair). Let X be a normal crossing va-
riety. We say that a ée{iuced divisor D on X is normal crossing if, in the
notation of Definition 2.8, we have

C[[x()v T 7xNH

6D,x =
(IEO .. 'xk‘al"il .. .xil)

for some {iy, -+ 4} < {k+1,---,N}. We say that the pair (X, B) is a
normal crossing pair if the following conditions are satisfied.

(1) X is a normal crossing variety, and

(2) B is an R-Cartier R-divisor whose support is normal crossing on X.
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We say that a normal crossing pair (X, B) is embedded if there exists a closed
embedding ¢ : X — M, where M is a smooth variety of dimension dim X +1.
We put Kyo + 0O = n*(Kx + B), where 7 : X — X is the normalization of
X. From now on, we assume that B is a subboundary R-divisor. A stratum
of (X, B) is an irreducible component of X or the image of some lc center of
(X% ©)on X. A Cartier divisor D on a normal crossing pair (X, B) is called
permissible with respect to (X, B) if D contains no strata of the pair (X, B).

The following three lemmas are easy to check. So, we omit the proofs.

Lemma 2.56. Let X be a normal crossing divisor on a smooth variety M.
Then there exists a sequence of blow-ups My — My 1 — -+ — My = M
with the following properties.

(i) o441 @ Miyqy — M; is the blow-up along a smooth stratum of X; for any
1 >0,

(il) Xo =X and X;11 is the inverse image of X; with the reduced structure
for any i >0, and

(iii) Xy is a simple normal crossing divisor on Mj,.

For each step 0,1, we can directly check that 0;41.Ox,., ~ Ox, and R10;,1,Ox
0 for any i > 0 and ¢ > 1. Let B be an R-Cartier R-divisor on X such
that SuppB is normal crossing. We put By = B and Kx, , + Bi1 =
071 (Kx, + B;) for all i > 0. Then it is obvious that B; is an R-Cartier
R-diwvisor and SuppB; is normal crossing on X; for any 1 > 0. We can also
check that B; is a boundary R-divisor (resp. Q-divisor) for any i > 0 if so is
B. If B is a boundary, then the o;,1-image of any stratum of (X;11, Biy1) 1S
a stratum of (X, B;).

. 63 .
635 Remark b2r.o57. Ez%ch step in Lemma }2756 1§s(é%]fgl g@bedded log transforma-
tion in [AmI, Section 2]. See also Lemma l2 [9.

Lemma 2.58. Let X be a simple normal crossing divisor on a smooth variety
M. Let S+ B be a boundary R-Cartier R-divisor on X such that Supp(S+ B)
1s normal crossing, S is reduced, and _LB1 = 0. Then there exists a sequence
of blow-ups My — My,_1 — --- — My = M with the following properties.

(i) oix1 : My — M; is the blow-up along a smooth stratum of (X;,S;)
that is contained in S; for any i > 0,

o8
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(i) we put Xo = X, Sy =S, and By = B, and X;,1 is the strict transform
of X; for any i > 0,

(ili) we define Kx,,, + Siq1 + Biy1 = 0 (Kx, + S; + B;) for any i > 0,
where By is the strict transform of B; on X;.1,

(iv) the o;11-image of any stratum of (X;i1,Six1 + Biv1) is a stratum of
(XZ', SZ + Bl), and

(v) Sk is a simple normal crossing divisor on Xj.

For each step 0,41, we can easily check that 0,411, Ox,,, ~ Ox, and R0,,,,.Ox
0 for any i > 0 and ¢ > 1. We note that X; is simple normal crossing,
Supp(S; + B;) is normal crossing on X;, and S; is reduced for any i > 0.

Lemma 2.59. Let X be a simple normal crossing divisor on a smooth variety
M. Let S+ B be a boundary R-Cartier R-divisor on X such that Supp(S+ B)
is mormal crossing, S is reduced and simple normal crossing, and _LB1 = 0.
Then there exists a sequence of blow-ups My — M1 — --- — My = M
with the following properties.

(i) o441 @ Miyy — M; is the blow-up along a smooth stratum of (X;, SuppB;)
that is contained in SuppB; for any i > 0,

(i) we put Xo = X, Sy =S, and By = B, and X;,1 is the strict transform
of X; for any 1 > 0,

(ili) we define Kx,,, + Siq1 + Biy1 = 0 (Kx, + S; + B;) for any i > 0,
where S;1 1s the strict transform of S; on X, 1, and

(iv) Supp(Sk + By) is a simple normal crossing divisor on Xj.

We note that X; is simple normal crossing on M; and Supp(S; + B;) is
normal crossing on X; for any i > 0. We can easily check that .B;2 < 0
for any © > 0. The composition morphism My — M 1is denoted by o. Let L
be any Cartier divisor on X. We put E ="—By . Then E is an effective
o-exceptional Cartier divisor on Xy, and we obtain 0.O0x, (g L+ E) ~ Ox (L)
and Ri0,Ox, (0"L + E) = 0 for any ¢ > 1 by Theorem 2.39 (i). We note
that o*L + E — (Kx, + Sk + {Bx}) = 0L — 0" (Kx + S + B) is R-linearly
trivial over X and o is an isomorphism at the generic point of any stratum

29
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Let us go to the proof of Theorems 5753 and 5754.

Proof of Theorems }267153 and }267254. We take a sequence of blow-ups and ob-
tain a projective morphism o : X’ — X (resp.o : Y’ — Yé Jfrom an embedded

imple normal crossing variety X’ (resp. Y’) in Theorem }‘2753 (resp. Theorem

.54) by Lemma 2:56. We can replace X (resp. Y') and L with X’ (resp. Y)
and o*L by Leray’s spectral sequence. So, we can assume that X (resp. Y')
is simple normal crossing. Similarly, we can asgyme that S is simple normal
crossing on X (resp. Y) by applying Lemma 2.58. Finally, we use Lemma
}‘2759 and obtain a birational morphism o : (X', 8" + B') — (X,S + B)
(resp. (Y, 8"+ B’) — (Y, S+ B)) from an embedded simple normal crossing
pair (X', §'+B’) (resp. (Y, 5+ B')) such that Kx/+5"4B" = 0" (Kx+54B)
(resp. Ky'+S"+ B' = 0*(Ky + S+ B)) as in Lemma 559, By Lemma 2:59,
we can replace (X,S + B) (resp. (Y,S + B)) and L with (X', 5" + {B'})
(resp. (Y', 5"+ {B'})) and 0" L + " —B"" hy Leray’s spectral sequence. Then
we apply 6;‘heorem E_SB (resp. Theorem 2.39). Thus, we obtain Theorems
}‘2753 and 5754. O

2.8 Examples

In this section, we treat various supplementary examples.

2.60 (Examples for Section }%2) Let X be a smooth projective variety
and let M be a Cartier divisor on X such that N ~ mM, where N is a
simple normal crossing divisor on X and m > 2. We put B = %N and
L = Kx + M. In this setting, we can apply Proposition 2.22. If M is semi-
ample, then the existence of such N and m is obvious by Bertini. Here, we
give explicit examples where M is not nef.

Example 2.61. We consider the P!-bundle 7 : X = Pp1 (Op1 & Op1 (2)) — P
Let E and G be the sections of 7 such that E? = —2 and G? = 2. We note
that F + 2F ~ (G, where F is a fiber of 7. We consider M = E + F. Then
2M =2FE 4+ 2F ~ E + G. In this case, M - E = —1. In particular, M is not
nef. Furthermore, we can easily check that H Z(Xi, Ox(Kx+ M)) =0 for any
1. S0, it is not interesting to apply Proposition 2.22.

Example 2.62. We consider the P!-bundle 7 : Y = Pp1 (Op1 ®Op1 (4)) — P
Let G (resp. E) be the positive (resp. negative) section of , that is, the
section corresponding to the projection Op1 @ Op1(4) — Op1(4) (resp. Op:1 @
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Op1(4) — Op1). We put M’ = —F + 2@, where F is a fiber of 7. Then M’
is not nef and 2M’' ~ G + E + F; + F5 + H, where F; and F5 are distinct
fibers of 7, and H is a general member of the free linear system |2G|. Note
that G + E 4+ Fy + F, + H is a reduced simple normal crossing divisor on
Y. We put X =Y x C, where C is an elliptic curve, and M = p*M’, where
p: X — Y is the projection. Then X is a smooth projective variety and M
is a Cartier divisor on X. We note that M is not nef and that we can find a
reduced simple normal crossing divisor such that N ~ 2M. By the Kiinneth
formula, we have

HYX,0x(Kx + M)) ~ H'(P', Op (1)) ~ C*.

1
Therefore, X with L = Kx + M satisfies the conditions in Proposition 5.22
and we have H'(X,Ox (L)) # 0.

2.63 (Kodaira vanishing theorerrcl) for singular varieties). The follow-
ing example is due to Sommese (cf. %6, (0.2.4) Example]). It shows that the

Kodaira vanishing theorem does no{cr%ea%essarily hold for varieties with non-lc

singularities. Therefore, Corollary 2.437is sharp.
Proposition 2.64 (Sommese). We consider the P?-bundle
T:Y = PPI(OPI D O]pl(l)eag) — I[Dl

over P1. Let M = Oy(1) be the tautological line bundle of 7 : Y — PL.
We take a general member X of the linear system |(M & 7*Opi(—1))%?.
Then X s a normal projective Gorenstein threefold and X is not lc. We
put L = M Q@ 1*Op1(1). Then L is ample. In this case, we can check that
H?*(X,L™Y) = C. By the Serre duality, H*(X,Ox(Kx)®L) = C. Therefore,
the Kodaira vanishing theorem does not hold for X.

Proof. We consider the following short exact sequence
0= LY -X)—=L'— L x =0
Then we have the long exact sequence

= HU(Y, LX) = HY(Y. L) — H'(X, L)
N Hi+1<y’ ﬁfl(—X)) e
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Since H (Y, L) = 0 for i < 4 by the original Kodaira vanishing theorem,
we obtain that H?(X, £L7') = H3(Y,L7'(—X)). Therefore, it is sufficient to
prove that H3(Y, L7'(—X)) = C.

We have

LN(=X)=MT@710pn(—1) @M @7 Op1(4) = M @ 7 Op:1(3).

We note that R'm,M™> = 0 for i # 3 because M = Oy(1). By the
Grothendieck duality,

RHom(Rm, M7, Op1 (Kp)[1]) = Rr,RHom(M ™, Oy (Ky)[4]).
By the Grothendieck duality again,

Rr, M~ = RHom(Rn,RHom(M ™, Oy (Ky)[4]), Op: (Kp1)[1])
= RHom(Rm.(Oy(Ky) ®@ M), Opi (Kp1))[—3] = (¥).

By the definition, we have
Oy (Ky) = 7*(Op1 (Kp1) ® det(Op1 & Op (1)) @ M = 7*Opi (1) @ M1
By this formula, we obtain
Oy (Ky) ® M® = 1*Op1 (1) @ M.
Thus, R'm.(Oy(Ky) ® M?) =0 for any i > 0. We note that

T.(Oy (Ky) @ M?) = Op(l) ® 1. M
OP1(1> X (O]pl D OP1(1)®3) = Ow(l) ® Op: (2)@3.

Therefore, we have
(x) = RHom(Op (1) ® Opi(2)%%, Op1(—2))[-3]
(Op1(—3) @ Op1 (—4)%)[-3].

So, we obtain R3m, M ™ = Op1(—3)POp1 (—4)®3. Thus, R37, M P20p (3) =
O]pl @ OPI(—I)@B.
By the spectral sequence, we have
H Y, L7'(-X)) = HY, M @7 0p(3))
= H°P', RP7n,(M™° @ 1O (3)))
= HO(]P)l, Op1 @ O]P)1<—1)@3) =C.
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Therefore, H*(X,L™!) =C.

Let us recall that X is a general member of the linear system [(M ®
7 Op1(—1))®|. Let C be the negative section of 7 : Y — P!, that is, the
section corresponding to the projection

O]pl ) Opl(l)@s — O]pl — 0.

From now, we will check that |M @ 7*Op1(—1)| is free outside C. Once we
checked it, we know that |(M @ 7*Op1(—1))®?] is free outside C'. Then X is
smooth in codimension one. Since Y is smooth, X is normal and Gorenstein
by adjunction.

We take Z € |[M @ 1*Opi(—1)| # 0. Since HY(Y,M @ 7*Op1(—1) @
7 Op1(—1)) = 0, Z can not have a fiber of m as an irreducible component,
that is, any irreducible component of Z is mapped onto P! by 7 : Y — P!
On the other hand, let [ be a line in a fiber of 7 : Y — P!, Then Z -1 = 1.
Therefore, Z is irreducible. Let F' = P3 be a fiber of 7 : Y — P!, We consider

0=H"Y,M @7 Op1(—1) ® Oy (=F)) — H* (Y, M @ 7*Op1 (1))
— HYF,0p(1)) = H (Y,M Q@ 7*Op1(—1) @ Oy (—F)) — - - - .

Since ( M@7*Op1(—1))-C = —1, every member of |M®@n*Op:(—1)| contains
C. We put P = FNC. Then the image of

a: H(Y,M @ m*Op1 (—1)) — H°(F,Op(1))

is H(F,mp ® Op(1)), where mp is the maximal ideal of P. It is because
the dimension of H°(Y, M @ m*Op1(—1)) is three. Thus, we know that |M ®
7*Op1(—1)| is free outside C. In particular, (M @ 7*Op1(—1))®4| is free
outside C.

More explicitly, the image of the injection

a: H(Y, M @71 Op (1)) — H*(F,Op(1))
is H'(F,mp ® Op(1)). We note that
H'(Y,M @ 7*Op1(—1)) = H* (P, Op: (—1) & OFF) = C?,
and
HY(Y, (M @ 7" Opi(—1))%) = H°(P', Sym*(Op: (1) ® Op)) = C*.
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We can check that the restriction of H(Y, (M @ 7*Opi(—1))®?) to F is
Sym*H(F, mp®0Op(1)). Thus, the general fiber f of 7 : X — P! is a cone in
IP3 on a smooth plane curve of degree 4 with the vertex P = fNC. Therefore,
(Y, X) is not lc because the multiplicity of X alon ng_ Cigrfour. Thus, X is
not lc by the inversion of adjunction (cf. Corollary B.47). Anyway, X is the
required variety. O

Remark 2.65. We consider the P**1-bundle
T:Y = PPI(OPI D Op1(1)®(k+1)) — IP)l

over P! for k > 2. We put M = Oy(1) and L = M ® 7*Op1(1). Then
L is ample. We take a general member X of the linear system |[(M ®
7 Op1(—1))®*+2)| Then we can check the following properties.

(1) X is a normal projective Gorenstein (k + 1)-fold.
(2) X is not lc.

(3) We can check that RF 1 M=%+ = Opi (=1 — k) & Op1 (—2 — k) @*+D)
and that Rim, M~ *+3) =0 for i # k + 1.

(4) Since L7H(—X) = M~ * ) @ 7*Op1 (k + 1), we have
Hk—i—l(y’ ,C_l(—X)) _ HO(Pl,Rk+17T*M_(k+3) ® O]pl(k‘ + 1))
= HO(PI, Op1 @ OP1<—1)@(k+1)) =C.
Thus, H*(X,£71) = H*Y(Y, L71(-X)) =C.

We note that the first cohomology group of an anti-ample line bundle on
a normal variety with dim > 2 always vanishes by the following Mumford
vanishing theorem.

Theorem 2.66 (Mumford). Let V' be a normal complete algebraic variety
and L be a semi-ample line bundle on V. Assume that k(V,L) > 2. Then
HYV,L™Y) =0.

Proof. Let f: W — V be a resolution. By Leray’s spectral sequence,

0— HY(V, fof*L7Y) = H (W, f*L7) — -
By the Kawamata—Viehweg vanishing theorem, H'(W, f*£~!) = 0. Thus,
HYV, L™Y) = HY(V, f.f*L™1) = 0. 0

64



ex4

2.67 (On the Kawamata—Viehweg vanishing theorem). The next ex-
ample shows that a naive generalization of the Kawamata—Viehweg vanishing
theorem does not necessarily hold for varieties with lc singularities.

Example 2.68. We put V = P? xP2. Let p; : V — P? be the i-th projection
for i = 1 and 2. We define £ = piOp2(1) @ p5Op2(1) and consider the P!-
bundle 7 : W = Py (LD Oy ) — V. Let F' = P? xP? be the negative section of
7w : W — V, that is, the section of 7 corresponding to L Oy — Oy — 0. By
using the linear system |Oy (1) @ 7*p;Op2(1)], we can contract F' = P? x P?
to P? x {point}.

Next, we consider an elliptic curve C C P2 and put Z =C xC CV =
P2 x P2, Let 7 : Y — Z be the restriction of 7 : W — V to Z. The
restriction of the above contraction morphism q)IOw(l)@w*p’{OPz(l)\ W —-U
to Y is denoted by f:Y — X. Then, the exceptional locus of f:Y — X is
E =F|y =C xC and f contracts F to C' x {point}.

Let Ow (1) be the tautological line bundle of the P'-bundle 7 : W — V.
By the construction, Oy (1) = Ow (D), where D is the positive section of 7,
that is, the section corresponding to £ & Oy — L — 0. By the definition,

Ow (Kw) = (O (Kv) ® £) ® Ow(-2).
By adjunction,
Oy(Ky) =1 (0z(Kz) ® L]z) ® Oy (-2) = 7*(L|z) ® Oy(-2).
Therefore,

Oy(Ky + E) == W*(le) X Oy(—Z) & Oy(E)

We note that E = F|y. Since Oy (E)®@7*(L|z) ~ Oy (D), we have Oy (—(Ky+
E)) = Oy (1) because Oy (1) = Oy (D). Thus, —(Ky + E) is nef and big.

On the other hand, it is not difficult to see that X is a normal projective
Gorenstein threefold, X is lc but not klt along G = f(£), and that X is
smooth outside G. Since we can check that f*Kx = Ky + E, —Kx is nef
and big.

Finally, we consider the short exact sequence

0—-J—0x —0x/J —0,

where J is the multiplier ideal sheaf of X. In our case, we can easily check
that J = f.Oy(—F) = Zg, where Z is the defining ideal sheaf of G on X.
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Since — Ky is nef and big, H (X, J) = 0 for any ¢ > 0 by Nadel’s vanishing
theorem. Therefore, H(X,Ox) = H(G,Og) for any i > 0. Since G is an
elliptic curve, H'(X,Ox) = H'(G,Og) = C. We note that —Ky is nef and
big but —Kx is not log big with respect to X.

2.69 (On the injec Lvity theorem). The final example in this section
supplements Theorem 2.38.

Example 2.70. We consider the P!-bundle 7 : X = Ppi(Op®Op1(1)) — PL.
Let S (resp. H) be the negative (resp. positive) section of m, that is, the
section corresponding to the projection Opr @ Opi(1) — Op1 (resp. Op1 @
Op1(1) — Op1(1)). Then H is semi-ample and S+ F' ~ H, where F is a fiber
of .
Claim. The homomorphism

HYX,0x(Kx+S+H)) - H(X,0x(Kx + S+ H+ S+ F))

induced by the natural inclusion Ox — Ox (S + F') is not injective.

Proof of Claim. It is sufficient to see that the homomorphism
HY(X,0x(Kx+S+H)) — H(X,0x(Kx +S+ H +F))

induced by the natural inclusion Ox — Ox(F) is not injective. We consider
the short exact sequence

0—-Ox(Kx+S+H)—Ox(Kx+S+H+F)

We note that F' ~ P! and Op(Kr+ (S+ H)|r) =~ Op:. Therefore, we obtain
the following exact sequence

0—C— H(X,0x(Kx+S+H)) — H(X,0x(Kx + S+ H+F)) — 0.

Thus, HY(X,O0x(Kx + S+ H)) — HY(X,Ox(Kx + S + H + F)) is not
injective. We note that S + F is not permissible with respect to (X,S). O
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step3

2.9 Review of the proofs

e close this chapter with the review of our proofs of The geoms 5_53 and
b_54 It may help the reader to compare this chapter with , Section 3].
We think that our proofs are not so long. Ambro’s proofs seem to be too
short.

2.71 (Review). We review our proofs of the injectivity, torsion-free, and
vanishing theorems.

Step 1. (E;-degeneration of a certain Hodg > fo de Rham type spectral se-
quence). We discuss this Fj-degeneration in 2.32. As we pointed t l;g the
introduction, the appropriate spectral seque c% was not chosen mTﬁﬁI]. It
is one of the crucial technical problems in §t1on 3]. This step is
purely Hodge theoretic. We describe it in Sectlon bT

Step 2. (Fun angental injectivity theorem: Proposition i‘Z 23). This is a very
speci l ca§e of , Theorem 3.1] and follows from the FE- geeégzeneratlon in
Step [T by using covermg arguments. This step is in Section

Stﬁp 3. (Relative vanishing lem emma E%%)@T]’T% step is missing in
%] %ﬂ? very special case ofr%;f Theorem 3.2 (ii)]. However, we can
not use Theorem 3.2 (ii)] in this stage. Our proof of this lemma does
not work directly for normal crossing pairs. So, we need to assume that the
varieties are simple normal crossing pairs.

Step él InJectlv eorem for embedded simple normal crossing pairs: The-
orem It s , Theorem 3] IJ gor embedded simple normal crossing
pairs. It follows easﬂy frogl Step 2 since we already have th 6relative van-
ishing lemmab in Step %_E%Y key point in this step is Lemma 2.34, which is
missing in [Am ] and works only for embedded simple normal crossing pairs.

Step 5. (Torsion-free and vanishi gheorems for embedded simple normal
crossing pairs: Theorem 2.39). It is , Theorem 3.2] for embedded simple
normal crossing palrs The pr of uses the lemmas on desingularization and
compactification (see Lemmas% 34 and b‘gg which hold only for embedded
simple normal crossing pairs, and the mJesttlé/le theorem proved for embed-
ded stmple normal crossing pairs in Step E[ j herefore, this step also works
only for embedded simple normal crossing pairs. Our proof of thTQé/aniS oiélg
theorem is slightly different from Ambro’s one. Compare teps | and Bi

the proof of Theorem .39 with (a) and (b) in the proof of At [, Theorem

3.2 (ii)]. See Remark 57[07
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Step 6. (Ambro’s theorems: Theorem %03 and 67254). In this final step,
we recover Ambro’s theorems, that is, [AmI. Theorems 3.1 and 3.2, in full
generality. Since we have already proved Theorem 3.2 (i)] for embed-
ded simple normal crossing pairs in Step b, we can reduce the problems to
the case when the varieties are embedded simple normal crossing pairs by
bloxgr ups and Leray’s spectral sequences. This step is described in Section

b‘T
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Chapter 3

Log Minimal Model Program
for lc pairs

In this chapter, we discuss the log minimal model program (LMMP, for short)

for log canoni g pairs.

In Section B.T, we will explicitly state the LMMP for lc pairs. We state
the cone and contraction theorems explicitly for lc pairs with the additional
estimate of lengths of extremal rays. We also write the flip conjectures for lc
pairs. We note that the flip conjecture I (existence of an lc flip) is still open
and that the flip conjecture II (termination of a sequence of lc flips) follows
from the termination of klt flips. We give a proof of the flip conjecture I in
dimension four.

1cflip-th
Theorem 3.1 (cf. Theorem % 13i Log canonical flips exist in dimension
four.

In Section Eflig;vs—gclntroduce the notion of quasi-log varieties. We think
that the notion of quasi-log varieties is indispensable for investigating lc pairs.
e geader can find that the key points of the theory of %ua81 log varieties

in %ml] are a; a]&mcglon and the vanishing theorem (see , Theorem 4.4]
and Theorem unctlon and the vanishing theorems for quasi-log
varieties follow from FAH_[ 3. Vanishing The gﬁgna] However, Section 3 of
ml| contains various troubles. Now Chapter E gives us sufficiently powerful
vanishing and torsion-free theorems for the theory of quasi-log varieties. We
succeed in removing all the troublesome problems for the foundation of the

theory of quasi-log varieties. It is one of the main contributions of this
chapter and e slightly change Ambro’s formulation. By this change,
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the theory of quasi-log varieties becomes more accessible. As a byproduct,
we have the following definition of quasi-log varieties.

Definition 3.2 (Quasi-log varieties). A quasi-log variety is a scheme X
endowed with an R-Cartier R-divisor w, a proper closed subscheme X_,, C
X, and a finite collection {C} of reduced and irreducible subvarieties of X
such that there is a proper morphism f : Y — X from a simple normal
crossing divisor Y on a smooth variety M satisfying the following properties:

(0) there exists an R-divisor D on M such that Supp(D + Y') is simple
normal crossing on M and that D and Y have no common irreducible
components.

(1) f*w ~g Ky + By, where By = D|y.
(2) The natural map Ox — f.Oy("—(Bs')") induces an isomorphism
Ix_.. — f:Oy(T=(B3')" = LBy ),
where Zx___ is the defining ideal sheaf of X_ .

(3) The collection of subvarieties {C'} coincides with the image of (Y, By )-
strata that are not included in X_ .

new-def bro
. Deﬁnition 3.271s eq‘ui'val%]ltogg d%%x_l%g;% origir%al definition (see gml ]_DQe_fG-
inition 4.1] and Definition B.5H ). For the details, see the subsection B.2.6.
However, we think Definition 3.271s much better than Ambro’s. Once we
adopt Definition ;%.2, we do not need the notion of normal crossing pairs to
dgﬁne quasi-log varieties an'd‘ get tﬂa‘f%%]%isl%gy in the choice of quasi-log resolu-
tions f:Y — gg_lgchroposwlon l3.52.

In Section B.3, we will prove the fundamental theorems for the theory of
quasi-log varieties such as cone, contraction, rationality, and base point free
theorems. di-lec . ' .

The paper [F 16755 a gentle lntrOdﬂ%tl—;Fe to the log minimal model program

for lc pairs. It may be better to see efore reading this chapter.

3.1 LMMP for log canonical pairs

3.1.1 Log minimal model program

In this subsection, we explicitly state the log minimal model program (LMMP,
for short) for log canonical pairs. It is known to some experts but we can
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not find it in the standard literature. The following cone theorem is a con-
sequence of Ambro’s cone theorem for quasi-log varieties (see Theorem 5.10
. ro lcont-th |cone-thm . .
in %ml], Theorems B.74and B.75 below) excep(t:ofé)or_%}ﬁe existence of C; with
0 < —(Kx + B)-C; < 2dimX in .Theorem 3 1e}1Ngs\éVeﬂc1 discuss the
estimate of lengths of extremal rays in the subsection 3.1 5

Theorem 3.3 (Cone and contraction theorems). Let (X, B) be an lc
pair, B an R-divisor, and f : X — Y a projective morphism between al-
gebraic varieties. Then we have

(i) There are (countably many) rational curves C; C X such that f(C;) is
a point, 0 < —(Kx + B) - C; <2dim X, and

NE(X/Y) = NE(X/Y)(xtmz0+ Y Rx0[C).

(ii) For any e > 0 and f-ample R-divisor H,

NE(X/Y) = NE(X/Y)(x+Bremzo + ) _Rao[Cy].

finite

(iii) Let F C NE(X/Y) be a (Kx + B)-negative extremal face. Then there
is a unique morphism ¢p : X — Z over'Y such that (¢r).Ox ~ Oy,
Z s projective over Y, and an irreducible curve C' C X is mapped
to a point by vr if and only if [C] € F. The map pr is called the
contraction of F.

(iv) Let F' and @p be as in (iii). Let L be a line bundle on X such that
L-C =0 for every curve C with [C| € F. Then there is a line bundle
Ly on Z such that L ~ ¢ L.
coco-th
Remark 3.4 (Lengths of extremal rays). In Theorem B.3 (i), the esti-
mate —(Kx + B) - C; < 2dim X should be replaced by —(Kx + B) - C; <
‘dim'X + 1. For tgric vgri]%tlijeislt’%}%i& 19Joigjteo(;2tural estimate and some general-
izations were obtained in [F3] and [FD].

The following proposition is obvious. See, for example, HSI%M, Proposition
3.36].
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Proposition 3.5. Let (X, B) be a Q-factorial lc pair and let 7 : X — S be
a projective morphism. Let pr : X — Y be the contraction of a (Kx + B)-
negative extremal ray R C NE(X/S). Assume that g is either a divisorial
contraction (that is, pr contracts a divisor on X) or a Fano contraction (that
is, dimY < dim X). Then

(1) Y is Q-factorial, and
(2) p(Y/S) = p(X/S) 1.

By the above cone and contraction theorems, we can easily see that the
LMMP, th L Ige @ recursive procedure explained in [KM, 3.31] (see also the
subsection%_WFﬁ works for Q-factorial log canonical pairs if the flip conjec-
tures (Flip Conjectures I and II) hold.

Conjecture 3.6. ((Log) Flip Conjecture I: The existence of a (log) flip).
Let p: (X, B) — W be an extremal flipping contraction of an n-dimensional
pair, that is,

(1
(2
(
(

) (X, B) is lc, B is an R-divisor,
)
3) —(Kx + B) is p-ample,
)
)

@ 1s small projective and ¢ has only connected fibers,
4) p(X/W) =1, and

(5) X is Q-factorial.
Then there should be a diagram:

X -—» Xt

N /
W

which satisfies the following conditions:
(i) X is a normal variety,
(i) ot: XT — W is small projective, and

(i) Kx+ + B* is pt-ample, where BT is the strict transform of B.
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We call o : (X*,BT) = W a (Kx + B)-flip of ¢.

We note the following proposition. See, for example, ﬁ%M, Proposition
3.37].

Proposition 3.7. Let (X, B) be a Q-factorial lc pair and let m : X — S be
a projective morphism. Let pp : X — Y be the contraction of a (Kx + B)-
negative extremal ray R C NE(X/S). Let pr : X — Y be the flipping
contraction of R C NE(X/S) with flip o} : Xt — Y. Then we have

(1) X+ is Q-factorial, and

(2) p(XT/S) = p(X/S).
fI-conj
Note that to prove Conjecture 3.6 we can assu %t_hc%% B is a Q-divisor, by
pert Aoing B slightly. It is known that Conjecture 3.6 holds when dim X = 3
(see [FA, Chapter 8]). Moreover, if there exists an R-divisor B’ X such
that Kx 4+ B’ is kit and —(Kx + B’) is ¢-ample, then Conjecture ;3.6 S true
%BC’HM] The following fEm—Télrsn conjecture is stronger than Conjecture

P¥; on = o
3.6. We will see it in Lemma B.9.

Conjecture 3.8 (Finite generation). Let X be an n-dimensional smooth
projective variety and B a boundary Q-divisor on X such that SuppB is a
simple normal crossing divisor on X . Assume that Kx + B is big. Then the
log canonical ring

R(X,Kx + B) = @ H(X, Ox(um(Kx + B)J))
m>0
15 a finitely generated C-algebra.

Note that if there exists a Q-divisor %’ on X.such that Ky + B’ is klt and
%(r{fnﬂrreBl ~g Kx + B, then Conjecture B8 holds by HM]. See Remark
Lemma 3.9. Let f : X — S be a proper surjective morphism between nor-
mal varieties with connected fibers. We assume dim X = n. Let B be a
Q-divisor on X such that (X, B) is lc. Assume that Kx + B is f-big. Then
the relative log canonical ring

R(X/S,Kx + B) = P £.0x(vm(Kx + B).)

is a finiely ge
jecture B8 implies Conjecture B3.6.

. fg-conj )
enerated Os—algebgﬁ_iéglonjecture 3% holds. In particular, Con-
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The following conjecture is the most general one.

Conjecture 3.10 (Finite Generation Conjecture). Let f : X — S be a
proper surjective morphism between normal varieties. Let B be a Q-divisor
on X such that (X, B) is lc. Then the relative log canonical Ting

R(X/S,Kx + B) = @ f.0Ox(um(Kx + B).)

m>0
15 a finitely generated Og-algebra.

fo- 2
When (X, B) is klt, we can reduce Conjecture lg.llclofn . lc_ase when
Kx + B is ff—bcl&kﬁy using a canonic lﬁ}&ndle formula ( see
Conjecture B-T0 holds for klt pairs by M]. When (X, B) is lc but not
klt, we do not know if we can reduce it to the case when K X + B is f-big or
not. fo-lem
Before we go to the proof of Lemma 3.5, we note one easy remark.

Remark 3.11. For a graded integral domain R = @ R,, and a positive

m>0

integer k, the truncated ring R* is defined by R*®) = @ Ry,,. Then R is

m>0
finitely generated if and only if so is R*). We consider ProjR when R is
finitely generated. We note that ProjR*) = ProjR.

The following argument is well known to the experts.

fg-lem

Proof of Lemma }'3'.g9._S'1nce the problem is local, we can shrink S and assume
that S is affine. By compactifying X and S and by the desingularization
theorem, we can further assume that X and S are projective, X is smooth,
B is effective, and SuppB is a simple normal crossing divisor. Let A be a very
ample divisor on S and H € |rA| a gener | member for r > 0. Note that
Kx+ B+ (r—1)f*Ais big for r > 0 (cf. M, Corollary 0-3-4]). Let mq
be a positive integer such that mo(Kx + B+ f*H) is Cartier. By Conjecture

HY(X,Ox(mmo(Kx + B+ f*H))) is finitely generated. Thus, the

m>0
relative log canonical model X’ over S exists. Indeed, by assuming that
my is sufficiently large and divisible, R(X, Kx + B + f*H)(™0) is generated
by R(X,Kx + B+ f*H),,, and |mo(Kx + B + (r — 1)f*A)| # (. Then
X" = Proj@ H(X,Ox(mmo(Kx + B + f*H))) and X' is the closure of
m>0

the image of X by the rational map defined by the complete linear system
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|mo(Kx + B 4 rf*A)|. More precisely, let g : X” — X be the elimination
of the indeterminacy of the rational map defined by |mo(Kx + B + rf*A)]|.
Let ¢’ : X" — X’ be the induced morphism and h : X” — S the morphism
defined by the complete linear system |mgg* f*A|. Then it is not difficult to
see that h factors through X'.

Therefore, @ f.Ox(mmy(Kx + B)) is a finitely generated Og-algebra

m>0
by the existence of the relative log canonical model X’ over S. We finish the

proof. O

. chm hk bu
o !uhe next theorem is an easy consequence of %BCHM], %A—HK], F1], and

Theorem 3.12. Let (X, B) be a proper four-dimensional lc pair such that
B is a Q-diwisor and Kx + B is big. Then the log canonical ring

@HO(X, Ox(um(Kx + B)J))

m>0
s finitely generated.

Proof. Without loss of generality, we can assume that X is smooth projec-
tive and SuppB is simple normal crossing. R pa g_ + B)-L 11\{/[P. Then
we obtain a log minimal model (X', B") by %@{ﬁ] and K] with
tlel(_e fﬁbid of the special termination theorem (cf. , Theorem 4.2.1]). B
, Theorem 3.1], which is a consequence of the main theorem in FFT%
Kx: + B’ is semi-ample. In particular, @ H°(X,Ox(um(Kx + B)1)) =~

m>0
@ H (X', Ox/(um(Kx + B'))) is finitely generated. O

m>0
fg-1
As a corollary, we obtain the next theorem by Lemma 3
fI- j
Theorem 3.13. Conjecture £3.6Cz?sn%rue if dim X < 4.
More generally, we have the following theorem.

fg-—conj2
Theorem 3.14. Conjecture t} 1015 True if dim X < 4.

birkfnji-finitdfukuda2 . .
For the proof, see [BJ], TF18], and [Fk2[. Let us go to the flip conjecture

II.
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Conjecture 3.15. ((Log) Flip Conjecture II: Termination of a sequence of
(log) flips). A sequence of (log) flips

(X07BO) -2 (Xl,Bl) --3 (XQ,BQ) .

terminates after finitely many steps. Namely, there does not exist an infinite
sequence of (log) flips.

Note that it is sufficient to prove Conjecture ETI%WC%HE any sequence of
klt flips. The termination of dlt flips with dimension < n — 1 implies the
g(czil%lll termination in dimension n. Note that we use the formulation in
%E_T’heorem 4.2.1]. The special termination and the termination of klt
flips in dimension n implies the termination of dlt flips in dimension n. The
termination of dlt flips in dimension n implies the termination of lc flips in
dimension n. It is bc%(lznause we can use the LMMP for Q-factorial dlt pairs in
full generality by %BCHM] once we obtain the termination of dlt flips. The
reader can find all the necessary arguments in , 4.2, 4.4].

Remark 3.16 (Analytic spaces). The proofs of the vanishing theorems in
Chapter 2 only work for algebraic varieties. Therefore, the cone, contraction,
and base point free theorems stated here for lc pairs hold only for algebraic
varieties. Of course, all the results should be proved for complex analytic
spaces that are projective over any fixed analytic spaces.

3.1.2 Non-Q-factorial log minimal model program

In this subsection, we explain the log minimal model program for non-Q-
factorial lc pairs. It is the most general log minimal model program. First,
let us recall the definition of log canonical models.

Definition 3.17 (Log canonical model). Let (X, A) be a log canonical
pair and f : X — S a proper morphism. A pair (X', A’) sitting in a diagram

o\ e

is called a log canonical model of (X, A) over S if
(1) f’is proper,
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2) ¢
3) A= a.A,
)

~1 has no exceptional divisors,

(
(
(4) Kx + A’ is f'-ample, and

(5) a(E, X,A) <a(E, X', A") for every ¢-exceptional divisor £ C X.

ext. we explain the minimal model program for non-Q-factorial lc pairs
(cf. , 4.4]).
3.18 (MMP for non-Q-factorial lc pairs). We start with a pair (X, A) =
(Xo,Ag). Let fo: Xog — S be a projective morphism. The aim is to set up a
recursive procedure which creates intermediate pairs (X;, A;) and projective

morphisms f; : X; — S. After some steps, it should stop with a final pair
(X',A')and f': X' — S.

Step 0 (Initial datum). Assume that we already constructed (X;, A;) and
fi + X; — S with the following properties:

(1) (X“AZ) is lC,
(2) fi is projective, and
(3) X, is not necessarily Q-factorial.

If X; is Q-factorial, then it is easy to see that X is also Q-factorial for any
k > i. Even when X is not Q—nfgf_tg}lgial, X1 sometimes becomes Q-factorial.
See, for example, Example 5.4 below.

3ste-
Step 1 (Preparation). If Ky, + A, is fi-nef, then we go directly to Step petenew
(2). If Kx, + A, is not f;-nef, then we establish two results:

(1) (Cone Theorem) We have the following equality.
NE(X;/S) = NE(Xi/S)(kx, +a020 + »_ Rs0[C

(2) (Contraction Theorem) Any (K, + A;)-negative extremal ray R; C
NE(X;/S) can be contracted. Let ¢g, : X; — Y; denote the corre-
sponding contraction. It sits in a commutative diagram.

X, Xy
fi ™\ /9
S
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Step 2 (Birational transformations). If g, : X; — Y is birational, then
we can find an effective Q-divisor B on X; such that (X;, B) is 0g canonical
and —(Kx, + B) is pg,-ample since p(X;/S) = 1 (cf. Lemma B.20). Here,
we assume that @@, ~,(¢r,)«Ox,(Lm(Kx, + B)a) is a finitely generated Oy;-
algebra. We put

Xis1 = Projy, P (¢r,).Ox,(tm(Kx, + B).),

m>0

where A, is the strict transform of (g, ).A; on X;y1.

We note that QX 11,0 A;41) is the log canonical model of (X;, A;) over Y;
(see Deﬁmmonjmé_rﬁcan be checked easily that ng X1 — Yiis a
small projective @ogprlllel%m and that (X1, A1) is log canonical. Then we
go back to Step bﬁt—h_(XHl, Ait1), fiy1 = gi 0 ¢f, and start anew.

If X; is Q—factorial, then so is X;1. If X; is Q-factorial and ¢p, is
not small, then <pR : X;11 — Y, is an isomorphism. It may happen that
gg z1/ S?{ < p(Xi41/S) when X is not Q-factorial. See, for example, Example

ClOW.

Step 3 (Final outcome). We expect that eventually the procedure stops,
and we get one of the following two possibilities:

(1) (Mori fiber space) If ¢p, is a Fano contraction, that is, dim Y; < dim X,
then we set (X', A’) = (X;,A;) and f' = f;.

(2) (Minimal model) If Kx, + A; is f;-nef, then we again set (X', A’) =
(X, A;) and f" = f;. We can easily check that (X’ _Ang s a log minimal
model of (X, A) over S in the sense of Definition

fg-conj2

Therefore, all we have Kﬁfi_oc oig.to prove Conjecture 3: or birational
morphisms and Conjecture

We close this subsection with an example of a non-Q-factorial log canon-
ical variety.

Example 3.19. Let C' C P? be a smooth cubic curve and Y C P? be a cone
over C. Then Y is log canonical. In this case, Y is not Q-factorial. We can
check it as follows. Let f : X = Po(O¢ @ L) — Y be a resolution such that
Kx + E = f*Ky, where £ = Op2(1)|c and FE is the exceptional curve. We
take P,Q € C such that Og(P — Q) is not a torsion in Pic’(C). We consider
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D =7*P —7*Q, where 7 : X = Pc(Oc ® L) — C. Weput D' = f.D. If
D’ is Q-Cartier, then mD = f*mD’ + aF for some a € Z and m € Z~.
Restrict it to £. Then Oc(m(P — Q)) ~ Og(aFE) ~ (L71)®%. Therefore, we
obtain that a = 0 and m(P — @) ~ 0. It is a contradiction. Thus, D’ is not
Q-Cartier. In particular, Y is not Q-factorial.

3.1.3 Lengths of extremal rays

In this subsection, we 1gzn(l)nsider the estimate of lengths of extremal rays.
Related topics are in M]. Let us recall the following easy lemma.

sho-7
Lemma 3.20 (cf. m, Lemma 1]). Let (X, B) be an lc pair, where B
1s an R-divisor. Then there are positive real numbers r; and effective Q-
divisors B; for 1 < i <1 and a positive integer m such that 2221 r = 1,
Kx + B = 22:1 ri(Kx + B;), (X, B;) is lc, and m(Kx + B;) is Cartier for
any i.

kawamata _ |sho-=7
The next result is essentially due to Ilt&azj and [ShZ; Proposition 1].

sho-lem

Proposition 3.21. We use the notation in Lemma met (X, B) be an lc
pair, B an R-diwisor, and f : X — Y a projective morphism between algebraic
varieteis. Let R be a (Kx + B)-negative extremal ray of NE(X/Y). Then
we can find a rational curve C' on X such that [C] € R and —(Kx+ B;)-C <
2dim X for any i. In particular, —(Kx + B) - C < 2dim X. More precisely,
we can write —(Kx + B) -C = Y| “where n; € Z and n; < 2mdim X
for any 1.

Proof. By replacing f : X — Y with the extremal contraction ¢g: X — W
over Y, we can assume that the relative Picard number p(X/Y) = 1. In
particular, —(K x+B) is f-ample. Therefore, we can assume that —(Kx+Bj)
is f-ample and —(Kx + B;) = —s;(Kx + B;) in N}(X/Y) with s; < 1 for
any ¢ > 2. Thus, it is sufficient to find a rational curve C' such that f(C)
is a point and that —(Kx + B) G.S 2dim X, So, we can assume that
Kx + B is Q-Cartier and lc. By %BCHM there is a birational morphism

g : (W, Bw) — (X, B) such that Ky + Bw = ¢"(Kx + B), W is Q-factorial,
BW is effective, and (W, {Bw}) is klt. By HSK_Z_T’heorem 1], we can find a
rational curve C" on W such that —(Kyw + By )-C' <2dim W = 2dim X and
that C” spans a (K + By )-negative extremal ray. Note that Kawamata’s
proof works in the above situation with only small modifications. See the
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proof of Theorem 10-2-1 in M and Remark E%Z—below. By the projection
formula, the g-image of C’ is a desired rational curve. So, we finish the
proof. O

Remark 3.22. Let (X, D) be an lc pair, D an R-divisor. Let ¢ : X —
Y be a projective morphism and H a %tier divisor on X. Assume that
H — (Kx + D) is f-ample. By Theorem 2.48, R1¢.Ox(H) = 0 for any ¢ > 0
if X and Y are algebraic varieties. If this vanishing theor Igwhog%% for analytic
spaces X and Y, then Kawamata’s original argument i ?E%ﬁ%rks directly
for lc pairs. In {Qgt_c%ge, we do not need the results innFFB’C’HM] in the proof

of Proposition 3.2 -

a-bon
We consider the proof of H%V[TTheorem 10-2-1] when (X, D) is lc such
that (X, {D}) is klt. We need R'¢,Ox(H) = 0 after shrinking X and Y
analytically. In our situation, (X, D —eLDJ) is kit for 0 < e < 1. Therefore,
H— (Kx+ D —e.D,) is ¢-ample and (X, D —ec D) is klt for 0 < e < 1.
Thus, we can apply the analytic version of the relative Kawamata—Vie weg
vanishing theorem. So, we do not need the analytic version of Theorem 2.48.

1 - irk
%frlfalioposition 3?2ni, Fetima 2.6 in [B] holds for lc pairs. For the proof,
see B, Lemma 2.6]. It may be useful for the LMMP with scaling.

Proposition 3.23. Let (X, B) be an lc pair, B an R-divisor, and f : X — Y
a projective morphism between algebraic varieties. Let C' be an effective R-
Cartier divisor on X such that Kx + B+ C is f-nef and (X, B + C) is lc.
Then, either Kx + B is also f-nef or there is a (Kx + B)-negative extremal
ray R such that (Kx + B + AC) - R =0, where

A:=inf{t > 0| Kx + B+tC is f-nef}.

Of course, Kx + B + \C' is f-nef.

bir-
The following picture helps the reader understand Proposition 3930
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[exess]

Kx+B+C=0

R Kx+ B+ =0
Kx+B<0
Ky +B=0

Ky+B>0

3.1.4 Log canonical flops
. . chm
The following theorem is an easy consequence of %BCHM]

Theorem 3.24. Let (X,A) be a kit pair and D a Q-divisor on X. Then
D0 Ox(LmD.) is a finitely generated Ox-algebra.

Sketch of the proof. If D is Q-Cartier, then the claim is obvious. So, we as-
sum}gcth}}nat D is not Q-Cartier. We can also assume that X is quasi-projective.
By [BCHM], we take a birational morphism f : Y — X such that Y is
Q-factorial, f is small projective, and (Y,Ay) is klt, where Ky + Ay =
f*(Kx + A). Then the strict transform Dy of D on Y is Q-Cartier. Let
¢ be a small positive number. By applying the MMP with scaling for the
pair (Y, Ay + eDy) over X, we can assume that Dy is f-nef, Therefore, by
the base point free theorem, €, -, fiOy(LmDy.) ~ P, -, Ox(LmD.) is
finitely generated as an Ox-algebra. - O

exe85 .
The next example shows that Theorem B.24is not true for lc pairs. In
other words, if (X, A) is lc, then €, Ox(LmD_) is not necessarily finitely
generated as an Ox-algebra.

ko-exe
Example 3.25 (cf. hm Exercise 95]). Let £ C P? be a smooth cubic
curve. Let S be a surface obtained by blowing up nine general points on F
and Eg C S the strict transform of E. Let H be a very ample divisor on S
giving a projectively normal embedding S C P". Let X C A"*! be the cone
over S and D C X the cone over Eg. Then (X, D) is lc since Kg+ Fg ~ 0
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(cf. Proposition 1213§) Let P € D C X be the vertex of the cones D and X.
Since X is normal, we have

H°(X,0x(mD)) = H°(X \ P,Ox(mD))
~ @ HO(S, Os(mEs + rH)).

reZ

By the construction, Og(m£Es) has only the obvious section which vanishes
along mFEg for any m > 0. It can be checked by the induction on m using
the following exact sequence

0— HO<X, Os((m—l)ES)) — HO<S, Os<mE5)) — HO(Es, (’)ES(mES)) —

since O, (Fs) is not a torsion element in Pic’( Eg). Therefore, H°(S, Og(mEs+
rH)) =0 for any r < 0. So, we have

P Ox(mD) ~ P EP H'(S. Os(mEs + rH)).

m>0 m>0 r>0

Since Fg is nef, Og(mEs +4H) ~ Og(Ks + Es + mFEs + 4H) is very ample
for any m > 0. Therefore, by replacing H with 4H, we can assume that
Os(mEg + rH) is very ample for any m > 0 and r > 0. In this setting, the
multiplication maps

m—1

@ HO(S, Os(aES + H)) & HO(Sv OS(<m - Q)ES))

— H"(S,0s(mEs + H))

are never surjective. This implies that €, Ox(mD) is not finitely gener-
ated as an Ox-algebra.

A
Let us recall the definition of log canonical flops (cf. HEFA, 6.8 Definition]).

Definition 3.26 (Log canonical flop). Let (X, B) be an lc pair. Let H

be a Cartier divisor on X. Let f : X — Z be a small contraction such that
Kx + B is numerically f-trivial and —H is f-ample. The opposite of f with
respect to H is called an H-flop with respect to Ky + B or simply say an
H-flop.

The following example shows that log canonical flops do not always exist.
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Example 3.27 (cf. W Exercise 96]). Let E be an elliptic curve and
L a degree zero line bundle on E. We put S = Pg(Op @ L). Let Cy and Cy
be the sections ofe}gggsapl—bundle p:S — E. We note that K¢+ C; 4+ Cy ~ 0.
As in Example bTZBTwe take a sufficiently ample divisor H = aF + bC}
on S giving a projectively normal embedding S C P", where F' is a fiber
of the Pl-bundle p : S — E, a > 0, and b > 0. We can assume that
Os(mC; + rH) is very ample for any ¢, m > 0, and r > 0. Moreover, we
can assume that Og(M + rH) is very ample for any nef divisor M and any
r > 0. Let X C A" be a cone over S and D; C X the cones over C;. Since
{&g +C1+Cy ~ 0, (X, D1+ Dy) is Ic and KXeiEeQé + Dy ~ 0 (cf. Proposition
izl_3§) By the same arguments as in Example %TZBTWG can prove the following
statement.

Claim 1. If L is a non-torsion element in Pic’(E), then D,z Ox(mD;) is
not a finitely generated sheaf of Ox-algebra for 1 =1 and 2.

We note that Og(mC;) has only the obvious section which vanishes along
mC; for any m > 0. Let B C X be the cone over F. Then we have the
following result.

Claim 2. The graded Ox-algebra @,,~, Ox(mB) is a finitely generated Ox -
algebra. -

exe38

exe—cl2
Proof of Claim 2. By the same arguments as in Example 3.25, we have

P Ox(mB) ~ P EP H(S, Os(mF +rH)).

m>0 m>0 r>0

We consider V' = Pg(Os(F) @ Og(H)). Then Oy (1) is semi-ample. There-
fore,
P H(V,0v(n) ~ P P H(S, Os(mF +rH))

n>0 m>0 r>0

is finitely generated. O

Let P € X be the vertex of the cone X and let f : Y — X be the blow-up
at P. Let A ~ S be the exceptional divisor of f. We consider the P!-bundle
m:Pg(Os ® Ogs(H)) — S. Then Y ~ Pg(Os & Os(H)) \ G, where G is the
section of 7 corresponding to Ogs @ Os(H) — Og(H) — 0. We consider 7*F
onY. Then Oy (7*F) is f-semi-ample. So, we obtain a contraction morphism
g :Y — Z over X. It is easy to see that Z =~ Projy €D, Ox(mB)
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and that h : Z7 — X is a small projective contraction. On Y, we have
—A~n*"H = ar*F 4 br*C. Therefore, we obtain aB +bD; ~ 0 on X. If L
is not a torsion element, then the flop of h: Z — X with respect to D, does
not exist since @, -, Ox(mD;) is not finitely generated as an Ox-algebra.
Let C be any Cartier divisor on Z such that —C' is h-ample. Then the
flop of h : Z — X with respect to C exists if and only if @, -, h.Oz(mC) is
a finitely generated Ox-algebra. We can find a positive constant mg and
a degree zero Cartier divisor N on FE such that the finite generation of
D,,,>0 1Oz (mC) is equivalent to that of @, ., Ox(m(moDy + N)), where

N C X is the cone over p*N C S.

Claim 3. If L is not a torsion element in Pic’(E), then D50 Ox(m(moD1+

N)) is not finitely generated as an Ox-algebra. In particular, the flop of
h:Z — X with respect to C' does not exist.

exe88

exe-cl3
Proof of Claim lg. By the same arguments as in Example B.25, we have

P Ox(m(moD; + N))

~ PP H'(S, Os(m(moCh + p*N) + rH)).

m>0 reZ

Since dim H°(S, Og(m(moCi+p*N))) < 1 for any m > 0, we can easily check
that the el}){ggg Ox-algebra is not finitely generated. See the arguments in
Example B.25. We note that Og(m(moCy + p*N) + rH) is very ample for
any m > 0 and r > 0 because moCy + p*N is nef. O

Anyway, if L is not a torsion element in Pic’(E), then the flop of b : Z —
X does not exist.

In the above setting, we assume that L is a torsion element in Pic’(E).
Then Oy (7*CY) is f-semi-ample. So, we obtain a contraction morphism ¢’ :
Y — Z7T over X. It is easy to see that € (;) (mD;) is finitely generated
as an Ox-algebra for i = 1,2 (cf. Claim 2J, ~ Projx @,,50 Ox(mDy),
and that ZT — X is the flop of Z — X with respect to D;.

Let C be any Cartier divisor on Z such that —C'is h-ample. If —C ~q,
cB for some positive rational number ¢, then it is obvious that the above
7t — Xistheflopof h : Z — X with respect to C. Otherwise, the flop of h :
Z — X with respect to C' does not exist. As above, we can find a positive con-
stant mg and a non-torsion element N in Pic’(E) such that @, -, h.Oz(mC)
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is finitely generated if and only if so is €,,5o Ox(m(meD: + N)), where

N C S }i(g_tchlej cone over p*IN C S. By the same arguments as in the proof of
Claim 3, we can easily check that @,,~, Ox (m(moD1+N)) is not finitely gen-
erated as an Ox-algebra. We note that dim H°(S, Og(m(moD; +p*N))) =0
for any m > 0 since N is a non-torsion element and L is a torsion element
in Pic’(E).

3.2 Quasi-log varieties

3.2.1 Definition of quasi-log varieties

%&1&}5 subsection, we introduce the notion of quasi-log varieties according to
ml]. Our definition requires slightly stronger assumptions than Ambro’s
original one. However, we will check that our definition is equivalent to
Ambro’s in the subsection 3.2.6.

Let us recall the %%fggition of global embedded simple normal crossing
pairs (see Definition 2.

Definition 3.28 (Global embedded simple normal crossing pairs). Let
Y be a simple normal crossing divisor on a smooth variety M and let D be
an R-divisor on M such that Supp(D+Y) is simple normal crossing and that
D and Y have no common irreducible components. We put By = D|y and
consider the pair (Y, By). We call (Y, By) a global embedded simple normal
Crossing pair.

It’s time for us to define quasi-log varieties.

Definition 3.29 (Quasi-log varieties). A quasi-log variety is a scheme X

endowed with an R-Cartier R-divisor w, a proper closed subscheme X_,, C
X, and a finite collection {C} of reduced and irreducible subvarieties of
X such that there is a proper morphism f : (Y, By) — X from a global
embedded simple normal crossing pair satisfying the following properties:

(1) f*u) ~R Ky + By.
(2) The natural map Ox — f.Oy("—(Bs')™") induces an isomorphism
Ix_. = [Ov(T=(B3")" = B9 ),

where Zy__ is the defining ideal sheaf of X_ .
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(3) The collection of subvarieties {C'} coincides with the image of (Y, By )-
strata that are not included in X_ .

We sometimes simply say that [ X, w] is a quasi-log pair. We use the following
terminology according to Ambro. The subvarieties C' are the qlc centers of X,
X_ o is the non-qlc locus of X, and f : (Y, By) — X is a quasi-log resolution
of X. We say that X has ¢lc singularities if X_, = (). Assume that [X,w] is
a quasi-log pair with X, = (). Then we simply say that [X,w] is a glc pair.
Note that a quasi-log variety X is the union of its qlc centers and X . A
relative quasi-log variety X/ S is a quasi-log variety X endowed with a proper
morphism 7 : X — S.

Remark 3.30 (Quasi-log canonical class). In Definition %ssume
that w is an R-Cartier R-divisor. However, it may be better to see w €
Pic(X) ®z R. It is because the quasi-log canonical class w is defined up to
R-linear equivalence and we often restrict w to a subvariety of X.

Example 3.31. Let X be a normal variety and let B be an effective R-
divisor on X such that Ky + B is R-Cartier. We take a resolution f : ¥ — X
such that Ky + By = f*(Kx + B) and that SuppBy is a simple normal
crossing divisor on Y. Then the pair [X, Ky + B] is a quasi-log variety
with a quasi-log resolution f : (Y, By) — X. By this quasi-lo Algpeture,
[X, Kx + B] is qlc if and only if (X, B) is lc. See also Corollary %5 [

Remark 3.32. By Definition 3.29, as only qlc singularities if and only if
By is a subboundary. In this case, f.Oy ~ Ox since Ox =~ f.Oy("—(Bs')7).
In particular, f is surjective when X has only qglc singularities.

Remark 3.33 (Semi-normality). In general, we have
Ox\x_o = [:Op-1(x\x_o) (T (BF1) T —LBy 1) = L0100\ x_) ("= (B3) ).

This implies that Ox\x_.. ~ fiOp1(x\x_.). Therefore, X \ X_ is semi-
normal since f~1(X \ X_) is a simple normal crossing variety.

Remark 3.34. To prove the cone and contraction theorems for lc pairs, it is
eno %h_ Q freat quasi-log varieties with only qlc singularities. For the details,
see [[F I6j .

We close this subsection with an obvious lemma.

Lemma 3.35. Let [X,w] be a quasi-log pair. Assume that X =V U X_
and VN X_o. =0. Then [V,w'] is a glc pair, where w' = wl|y.
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3.2.2 Quick review of vanishing and torsion-free theo-
rems

In this subsection, we quickly review Ambro’s formulation of torsion-free and
vanishing theoremsciﬁla aQsimpliﬁed form. For more advanced topics and the
proof, see Chapter H

We consider a global embedded simple normal crossing pair (Y, B). More
precisely, let Y be a simple normal crossing divisor on a smooth variety M
and let D be an R-divisor on M such that Supp(D + Y) is simple normal
crossing and that D and Y have no common irreducible components. We put
B = Dly and consider the pair (Y, B). Let v : Y” — Y be the normalization.
We put Kyv + © = v*(Ky + B). A stratum of (Y, B) is an irreducible
component of Y or the image of some lc center of (Y, 07!).

When Y is smooth and B is an R-divisor on Y such that SuppB is
simple normal crossing, we put M =Y x A and D = B x A!. Then
(Y, B) ~ (Y x {0}, B x {0}) satisfies the above conditi .

The following theorem is a special case of Theorem 2.39.

Theorem 3.36. Let (Y, B) be as above. Assume that B is a boundary R-
divisor. Let f 1Y — X be a proper morphism and L a Cartier divisor on
Y.

(1) Assume that H ~g L — (Ky + B) is f-semi-ample. Then every non-
zero local section of R1f.Oy (L) contains in its support the f-image of some
strata of (Y, B).

(2) Let w: X — V be a proper morphism and assume that H ~g f*H' for
some m-ample R-Cartier R-divisor H' on X. Then, R1f,Oy (L) is m.-acyclic,
that is, RP,R1f.Oy (L) =0 for any p > 0.

1 34-
We need a slight generalization of Theorem E%6 in Section iZI [ Tet us
recall the definition of nef and log big divisors for the vanishing theorem.

Definition 3.37 (Nef and log big divisors). Let f : (Y,By) — X be a
proper morphism from a simple normal crossing pair (Y, By). Let 7 : X — V
be a proper morphism and H an R-Cartier R-divisor on X. We say that H
is nef and log big over V' if and only if H|¢ is nef and big over V for any C,
where

(i) C is a glc center when X is a quasi-log variety and f : (Y, By) — X is
a quasi-log resolution, or
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(ii) C is the image of a stratum of (Y, By) when By is a subboundary.

If X is a quasi-log variety with only qlc singularities and f : (Y, By) —
X is a quasi-log resolution, then the above two cases (i) and (ii) coincide.
When (X, Bx) is an lc pair, we choose a log resolution of (X, Bx) to be
f:(Y,By) — X, where Ky + By = f*(Kx + Bx). We note that if H is
ample over V' then it is obvious that H is nef and log big over V.

Theorem 3.38 (cf. Theorem }%47). Let (Y, B) be as above. Assume that
B is a boundary R-divisor. Let f 'Y — X be a proper morphism and L
a Cartier divisor on' Y. We put H ~g L — (Kx +B). Letw: X — V
be a proper morphism and assume that H ~g f*H’ for some w-nef and -
log big R-Cartier R-divisor H' on X. Then, every non-zero local section of
RIf,Oy (L) contains in its support the f-image of some strata of (Y, B), and
RIf,Oy (L) is m-acyclic, that is, RPm,R1f, Oy (L) =0 for any p > 0.

g
For the proof, see Theorem 2.47.

3.2.3 Adjunction and Vanishing Theorem

The followin %}%%orem is one of the key results in the theory of quasi-log
varieties (cf. [AmI, Theorem 4.4]).

Theorem 3.39 (Adjunction and vanishing theorem). Let [X,w]| be a
quasi-log pair and X' the union of X_o with a (possibly empty) union of
some qlc centers of [X,w].

(i) Assume that X' # X_o. Then X' is a quasi-log variety, with w' = w|x/
and X' . = X_o. Moreover, the qlc centers of [X',w'] are exactly the
qle centers of [X,w| that are included in X'.

(ii) Assume thatm: X — S is proper. Let L be a Cartier divisor on X such
that L — w is nef and log big over S. Then Ixr @ Ox (L) is m.-acyclic,
where Iy is the defining ideal sheaf of X' on X.

adj-th
Theorem B.39 is the hardest part to prove in the theory of quasi-log
varieties. It is because it depends on the non-trivial vanishing and torsion-
free theorems for simple normal crossing pair{gh.?l})eioadjunction for ggmal

sSec
divisors on normal varieties is investigated in . See also Section A.5.
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Proof. By blowing up the ambient space M of Y, we can assume that the
unior} of al? stratg of (Y, By) mapped to X', whic s f(lil(ix_li)gggl by ‘Y’ ,'is
a union of irreducible components of Y (cf. Lemma E. L We will justify
this reduction in a more general setting in Proposition B. elow. We put
Ky + By = (Ky + By)|yr and Y =Y —Y’. We claim that [X',&'] is a
quasi-log pair and that f : (Y, By:) — X' is a quasi-log resolution. By the
construction, f*w’ ~g Ky + By on Y’ is obvious. We put A = "—(Bs')"
and N = LBy 1. We consider the following short exact sequence

0— Oyn(=Y') — Oy — Oy — 0.
By applying ®Oy (A — N), we have
0> Oyn(A—=N-Y")—> Oy(A—N) — Oy (A—N) — 0.
By applying f., we obtain

0— f*Oy//(A — N — Y’) — f*Oy(A — N) — f*Oy/(A — N)
- le*Oy//(A — N —Y/) — e

1
By Theorem %6 (i), the support of any non-zero local section of R! f, Oy (A—
N —Y") can not be contained in X' = f(Y’). We note that

(A—N—Y/>|Y// _<KY”+{BY”}+B:/1/ —Y/|Y//) = —(KY// +BY”) ~R f*(,()|Y//7

where Ky»+ By = (Ky+ By )|y». Therefore, the connecting homomorphism
f:Oy/(A— N) — R'f.Oyn(A— N —Y') is a zero map. Thus,

0— fiOyn(A=N-Y")—>ZIx _— f.Oy/(A—N)—0

is exact. We put Zx, = f.Oyn(A — N —Y’'). Then Zx, defines a scheme
structure on X'. We define Iy, =Ty /Ix,. Then Ixr =~ f.Oy/(A—N)
by the above exact sequence. By the following diagram:

0—>f*Oy//(A - N - YI) —>f*0y(A - N) —>f*0y/(A - N) —>0

l l |

0 [ Oyn(A=Y") [0y (A) [0y (A)
0 Ix: Ox Ox 0,
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we can see that Ox — f.Oy/("—(By/)7) induces an isomorphism Zx:  —
[+Oy:(T—=(B3')" — LBy J). Therefore, [X’,w'] is a quasi-log pair such that
X' . = X_w. By the construction, the property about glc centers are obvi-
ous. So, we finish the proof of (i).

Let f: (Y, By) — X be a quasi-log resolution as in the proof of (i). Then
f*(L — w) ~R f*L — (Ky// + By//) on Y”, where Ky// + By// = (Ky + By)|y//.
Note that

f*L_ (KY// +BY//) (f L+A N Y )|Y// - (KY// + {BY”} +Byll Y/|Y//)

and that any StratEH% of 1(1Y” Y// — Y'[y~) is not mapped to X_o = X'

Then by Theorem eorem 6 (ii) when L — w is m-ample),
Rpﬂ*(f*Oy//(f*L +A—N — Y,)) = Rpﬂ'*(IX/ X Ox(L)) =0
for any p > 0. Thus, we finish the proof of (ii). O

adj-th
Remark 3.40. We make a few comments on Theorem or the r acLer S

convenience. We slightly changed the big diagram in the of of
Theorem 4.4] and mcorporateEa d Jénpﬁl Theorem 7.3] into % hgorem
4.4]. Please compare Theorem ith the original statements in

Corollary 3.41. Let [X,w] be a qlc pair and let X' be an irreducible compo-
nent of X. Then [ X', '], where ' = w|x, is a glc pair.

h k
Proof. 1t is because X’ is a qlc center of [ X, w] by Remark 337 O

The next example shows that the definition of quasi-log varieties is rea-
sonable.

Example 3.42. Let (X, Bx) be an lc pair. Let f : Y — (X,Bx) be a
resolution such that Ky + S + B = f*(Kx + Bx), where Supp(S + B) is
simple normal crossing, S is reduced, and LB, < 0. We put Kg + Bg =
(Kx + S+ B)l|s and consider the short exact sequence

0— C)y(r—Bj — S) — Oy(r—B—l) — Os([——BSj) — 0.

Note that Bs = B|g since Y is smooth. By the Kawamata—Viehweg vanishing
theorem, R' f,Oy("—B" — S) = 0. This implies that f.Og("—Bs") ~ Oys)
since f,Oy("—B") ~ Ox. This argument is well known as the proof of the
connectedness lemma. We put W = f(S5) and w = (Kx + Bx)|w. Then
[W,w] is a quasi-log pair with only glc singularities and f : (S, Bg) — W is
a quasi-log resolution.

90



qlc—cent—prop‘

311 ' adi-t , ' '

Example 3:42 is a very special case of Theorem B3.39 (1 uthl%’% Is, adjunction

fcré)_rgleiX, Kx + Bx]| to [W,w]. For other examples, see , 8b] or Section

lZI.ZI, wher Jue, freat toric polyhedra ag (ﬂuas'—log varieties. In the proof of
adj-t ag 6 (i

Theorem . i), we used Theorem B. ), which is a generalization of
Kollar’s theorem, instead of the Kawamata—Viehweg vanishing theorem.

3.2.4 Miscellanies on qlc centers

The notion of lcs locus is important for X-method on quasi-log varieties.

Definition 3.43 (LCS locus). The LCS locus of a quasi-log pair [X,w],
denoted by LCS(X) or LCS(X,w), is the union of X_, with all glc centers
of X that are not maximal with respect to the inclusion. The subscheme

structure is defined in Theorem B3. i), l11101_ we have a natural embed-
ding X o € LCS(X). In this book and , LCS(X,w) is denoted by
Naklt (X, w).

When X is normal and B is an effective R-divisor such that Kx + B
is R-Cartier, Ngklt(X, Kx + B) is denoted by Nklt(X, B) and is called the
non-klt locus of the pair (X, B).

The next proposition is easy to prove. However, in some applications, it
may be useful.

. ambro L.
Proposition 3.44 (cf. [Am1, Proposition 4.7]). Let X be a quasi-log va-
riety whose LCS locus is empty. Then X is normal.

Proof. Let f : (Y, By) — X be a quasi-log resolution. By the assumption,
every stratum of Y dominates X. Therefore, f : ¥ — X passes through
the normalization X" ?os%&uOf X. This implies that X is normal since
f«Oy ~ Ox by Remark B.32. O

ambro
Theorem 3.45 (cf. [Am1, Proposition 4.8]). Assume that [X,w] is a qlc
pair. We have the following properties:

(i) The intersection of two qlc centers is a union of glc centers.

(ii) For any point P € X, the set of all qlc centers passing through P has
a unique element W. Moreover, W is normal at P.
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Proof. Let Cy and Cy be two qlc centers of [X,w]. We fix P € C;NCy. It
is enough to find a glc center C such that P € C C C; N Cy. The union
= C1UC, with ' = w|x is a glc pair having two 1rre£1u(:1ble components
Hence, it is not normal at P. By Proposition WP € Ngklt(X', o).
Therefore, there exists a glc center C' C C; with dim C' < dim C; such that
PeCnCy If C C Oy, we are done. Otherwise, we repeat the argument
with C7 = C and reach the conclusion in a finite number of steps. So, we
finish the proof of (i). The uniqueness of the minimal glc center follows g%%%lal
(i) and the normality of the minimal center follows from Proposition W
Thus, we have (ii). O

ambro2
Theorem 3.46 (cf. [Am2, Theorem 1.1]). We assume that (X, B) is log
canonical. Then we have the following properties.

1) (X, B) has at most finitely many lc centers.

2) An intersection of two lc centers is a union of lc centers.

(

(2)

(3) Any union of lc centers of (X, B) is semi-normal.
(4)

4) Let x € X be a closed point such that (X, B) is log canonical but not
Kawamata log terminal at x. Then there is a unique minimal lc center
W, passing through x, and W, is normal at x.

Proof. Let f : (Y,By) — (X, B) be a resolution such that Ky + By =
f*(Kx + B) and SuppBy is a simple normal crossing divisor. Then an lc
center of (X, B) is the image of some stratum of a simple normal crossing

variety By!. Therefore, (X, B) has at most finitely many cl((::e_:rcl’g%%s_. Tohis is
(1). The statements (2) and (4) are obvious by Theorem et {C; bier
be a set of lc centers of (X, B). We put X' =J,.; C; and v’ = (KX+B |3% -

The OL)C(’{{,&/] is a glc pair. Therefore, X’ is semi-normal by Remarks
and B.33. This is (3). O

The following resul aig.z_xgheasy consequence of adjunction and the vanish-
ing theorem: Theorem

ambro
Theorem 3.47 (cf. [Am1, Theorem 6.6]). Let [X,w| be a quasi-log pair
and let m: X — S be a proper morphism such that 7,0x ~ Og and —w is
nef and log big over S. Let P € S be a closed point.

(1) Assume that X_oo N7 1(P) # 0 and C is a glc center such that C' N
“YP)#£0D. ThenCNX_ N t(P) 0.

92



(ii) Assume that [X,w] is a qlc pair. Then the set of all qlc centers inter-
secting 7~ Y(P) has a unique minimal element with respect to inclusion.

Proof. Let C be a glc center of [X,w] such that P € 7(C) N 7(X_s). Then
X'=CUX_ with W = w|ys is a quasi- og.variety and the restriction map
m.0Ox — m,Ox is surjective by Theorem B.39. Since 7,0x ~ Og, X_, and
C' intersect over a neighborhood of P. So, we have (i).

Assume that [X,w] is a glc pair, that is, X_o, = 0. Let C; and Cy be
two qlc centers of [X,w] such that P € 7(Cy) N 7(Cy). The union X’ =
C1 U Oy with ' = w|xs is a glc pair and the restriction map 7.0x —
m.Ox is surjective. Therefore, C; and Cy intersect over P. Fl]fghggr{rggrgb the
intersection C; N Cy is a union of gle centers by Proposition E?E)._Th_e%fgre,
there exists a unique qlc center C'p over a neighborhood of P such that
Cp C C for every qlc center C' with P € 7(C). So, we finish the proof of
(i). O

The following corollary is obvious by Theorem E%.IZ[C_7.C ent=th

Corollary 3.48. Let (X, B) be a proper lc pair. Assume that —(Kx + B) is
nef and log big and that (X, B) is not kit. Then there exists a unique minimal
le center Cy such that every lc center contains Cy. In particular, Nklt(X, B)
15 connected.

. bun .
The next theorem easily follows from [FT, Section 2].

Theorem 3.49. Let (X, B) be a projective lc pair. Assume that Kx + B is
numerically trivial. Then NKIt(X, B) has at most two connected components.

Proof. By %%HM], there is a birational morphism f : (Y, By) — (X, B)
such that Ky + By = f*(Kx + B), Y is projective and Q-factorial, By
is effective, and (Y, {By}) is klt. Therefore, it is sufficient to prove that
LBy has at most two connected components. We assume that By # 0.
Then Ky + { B/ull is Q-factorial kIt and is not pseudo-effective. Apply the
rguments in , Proposition 2.1] with using the LMMP with scaling (see
FB’C‘HM]) Then we obtain that LBy and Nklt(X, B) have at most two
connected components. U

3.2.5 Useful lemmas

In this subsection, we prepare some useful lemmas for making quasi-log res-
olutions with good properties.
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Proposition 3.50. Let f : Z — Y be a proper birational morphism between
smooth varieties and let By be an R-divisor on'Y such that SuppBy is simple

normal crossing. Assume that Kz + By = f*(Ky + By) and that SuppBy is
simple normal crossing. Then we have

f:0z("=(B3")" = Bz'1) = Oy ("= (By!) " — LBy ).

Furthermore, let S be a simple normal crossing divisor on 'Y such that S C
SuppB5t. Let T be the union of the irreducible components of BZ' that are
mapped into S by f. Assume that Suppf, By U Exc(f) is simple normal
crossing on Z. Then we have

fOr("=(BF)" = LBz'1) = Os("—(B5') " — LB '),
where (Kz + Bz)|r = Ky + Br and (Ky + By)|s = Ks + Bs.
Proof. By Kz + Bz = f*(Ky + By), we obtain
Kz =f*(Ky + By +{By})
+ (LB L+ LBy)) — (LBy'u +LBZ'Y)) — B — {By).

If a(v,Y,By' + {By}) = —1 for a prime divisor v over Y, then we can
check that a(v,Y, By) = —1 by using [KM, Lemma 2.45]. Since f*(LBy'1+
LBy'.) — (LB3 s+ LBZ'.) is Cartier, we can easily see that f*(LBy'a +
LBy')) = LB3' L+ LB i+ E, where E is an effective f-exceptional divisor.
Thus, we obtain

fO0z("—(Bz")" = LBz' 1) ~ Oy ("—(By')" = LBy ).
Next, we consider

0— Oz(r—(Bgl)—' — LB;lJ — T)
— Oz("—=(B3")" = LB;'1) = Op("=(Bf'")" = LB7'1) — 0.

Since T' = f*S — F, where F is an effective f-exceptional divisor, we can
easily see that

[O0(T—(BsY " = LB —T) ~ Oy ("—(BsH) 7 — LBy s — 9).
We note that

("=(Bz")" = .Bz's—T) = (Kz +{Bz} + By = T)
= —f"(Ky + By).
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Therefore, every local section of R f,Oz("—(B;')"—LB;'1—T) contains in
its support the f-image of some strata of (Z, { Bz} + Bz —T) by Theorem

36 (1).
Claim. No strata of (Z,{Bz} + B;' —T) are mapped into S by f.

Proof of Claim. Assume that there is a stratum C of (Z,{Bz} + Bz' — T)
such that f(C) c S. Note that Suppf*S C Suppf, !By U Exc(f) and
SuppB3;! C Suppf, !By UExc(f). Since C is also a stratum of (Z, BZ') and
C C Suppf*S, there exists an irreducible component G of B! such that
C C G C Suppf*S. Therefore, by the definition of T, G is an irreducible
component of T because f(G) C S and G is an irreducible component of B!.
So, C'is not a stratum of (Z,{Bz} + B;' —T). Tt is a contradiction. O

On the other hand, f(7T") C S. Therefore,
£ Or("=(B7')" = LB7' ) = R f.Oz(T=(BZ')" =Bz . = T)
is a zero map by the assumption on the strata of (Z, B;! — T'). Thus,
f:Or("=(B7')" = LB7' 1) = Os("—(B5") " — B3 ).
We finish the proof. O
The following corollary is obvious by Proposition E‘%ﬁﬂl

Corollary 3.51. Let X be a normal variety and let B be an effective R-
divisor on X such that Kx + B is R-Cartier. Let f; 1 Y; — X be a resolution
of (X,B) fori=1,2. We put Ky, + By, = f(Kx + B) and assume that
Supp By, is simple normal crossing. Then f; : (Y;, By,) — X defines a quasi-
log structure on [X, Kx + B] fori=1,2. By taking a comm tgilé)egtglelsolution
of (Y1, By,) and (Y3, By,) suitably and applying Proposition B.50, we can see
that these two quasi-log structures coincide. Moreover, let X' be the union
of X_oo with a union of some qlc centers of [X, Kx + B]. Then we can see
that f1 : (Y1, By,) — X and fy : (Y2, By,) — ﬁ)gisigtdszﬁce the same quasi-log
structure on [ X', (Kx + B)|x/] by Proposition W

The final results in this section are very useful and indispensable for some
applications.

95



3-2-6

qlog—def—ambro‘

Proposition 3.52. Let [ X, w]| be a quasi-log pair and let f : (Y, By) — X be
a quasi-log resolution. Assume thaéég/, By) is a global embedded simple nor-
mal crossing pair as in Definition B5S. Leto: N — M bea proper birational
morphism from a smooth variety N. We define Ky+ Dy = o*(Ky+D+Y)
and assume that Suppo, (D +Y)UExc(o) is simple normal crossing on N.
Let Z be the union of the irreducible components of DY that are mapped into
Y byo. Then foo:(Z,By) — X is a quasi-log resolution of [X,w|, where
Kz + Bz = (Ky + Dy)|z.

taisetsu3 taisetsu
The proof of Proposition l3.52 1s obvious by Proposition 3.50.

taisetsu3
Remark 3.53. In Proposition &3?5128,6 o2 ,Bz) — (Y, By) is not necessarily
a composition of embedded log transformations %Péi blow-ups whose centers
contain no strata of ‘Fa}}n% pair (Y B5') (see [AmI, Section 2]). Compare

o isetsu3d .
Proposition B.52 with [Aml, Remark 4.2.(iv)].

The final proposition in this subsection will play very important roles in
the following sections.

Proposition 3.54. Let f : (Y, By) — X be a quasi-log resolution of a quasi-
log pair [X,w], wheresgc/, By) is a global embedded simple normal crossing
pair as in Definition BZR. Let E be a Cartier divisor on X such that SuppF
contains no qle centers of [X,w]. By blowing up M, the ambient space of
Y, inside Supp f*E, we can assume that (Y, By + f*E) is a global embedded
simple normal crossing pair.

Proof. First, we take a blow-up of M along f*F and apply Hironaka’s resolu-
tion theorem to M. Then we can assume that there exists a Cartier divisor F'
on M such that Supp(F NY') = Suppf*E. Next, we apply Szabd’s resolution
lemma to Supp(CD. +Y + F) on M. Thus, we obtain the desired properties

t
by Proposition 50 O

3.2.6 Ambro’s original formulation
Let us recall Ambro’s original definition of quasi-log varieties.

Definition 3.55 (Quasi-log varieties). A quasi-log variety is a scheme X
endowed with an R-Cartier R-divisor w, a proper closed subscheme X_ C
X, and a finite collection {C} of reduced and irreducible subvarieties of X
such that there is a proper morphism f : (Y, By) — X from an embedded
normal crossing pair satisfying the following properties:
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(1) f*w ~r Ky + By.
(2) The natural map Ox — f.Oy("—(By')™") induces an isomorphism
Ix .. — fOy(T=(By')" = LBy ),
where Zy___ is the defining ideal sheaf of X_

(3) The collection of subvarieties {C'} coincides with the image of (Y, By )-
strata that are not included in X_

. . . " ngs
For the definition of normal crossing pairs, see Definition 2.55.

def-ni-tuite] Remark 3.56. We can always construct an embedded simple normal cross-

ing pair (Y’, By/) and a proper morphism f’: (Y’ By:) — X with the above
conditions (1), (2), and (3) by blowing up M suitably, where M is the ambi-

ent space of Y (see E_I p-218, embedded log transformations, and Remark
46t32 6}4 We leave the details for the reader’s exercies (lsee also Lemmas
}2_5 58, and 2.59, and the proof of Proposition 3 50). 1 herefor?(jlwe gan o
assume that (Y, By) is a simple normal crossing pair in Definition B:55.” We

note that the proofs of the vanishing and injectivity theorems on normal
crossing iars2 are much harder than on simple normal crossing pairs (see
Chapter 2)." Therefore, there are no advantages to adopt normal crossing
pairs in the definition of quasi-log varieties.

The next proposition is the main result in this sectio talzi’ggpsou%tlon ;
becogtaels ver powerful if it is combined with Proposition B.57. See Proposi-
tion

Proposition 3.57. We asgyme cfhﬂtmﬂ:} By) is an embedded simple normal
crossing pair in Definition B:55 Let M be the ambient space of Y. We can
assume that there exists an R-divisor D on M such that Supp(D +Y') is
simple normal crossing and By = Dly.

Proof. We can construct a sequence of blow-ups My — My_1 — --- — My =
M with the following properties.

(i) 041 M;y1 — M, is the blow-up along a smooth irreducible component
of SuppBy;, for any ¢ > 0,

(ii) we put Yy = Y, By, = By, and Y, is the strict transform of Y; for
any ¢ > 0,
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(ili) we define Ky, , + By,,, = 0},,(Ky, + By,) for any i > 0,

(iv) there exists an R-divisor D on M} such that Supp(Yy + D) is simple
normal crossing on M), and that D|y, = By,, and

(v) 0.0y, ("=(By)"—LBy'1) >~ Oy ("—(B5')—LBy'), where o : My, —
Mk_1—>"'—>M0:M.

We note that we can directly check 0i41.0y,,,("=(Bg! )7 — LBy 1) =~
O%(F_(B)?)—' ﬁfs@?ﬁsle) for any i > 0 by Computgtions similar to the proof
of Proposition B:50. We replace M and (Y, By ) with M, and (Y, By,). O

uun| Remark 3.58. In the proof of Proposition E%ﬁ%sw%and (Yy, By, ) depend
on the order of blow-ups. If we change the order of blow-ups, we have another
tower of blow-ups o' : M| — M| |, — --- — Mj= M, D', Y/ on M, and
D’ |yk/ = Byk/ with the desired properties. The relationship between My, Y, D
and M,,Y,, D’ is not clear.

bro

Remark 3.59 (Multicrossing vs simple normal crossing). In[AmI, Sec-
tion 2], Ambro discussed multicrossing singularities and multicrossing pairs.
However, we think that simple normal crossing varieties and simple ogggal
crossing divisors on them are sufficient for the later arguments in %{ﬁf]
Therefore, we did not introduce the notion of multicrossing singularities and
their simplicial resolutions. For the theory of quasi-log varieties, we may not
even need the notion of simple normal crossing pairs. The notion of global
embedded simple normal crossing pairs seems to be sufficient.

3.2.7 A remark on the ambient space

In this subsection, we make a remark on E‘ll% Sal@f)oient space M of a quasi-log
resolution f : (Y, By) — X in Deﬁmmon 29.  haisetsu

The following lemma is essentially the same as Proposition &3.57. We
repeat it here since it is important. The proof is obvious.

Lemma 3.60. Let (Y, By) be a simple normal crossing pair. Let V be a
smooth variety such that' Y C V. Then we can construct a sequence of blow-
ups

Vi Vi — = V=V
with the following properties.
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(1) 0ix1 2 Vier — Vi is the blow-up along a smooth irreducible component
of SuppBy, for any i >0,

(2) we put Yy =Y, By, = By, and Y;y1 is the strict transform of Y; for
any v > 0,

(3) we define Ky, , + By,,, = 0},,(Ky, + By,) for anyi >0,
(4) there exists an R-divisor D on Vi, such that Dly, = By, , and

(5) 0.0y, ("—=(B5!)" —LBy'1) ~ Oy ("=(By') = LBy ), where o : Vi, —
Viei— - —> V=V,

When a simple normal crossing variety Y is quasi-projective, we can make
a singular ambient space whose singular locus dose not contain any strata of
Y.

Lemma 3.61. LetY be a simple normal crossing variety. Let V' be a smooth
quasi-projective variety such thatY C V. Let {P;} be any finite set of closed
points of Y. Then we can find a quasi-projecive variety W such that Y C
WV, dmW =dimY + 1, and W is smooth at P; for any 1.

Proof. Let Iy be the defining ideal sheaf of Y on V. Let H be an ample
Cartier divisor. Then Zy ® Oy (dH ) is generated by global sections for d > 0.
We can further assume that

H(V,Iy ® Oy(dH)) — Iy ® Oy (dH) ® Oy /m},

is surjective for any i, where mp, is the maximal ideal corresponding to F;.
By taking a complete intersection of (dim V' — dimY — 1) general members
in H%(V,Zy ® Oy(dH)), we obtain a desired variety W. O

ene—int
Of course, we can not always make W smooth in Lemma 50T,

Example 3.62. Let V C P5 be the Segre embedding of P! x P2. In this
case, there are no smooth hypersurfaces of P° containing V. We can check
it as follows. If there exists a smooth hypersurface S such that V . S C P®,
then p(V) = p(S) = p(P°) = 1 by the Lefschetz hyperplane theorem. It is a
contradiction.

By the above lemmas, we can prove the final lemma.
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Lemma 3.63. Let (Y, By) be a simple normal crossing pair such that Y is
quasi-projective. Then there exist a global embedded simple normal crossing
pair (Z, Bz) and a morphism o : Z — Y such that

0,.07("T—(B;H) = LB, ) ~ Oy (T—(By') " — LBy1).

Proof. b V. be a smooth quasi-projective variety such that ¥ C V. By
Lemma we can assume that there exists an R-divisor D on V' such
that D\y = By Then we apply Lemma E_G‘l_We can find a quasi-projectie
variety W such that Y C W C V, dimW = dimY + 1, and W is smooth
at the generic point of any stratum og ng_/inBty). Of course, we can make
W ¢ SuppD (see the proof of Lemma %._GT)._We apply Hironaka’s resolution
to W and use Szabd’s resolution lemma. Then we obtain a desired global
embedded simple normal crossing pair (Z, By). O

Therefore, we obtain the following statement.

uasi-lo
Theorem 3.64. In Definition §.29, it 18 sufficient to assume that (Y, By) is
a simple normal crossing pair if Y is quasi-projective.

We note that we have a natural quasi-projective ambient space M in
almost all the applications 01 ‘%g% itbl%ory of quasi-log varieties to log canonical
pairs. Therefore, Definition seems to be reasonable.
bo 1ﬂylVe close this subsection with a remark on Chow’s lemma. Proposition
m a bottleneck to construct a good ambient space of a simple normal
crossing pair.

Proposition 3.65. There exists a complete simple normal crossing variety
Y with the following property. If f : Z — 'Y is a proper surjective morphism
from a simple normal crossing variety Z such that f is an isomorphism at
the generic point of any stratum of Z, then Z is non-projective.

Proof. We takela smooth complete non-projective toric variety X (cf. Ex-
ample }Tﬁj‘_‘%@ put V = X x P!, Then V is a toric variety. We consider
Y =V \T, where T is the big torus of V. We will see that Y has the desired
property. By the above construction, there is an irreducible component Y of
Y that is isomorphic to X. Let Z’ be the irreducible component of Z mapped
onto Y’ by f. So, it is sufficient to see that Z’ is not projective. On Y’ ~ X
there is an torus invariant effective one cycle C' such that C' is numerically
trivial. By the construction and the assumption, g = f|z : 2/ - Y’ ~ X is
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birational and an isomorphism over the generic point of any torus invariant
curve on Y’ ~ X. We note that any torus invariant curve on Y’ ~ X is a
stratum of Y. We assume that Z’ is projective, then there is a very ample
effective divisor A on Z’ such that A does not contain any irreducible compo-
nents of the inverse image of C. Then B = f, A is an effective Cartier divisor
on Y’ ~ X such that SuppB contains no irreducible components of C. It is
a contradiction because SuppB N C # () and C' is numerically trivial. O

bottle
The phenomenon described in Proposition l3.65 1S annoying when we treat
non-normal varieties.

3.3 Fundamental Theorems

In this section, we will prove the fundamental theorems for quasi-log pairs.
First, Weprove. the base point free theorem for quasi-log pairs in the sub-
section B.3.T. The reader can find that the notion of quasi-log pairs is very
useful for inductive arguments. Next, we giye a proof to the rationality the-
orem for quasi-log pairs in the subsection %32 O Sgg(s)é)efcis essentially the
same as the proof for klt pairs. In the subsection %.3.3, we prove the cone
theorem for quasi-log varieties. The cone and contraction theorems are the

main results in this section.

3.3.1 Base Point Free Theorem

. . . X X bro
The next theorem is the main theorem of this subsection. It is JAnmI, Theo-
rem 5.1]. This formulation is useful for the inductive treatment of log canon-
ical pairs.

Theorem 3.66 (Base Point Free Theorem). Let [ X, w] be a quasi-log pair
and let m: X — S be a projective morphism. Let L be a m-nef Cartier divisor
on X. Assume that

(i) gL — w is m-ample for some real number ¢ > 0, and
(ii) Ox__(mL) is w|x__-generated for m > 0.

Then Ox(mL) is w-generated for m > 0, that is, there ezists a positive
number mq such that Ox(mL) is w-generated for any m > my.

Proof. Without loss of generality, we can assume that S is affine.
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Claim 1. Ox(mL) is w-generated around Naklt(X,w) for m > 0.

We put X’ = Ngklt(X, w). Thgg.Lt ', '], where W’ = w|x, is a quasi-log
pair by adjunction (see Theorem B.397(1)). If X' = X_,, then Ox/(mL) is
m-generated for m > 0 by the assumption (ii). If X’ # X_, then Ox/(mL)
is m-generated for m > 0 by the induction on the dimension of X \ X_.,. By
the following commutative diagram:

T m.Ox(mL) ——= m*1,Ox/(mL) —= 0

| l

Ox(mL) Ox:(mL)

0,

we know that Oy (mL) is m-generated around X' for m > 0.

Claim 2. Ox(mL) is w-generated on a non-empty Zariski open set for m >
0.

. pbpf-ci . :

By Claim [T, we can assume that Ngklt(X, w) is empty. We will see that
we can also assume that X is irreducible. Let X’ be an irreducible component
of X. Then X’ with ' = w|xs has a lnrarteu_rc%quuasi-log structure induced by

[X,w] by adjunction (see Corollary B.4T). By the vanishing theorem (see
Theorem B.39 (1i)), we have R!7,(Zx ® Ox(mL)) = 0 for any m > q. We

consider the following commutative diagram.

m*1.Ox(mL) —= 7*m,Ox:(mL) —=0

l l

Ox(mL) Oxl (mL) —0

Since « is surjective for m > ¢, we can assume that X is irreducible when
we prove this claim.

If L is m-numerically trivial, then m,Ox(L) is not zero. It is because
r°(X,, O éL = x(X,, i(él(mLa)r) = x(X,,0x,) = h°(X,,0x,) > 0 by
Theorem B.39 (ii) and by ’K , Chapter II §2 Theorem 1], where X, is the
generic fiber of 7 : X — S. Let D be a general member of |L|. Let
f : (Y,By) — X be a quasi-log resolution. By blowing up M, we can
assume that (Y, é{ﬁ f*D) is a global embedded simple normal crossing pair
by Proposition LTM We note that any stratum of (Y, By) is mapped onto
X by the assumption. We can take a positive real number ¢ < 1 such that
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By + ¢f*D is a subboundary and some stratum of (Y, By + ¢f*D) does not
dominate X. Note that f,Oy("—(B5')") ~ Ox. Then the pair [X,w + c¢D]
is gqlc and f : (Y, By +cf*D) — X is a ¢ Lﬁscil-log resolution. We note that
gL — (w + ¢D) is m-ample. By Claim I, Ux(mL) is m-generated around
Naklt(X,w+¢D) for m > 0. So, we can assume that L is not m-numerically
trivial.

Let x € X be a general smooth point. Then we can take an R-divisor D
uch that mult, D > dim X and that D ~g (¢ + )L — w for some r > 0 (see
M, 3.5 Step 2]). By blowing up M, we can assume that (Y, B +,/" D)

is a global embedded simple normal crossing pair by Propo&twn%ﬂ

the construction of D, we can find a positive real number ¢ < 1 such that
By + ¢f*D is a subboundary and some stratum of (Y, By + c¢f*D) does not
dominate X. Note that f,Oy("—(B5')") =~ Ox. Then the pair [X,w + ¢D]
is qlc and f : (Y, By + ¢f*D) — X is a quasi-log resolution. We note that
¢ L — (w+¢D) is m-ample by ¢ < 1, where ¢ = ¢+ cr. By the gonstruction,
Ngklt(X, w+eD) is non-empty. Therefore, by applying Claim [[to [ X, w+cD],
Ox(mL) is m-generated ground Nqklt(X,w + ¢D) for m > 0. So, we finish
the proof of Claim

Let p 1S _przlme number and let [ be a large integer. Then 7,0 (p! Lg % Ql

by Clalm and Ox (p'L) is m-generated around Noklt(X,w) by Claim

Claim 3. If the relative base locus Bs,|p'L| (with reduced scheme structure)
is not empty, then Bs.|p'L| is not contained in Bs,|p" L| for I > .

Let f : (Y,By) — X be a quasi-log resolution. We take a general
member D € [p'L|. We note that S is affine and |p'L| is free around
Naklt(X,w). Thus, f*D intersects any strata of (Y, SuppBy) transversally
over X \ Bs,|p'L| by Bertini and f*D contains no strata of (Y, By). By tak-
ing blow-ups of M suitably, we can assume that (Y, By + f*D) is a glgg
emb ddedt simple normal crossing pair. See the proofs of Prop051t10ns l3_57[
and 3. e take the maximal positive real number ¢ such that By + cf*D

a subboundary over X \ X_o. We note that ¢ < 1. Here, we used
Ox =~ f.Oy("—(Bs') ") over X \ X .. Then f: (Y,By +cf*D) — X is a
quasi-log resolution of [X,w’ = w + ¢D]. Note that [X,«’] has a glc center
C that intersects Bs;|p'L| by the construction. By the induction, O¢(mL)
is m-generated for m > 0 since (¢+ cp')L — (w + ¢D) is m-am le. We can lift
the sections of Oc(mL) to X for m > q + c¢p' by Theorem B.39 (ii). Then
we obtain that Ox(mL) is m-generated around C for m > 0. Therefore,
Bs,|p" L] is strictly smaller than Bs.|p'L| for I’ > I.
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Claim 4. Ox(mL) is m-generated for m > 0.

By Claim BPAnd the noetherian induction, Oy (p'L) and Oy (p'" L) are -
generated for large [ and I’, where p and p’ are prime numbers and they are
relatively prime. So, there exists a positive number mg such that Ox(mL)
is m-generated for any m > my. O

bpf-th
The next corollary is a special case of Theorem 36

Corollary 3.67 (Base Point Free Theorem for Ic pairs). Let (X, B) be
an lc pair and let m : X — S be a projective morphism. Let L be a w-nef
Cartier divisor on X. Assume that qL — (Kx + B) is m-ample for some
positive real number q. Then Ox(mL) is m-generated for m > 0.

3.3.2 Rationality Theorem

bro
In this subsection, we prove the following rationality theorem (cf. LIZinml,
Theorem 5.9]).

Theorem 3.68 (Rationality Theorem). Assume that [X,w] is a quasi-
log pair such that w is Q-Cartier. We note that this_means w s R-linearly
equivalent to a Q-Cartier divisor on X (see Remark b_SrU) Letm: X — S be
a projective morphism and let H be a w-ample Cartier divisor on X. Assume
that r is a positive number such that

(1) H 4 rw is w-nef but not m-ample, and

(2) (H+rw)|x_.. is m|x_-ample.

oo

Then r is a rational number, and in reduced form, r has denominator at most
a(dim X + 1), where aw is R-linearly equivalent to a Cartier divisor on X.

Before we go to the proof, we recall the following lemmas.

Lemma 3.69 (cf. ﬁ%M, Lemma 3.19]). Let P(x,y) be a non-trivial poly-
nomial of degree < n and assume that P vanishes for all sufficiently large
integral solutions of 0 < ay — rx < € for some fixed positive integer a and
positive € for some r € R. Then r is rational, and in reduced form, v has
denominator < a(n +1)/e.

For the proof, see %I%M, Lemma 3.19].

104



km
Lemma 3.70 (cf. hKM, 3.4 Step 2]). Let [Y,w] be a projective qlc pair
and let {D;} be a finite collection of Cartier divisors. Consider the Hilbert
polynomial

P(uq, - ,u) = x(Y, OY(Z w; D;)).

Suppose that for some values of the u;, Zle u; D; is nef and Zle u; Dy —w
is ample. Then P(uq,--- ,uy) is notbidisj;ctgcally zero by the base point free
theorem fgg.gé pairs (see Theorem B. and the vanishing theorem (see
Theorem Bﬁg—éi)), and its degree is < dimY.

Note that the arguments in %%M, 3.4 Step 2| work for our setting.

rat-th
Proof of Theorem my using mH with vari us large m in place of H,
we can assume that H is very ample over S (cf. [KM, 3.4 Step 1]). For each
(p,q) € Z?, let L(p,q) denote the relative base locus of the linear system
M(p,q) on X (with reduced scheme structure), that is,

L(p, q) = Supp(Coker(m*m.Ox (M (p,q)) — Ox(M(p,q)))),

where M (p,q) = pH + gD, where D is a Cartier divisor such that D ~g aw.
By the definition, L(p,q) = X if and only if m.Ox(M(p,q)) = 0.

Claim 1 (cf. %M, Claim 3.20]). Let € be a positive number. For (p,q)
sufficiently large and 0 < aq — rp < €, L(p, q) is the same subset of X. We
call this subset Ly. We let I C Z? be the set of (p,q) for which 0 < ag—rp < 1
and L(p,q) = Lo. We note that I contains all sufficiently large (p,q) with
0<aqg—rp<l.

t-c2
For the proof, see H%M, Claim 3.20]. See also the proof of Claim Eéb_el%w.
Claim 2. We have Ly N X_o = 0.

rat-c2
Proof of Claim }'2._Wétake (a, B) € Q? such that a > 0, 3 > 0, and Ba/a > r
is sufficiently close to r. Then (aH + faw)|x__ is m|x__-ample because
(H + rw)|x_ is m|x__-ample. If 0 < ag —rp < 1 and (p,q) € Z? is
sufficiently large, then M (p,q) = mM (o, ) + (M(p,q) — mM (v, 3)) such
that M(p,q) — mM («, 3) is m-very ample and that m(aH + SD)|x__ is
also 7|x___-very ample. Therefore, Ox___ (M (p,q)) is m-very ample. Since
m.O0x(M(p, q)), 7.5 Ox_. (M (p, q)) is surjective by the vanishing theorem
(see Theorem B.39 (ii)), L(p,q) N X_o, = 0. We note that M(p,q) — w is

105



m-ample because (p, q) is sufficiently large and ag — rp < 1. By Claim [T, we
have Lo N X_o = 0. O

Claim 3. We assume that r is not rational or that v is rational and has
denominator > a(n + 1) in reduced form, where n = dim X. Then, for (p,q)
sufficiently large and 0 < aq — rp < 1, Ox(M(p,q)) is m-generated at the
generic point of any qlc center of [X,w].

rat-c3

Proof of Claim ll?._Wénote that M(p,q)—w ~r pH+(qga—1)w. If ag—rp < 1
and (p, q) is sufficiently large, then M(p, q) — w is m-ample. Let C be a lc
center of [X,w]. We note that we can assume C'N X_,, = () by Claim

Then Fe, (p, q) = x(Cy, Oc, (M (p, q; Ql'ﬁs— ?enon—zero polynomial of degree at
most dim C,, < dim X by Lemma 3. see also Lemma. i3 Note that
C, is the generic fiber of C' — n(C). By Lemma ]%.69, there exists (p,q)
such that Pg, (p,q) # 0 and that (p,q) sufficiently large and 0 < ag — rp <
1. By the m-ampleness of M(p,q) — w, FPc,(p,q) = xX(Cy, Oc,(M(p,q))) =
ho(C,y, Oc, (M(p,q))) and m.Ox (M (p, q)) — m.Oc(M(p, q)) is surjective. We
note that C" = C'U X_, has a natural quasi-log structure induced by [X, w]
and that CNX_o = ). Therefore, Ox (M (p, g)) Js m-generated at the generic
point of C. By combining this with Claim [T, Ox (M (p, q)) is m-generated at
the generic point of any qlc center of [ra’t@gf (p, q) is sufficiently large with
0 <aq—rp<1. So, we obtain Claim 2. O

Note that Ox (M (p, q)) is not w-generated for (p,q) € I because M (p, q)
is not m-nef. Therefore, Ly # (). We shrink S to an affine open subset inter-
secting m(Lg). Let Dy, -+, Dy11 be general members of m.Ox (M (po, q)) =
H(X,0x(M(po, q))) with (po,qo) € I. Around the generic point of any
irreducible cpmponent of Ly, by taking general hyperplane cuts and apply-
ing Lemma below, we can check that w + Z ' D; is not glc at the
generic point of any irreducible component of L. Thus w + Z"+1 D; is
not qglc at the generic point of any irreducible component of Ly and is glc
outside Ly U X_. Let 0 < ¢ < 1 be the maximal real num o1, SuC h that
w+ CE"H D; is glc outside X_,. Note that ¢ > 0 by Claim us the
quasi-log pair [X,w + ¢ >0 Dj] has some qlc centers contalned in Ly. Let
C be a qlc center contained in Ly. We note that C' N X_. = (). We consider

n+1
W =w+ CZ D; ~g c(n+ 1)poH + (1 + ¢(n + 1)goa)w.

i=1
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Thus we have
pH + qaw — W' ~g (p — c(n+ 1)po)H + (qa — (1 + ¢(n + 1)goa))w.

If p and ¢ are large enough and 0 < aqg — rp < aqg — rpo, then pH + gaw — '’
is m-ample. It is because

(p—c(n+1)po)H + (qa — (1 +c(n + 1)goa))w
= (-1 +cn+1))p)H + (ga — (1 + c(n + 1))goa)w + poH + (goa — 1)w.

Suppose that r is not rational. There must be arbitrarily large (p,q)
such th t P .00 — TP < € = ago — o and H(C,), Oc,(M(p,q))) # 0 by
Lemma %69. [t is because M (p, q) —w' is m-ample by 0 < ag—rp < ago—7rpo,
Pe,(p,q) = x(Cy, C%@q% gp, q))) is a non-trivial polynomial of degree at most
dim C,, by Lemma B.70, and x(C,, Oc, (M(p,q))) = h°(C,, Oc, (M (p, q))) by
the ampleness of M (p,q) —w’. By the vanishing theorem, 7.Ox (M (p, q)) —
m.0c(M(p, q)) is surjective because M(p,q) — w' is m-ample. We note that
(" = C'UX_ has a natural quasi-log structure induced by [X, w'] and that
CNX_o =0. Thus C is not contained in L(p,q). Therefore, L(p,q) is a
proper subset of L(pg,qo) = Ly, giving the desired contradiction. So now we
know that 7 is rational.

We next suppose that the assertion of the theorem concerning the de-
nominator of r is false. Choose (po,qo) € [ such that agy — rpy is the
maximum, say it is equal to d/v. If 0 < ag — rp < d/v and (p,q) is
sufficiently large, then x(C,, Oc,(M(p,q))) = h°(Cy, Oc,(M(p,q))) since
M(p,q) — W' is m-ample. There exists sufficiently large (p,q) in the strip
0 < ag—rp < 1 with e = 1 for which h%(C;, Oc, (M(p,q))) # 0 by Lemma
ETGQ._Note that ag —rp < d/v = aqy — rpo holds automatically for (p,q) € I.
Since m,.Ox (M (p,q)) — mOc(M(p,q)) is surjective by the m-ampleness of
M (p, q)—w’, we obtain the desired contradiction by the same reason as above.
So, we finish the proof of the rationality theorem. O

t-th
We used the following lemma in the proof of Theorem E%g

Lemma 3.71. Let [X,w] be a qlc pair and x € X a closed point. Let
Dy, -+, Dy, be effective Cartier divisors passing through x. If [ X,w+Y " D]
s qle, then m < dim X.

Proof. First, we assume dim X = 1. If x € X is a glc center of [ X, w]|, then m
must be zero. So, we can assume that z € X is not a glc center of [ X, w]. Let
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f:(Y,By) — X be a quasi-log resolution of [X,w|. By shrinking X around
xr, We can assume thalt any stratum of Y dominates X and that X is smooth
by ProposwlonI%TEL_Smce [0y (T—(Bs')7) =~ Ox, we can easily check that
m <1 =dimX. In general, [X,w + D4] is gle. Let V be the union of qlc
centers of [X,w + D] contained in SuppD;. Then both [V, (w + D;)|y] and
[V, (w+ D1)lv + > 1%y Dilv] are gle by adjunction. By the induction on the
dimension, m — 1 < dim V. Therefore, we obtain m < dim X. O

3.3.3 Cone Theorem

The mai t};eorem of this subsection is the cone theorem for quasi-log vari-
eties (cf. , Theorem 5.10]). Before we state the main theorem, let us fix
the notamon.

Definition 3.72. Let [X, w] be a quasi-log pair with the non-glc locus X _,
Let 7 : X — S be a projective morphism. We put

NE(X/S) oo =Im(NE(X_o/S) — NE(X/9)).

For an R-Cartier divisor D, we define

Dso={z€ Ny (X/S) | D-z>0}.
Similarly, we can define D+, D<g, and D.;. We also define

L ={2€ N(X/S)| D-z=0}.

We use the following notation

NE(X/S)pzo = NE(X/S) N D>,
and similarly for > 0, < 0, and < 0.
Definition 3.73. An extremal face of NE(X/S) is a non-zero subcone F' C
NE(X/S) such that 2,2’ € I and z + 2’ € F imply that 2,2’ € F. Equiv-
alently, F = NE(X/S) N H* for some m-nef R-divisor H, which is called

a supporting function of F. An extremal ray is a one-dimensional extremal
face.

(1) An extremal face F is called w-negative if F N NE(X/S)>o = {0}.
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(2) An extremal face F is called rational if we can choose a m-nef Q-divisor
H as a support function of F'.

(3) An extremal face F is called relatively ample at infinityif FANE(X/S)_o =
{0}. Equivalently, H|y__ is 7|x__-ample for any supporting function
H of F.

(4) An extremal face F' is called contractible at infinity if it has a rational
supporting function H such that H|x__ is m|x__-semi-ample.

The following theorem is a direct consequence of Theorem [3.66.

Theorem 3.74 (Contraction Theorem). Let [X,w| be a quasi-log pair
and let m : X — S be a projective morphism. Let H be a m-nef Cartier
divisor such that F = H* N NE(X/S) is w-negative and contractible at in-
finity. Then there exists a projective morphism ¢r : X — 'Y over S with the
following properties.

(1) Let C be an integral curve on X such that w(C) is a point. Then @r(C)
is a point if and only if [C] € F.

(2) Oy ~ (¢r):Ox.

(3) Let L be a line bundle on X such that L-C = 0 for every curve C with
[C] € F. Then there is a line bundle Ly on'Y such that L ~ ¢ Ly .

Proof. By the assumption, ¢H —w is m-am leff_otrhsome positive integer ¢ and
H|x__ is w|x__ -semi-ample. By Theorem B.:66, Ox(mH) is w-generated for
m > 0. We take the Stein factorization of the associated morphism. Then,
we have the contraction morphism ¢r : X — Y with the properties (1) and
(2).

We consider ¢ : X — Y and NE(X/Y). Then NE(X/Y) = F, L is
numerically trivial over Y, %nid_ v is yp-ample. Applying the base point
free theorem (cf. Theorem %%GTover Y, both L®™ and L2+ are pull-
backs of line bundles on Y. Their difference gives a line bundle Ly such that
L~ ¢t Ly. O

Theorem 3.75 (Cone Theorem). Let [X,w] be a quasi-log pair and let
m: X — S be a projective morphism. Then we have the following properties.
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(1) NE(X/S) = NE(X/S)us0+ NE(X/S) oo+ > R;, where R;’s are the
w-negative extremal rays of NE(X/S) that are rational and relatively
ample at infinity. In particular, each R; is spanned by an integral curve
C; on X such that m(C;) is a point.

(2) Let H be a m-ample R-divisor on X. Then there are only finitely many
R;’s included in (w + H)<o. In particular, the R;’s are discrete in the
half-space wg.

(3) Let F be an w-negative extremal face of NE(X/S) that is relatively
ample at infinity. Then F s a rational face. In particular, F is con-
tractible at infinity.

Proof. First, we assume that w is Q-Cartier. This means that w is R-linearly
equivalent to a Q-Cartier divisor. We can assume that dimg N;(X/S) > 2
and w is not m-nef. Otherwise, the theorem is obvious.

Step 1. We have

NE(X/S) = NE(X/S)uzo+ NE(X/S) s+ Y _F,

where F’s vary among all rational proper w-negative faces that are relatively
ample at infinity and = denotes the closure with respect to the real topol-

ogy.
Proof. We put

B =NE(X/S)uso+ NE(X/S)-ou+ Y _F.

It is clear that NE(X/S) D B. We note that each F is spanned by curves on
X mapped to points on S by Theorem . Supposing NE(X/S) # B,
we shall derive a contradiction. There is a separating function M which is
Cartier and is not a multiple of w in N*(X/S) such that M > 0 on B\{0} and
M -2y < 0 for some zy € NE(X/S). Let C be the dual cone of NE(X/S),,>o,
that is,

C={Dec N X/S)|D-z2>0for z€ NE(X/S)u0}-

Then C is generated by m-nef divisors and w. Since M > 0 on NE(X/S),>0\
{0}, M is in the interior of C, and hence there exists a m-ample Q-Cartier
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divisor A such that M — A = L' + pw in N'(X/S), where L’ is a 7-nef Q-
Cartier divisor on X and p is a non-negative rational number. Therefore, M
is expressed in the form M = H + pw in N'(X/S), where H = At Lyis a -
ample Q-Cartier divisor. The rationality theorem (see Theorem }'376‘87)‘1mplies
that there exists a positive rational number » < p such that L = H + rw
is m-nef but not m-ample, and L|x__ is 7|x__-ample. Note that L # 0
in N'(X/S), since M is not a multiple of w. Thus the extremal face Fj,
associated to the supporting function L is contained in B, which implies
M > 0 on Fp. Therefore, p < r. It is a contradiction. This completes the
proof of our first claim. O

. cone-stl
Step 2. In the equality of Step [T, we may take such L that has the extremal
face F; of dimension one.

Proof. Let F be a rational proper w-negative extremal face that is relatively
ample at infinity, and assume that dim F' > 2. Let ¢p : )Tcon—é_s 1be the

associated contraction. Note that —w is pp-ample. By Step [T, we obtain

F=NEX/W)=%.6,
G

where the G’s are the rational proper w-negative extremal faces of N E(X/W).

We note that NE(X/W)_o, =0 because pr embeds X o, into W. The G’s
are also w-negative extremal faces of NE(X/S) that are ample at infinity,
and dim G < dim F'. By induction, we obtain

NE(X/S) = NE(X/S)uz0 + NE(X/S) o+ Y _Rj, (3.1)

where the I?;’s are w-negative rational extremal rays. Note that each R; does
not intersect NFE(X/S)_w. O

cont-th
Step 3. The contraction theorem (cf. Theorem B. guarantees that for

each extremal ray R; there exists a reduced irreducible curve C; on X such
that [C;] € R;. Let ¢; : X — W, be the contraction morphism of R;, and
let A be a m-ample Cartier divisor. We set

. A-Cj

I w - Cj .
Then A+rjw is ¢;-nef but not ¢;-ample, and (Adr;w)|x_ is ¥;|x_-ample.
By the rationality theorem (see Theorem B.68), expressing r; = u;/v; with

u;,v; € Zso and (uj,v;) = 1, we have the inequality v; < a(dim X + 1).
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Step 4. Now take m-ample Cartier divisors Hy, Hy,---, H,_; such that w
and the, H;'s form a basis of N'(X/S), where p = dimg N'(X/S). By Step
3, the mtersection of the extremal rays R; with the hyperplane

{z € N1(X/S) | aw -z = —1}
in N1(X/S) lie on the lattice
A={ze N(X/S) | aw-z=—1,H; -z € (a(a(dim X + 1)))'Z}.
This implies that the extremal rays are discrete in the half space
{z € N1(X/9) | w- 2z < 0}.

sikil
Thus we can omit the closure sign —  from the formula (S.ii and this
completes the proof of (1) when w is Q-Cartier.

Step 5. Let H be a m-ample R-divisor on X. We choose 0 < ¢; < 1 for
1 <7< p—1such that H — Zf;ll g;H; is m-ample. Then the R;’s included
in (w+ H)<o correspond to some elements of the above lattice A for which

f;ll e;H; - z < 1/a. Therefore, we obtain (2).

Step 6. The vector space V = F+ C N'(X/S) is defined over Q because F'
is generated by some of the R;’s. There exists a m-ample R-divisor H such
that F' is contained in (w + H)-o. Let (F) be the vector space spanned by
. We put

W = NE(X/S)wsmso+ NE(X/S) -+ > R;.
R;¢F

Then Wy is a closed cone, NE(X/S) = Wr + F, and Wr N (F) = {0}. The
supporting functions of F are the elements of V' that are positive on W\ {0}.
This is a non-empty open set and thus it contains a rational element that,
after scaling, gives a m-nef Cartier divisor L such that F = L+ N NE(X/S).
Therefore, F' is rational. So, we have (3).

From now on, w is R-Cartier.

Step 7. Let H be a m-ample R-divisor on X. We shall prove (2). We assume
that there are infinitely many R;’s in (w + H)<o and get a contradiction.
There exists an affine open subset U of S such that NE(7~(U)/U) has
infinitely many (w + H)-negative extremal rays. So, we shrink S and can
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cone—ex

assume that S is affine. We can write H = F + H', where H' is m-ample,
[X,w + E] is a quasi-log pair with the same glc centers and non-glc locus as
[X,w], and w + E is Q-Cartier. Since w+ H =w + E + H', we have

NE(X/S) = NE(X/S)uruzo + NE(X/S) o+ 3 Ry.

finite

It is a contradiction. Thus, we obtain (2). The statement (1) is a direct
consequence of (2). Of course, (3) holds by Step % once we obtain (1).

So, we finish the proof of the cone theorem. O
We close this subsection with the following non-trivial example.

Example 3.76. We consider the first projection p : P! x P! — P!, We take a
blow-up p : Z — P! x P! at (0,00). Let Ay (resp. Ag) be the strict transform
of P! x {oo} (resp. P! x {0}) on Z. We define M = Pz(Oz®Oz(Ap)) and X
is the restriction of M on (po ) '(0). Then X is a simple normal crossing
divisor on M. More explicitly, X is a P!-bundle over (p o u)~1(0) and is
obtained by gluing X; = P! x P! and X3 = Ppi(Op1 @ Op:i(1)) along a fiber.
In particular, [X, Kx] is a quasi-log pair with only qlc singularities. By the
construction, M — Z has two sections. Let D (resp. D7) be the restriction
of the section of M — Z corresponding to Oz @ Oz(Ag) — Oz(Ay) — 0
(resp. Oz ® Oz(Ag) — Oz — 0). Then it is easy to see that DT is a nef
Cartier divi or on eX and that the linear system |mD™| is free for any m > 0
by Remark % (7 below. We take a general member By € [mD™| with m > 2.
We consider Ky + B with B = D™ + By + By + Bs, where By and By are
general fibers of X; = P! x P! ¢ X. We note that By does not intersect
D~. Then (X, B) is an embedded simple normal crossing pair. In particular,
[X, Kx + B] is a quasi-log pair with X_,, = (. Tt is easy to see that there
exists only one integral curve C' on Xy = Pp1(Op1 @ Op1(1)) C X such that
C - (Kx + B) < 0. Note that (Kx + B)|x, is ample on X;. By the cone
theorem, we obtain

NE(X) = NE(X) (k48>0 + Rx0[C].

By the contraction theorem, we have ¢ : X — W which contracts C. We
can easily see that W is a simple normal crossing surface but Ky + By,
where By = ¢, B, is not Q-Cartier. Therefore, we can not run the LMMP
for reducible varieties.
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The above example implies that the cone and contraction theorems for
quasi-log varieties do not directly produce the LMMP for quasi-log varieties.

cone—ex
Remark 3.77. In Example m is a projective toric variety. Let E be
the section of M — Z corresponding to O, & Oz (Ay) — Oz(Ay) — 0. Then,
it is easy to see that E is a nef Cartier divisor on M. Therefore, the linear
system |E| is free. In particular, |D*| is free on X. Note that Dt = E|x.
So, [mD™| is free for any m > 0.
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Chapter 4

Related Topics

In this chapter, we treat related topics. In Section A.I; Jve_discuss the base

point free theorem of Reid—Fukuda type. In Section IZLZ, we prove that the
rg_n\;g’g_]i)e(%nus ?sfeél—gﬂca pair i§ (?ohen—Macaulay as'an'application of Lemma
2.33. Section B.371s a description of Alexeev’s ¢riterion for Serre’ o*S—Y%eCcon_
dition. It is a clever application of Theorem 2.39 (i). Section %.ZI 1S an
introduction to the theory of toric po Xgl_esderca. A toric polyhedron has a nat-
ural quasi-log structure. In Section .5, we quickly %XPI%% the notion of
non-lc ideal sheaves and the restriction theorem in [F15]. It is related to
the inversion of adjunction on log canonicity. In the final section, we state
effective base point free theorems for log canonical pairs. We give no proofs

there.

4.1 Base Point Free Theorem of Reid—Fukuda
type

b b
One of my motivations to study Aml Js.to understand fAmI , Theorem 7.2],
which is a complete gejglggllriozation of . The following theorem is a special

case of Theorem 7.2 ir%) § m I], which was stated without proof. Here, we will
reduce it to Theorem .966—By using Kodaira’s lemma.

Theorem 4.1 (Base point free theorem of Reid—Fukuda type). Let [ X, w]
be a quasi-log pair with X_oo =0, m : X — S a projective morphism, and L
a m-nef Cartier divisor on X such that qL — w is nef and log big over S for
some positive real number q. Then Ox(mL) is w-generated for m > 0.
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bro . . bro
Remark 4.2. In [Am , Secglr%n 7], Ambro said that the proof of Arn ,
Theorem 7.2] is parallel to [AmI, Theoggron 5.1]. However, I could not check
it. Steps 1, 2, and 4 in the proof o%@, Theorem 5.1] wor \%v_ig}ﬁout any
modifications. In Step 3 (see Claim B'in the proof of Theorem B3.66), ¢'L — w’
is m-nef, but I think that ¢L — W' = ¢L — w is not always log big over S
With respect to [X,w'], Wherg Ww'=w+cD anq 7 =44 cp!. So, we can not
gn;fe_cttﬁy apply the argument in Step 1 (see Claim I 1n the proof of Theorem

3.66) to this new quasi-log pair [X,w'].

Proof. We divide the proof into three steps.

Step 1. We take an irreducible component X’ of X. Then X’ has a natural

. . adj-t o
quasi-log structure induged by X (see Theorem B.39(1)). By the vanishing
theorem (see Theorem 3.397(11)), we have R'7,(Zx ®Ox(mL)) = 0 for m > q.
Therefore, we obtain that 7.0x(mL) — m.Ox/(mL) is surjective for m > q.
Thus, we can assume that X is irreducible for the proof of this theorem by
the following commutative diagram.

m*m.Ox(mL) —— 7m*1.0Ox/(mL) —— 0

| |

(’)X(mL) — (’)X/(mL) — 0

Step 2. Without loss of generality, we can assume that S is affine. Since
qL — w is nef and big over S, we can write gL — w ~g A + E by Kodaira’s
lemma, where A is a m-ample Q-Cartier Q-divisor on X and E is an effective
R-Cartier R-divisor on X. We note tha‘E{ éX—i% projective over S and that X
is not necessarily normal. By Lemma izlfg“bfelow, we have a new quasi-log
structure on [X, 0], where @ =w + ¢E, for 0 < ¢ < 1.

Step 3. By the induction on the dimension, Ongxit(xw)(mL) is m-generated
for m > 0. Note that m.Ox(mL) — 7. Onqyyixey(mL) is surjective for m >
q by the vanishing theorem (see Theorem B.39(ii)). Then Onqus(x gfmf)
is m-generated for m > 0 by the above lifting result and by Lemma 4.3 In
particular, Oz (mL) is m-generated for m > 0. We ngt%_’gcllllat gL — O ~p
(1—¢)(¢L —w)+eAis m-ample. Therefore, by Theorem ll?%me obtain that
Ox(mL) is m-generated for m > 0.

We finish the proof. O
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Lemma 4.3. Let [X,w] be a quasi-log pair with X o, = 0. Let E be an
effective R-Cartier R-divisor on X. Then [X,w+eF] is a quasi-log pair with
the following properties for 0 < e < 1.

(i) We put [X,&] = [X,w + ¢E]. Then [X,®] is a quasi-log pair and
Naklt(X, &) = Naklt (X, w) as closed subsets of X.

(ii) There exist natural surjective homomorphisms Oxgrie(x,5) — ONqkit(X,w) —
0 and Oxgayxz — Ox . — 0, that is, Naklt(X,w) and X_o, are

closed subschemes of Naklt(X,w), where )?,Oo is the non-qlc locus of
(X, 0.

Proof. Let f: (Y, By) — X be a quasi-log resolution of [ X, w|, where (Y, By)
is a global embedded simple normal crossing pair. We can assume that the
union of all strata of (Y, By ) mapped into Ngklt(X,w), which we denote by
Y’ is a union of irreducible components of Y. We put Y” =Y —Y”. Then we
obtain that f,Oyn(A —Y'|yn) is Ingue(xw), that is, the defining ideal sheaf
of qult(gadw_)t on X, where A ="—(Bg")". For the details, see the proof of
Theorem 1). Let M be the ambient space of Y and By = Dly.

Claim. By modifying M birationally, we can assume that there exists a sim-
ple normal crossing divisor F' on M such that Supp(Y + D + F) is simple
normal crossing, F and Y" have no common irreducible components, and
Fly» = (f")*E, where f" = fly». Of course, (f")*E + By» has a simple
normal crossing support on Y", where Ky» + By» = (Ky + By)|y». In
general, F' may have common irreducible components with D and Y.

Proof of Claim. First, we note that (f”)*E contains no strata of Y”. We can
construct a proper birational morphism A : M — M from a smooth variety
M such that K47 + Dy = h*(Ky +Y + D), b1 ((f”)*E) is a divisor on M,
and Exc(h)U Supph (Y +D)Uh~ ((f”) E) is a simple normal crossing on
M as in the proof of Proposmon m We note that we can assume that h is
an isomorphism outside 2~'((f”)*E) by Szabd’s resolution lemma. Let Y be
the union of the irreducible components of D ! that are mapped into Y. By
taisetsu
Proposition %Wcan replace M, Y, and D Wlth M Y and D = D~—Y
We finish the proof. O

key-le .
Let us go back to the proof of Lemma izlg Let Y5 be the union of all the
irreducible components of Y that are contained in SuppF’. We put Y} =Y —
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Y, and B = Fly,. We consider f; : (Y1, By, —|—e§) — X for 0 < e < 1, where
Ky,+By, = (Ky+By)|y, and fi = fl|y,. Then, we have f{(w+eF) ~r Ky, +
By, +&B. Moreover, the natural inclusion Ox — f1, Oy, ("—((By, +¢B)<!)7)
defines an ideal Ty = f1.Oy, ("—((By; + eB)<V) — L(By, +eB)>11). It is
because

f1:0v,("—((By, +eB)<")" = L(By, +£B)”') C £,0y("—(By)<") =~ Ox

when 0 < & < 1. We note that _(By, +¢B)>'. > Ys|y,. Namely, the pair
[X,©] has a quasi-log structure with a quasi-log resolution f; : (Y1, By, +
eB ) — X. By the construction and the definition, it is obvious that there ex-
ist surjective homomorphisms Onqiit(x,z) — ONqrlt(x,w) — 0 and Onquex,z) —
Ox__ — 0. It is not difficult to see that Nqklt(X, w) = Naklt(X, w) as closed
subsets of X for 0 < ¢ < 1. We finish the proof. O

As a special case, we obtain the following base point free theorem of
Reid-Fukuda type for log canonical pairs.

Theorem 4.4. (Base point free theorem of Reid-Fukuda type for lc pairs).
Let (X, B) be an lc pair. Let L be a m-nef Cartier divisor on X, where
m: X — S is a projective morphism. Assume that gL — (Kx + B) is w-nef
and m-log big for some positive real number q. Then Ox(mL) is m-generated
for m > 0.

We believe that the above theorem holds under the assumption that 7 is
only proper. However, our proof needs projectivity of .

bpf-rdlc-th . . .
Remark 4.5. In Tge?;lgﬂcizl_;zl{, it NKIt(X, B) is projective over S, then we
can prove Theorem ¥.4 under the weaker assugf%’gilpc{l t‘[ﬁlat m: X — Sisonly

proper. It is because we can apply Theorem H.T to NKklt(X, B). So, we can
assume that Ox(mL) is m-generated on a non-em ty.open subset containing
Nklt(X, B). In this case, we can prove Theorem LI;[ by applying the usual
X-method to L on (X, B). We note that Nklt(X, B) is always projectiv over
S when dim Nklt(X, B) < 1. The reader can find a different proof irj[!F'k_éL
when (X, B) is a log canonical surface, where Fukuda used the LMMP with
scaling for dlt surfaces.

Finally, we explain ghiegg@%gn why we assumed that X_,, = () and 7 is
projective in Theorem A.T.
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Remark 4.6 (Why X__ is empty?). Let C be a glc center of [ X, w]. Then
we have to consider a quasi-log variety X' = C U X_,, for the induc-
tive arguments. In general, X’ is reducible. It sometimes happens that
dimC < dim X_,. We do not know how to apply Kodalﬁz@ emma to

reducible varieties. So, we assume that X_,, = () in Theorem

Remark 4. (iW}llly 7 is projective?). We assume that S is a point in
Theorem lZI [ for simplicity. If X_., = (, then it is enough to treat irreducible

quasi-log varieties by Step 1. Thus, we can assume that X is irreducible. Let
f Y — X be a proper birational morphism from a smooth projective va-
riety. If X is normal, then H°(X,Ox(mL)) ~ H°(Y,O fmfL)) for any
m > 0. However, X is not always normal (see Example E_S—Below So, it
sometimes happens that Oy (mf*L) has many global sections but (’)X(mL)
has only a few global sections. Therefore, we can not easily reduce the prob-
lem to the case when X is projective. This is tggtljcel%son why we assume that
m: X — S is projective. See also Proposition

Example 4.8. Let M = ]Pﬁng%{% let X be a nodal curve on M. Then (M, X)

is an lc pair. By Example B3T, [ X, Kx] is a quasi-log variety with only qlc
singularities. In this case, X is irreducible, but it is not normal.

4.2 Basic properties of dlIt pairs

In this section, we prove supplementary results on dlt pairs. First, let us
reprove the following well-known theorem.

Theorem 4.9. Let (X, D) be a dit pair. Then X has only rational singular-
ities.
Proof. (cf. E%{%%’%ter VII, 1.1.Theorem]). By the definition of dlt, we can
take a resolution f :Y — X such that Exc(f) and Exc(f) U Suppf, 1D are
both simple normal crossing divisors on Y and that Ky + f,;'D = f*(Kx +
D)+ E with "E™ > 0. We can take an effective f-exceptional divisor A
on Y such —A is f-ample (see, for example, h%ﬁ"}_Ffroposition 3.7.7]). Then
"ET— (Ky + f7'D + {-FE} +€A) = —f*(Kx + D) — €A is f-ample for
e>0 If0 <e <1, then (Y, f'D+ {-F}+¢cA)isdlt. T refore,
R'f. Oylragl—'_) =0 for i > 0 (see M, Theorem 1-2-5], Theorem 42 or
Lemma ¢ ow) and f,Oy("E™) ~ Ox. Note that " E™ is effective and f-
exceptional. Thus, the composition Ox — Rf.Oy — Rf.Oy("E™) ~ Ox is
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a quasi-isomorphism. So, X has only rational singularities by [Kv3, Theorem

1]. O
In the above proof, we used the next lemma.

Lemma 4.10 (Vanishing lemma of Reid—Fukuda type). Let V' be a smooth
variety and let B be a boundary R-divisor on V' such that SuppB is a simple
normal crossing divisor. Let f -V — W be a proper morphism onto a variety
W. Assume that D is a Cartier divisor on V' such that D — (Ky + B) is
f-nef and f-log big. Then R'f,Ov (D) =0 for any i > 0.

Proof. We use the induction on the number of irreducible components of
LB, and on the dimension of V. If LBJ = 0, then the lemma follows from
the Kawamata—Viehweg vanishing theorem. Therefore, we can assume that
there is an irreducible divisor S C LBi. We consider the following short
exact sequence

By induction, we see that R'f,Oy(D — S) =0 and R'f,Og(D) = 0 for any
i > 0. Thus, we have R'f,Oy (D) =0 for i > 0. O

49-d1t
4.11 (Weak log-terminal singularities). The %%gg’;j Theorem A.9 works
M]

for eak log-terminal singularities in the sense of M. For the deﬁnition,
see M, Definition 0-2-10]. Thus, we can recover M, Theorem 1-3-6],
that is, we obtain the following statement.

[kmm
Theorem 4.12 (cf. WM, Theorem 1-3-6]). All weak log-terminal sin-
gularities are rational.

We think that this theorem is one of the most difficult results in ﬁ%—ni\/[l\/[]
We do not need the difficult vanishing theorem due to Elkik and F i;igglgsee
M, Theorem 1-3-1]) to obtain the above theorem. In Theorem #.9; if we
assume that (X, D) is only weak log-terminal, then we can not necessarily
make Exc(f) and Exc(f) U Suppf, D simple normal crossing divisors. We
can only make the normal crossing divisors. However, M, Theorem
Land Theorem 2.42 work in this setting. Thus, the proof of Theorem
h_ﬁrks for weak log-terminal. Anyway, the notion of weak log-terminal
singularities is not useful in the recent log minimal model program. So, we
do not discuss weak log-terminal singularities here.
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-th -rati 1
Remark 4.13. The proofs of Theorem iZICI.nI 4 and Theorem lZIZ. 17 also work for
weak log—tiecrminal pairs onc e adopt suitable vanishing theorems such as
Theorem }‘;7.42 and Theorem 2.54.

A
The following theorem generalizes HEFA, 17.5 Corollary|, where it was only
proved ‘Ehat 9. i3 semi-normal and satisfies Serre’s Sy condition. We use
re—-vanli-—lem
in

Lemma 2. e proof.

Theorem 4.14. Let X be a normal variety and S+ B a boundary R-divisor
such that (X, S+ B) is dlt, S is reduced, and LBy =10. Let S = S+ -+ Sk
be the irreducible decomposition and T = S1 + -+ S; for 1 <1 < k. Then
T is semi-normal, Cohen—Macaulay, and has only Du Bois singularities.

Proof. Let f:Y — X be aresolution such that Ky + 5"+ B = f*(Kx+ S+
B)+ E with the following properties: (i) S’ (resp. B’) is the strict transform
of S (resp. B), (ii) Supp(S’ + B’) U Exc(f) and Exc(f) are simple normal
crossing divisors on Y, (iii) f is an isomorphism over the generic point of
any lc center of (X, S + B), and (iv) "E" > 0. We write S =T + U. Let
T" (resp. U’) be the strict transform of 7' (resp. U) on Y. We consider the
following short exact sequence

0— Oy(—T’ -+ l—E—') — Oy(l—E—l) — OT/(FE|T/1) — 0.

Since 1"+ E ~py Ky + U + B and E ~p; Ky + 5 + B’, we have
—T"+"EV~p s Ky +U' +B +{—FE} and "E"' ~p s Ky + 5"+ B'+ {—E}.
By the vanishing theorem, R'f,Oy(=T"+"E7) = R f,.Oy("E™) = 0 for any
1> 0. Vig)ﬁe_ﬂjgltewe used the vanishing lemma of Reid—Fukuda type (see

Lemma ¥.10). erefore, we have
0— f*0y<—T/ + l—E—l) — OX — f*OT/(l—E|T/—|) — 0

and R'f.Op/("E|r7) = 0 for all ¢ > 0. Note that "E™ is effective and f-
exceptional. Thus, Or ~ f,Opr ~ f.Op/("E|p"). Since T" is a simple normal
crossing divisor, 7' is semi-normal. By the above vanishing result, we obtain
Rf.Op:("E|77) ~ Or in the derived category. Therefore, the composition
Or — Rf.Or — Rf.Op/("E|p™) =~ Or is a quasi-isomorphism. Apply
RHomy(__,w$) to the quasi-isomorphism Or — Rf.Op — Op. Then the
composition wy — Rf.w} — w} is a quasi-isomorphism by t?g—garx?fh%rrlndieCk
duality. By the vanishing theorem (see, for example, Lemma 2.33), LW =
0 for i > 0. Hence, h'(w}) C Rif.w$ ~ R*fwp, where d = dimT =
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dimT’. Therefore, hi(w}) = 0 for i # —d. Thus, T is Cohen— Macaulay.
This argument is the same as the proof of Theorem 1 in HEK_Bﬁ*Smce T’
is a simple normal crossing divisor, 7" has only Du Bois singularities. The
quasi-isomorphis ov(:?gé T Rf.Opr — Or implies that T has only Du Bois
singularities (cf. [KvI, Corollary 2.4]). Since the composition wy — fiwp —
wr is an isomorphism, we obtain f,wr ~ wr. By the Grothendieck duality,
Rf.Or ~ RHomr(Rf.wi, ws) ~ RHomy(ws,ws) ~ Or. So, R f,Op =0
for all + > 0. U

Cm_'éﬁ]e

cm-th .
Corollary 4.15. Under the notation in the proof of Theorem lZI 4, R f,Op =
0 for any i > 0 and f.Op ~ Or.

obtained the following vanishing theorem in the proof of Theorem

We close this section with a non-trivial example.

kmm
Example 4.16 (cf. MM, Remark 0-2-11. (4)]). We consider the P?-
bundle
m:V = PPQ(OPQ @ OP2<1) ) Opo(l)) — P2,

Let F| = Pp2(Op2®Op2(1)) and Fy = Pp2(Op2 HOp2(1)) be two hypersurfaces
of V' which correspond to projections Opz @ Op2(1) & Op2(1) — Op2 @ Op2(1)
given by (z,y,2) — (z,y) and (z,y,2) — (z,2). Let ® : V. — W be the
flipping contraction that contracts the negative section of 7 : V' — P2, that is,
the section corresponding to the projection Op2@BOp2(1)BOp2(1) — Op2 — 0.
Let C' C P? be an elliptic curve. We put Y = 771(C), D; = Fi|y, and
Dy = Fly. Let f:Y — X be the Stein factorization of ®|y : Y — (V).
Then the exceptional locus of f is E' = D; N Dy. We note that Y is smooth,

D + Dy is a simple normal crossing divisor, and £ ~ C' is an elliptic curve.
Let g : Z — Y be the blow-up along E. Then

Kz + Dy + Dy + D = g"(Ky + Dy + Dy),

where D] (resp. D)) is the strict transform of D; (resp. Dy) and D is the
exceptional divisor of g. Note that D ~ C x P!. Since

—D+ (Kz+ D)+ D)+ D) — (Kz+ Dy+ D)) =0,

we obtain th BRZf*(g*(’)Z( . ng tlgl + DL+ D)) = 0 for any i > 0
by Theorem 247 or Theorem % 38. We note that f o g is an isomorphism
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outside D. We consider the following short exact sequence
0—Zrp— Ox — O — 0,

where 7 is the defining ideal sheaf of E. Since Zp = g.Oz(—D), we obtain
that

0— fi(Zp ® Oy(Ky + D1 + Ds)) — f.Oy(Ky + D1 + Ds)
— f*OE(Ky + D1 + Dg) — 0

by R'f.(Zp @ Oy (Ky + Dy + D,)) = 0. By adjunction, Og(Ky + Dy + Ds) ~
Opg. Therefore, Oy (Ky + D1+ Dy) is f-free. In particular, Ky + Dy + Dy =
f*(Kx + By + Bsy), where By = f.D; and By = f,Ds. Thus, —D — (K +
D} + D)) ~feq 0. So, we haverﬁ.éf?f,%{?ifc}ﬁif*(g*oz(—l?)) = 0 for any ¢ > 0
by Theorem 2.47 or Theorem mmplies that R'f,Oy ~ R'f,OF for
every i > 0. Thus, R'f,0y ~ C(P), where P = f(E). We consider the

following spectral sequence
EP = HY(X, R1f,Oy ® Ox(—mA)) = H?TI(Y, Oy (—mA)),

where A is an ample Cartier divisor on X and m is any positive integer. Since
HYY,Oy(—mf*A)) = H*(Y,Oy(—mf*A)) = 0 by the Kawamata—Viehweg

vanishing theorem, we have
H(X,R'f.Oy ® Ox(—mA)) ~ H*(X, Ox(—mA)).

If we assume that X is Cohen—Macaulay, then we have H?(X, Ox(—mA)) =
0 for m > 0 by the Serre duality and the Serre vanishing theorem. On
the other hand, H°(X, R'f.Oy ® Ox(—mA)) ~ C(P) because R!f.Oy ~
C(P). It is a contradiction. Thus, X is not Cohen-Macaulay. In particular,
(X, B1 + By) is lc but not dlt. We note that Exc(f) = E is not a divisor on
Y. See Definition [I.7]

Let us recall that ® : V' — W is a flipping contraction. Let ®* : V't — W
be the flip of ®. We can check that V' = Ppi (Op1 @ Op1 (1) Op1 (1) S Op1 (1))
and the flipped curve E* ~ P! is the negative section of 7 : VT — P!
that is, the section corresponding to the projection Op: @ Op1(1) @ Op1 (1) B
Op1(1) — Op1 — 0. Let Y'* be the strict transform of Y on V*. Then Y is
Gorenstein, lc along ET C YT, and smooth outside E*. Let D (resp. D)
be the strict transform of D; (resp. Dy) on Y. If we take a Cartier divisor
B on Y suitably, then (Y, Dy + Dy) --» (Y*,Df + D) is the B-flop of
f:Y — X. We note that (Y, D; + Ds) is dlt. However, (Y, Df + DJ) is lc
but not dlt.
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z-rational

4.2.1 Appendix: Rational singularities

In this subsecth%gaﬁe give a proof to the following well-known theorem again
(see Theorem h.g ).

Theorem 4.17. Let (X, D) be a dit pair. Then X has only rational singu-
larities.

o_s(z}llr proof is a combination of the proofs in HSI%M, Theorem 5.22] and
Ko4, éGCtIOIl 11]. .We ne.ed 10 C@lafﬁg}lcﬂt duality theorems. Thg z'aurguments
here will be used in Section ELB. First, let us recall the definition of the
rational singularities.

Definition 4.18 (Rational singularities). A variety X has rational sin-
gularities if there is a resolution f : Y — X such that f.0Oy ~ Ox and
R f,Oy = 0 for all i > 0.

Next, we give a dual form of the Grauert-Riemenschneider vanishing
theorem.

Lemma 4.19. Let f : Y — X be a proper birational morphism from a
smooth variety Y to a variety X. Let x € X be a closed point. We put
F = f~Y(x). Then we have

HL(Y,0y) =0
for any i <n =dim X.

Proof. We take a proper birational morphism ¢g : Z — Y from a smooth
variety Z such that f o g is projective. We consider the following spectral
sequence

qu = H?(Y, ng*OZ) = Hngq(Z, Oz),
where E = g7 }(F) = (f o g)~*(z). Since R1g.0z = 0 for ¢ > 0 and ¢,0y ~
Oy, we have HY.(Y, Oy) ~ HY(Z, Oz) for any p. Therefore, we can replace Y’
with Z and assume that f : Y — X is projective. Without loss of generality,

we can assume that X is affine. Then we compactify X and assume that X
and Y are projective. It is well known that

HL(Y,Oy) ~ lim Ext'(O,,r, Oy)

m
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lhartshorne-loca
(see [G, Theorem 2.8]) and that

Hom (Ext"(Opp, Oy),C) =~ H" (Y, Opp @ wy)

. . . . artshorne-a
by duality on a smooth projective variety Y (see [HZ, Theorem 7.6 (a)]).
Therefore,

Hom(H (Y, Oy),C) ~ Hom(lim Ext*(O,,r, Oy ), C)
~ lim H" (Y, Opr @ wy)

m

~ (R" fuwy);

artshorne-a
by the theorem on formal functions (see %FIZTTW% 11.1]), where (R" " fuwy )2
is the completion of R""'f,wy at x € X. On the other hand, R" " f,wy =
0 for ¢ < n by the Grauert-Riemenschneider vanishing theorem. Thus,
HL(Y,Oy) =0 for i < n. O

lem-gr
Remark 4.20. Lemma lZI [9%0lds true even when Y has rational singulari-
ties. It is tEeéjng_usre R19,0O7 =0 for ¢ > 0 and ¢,Oz ~ Oy holds in the proof

of Lemma #4.19.

—rati 1
Let us go to the proof of Theorem lZ‘[Z. —

Proof of Theorem E%?ag%aﬂllout loss of generality, we can assume that X
is affine. Moreover, by taking generic hyperplane sections of X, we can
also assume that X has only rational singularities outside a closed point
x € X. By the definition of dlt, we can take a resolution f : ¥ — X
such that Exc(f) and Exc(f) U Suppf,tD are both simple normal crossing
divisors on Y, Ky + f;7'D = f*(Kx + D) + E with "TE™ > 0, and that f is
projective. Moreover, we can make f an isomorphisVa Ig)i\/_egf’g}llg generic point
of any lc center of (X, D). Therefore, by Lemma E [0, we can ch

k that
R f,Oy("E™) = 0 for any ¢ > 0. See also the proof of Theorem %%.Cl_li%\/e
note that f,Oy("E™) ~ Ox since "E is effective and f-exceptional. For
any i > 0, by the above assumption, R'f,Oy is supported at a point z € X
if it ever has a non-empty support at all. We put F' = f~!(x). Then we have
a spectral sequence

Ey = Hy(X, R f.Oy("E")) = H7 (Y, 0y ("E")).
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By the above vanishing result, we have
Hy(X,0x) ~ Hp(Y, Oy ("E"))
for every ¢« > 0. We obtain a commutative diagram

Hy(Y,0y) —— Hp(Y,Oy("E"))

| [

Hi(X,0x) —— Hi(X,0x).

We have already checked that 3 is a e%s_orporphism for every ¢ and that
HiL(Y,0y) =0 for i < n (see Lemma H.19). Therefore, H:(X,Ox) = 0 for
any 1 < n = dim X. Thus, X is Cohen—-Macaulay. For ¢ = n, we obtain that

a: H}(X,Ox) — HE(Y, Oy)
is injective. We consider the following spectral sequence
EY = H{(X, R .0y) = H.7 (Y, Oy).

We note that H! (X, R? f,Oy) = 0 for any i > 0 and j > 0 since SuppR’ f,Oy C
{z} for j > 0. On the other hand, EY = H'(X,Ox) = 0 for any i < n.
Therefore, HY(X, R/ f.Oy) ~ HI(X,0Ox) = 0 for all j < n — 2. Thus,
RIf,Oy =0 for 1 <j <n—2. Since H" }(X,Ox) = 0, we obtain that

0— HY(X,R"'f.Oy) - H'(X,0x) = HXY,Oy) — 0

is exact. We have already checked that « is injective. So, we obtain that
HY(X,R"'f.0y) = 0. This means that R"'f,0y = 0. Thus, we have
R f,Oy = 0 for any i > 0. We complete the proof. O

4.3 Alexeev’s criterion for S3; condition

sec—alex

In this se “tion, we explain Alexeev’s criterion for Serre’s S; condition (see
Theorem K.21). Tt is a clever application of Theorem 2.39 (i). In general,
log canonical singularities are not Cohen-Macaulay. So, the results in this
section will be useful for the study of lc pairs.
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alex
Theorem 4.21 (cf. m Lemma 3.2]). Let (X, B) be an lc pair with dim X =
n > 3 and let P € X be a scheme theoretic point such that dim {P} < n — 3.

Assume that {P} is not an lc center of (X, B). Then the local ring Ox p
satisfies Serre’s S3 condition.

We slightly changed the original formulation. The following proof is essen-
tially the same as Alexeev’s. We use local cohomologies to calculate depths.

Proof. We note that Ox p satisfies Serre’s Sy condition because X is normal.
Since the assertion is local, we can assume that X is affine. Let f:Y — X
be a resolution of X such that Exc(f)USuppf,; !B is a simple normal crossing
divisor on Y. Then we can write

Ky + By = f*(Kx + B)

such that SuppBy is a simple normal crossing divisor on Y. We put A =
T—(Bs') > 0. Then we obtain

A=Ky + By +{By} - f*(Kx + B).

Therefore, by Theorem 5.39 (i), the support of every non-zero local section
of the sheaf R!f,Oy(A) contains some lc centers of (X, B). Thus, P is not
an associated point of R!f,Oy(A).

We put Xp = SpecOx p and Yp =Y Xx Xp. Then P is a closed point of
Xp and it is sufficient to prove that H3#(Xp, Ox,) = 0. We put F = f~1(P),
where f : Yp — Xp %‘hern we have the following vanishing theorem. It is
nothing but Lemma %._l’ggv?/hen P is a closed point of X.

lem-gr

Lemma 4.22 (cf. Lemma 4.19). We have Hu(Yp,Oy,) = 0 fori < n —
dim {P}.
lem-gr2
Proof of Lemma iZ[(.aZmQ. *fet I denote an injective hull of Ox, /mp as an Ox,-

module, where mp is the maximal ideal corresponding to P. We have

RFFOYP >~ RPP<Rf*OYP)
~ Hom(RHom(Rf.Oy,,w%,,), 1)
~ Hom(Rf.Oy(Ky) ® Ox,[n —m], I),

L — . esidue
where m = dim { P}, by the local duality theorem ([HI Chapter V, Theorem
6.2]) and the Grothendieck duality theorem ( ;]I, Chapter VII, Theorem
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3.3]). We note the shift that normalize the dualizing complex w¥,. Therefore,
we obtain Hi(Yp, Oy,) = 0 for i < n —m because R’ f,Oy(Ky) = 0 for any
j > 0 by the Grauert-Riemenschneider vanishing theorem. O

Let us go back to the proof of the theorem. We consider the following
spectral sequences

EY? = Hp(Xp, R'[.Oy, (A)) = HE"(Yp, Oy (A)),

and
ES = Hp(Xp, R f.Oy,) = HE(Yp, Oy,).

By the above spectral sequences, we have the next commutative diagram.

H}(Yp, Oy,) HE(Yp, Oy, (4))

T §

H3(Xp, f.Oy,) HE(Xp, Oy, (A))

H}(Xp,Ox,) =———=H}(Xp,Ox,)

Since P is not an associated point of R'f,Oy(A), we have
Ey' = HY(Xp, R f.0y,(A)) = 0.
By the edge sequence

0—>E21’0—>E1—>Eg’1—>E22’0gE2H-~-

)

we know that ¢ : E3° — FE? is injective. Therefore, H3(Xp, Ox,) —
H%(Yp, Oy,) is injective by the above big commutative dia yam. Thus, we
obtain H3(Xp, Ox,) = 0 since H2(Yp, Oy,) = 0 by Lemma iZI.ZZ. O

1
Remark 4.23. The original argument in the proof of i'@el,x Lemma 3.2] has
some compactification problems when X is not projective. Our proof does
not need any compactifications of X.

Lex—cri
an easy application of Theorem iZIa.Zexl, we have the following result. It

S
is }FAJE?TXTheorem 3.4].
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alex
Theorem 4.24 (cf. m Theorem 3.4]). Let (X, B) be an lc pair and let
D be an effective Cartier divisor. Assume that the pair (X, B+¢eD) is lc for
some e > 0. Then D is Ss.

Proof. Without loss of generality, we can assume that dim X =n > 3. Let
P € D C X be a scheme theoretic point such that dim {P} < n — 3. We
localize X at P and assume that X =S ?{CO% & By the assumption, {P}is
not an lc center of (X, B). By Theorem 7 we obtain that H5(X, Ox) =0
for i < 3. Therefore, Hp(D,Op) = 0 for i < 2 by the long exact sequence

p(
Hp(X,0x(=D)) — Hp(X,0x) — Hp(D,Op) —
(=

We note that H5(X, Ox(—D)) ~ Hs(X,Ox) = 0fori < 3. Thus, D satisfies
Serre’s Sy condition. O

dj-t
We give a supplement to adjunction (see T corem 339 (1)). It may be
useful for the study of limits of stable pairs (see

Theorem 4.25 (Adjunction for Cartier divisors on lc pairs). Let (X, B)
be an lc pair and let D be an effective Cartier divisor on X such that
(X,B + D) is log canonical. Let V' be a union of lc centers of (X, B).
We consider V' as a reduced closed subscheme of X. We define a scheme
structure on VN D by the following short exact sequence

0— Ov(—D) - OV — OVQD — 0.
Then, Ovynap is reduced and semi-normal.

Proof. First, we note that V' N D is a union of lc centers of (X, B + D)
(see Theorem B.46). Let f : Y — X be a resolution such that Exc(f) U
Suppf, (B + D) is a simple normal crossing divisor on Y. We can write

Ky + By = f"(Kx + B+ D)

such that SuppBy is a simple normal crossing divisor on Y. We take more
blow-ups and can assume that f~'(V N D) and f~'(V) are simple normal
crossing divisors. Then the union of all strata of By' mapped to V N D
(resp. V'), which is denoted by W (resp. U + W), is a divisor on Y. We put
A=T"—(Bs")7 > 0 and consider the following commutative diagram.

0—>Oy(A U — W) —>Oy —>OU+W(A) —0

l J

0 Oy(A—-W) A) ——=Ow(A) ——0
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S
By applyjng Jj; we obtain the next big diagram by Theorem 5.39 (i) and
Theorem 3.%9 ;1)

0
0 f:Ou(A=W)
00— fLOy(A-U—-W) Ox Oy 0
|
0 [:Oy(A=W) Ox Ovap ——>0
f<Ou(A=W) 0

0

A key point is that the connecting homomorphism
f*OU(A — W) — le*Oy(A - U — W)

is a zero map by Theorem 6.39 (i). We note that Oy and Oynp in the
above diagram are the structure sheaves of glc pairs V and V' N D induced by
(X, B+ D). In particular, Oy ~ f,Op w and Oynp =~ f.Ow. So, Oy and
Ovnp are reduced and semi-normal since W and U + W are simple normal
crossing divisors on Y.

Therefore, to prove this theorem, it is sufficient to see that f,Opy(A—W) ~
Oy (—=D). We can write

A=Ky + By +{By} - f*(Kx + B+ D)

and
['D=W+E+ [ 'D,

where E is an effective f-exceptional divisor. We note that f7'DNU = 0.
Since A—W = A— f*D+ E + 7D, it is enough to see that f,Op(A +
E+ f7'D) ~ f.Oy(A + E) ~ Oy. We consider the following short exact
sequence

0—-0y(A+E—-U) = Oy(A+FE)— Oy(A+E) — 0.
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Note that
A+E-U=Ky+By' — f7'D-U~W +{By} — f*(Kx + B).

Thus, the connecting homggorphism f,Oy(A + E) — R'f.Oy(A+E -U)
is a zero map by Theorem 2.39 (i). Therefore, we obtain that

0— fLOy(A+E—-U) — Ox — f,Oy(A+ E) — 0.

So, we have f,Op(A+ E) ~ Oy. We finish the proof of this theorem. O

The next corollary is one of the main results in ?XI The original proof
Illl 1depends on the Sp-fication. Our proof uses adjunction (see Theorem
. As a result, we obtain the semi-normality of LB, N D.

alex
Corollary 4.26 (cf. W Theorem 4.1]). Let (X, B) be an lc pair and let
D be an effective Cartier divisor on D such that (X, B+ D) is lc. Then D
18 So and the scheme LB1N D is reduced and semi-normal.

alex-cri2 tu-thmi
Proof. By Theorem 121.22[ D satisfies Serre’s S condition. By Theorem iZ[ 25
LBiN D is reduced and semi-normal.

lex
The following proposition may be useful. So, w fontain it here. It is
aleX—Cril

Lemma 3.1] with slight modifications as Theorem

alex
Proposition 4.27 (cf. m Lemma 3.1]). Let X be a normal variety with
dimX =n >3 andlet f : Y — X be a resolution of singularities. Let P € X

be a scheme theoretic point such that dim {P} < n — 3. Then the local ring
Ox.p is Sz if and only if P is not an associated point of R f,Oy.

Proof. We put Xp = SpecOx p, Yp =Y Xx Xp, and F = f~!(P), where
f:Yp — Xp. We consider the following spectral sequence

EY = HL(X, R f.0y,) = Hi (Yp, Oy,).

Since Hr(Yp, Oy,,) = H2(Yp, Oy,) = 0 by Lemma lzllg%?gge have an isomor-
phism H%(Xp, le*(’)yp) ~ H%(Xp,Ox,). Therefore, the depth of Ox p is
> 3 if and only if H3(Xp,Ox,) = HYXp, R f.Oy,) = 0. Tt is equivalent
to the condition that P is not an associated point of R!f,Oy.

lex
4.28 (Supplements). Here, we give a slight generalization of [AT, ! g}({)ren
3.5]. We can prove it by a similar method to the proof of Theorem
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Theorem 4.29 (cf. Fﬁ—el% Theorem 3.5]). Let (X, B) be an lc pair and D
an effective Cartier divisor on X such that (X, B+¢eD) is lc for some e > 0.
Let V' be a union of some lc centers of (X, B). We consider V as a reduced
closed subscheme of X. We can define a scheme structure on VN D by the
following exact sequence

0— Ov<—D) — OV — OV[“'D — 0.

Then the scheme VN D satisfies Serre’s S condition. In particular, _.BoND
has no embedded point.

Proof. Without loss of generality, we can assume that X is affine. We take
a resolution f : Y — X such that Exc(f) U Suppf, !B is a simple normal
crossing divisor on Y. Then we can write

Ky + By = f*(Kx + B)

such that SuppBy is a simple normal crossing divisor on Y. We take more
blow-ups and can assume that the union of all strata of By' mapped to V,
which is denoted by W, is a divisor on Y. Moreover, for any lc center C' of
(X, B) contained in V, we can assume that f~!(C) is a divisor on Y. We
consider the following short exact sequence

0—=0y(A=W)— Oy(A) — Ow(A) — 0,
where A =" —(Bs!)7 > 0. By taking higher direct images, we obtain
0— f,Oy(A—=W) = Ox — f,Ow(A) = R f,Oy(A=W) — - .

By Theorem 5.39 (i), we have that f,Ow(A) — R'f.Oy(A — W) is a zero
map, f.Ow(A) ~ Oy, and f.Oy(A — W) ~ Iy, the defining ideal sheaf
of V on X. We note that f,Oy ~ Oy. n _atticular, Oy is reduced and
semi-normal. For the details, see Theorem B.39 (1).

Let P € VN D be a scheme theoretic point such that the height of P
in Oyqp is > 1. We can assume that dim V' > 2 around P. Otherwise, the
theorem is trivial. We put Ve = SpecOy.p, Wp = W xy Vp, and F = f~}(P),
where f : Wp — Vp. We denote the pull back of D on Vp by D for simplicity.
To check this theorem, it is sufficient to see that H%(Vp N D, Oy,np) = 0.
First, we note that H%(Vp,Oy,) = HA(Wp,Ow,) = 0 by f.Ow =~ Oy.
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lem-gr2
Next, as in the proof of Lemma 121.22, we have

RUpOw, ~ RI'p(Rf.Ow,)
~ Hom(RHOm(Rf*OWP 3 w\./p)7 [)
~ Hom(Rf.Ow (Kw) ®@ Oy, [n —1—m], ),

where n = dim X, m = dim {P}, and I is an injective hull of Oy, /mp as an
Oy, -module such that mp is the maximal ideal corresponding to P. Once we
obtain R 2f,Ow(Kw) ® Oy, = 0, then Hi(Wp, Ow,) = 0. It implies
that Hp(Vp, Oy,) = 0 since Hp(Vp, Ov,) C Hp(Wp,Ow,). By the long
exact sequence

RN HIO__,(VP’ Oy, ) — HIO_-,(VP ND,Ov.np)
— Hp(Vp, Oy, (—D)) — -+,

we obtain H3(Vep N D, Oy,ap) = 0. Tt is because HY(Vp, Oy,) = 0 and
Hp(Vp, Oy, (—=D)) ~ Hp(Vp,Oy,) = 0. So, it is sufficient to see that
Rn_m_Qf*Ow(Kw) &® OVp =0.

To check the vanishing of R" ™™ 2f,Ow (Kw) @ Oy,, by taking general
hyperplane cuts m times, we can assume that m = 0 and P € X is a closed
point. We note that the dimension of any irreducible component of V' pgssing
through P is > 2 since P is not an lc center of (X, B) (see Theorem B.46).

On the other hand, we can write W = U; + U, such that U, is the union
of all the irreducible components of W whose images by f have dimensions
> 2 and Uy = W — U,;. We note that the dimension of the image of any
stratum of Us by f is > 2 by the construction of f : Y — X. We consider
the following exact sequence

-+ — R"?[,0u,(Ky,) — R" 7 f,0w(Kw)
— R"72f£,0u,(Ku, + Us|v,) = R* ™ f.O0u, (Ku,) — -+

We have R"2f,0p,(Ky,) = R f.0y,(Ky,) = 0 around P since the di-
mension of general fibers of f : Uy — f(Usy) is < n — 3. Thus, we obtain
R"2f,0w(Kw) ~ R"2f.0p, (Ky, + Us|y,) around P. Therefore, the sup-
port of R" 2 f,Ow (Ky ) around P is contained in one-dimensional lc centers
of (X, B) in V and R"2f,Ow (K ) has no zero-dimensional associated point
around P by Theorem 2.39 (i). By taking a general hyperplane cut fe%(_ olo-vani
again, we have the vanishing of R"2f,Oy (K ) around P by Lemma L[.BU
below. So, we finish the proof. O
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le-18
We used the following lemma in the proof of Theorem iZIa.ZeQ.

lem-ele-vani| Lemma 4.30. Let (Z,A) be an n-dimensional lc pair and let x € Z be a

closed point such that x is an lc center of (Z,A). Let V' be a union of some
le centers of (X, B) such that dim'V > 0, x € V', and x is not isolated in V.
Let f:Y — Z be a resolution such that f~(x) and f~4(V) are divisors on
Y and that Exc(f) U Suppf,'A is a simple normal crossing divisor on'Y .
We can write

Ky + By = f*(Kz + A)

such that SuppBy is a simple normal crossing divisor on Y. Let W be
the union of all the irreducible components of By' mapped to V. Then
R f,.0Ow (Kw) = 0 around .

Proof. We can write W = W; + W,, where W is the union of all the irre-
ducible components of W mapped to x by f and W; = W —W,. We consider
the following short exact sequence

0 — Oy(Ky) — Oy(Ky + W) — Ow(Kw) — 0.
By the Grauert-Riemenschneider vanishing theorem, we obtain that
R f,0y (Ky + W) ~ R" f,Ow (Kw).
Next, we consider the short exact sequence
0 — Oy(Ky + W) — Oy (Ky + W) — Ow,(Kw, + Wi|w,) — 0.

Around z, the image of any irreducible component of Wj by f is positive
dimensional. Therefore, R"1 f,Oy (Ky + W;) = 0 near z. It can be checked
by the induction on the number of irreducible components using the following
exact sequence

= R0y (Ky + Wy — S) — R .0y (Ky + W)

- Rn_lf*OS(KS + (W1 - S)|S) —
where S is an irreducible component of W;. On the other hand, we have
R £.Ow, (Kw, + Wilw,) = H'™ (W, Ow, (Kw, + Wilw,))

and Hnil(WQ, OWQ(KWQ + W1|W2)) is dual to HO(WQ, OWQ(—W1|W2)) Note
that f.Ow, :a(g _{ nd f,Ow =~ Oy by the usual argument on adjunction
(see Theorem B339 (i)). Since Wy and W = W; + W, are connected over
x, HO(Wy, Ow,(—=Wilw,)) = 0. We note that Wily, # 0 since z is not
isolated in V. This means that R"~!f,Ow (Kw) = 0 around z by the above
arguments. 0
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4.3.1 Appendix: Cone singularities

In this subsection, we collect some basic facts on cone singularities for the
reader’s convenience. First, we g;Ye two lemmas which can be proved by the

same method as in Section iZI.GSC. vveé think that these lemmas will be useful
for the study of log canonical singularities.

Lemma 4.31. Let X be an n-dimensional normal variety and let f 1Y — X
be a resolution of singularities. Assume that R\ f,Oy =0 for 1 <i<n —2.
Then X s Cohen—Macaulay.

Proof. We can assume that n > 3. Since SuppR" ! f,Oy is zero-dimensional,
we can assume that there exists a closed point x € X such that X has only
rational singularities outside x by shrinking X around z. Therefore, it is
sufficient to see that the depth of Ox, is > n = dim X. We consider the
following spectral sequence

EY = H(X, R f.Oy) = H7 (Y, Oy),

where F' = f~1(z). Then H!(X,0x) = E ~ E? = ) fori<n-—1 Itis
because HL(Y,Oy) =0 for i < n —1 by Lemma% [9%This means that the
depth of Oy, is > n. So, we have that X is Cohen—Macaulay.

Lemma 4.32. Let X be an n-dimensional normal variety and let f 1Y — X
be a resolution of singularities. Let v € X be a closed point. Assume that

X is Cohen-Macaulay and that X has only rational singularities outside x.
Then R f,Oy =0 for1 <i<n—2.

Proof. We can assume that n > 3. By the assumption, SuppR'f.Oy C {z}
for 1 <7 <n—1. We consider the following spectral sequence

EY = Hi(X, R f.Oy) = H7 (Y, 0y),

where F' = f~!(z). Then HY(X,R/f.Oy) = Ey) ~ E% =0 for j < n—2
since B =0 fori>0and j >0, B =0fori<n—1,and H.(Y,Oy) =0
for j < n. Therefore, R°f.Oy =0for 1 <i<n—2. O

We }gomt out the following fact explicitly for the reader’s convenience. It
is 1.2 Theorem. (11.2.5)].

Lemma 4.33. Let f: Y — X be a proper morphism, v € X a closed point,
F = f~Yx) and G a sheaf on Y. If SuppR’ f.G C {z} for 1 <i < k and
Hi(Y,G) =0 fori <k, then R {,.G ~ HI'Y(X, f.G) forj=1,--- k—1.
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The assumptions in Lemma 4.32 are satisfied for n-dimensional isolated
CohenfM‘%(i%%llay ?‘i]g,géln}%rities. Therefore, we have the following corollary of
Lemmas 43T and 4.32.

Corollary 4.34. Let x € X be an n-dimensional normal isolated singularity.
Then x € X is Cohen—Macaulay if and only if R'f,Oy =0 for1 <i<n-—2,
where f:Y — X is a resolution of singularities.

We note the following easy example.

Example 4.35. Let V' be a cone over a smooth plane cubic curve and let ¢ :

W — V be the blow-up at the vertex. Then W is smooth and Ky = ¢* Ky —

E, where E is an elliptic curve. In particular, V' is log canonical. Let C be a

smooth curve. Weput Y =W xC, X =V xC,and f =p xidg: Y — X,

where id¢ is the identity map of C'. By the construction, X is a log ¢ 0 glxi(_jél%i
threefold. \fogagg}rcl check that X is Cohen-Macaulay by Theorem E)ZI or

Proposition 37 We note that R'f,0Oy # 0 and that R'f,Oy has no zero-

dimensional associated components. Therefore, the Cohen—Macaulayness of

X does not necessarily imply the vanishing of R!f,Oy.

o—eXxe

Let us go to cone singularities (cf. Koz)szll,nﬁ.8 Example| and [Kob, Exercises
70, 71)).
Lemma 4.36 (Projective normality). Let X C PV be a normal projective
irreducible variety and V. C AN the cone over X. Then V is normal if and
only if H'(PYN, Opn(m)) — H°(X,Ox(m)) is surjective for any m > 0. In
this case, X C PV is said to be projectively normal.
Proof. Without loss of generality, we can assume that dim X > 1. Let P € V

be the vertex of V. By the construction, we have H%(V,0y) = 0. We
consider the following commutative diagram.

0—= HOANFL, Opni1) —= HO(ANHI\ P, Oynin)

| l

H(V,0y) HO(V \ P,0Oy)

|

0

We note that H(V,Oy) = 0 for any 7« > 0 since V is affine. By the above
commutative diagram, it is easy to see that the following conditions are
equivalent.

0

HL(V,0y) —=0
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a) V is normal.

(a)
(b) the depth of Oy.p is > 2.
(c) Hp(V,Ov) =0.

(d) HYANTI\ P,Oyni1) — HO(V \ P,Oy) is surjective.

The condition (d) is equivalent to the condition that H°(PY, Opnx(m)) —
H°(X,0x(m)) is surjective for any m > 0. We note that

HY(ANTI\ P,Oyvan) ~ @5 HO PN, Opw (m))

m>0
and
HO<V \ P7 OV) = @ H0<X7 OX<m>>
m>0
So, we finish the proof. O

The next lemma is more or less well known to the experts.

Lemma 4.37. Let X C PV be a normal projective irreducible variety and
V C AN the cone over X. Assume that X is projectively normal and that
X has only rational singularities. Then we have the following properties.

(1) V is Cohen—Macaulay if and only if H(X,Ox(m)) = 0 for any 0 <
1 < dimX and m > 0.

(2) V has only rational singularities if and only if H/(X,Ox(m)) =0 for
any 1 >0 and m > 0.

Proof. We put n = dim X and can assume n > 1. For (1), it is sufficient to
prove that H5(V,Oy) = 0 for 2 < i < n if and only if H(X,Ox(m)) =0
for any 0 < 7 < n and m > 0 since V is normal, where P € V is the vertex
of V. Let f: W — V be the blow-up at P and E ~ X the exceptional
divisor of f. We note that W is the total space of Ox(—1) over £ ~ X
and that W has only rational singularities. Since V' is affine, we obtain
HY(V \ P,Oy) ~ HHI(V Oy) for any ¢ > 1. Since W has only_rational
singularities, we have Hp(W,Ow) = 0 for ¢ < n+1 (cf. Lemma \znggand

Remark lZ‘[ 2(); [herefore,

137



for i <mn — 1. Thus,

Hy(V,0y) ~ H™(V\ P,Oy) ~ H™'(W,0w) ~ @ H' (X, Ox(m))

m>0

for 2 < i < n. So, we obtain the desired equivalence.
For (2), we consider the following commutative diagram.

0

H"(V\ P,Oy) ——= Hy™(V,0p) —0

S

0—= H"(W,Ow) — H"(W \ E, Ow) — Hy™ (W, Ow)

We note that V is qo}ileIl*Ma]C&}_ﬂag if and only if R f,.Ow = 0 for 1 <i <
w-leml w-lem2 . . . .-
n — 1 (cf. Lemmas W31 and #.32) since W has only rational singularities.
From now on, we assume that V' is Cohen-Macaulay. Then, V' has only
rational singularities if and Zo_l}la}gc iigngln f+Ow = 0. By the same argument
as in the proof of Theorem iZI.I 7, the kernel of o is H%(V, R" f,Oy ). Thus,
R"f.Ow = 0 if and only if H"(W,Ow) ~ D,,~, H"(X, Ox(m)) = 0 by the
above commutative diagram. So, we obtain the statement (2). O

The following proposition is very useful when we construct some exam-
ples. We have already used it in this book.

Proposition 4.38. Let X C PV be a normal projective irreducible variety
and V. C ANt the cone over X. Assume that X is projectively normal. Let
A be an effective R-divisor on X and B the cone over A. Then, we have the
following properties.

(1) Ky + B is R-Cartier if and only if Kx + A ~g rH for some r € R,
where H C X is the hyperplane divisor on X C PV,

(2) If Kx + A ~g T7H, then (V, B) is

(a) terminal if and only if r < —1 and (X, A) is terminal,
(b) canonical if and only if r < —1 and (X, A) is canonical,
(¢) kit if and only if r <0 and (X, A) is klt, and

(d) lcif and only if r < 0 and (X, A) is lc.
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Proof. Let f : W — V be the blow-up at the vertex P € V and F ~ X
the exceptional divisor of f. If Ky + B is R-Cartier, then Ky + f.'B ~g
f*(Ky + B) + aF for some a € R. By restricting it to E, we obtain that
Kx + A ~g —(a+ 1)H. On the other hand, if Kx + A ~g rH, then
Kw + f7'B ~g —(r + 1)E. Therefore, Ky + B ~g 0 on V. Thus, we have
the statement (1). For (2), it is sufficient to note that

Ky +f'B=f"(Kx+B)—(r+1)E

and that T is the total space of Ox(—1) over £ ~ X. O

4.4 Toric Polyhedron

In this sectio ., \%vgnfreely use the basic notation of the toric geometry. See,
for example, lFI ;

Definition 4.39. For a subset ® of a fan A, we say that ® is star closed if
ced 7€ Aand o <7 imply 7 € D.

Definition 4.40 (Toric Polyhedron). For a star closed subset ® of a fan
A, we denote by Y = Y (®) the subscheme |J .4 V() of X = X(A), and we

call it the toric polyhedron associated to P.

Let X = X(A) be a toric variety and let D be the complement of the big
torus. Then the following property is well known.

Proposition 4.41. The pair (X, D) is log canonical and Kx + D ~ 0. Let
W be a closed subvariety of X. Then, W is an lc center of (X, D) if and
only if W =V (o) for some o € A\ {0}.

adj—th
Therefore, we have the next theorem by adjunction (see Theorem 3.

(1))-
Theorem 4.42. Let Y =Y (®) be a toric polyhedron on X = X(A). Then,

the log canonical pair (X, D) induces a natural quasi-log structure on [Y,0].
Note that [Y, 0] has only glc singularities. Let W be a closed subvariety of Y.
Then, W is a qlc center of [Y,0] if and only if W =V (o) for some o € ®.

Thus, we can use the theory of quasi-log varieties to investigate toric
varieties and toric polyh a%r.a_.t For example, we have the following result as a
special case of Theorem B:39 (ii).
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opo-th
Corollary 4.43. We use the same notation as in Theorem MQﬂssume
that X is projective and L is an ample Cartier divisor. Then H'(X,Zy ®
Ox (L)) =0 for any i > 0, where Ly is the defining ideal sheaf of Y on X.
In particular, H°(X, Ox (L)) — H°(Y, Oy (L)) is surjective.

We can prove various vanishing theorems for t g}lca \éarieties and toric
%l(l)qhoe;ira without appealing the results in Chapter i‘Z For the details, see

4.5 Non-lc ideal sheaves

ujinol0 | . .
In 15 , we introduced the notion of non-lc ideal sheaves and prOV%dit}%?o
restriction theorem. In this section, we quickly review the results in [FT5].

Definition 4.44 (Non-lc ideal sheaf). Let X be a normal variety and let
A be an R-divisor on X such that Ky + A is R-Cartier. Let f: Y — X be a
resolution with Ky + Ay = f*(Kx + A) such that SuppAy is simple normal
crossing. Then we put

Inpo(X,A) = L Oy (T=(AF)" = LAVL) = Oy (—LAva + AV
and call it the non-lc ideal sheaf associated to (X, A).

lc-def
In Definition Eﬂczl,_et—he ideal Jnrc(X,A) coincides with Zy__ for the
quasi-log pair [X, Kx + A] when A is effective.

lc-def
Remark 4.45. In the same notation as in Definition iZ[n.ZICZI, e put
J(X,A) = Oy (—Aya) = LOy(Ky — o f*(Kx + A)).

It is nothing but the well-known multiplier ideal sheaf. It is obvious that
J(X,A) € Inre(X, A).

The following theorem is the main theor it gfoﬁ%e hope that it will
have many applications. For the proof, see E i5 :

Theorem 4.46 (Restriction Theorem). Let X be a normal variety and
let S+ B be an effective R-divisor on X such that S is reduced and normal
and that S and B have no common irreducible components. Assume that
Kx + S+ B is R-Cartier. We put Ks + Bs = (Kx + S + B)|s. Then we
obtain that

InLc(S, Bs) = Inre(X, S + B)|s.
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rest-th
Theorem 1.4671is a generalization of the inversion of adjunction on log

canonicity in some sense.

Corollary 4.47 (Inversion of Adjunction). We use the notation as in
Theorem 4.46." Then, (S, Bs) is lc if and only if (X, S + B) is lc around S.

awakita
In [Kw|, Kawakita proved the inversion of adjunction on log canonicity

without assuming that S is normal.

4.6 Effective Base Point Free Theorems

In this section, we state effective base point free theorems for log canonical
pairs without proof. First, o state Angehrn—Slu'type effective b 1se. Doint
Frfeie tﬁ]QeOﬁQms Sgee %ﬁ and . For the details of Theorems

4.49, see [F'14].

Theorem 4.48 (Effective Freeness). Let (X, A) be a projective log canon-
ical pair such that A is an effective Q-divisor and let M be a line bundle on
X. Assume that M = Kx + A+ N, where N is an ample Q-divisor on X.
Let x € X be a closed point and assume that there are positive numbers c(k)
with the following properties:

(1) Ifx € Z C X is an irreducible (positive dimensional) subvariety, then

(N2 7Y > ¢(dim Z)4™ 2,

(2) The numbers c(k) satisfy the inequality

dim X L
p c(k

Then M has a global section not vanishing at x.

Theorem 4.49 (Effective Point Separation). Let (X, A) be a projective
log canonical pair such that A is an effective Q-divisor and let M be a line
bundle on X. Assume that M = Kx + A+ N, where N is an ample Q-
divisor on X. Let x1,x9 € X be closed points and assume that there are
positive numbers c(k) with the following properties:
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(1) If Z C X s an irreducible (positive dimensional) subvariety which
contains x1 or o, then

(NUmZ. 7Y > ¢(dim Z)4™ 2.

(2) The numbers c(k) satisfy the inequality

dim X

Z\f—<1

Then global sections of M separates x1 and x-.

leff-thl |eff-th2
The key points of the pé Q0 %of Theorems l4 48 and A.49 are the vanish-

ing theorem (see Theore gkd the inversion of adjunction on log
canonicity (see Corollary A7 and IKW

The final theorem in this book is a generalization of Kollar’s effective base
point freeness (see H% 21). The proof is es en}nalﬁf h,g same as Ko r s ogce
3.39 (1i IZI)ZI For th

we adopt Theorem ii) and Theorem e details, see

Theorem 4.50. Let (X, A) be a log canonical pair with dim X = n and
let m : X — V be a projective surjective morphism. Note that A is an
effective Q-divisor on X. Let L be a m-nef Cartier divisor on X. Assume
that al — (Kx + A) is w-nef and w-log big for some a > 0. Then there ezists
a positive integer m = m(n,a), which only depends on n and a, such that
Ox(mL) is m-generated.
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Chapter 5

Appendix

In this final chapter, we will explain some sample computations of flips. We
use the toric geometry to construct explicit examples here.

5.1 Francia’s flip revisited

We give an example of Francia’ lﬂi QL a projective toric variety explicitly. It
is a monumental example (see [Fr ; So, we contain it here. Our description
looks slightly different from the usual one because we use the toric geometry.

Example 5.1. We fix a lattice N ~ Z? and consider the lattice points e; =
(1,0,0), e = (0,1,0), e3 = (0,0,1), e, = (1,1,—-2), and e5 = (=1, —1,1).
First, we consider the complete fan A; spanned by ey, e, €4, and es. Since
e1+ext+es+2e5 =0, X7 = X(Ay)isP(1,1,1,2). Next, we take the blow-up
f: X = X(Ay) — X along theray e3 = (0,0, 1). Then X5 is a projective Q-
factorial toric variety with only one $(1,1, 1)-singular point. Since p(X5) = 2,
we have one more contraction morphism ¢ : Xo — X3 = X(Aj). This
contraction morphism ¢ corresponds to the removal of the wall (eq, e2) from
As. We can easily check that ¢ is a flipping contraction. By adding the wall
(e3,e4) to Az, we obtain a flipping diagram.

X2 -=> X4

\ /
X3

It is an example of Francia’s flip. We can easily check that Xy ~ Ppi(Op1 @
Op1(1) @ Op1(2)) and that the flipped curve C' ~ P! is the section of 7 :
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Pp1 (Op1 @ Op1 (1) ® Op1(2)) — P! defined by the projection Opr & Op1(1) @
Olpl (2) — OIP’I — O

rancia
By taking double covers, we have an interesting example (cf. [Fr]).

franll

Example 5.2. We use the same notation as in Example %Tﬁet g: X5 — Xy
be the blow-up along the ray eg = (1,1, —1). Then X; is a smooth projective
toric variety. Let Ox,(1) be the tautological line bundle of the P2-bundle
7 Xy =Ppi(Opt @ Opi(1) ® Opi(2)) — PL Tt is easy to see that Ox,(1)
is nef and Ox,(1) - C' = 0. Therefore, there exists a line bundle £ on Xj
such that Ox, (1) ~ ¢¥*L, where 1 : Xy — X3. We take a general member
D € |£%8]. We note that |£] is free since L is nef. We take a double cover
X — Xy (resp. Y — Xj5) ramifying along Suppy ' D (resp. Supp(pog)~1D).
Then X is a smooth projective variety such that Ky is ample. It is obvious
that Y is a smooth projective variety and is birational to X. So, X is the
unique minimal model of Y. We need flips to obtain the minimal model X
from Y by running the MMP.

5.2 A sample computation of a log flip

Here, we treat an example of threefold log flips. In general, it is difficult
to know what happens around the flipping curve. Therefore, the following
nontrivial example is valuable because we can see the behavior of the flip
exglilcaiﬁly. It helps us understand the proof of the special termination in

fsr

Example 5.3. We fix a lattice N = Z3. We put e; = (1,0,0), e5 = (—1,2,0),
es = (0,0,1), and ey = (—1,3,—3). We consider the fan

A = {{e1,e3,e4), (€9, €3,€4), and their faces}.

We put X = X(A), that is, X is the toric variety associated to the fan A.
We define torus invariant prime divisors D; = V(e;) for 1 <i < 4. We can
easily check the following claim.

Claim. The pair (X, D1 + D3) is a Q-factorial dlt pair.

We put C' = V({es,eq)) ~ P!, which is a torus invariant irreducible
curve on X. Since (ey, €3, €4) is a non-singular cone, the intersection number
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D, -C = 1. Therefore, C- Dy = —% and —(Kx + D; + Ds) - C = 5. We note
the linear relation e; + 3e; — 6e3 — 2e4 = 0. We put Y = X ({ey, €9, €3, €4)),
that is, Y is the affine toric variety associated to the cone (eq, e, €3, e4). Then
we have the next claim.

Claim. The birational map f : X — Y is an elementary pl flipping contrac-
tion with respect to Kx + D1 + Ds.

ecial
For the definition of pl flipping contractions, see Fﬁmﬁnition 4.3.1]. We
note the intersection numbers C'- D, = % and D3-C' = —2. Let ¢ : X --» X T
be the flip of f. We note that the flip ¢ is an isomorphism around any generic
points of lc centers of (X, Dy + D3). We restrict the flipping diagram

X -—» X7t

N /
Y

to D3. Then we have the following diagram.

D3 i D;_
N /
f(Ds)

It is not difficult to see that Df — f(Dj3) is an isomorphism. We put
(Kx + D1 + D3)|p, = Kp, + B. Then f : D3y — f(D3) is an extremal
divisorial contraction with respect to Kp, + B. We note that B = D;|p,.

Claim. The birational morphism f : D3 — f(Ds) contracts E ~ P! to a
point Q on Df ~ f(D3) and Q is a 3(1,1)-singular point on D3 =~ f(Ds).
The surface D3 has a %(1, 1)-singular point P, which is the intersection of E
and B. We also have the adjunction formula (Kp, + B)|p = Kp + 3P.

Let D be the torus invariant prime divisor V(e;) on X+ for all i and B*
the strict transform of B on Dy .

Claim. We have
(Kx+ + Df + D;)‘D; = KD; + B*
and

1
(KD; +B+)‘B+ — KB+ —|— 5@
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We note that f*: D — f(Dj3) is an isomorphism. In particular,

D5 --> Dgr
N\ /
f(Ds)

is of type (DS) in the sense of %%%lf%ﬁnition 4.2.6]. Moreover, f : B — Bt is
an isomorphism but f : (B, 2P) — (B, 3Q) is not an isomorphism of pairs
(seesﬁg&_ﬁe nigic(%%14.2.5]). We note that B is an lc center of (X, D; + Dj).
So, we need , Lemma 4.2.15]. Next, we restrict the flipping diagram to
D;. Then we obtain the diagram.

f(Dr)
In this case, f: Dy — f(D;) is an isomorphism.
Claim. The surfaces Dy and D are smooth.

It can be directly checked. Moreover, we obtain the following adjunction
formulas.

Claim. We have

2
(Kx + Dy + D3)|p, = Kp, +B+§B’,

where B (resp. B') comes from the intersection of Dy and D3 (resp. Dy). We
also obtain

2 1
(Kx+ +D;F+D§,F)|D1+ = Kpyt +B' + gB/Jr + éFa

where Bt (resp. B'") is the strict transform of B (resp. B') and F is the
exceptional curve of f*: Df — f(Dy).

Claim. The birational morphism f+ : D} — f(Dy) ~ Dy is the blow-up at
P=BnAH.

We can easily check that

2 1 , 2 1
Kps +B* + gB’+ +5F =" (Kp, + B+ 3B — < F.
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It is obvious that Kp+ + Bt + %B’* + LF is f*-ample. Note that F' comes
from the intersection of D} and DJ. Note that the diagram

D1 -= Df_
N s
f(Dy)

ecial
is of type (SD) in the sense of [F'8, Definition 4.2.6].

5.3 A non-Q-factorial flip

. . . ujino0 .
I apologize for the mistake in [F }, Example 4.4.2]. We give an example of
?Sthree-dimensional non-Q-factorial canonical Gorenstein toric flip. See also

u
U]. We think that it is difficult to construct such examples without
using the toric geometry.

Example 5.4 (Non-Q-factorial canonical Gorenstein toric flip). We fix
a lattice N = Z3. Let n be a positive integer with n > 2. We take lattice
points eg = (0,—1,0), ¢; = (n + 1 — 4, ZZ;}szka 1) for 1 <i<n-+1, and
enta = (—1,0,1). We consider the following fans.

Ax = {{eo,e1,6€n12),(€1,€2, ,€ni1,€nia),and their faces},
Aw = {{eg,€1, " ,€nt1,€nia),and its faces}, and
Ax+ = {{ep,€i,€41),fori=1,--- n-+ 1, and their faces}.

We define X = X(Ax), X" = X(Ax+), and W = X(Ay). Then we have a

diagram of toric varieties.

X -  XT*

N\ /
W

We can easily check the following properties.
(i) X has only canonical Gorenstein singularities.
(ii) X is not Q-factorial.

(i) Xt is smooth.
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(iv) —Kx is g-ample and K x+ is pT-ample.
(v) ¢ : X - W and ¢ : XT — W are small projective toric morphisms.
(vi) p(X/W)=1and p(X+/W) = n.

Therefore, the above diagram is a desired flipping diagram. We note that
e +eio=2e+efort=1--- . n—1and e, +e,10 =2€,41+ @60.

We recommend the reader to draw pictures of Ax and Ax+.

By this example, we see that a flip sometimes increases the Picard number
when the variety is not Q-factorial.
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