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Abstract. We discuss the log minimal model program for log
canonical pairs. We prove the existence of fourfold log canonical
flips. This paper is also a guide to the theory of quasi-log varieties
by Ambro. The notion of quasi-log varieties is indispensable for
investigating log canonical pairs. We also give a proof to the base
point free theorem of Reid–Fukuda type for log canonical pairs.

Contents

1. Introduction 1
2. LMMP for log canonical pairs 4
2.1. Lengths of extremal rays 8
3. Quasi-log varieties 9
4. Fundamental lemmas 18
5. Base point free theorem of Reid–Fukuda type 22
References 25

1. Introduction

In this paper, we discuss the log minimal model program (LMMP,
for short) for log canonical pairs. In Section 2, we will explicitly state
the LMMP for lc pairs. It is because we can not find it in the standard
literature. The cone and contraction theorems for lc pairs are buried in
[A, Section 5]. Therefore, we state them explicitly for lc pairs with the
additional estimate of lengths of extremal rays. We also write the flip
conjectures for lc pairs. We note that the flip conjecture I (existence
of an lc flip) is still open and that the flip conjecture II (termination
of a sequence of lc flips) follows from the termination of klt flips. We
give a proof of the flip conjecture I in dimension four.
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Theorem 1.1 (cf. Theorem 2.8). Log canonical flips exist in dimension

four.

Section 3 is a quick review of the theory of quasi-log varieties accord-
ing to Sections 4 and 5 of [A]. We think that the notion of quasi-log
varieties is indispensable for investigating lc pairs. Unfortunately, [A]
is not accessible and is not reader-friendly. In this section, we will
explain how to read [A] (see Remark 3.23). The reader can find that
the key points of the theory of quasi-log varieties in [A] are adjunction
and the vanishing theorem (see [A, Theorem 4.4]). Adjunction and the
vanishing theorems for quasi-log varieties follow from [A, 3. Vanishing
Theorems]. However, Section 3 of [A] contains various troubles and is
hard to read. Now we have [F6], which gives us sufficiently powerful
vanishing and torsion-free theorems for the theory of quasi-log vari-
eties. We succeed in removing all the troublesome problems for the
foundation of the theory of quasi-log varieties. It is one of the main
contributions of this paper and [F11]. In Section 4, we give some sup-
plementary results on the quasi-log resolutions. They are very useful
and seems to be indispensable for some applications, but missing in
[A]. We will need them in Section 5. By the results in Section 4, the
theory of quasi-log varieties becomes a useful theory. As a byproduct,
we have the following new definition of quasi-log varieties.

Definition 1.2 (Quasi-log varieties). A quasi-log variety is a scheme
X endowed with an R-Cartier R-divisor ω, a proper closed subscheme
X−∞ ⊂ X, and a finite collection {C} of reduced and irreducible sub-
varieties of X such that there is a proper morphism f : Y → X from
a simple normal crossing divisor Y on a smooth variety M satisfying
the following properties:

(0) there exists an R-divisor D on M such that Supp(D+Y ) is sim-
ple normal crossing on M and that D and Y have no common
irreducible components.

(1) f ∗ω ∼R KY + BY , where BY = D|Y .
(2) The natural map OX → f∗OY (p−(B<1

Y )q) induces an isomor-
phism

IX−∞
→ f∗OY (p−(B<1

Y )q − xB>1
Y y),

where IX−∞
is the defining ideal sheaf of X−∞.

(3) The collection of subvarieties {C} coincides with the image of
(Y, BY )-strata that are not included in X−∞.

Definition 1.2 is equivalent to Ambro’s original definition (see [A,
Definition 4.1]). However, we think Definition 1.2 is much better than
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Ambro’s. Once we adopt Definition 1.2, we do not need the notion of
normal crossing pairs to define quasi-log varieties and get flexibility in
the choice of quasi-log resolutions f : Y → X by Proposition 4.6. In
Section 5, we will try to prove the base point free theorem of Reid–
Fukuda type for quasi-log varieties. It is stated in [A, Theorem 7.2]
without proof. We will give a proof under some extra assumptions. As
a corollary, we obtain the following almost satisfactory statement.

Theorem 1.3 (cf. Theorem 5.4). Let (X, B) be an lc pair. Let L be a

π-nef Cartier divisor on X, where π : X → S is a projective morphism.

Assume that qL − (KX + B) is π-nef and π-log big for some positive

real number q. Then OX(mL) is π-generated for m � 0.

In [F8], we obtain an effective version of Theorem 1.3. We note that
we need Theorem 1.3 to prove the main theorem of [F8]. The reader
can find Angehrn–Siu type effective base point freeness for lc pairs in
[F9]. Note that this paper does not cover all the results in [A]. The
paper [F11] is a gentle introduction to the log minimal model program
for lc pairs. It can be read without referring [A] and this paper.

Acknowledgments. I was partially supported by the Grant-in-Aid
for Young Scientists (A) ]17684001 from JSPS. I was also supported
by the Inamori Foundation. I thank Hiromichi Takagi and Masayuki
Kawakita for discussions, comments, and questions. I would like to
thank Professor János Kollár for explaining how to construct reducible
surfaces whose log canonical rings are not finitely generated in MSRI.

We will work over the complex number field C throughout this pa-
per. But we note that by using the Lefschetz principle, we can extend
everything to the case where the base field is an algebraically closed
field of characteristic zero. We will use the following notation and the
notation in [KM] freely.

Notation. For an R-Weil divisor D =
∑r

j=1 djDj such that Di 6=

Dj for i 6= j, we define the round-up pDq =
∑r

j=1pdjqDj (resp. the

round-down xDy =
∑r

j=1xdjyDj), where for any real number x, pxq

(resp. xxy) is the integer defined by x ≤ xxy < x + 1 (resp. x − 1 <
xxy ≤ x). The fractional part {D} of D denotes D − xDy. We define

D=1 =
∑

dj=1

Dj, D≤1 =
∑

dj≤1

djDj,

D<1 =
∑

dj<1

djDj, and D>1 =
∑

dj>1

djDj.
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We call D a boundary (resp. subboundary) R-divisor if 0 ≤ dj ≤ 1
(resp. dj ≤ 1) for any j. Q-linear equivalence (resp. R-linear equivalence

of two Q-divisors (resp. R-divisors) B1 and B2 is denoted by B1 ∼Q

B2 (resp. B1 ∼R B2). For a proper birational morphism f : X →
Y , the exceptional locus Exc(f) ⊂ X is the locus where f is not an
isomorphism. Let X be a normal variety and let B be an effective
R-divisor on X such that KX + B is R-Cartier. Let f : Y → X be
a resolution such that Exc(f) ∪ f−1

∗ B has a simple normal crossing
support, where f−1

∗ B is the strict transform of B on Y . We write
KY = f ∗(KX + B) +

∑
i aiEi and a(Ei, X, B) = ai. We say that

(X, B) is log canonical (resp. Kawamata log terminal) (lc (resp. klt),
for short) if and only if ai ≥ −1 (resp. ai > −1) for any i. Note that
the discrepancy a(E, X, B) ∈ R can be defined for any prime divisor E
over X. Let (X, B) be an lc pair. If E is a prime divisor over X such
that a(E, X, B) = −1, then the center cX(E) is called an lc center of
(X, B).

2. LMMP for log canonical pairs

In this section, we explicitly state the log minimal model program
(LMMP, for short) for log canonical pairs. It is known to some experts
but we can not find it in the standard literature. The following cone
theorem is a consequence of Ambro’s cone theorem for quasi-log vari-
eties (see Theorem 5.10 in [A]). We will discuss the estimate of lengths
of extremal rays in the subsection 2.1. We think that the paper [F11]
may help the reader to understand Theorem 2.1.

Theorem 2.1 (Cone and contraction theorems). Let (X, B) be an lc

pair, B an R-divisor, and f : X → Y a projective morphism between

algebraic varieties. Then we have

(i) There are (countably many) rational curves Cj ⊂ X such that

f(Cj) =point, 0 < −(KX + B) · Cj ≤ 2 dim X, and

NE(X/Y ) = NE(X/Y )(KX+B)≥0 +
∑

R≥0[Cj].

(ii) For any ε > 0 and f -ample R-divisor H,

NE(X/Y ) = NE(X/Y )(KX+B+εH)≥0 +
∑

finite

R≥0[Cj].

(iii) Let F ⊂ NE(X/Y ) be a (KX +B)-negative extremal face. Then

there is a unique morphism ϕF : X → Z over Y such that

(ϕF )∗OX ' OZ , Z is projective over Y , and an irreducible

curve C ⊂ X is mapped to a point by ϕF if and only if [C] ∈ F .

The map ϕF is called the contraction of F .
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(iv) Let F and ϕF be as in (iii). Let L be a line bundle on X such

that (L · C) = 0 for every curve C with [C] ∈ F . Then there is

a line bundle LZ on Z such that L ' ϕ∗
FLZ .

Remark 2.2 (Lengths of extremal rays). In Theorem 2.1 (i), the esti-
mate −(KX +B)·Cj ≤ 2 dim X should be replaced by −(KX +B)·Cj ≤
dim X + 1. For toric varieties, this conjectural estimate and some gen-
eralizations were obtained in [F3] and [F4].

By the above cone and contraction theorems, we can easily see that
the LMMP, that is, a recursive procedure explained in [KM, 3.31],
works for log canonical pairs if the following two conjectures (Flip Con-
jectures I and II) hold.

Conjecture 2.3. ((Log) Flip Conjecture I: The existence of a (log)
flip). Let ϕ : (X, B) → W be an extremal flipping contraction of an

n-dimensional pair, that is,

(1) (X, B) is lc, B is an R-divisor,

(2) ϕ is small projective and ϕ has only connected fibers,

(3) −(KX + B) is ϕ-ample,

(4) ρ(X/W ) = 1, and

(5) X is Q-factorial.

Then there should be a diagram:

X 99K X+

↘ ↙
W

which satisfies the following conditions:

(i) X+ is a normal variety,

(ii) ϕ+ : X+ → W is small projective, and

(iii) KX+ +B+ is ϕ+-ample, where B+ is the strict transform of B.

We call ϕ+ : (X+, B+) → W a (KX + B)-flip of ϕ.

Note that to prove Conjecture 2.3 we can assume that B is a Q-
divisor, by perturbing B slightly. It is known that Conjecture 2.3
holds when dim X = 3 (see [FA, Chapter 8]). Moreover, if there exists
an R-divisor B′ on X such that KX + B′ is klt and −(KX + B′) is ϕ-
ample, then Conjecture 2.3 is true by [BCHM]. The following famous
conjecture is stronger than Conjecture 2.3. We will see it in Lemma
2.5.

Conjecture 2.4 (Finite generation). Let X be an n-dimensional smooth

projective variety and B a boundary Q-divisor on X such that SuppB



6 OSAMU FUJINO

is a simple normal crossing divisor on X. Assume that KX +B is big.

Then the log canonical ring

R(X, KX + B) =
⊕

m≥0

H0(X,OX(xm(KX + B)y))

is a finitely generated C-algebra.

Note that if there exists a Q-divisor B ′ on X such that KX + B′ is
klt and KX + B′ ∼Q KX + B, then Conjecture 2.4 holds by [BCHM].
See Remark 2.6.

Lemma 2.5. Let f : X → S be a proper surjective morphism between

normal varieties with connected fibers. We assume dim X = n. Let B
be a Q-divisor on X such that (X, B) is lc. Assume that KX + B is

f -big. Then the relative log canonical ring

R(X/S, KX + B) =
⊕

m≥0

f∗OX(xm(KX + B)y)

is a finitely generated OS-algebra if Conjecture 2.4 holds. In particular,

Conjecture 2.4 implies Conjecture 2.3.

Before we go to the proof of Lemma 2.5, we note one easy remark.

Remark 2.6. For a graded ring R =
⊕
m≥0

Rm and a positive integer

k, the truncated ring R(k) is defined by R(k) =
⊕
m≥0

Rkm. Then R is

finitely generated if and only if so is R(k). We consider ProjR when R
is finitely generated. We note that ProjR(k) = ProjR.

The following argument is well known to the experts.

Proof of Lemma 2.5. Since the problem is local, we can shrink S and
assume that S is affine. By compactifying X and S and by the desin-
gularization theorem, we can further assume that X and S are pro-
jective, X is smooth, B is effective, and SuppB is a simple normal
crossing divisor. Let A be a very ample divisor on S and H ∈ |rA|
a general member for r � 0. Note that KX + B + (r − 1)f ∗A is
big for r � 0 (cf. [KMM, Corollary 0-3-4]). Let m0 be a positive in-
teger such that m0(KX + B + f ∗H) is Cartier. By Conjecture 2.4,⊕
m≥0

H0(X,OX(mm0(KX + B + f ∗H))) is finitely generated. Thus, the

relative log canonical model X ′ over S exists. Indeed, by assuming that
m0 is sufficiently large and divisible, R(X, KX + B + f ∗H)(m0) is gen-
erated by R(X, KX +B +f ∗H)m0

and |m0(KX +B +(r−1)f ∗A)| 6= ∅.
Then X ′ = Proj

⊕
m≥0

H0(X,OX(mm0(KX + B + f ∗H))) and X ′ is the
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closure of the image of X by the rational map defined by the complete
linear system |m0(KX + B + rf ∗A)|. More precisely, let g : X ′′ → X
be the elimination of the indeterminacy of the rational map defined by
|m0(KX + B + rf ∗A)|. Let g′ : X ′′ → X ′ be the induced morphism
and h : X ′′ → S the morphism defined by the complete linear system
|m0g

∗f ∗A|. Then it is not difficult to see that h factors through X ′.
Therefore,

⊕
m≥0

f∗OX(mm0(KX +B)) is a finitely generated OS-algebra.

We finish the proof. �

The next theorem is an easy consequence of [BCHM], [AHK], [F1],
and [F2].

Theorem 2.7. Let (X, B) be a proper 4-dimensional lc pair such that

B is a Q-divisor and KX + B is big. Then the log canonical ring⊕
m≥0

H0(X,OX(xm(KX + B)y)) is finitely generated.

Proof. Without loss of generality, we can assume that X is smooth
projective and SuppB is simple normal crossing. Run a (KX + B)-
LMMP. Then we obtain a log minimal model (X ′, B′) by [BCHM]
and [AHK] with the aid of the special termination theorem (cf. [F5,
Theorem 4.2.1]). By [F2, Theorem 3.1], which is a consequence of
the main theorem in [F1], KX′ + B′ is semi-ample. In particular,⊕
m≥0

H0(X,OX(xm(KX + B)y)) '
⊕
m≥0

H0(X ′,OX′(xm(KX′ + B′)y)) is

finitely generated. �

As a corollary, we obtain the next theorem by Lemma 2.5.

Theorem 2.8. Conjecture 2.3 is true if dim X ≤ 4.

Let us go to the flip conjecture II.

Conjecture 2.9. ((Log) Flip Conjecture II: Termination of a sequence
of (log) flips). A sequence of (log) flips

(X0, B0) 99K (X1, B1) 99K (X2, B2) 99K · · ·

terminates after finitely many steps. Namely, there does not exist an

infinite sequence of (log) flips.

Note that it is sufficient to prove Conjecture 2.9 for any sequence of
klt flips. The termination of dlt flips with dimension ≤ n−1 implies the
special termination in dimension n. Note that we use the formulation
in [F5, Theorem 4.2.1]. The special termination and the termination of
klt flips in dimension n implies the termination of dlt flips in dimension
n. The termination of dlt flips in dimension n implies the termination
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of lc flips in dimension n. It is because we can use the LMMP for
Q-factorial dlt pairs in full generality by [BCHM] once we obtain the
termination of dlt flips. The reader can find all the necessary arguments
in [F5, 4.2, 4.4].

Remark 2.10 (Analytic spaces). The proofs of the vanishing theorems
in [F6] only work for algebraic varieties. Therefore, the cone, contrac-
tion, and base point free theorems stated here and in [F11] for lc pairs
hold only for algebraic varieties. Of course, all the results should be
proved for complex analytic spaces that are projective over any fixed
analytic spaces.

2.1. Lengths of extremal rays. In this subsection, we consider the
estimate of lengths of extremal rays. Related topics are in [BCHM, 3.8
and 3.9]. Let us recall the following easy lemma.

Lemma 2.11 (cf. [S, Lemma 1]). Let (X, B) be an lc pair, where B is

an R-divisor. Then there are positive real numbers ri and effective Q-

divisors Bi for 1 ≤ i ≤ l and a positive integer m such that
∑l

i=1 ri = 1,

KX +B =
∑l

i=1 ri(KX +Bi), (X, Bi) is lc, and m(KX +Bi) is Cartier

for any i.

The next result is essentially due to [K] and [S, Proposition 1].

Proposition 2.12. We use the notation in Lemma 2.11. Let (X, B)
be an lc pair, B an R-divisor, and f : X → Y a projective morphism

between algebraic varieteis. Let R be a (KX + B)-negative extremal

ray of NE(X/Y ). Then we can find a rational curve C on X such

that [C] ∈ R and −(KX + Bi) · C ≤ 2 dim X for any i. In particular,

−(KX+B)·C ≤ 2 dim X. More precisely, we can write −(KX+B)·C =∑l

i=1
rini

m
, where ni ∈ Z and ni ≤ 2m dim X for any i.

Proof. By replacing f : X → Y with the extremal contraction ϕR :
X → W over Y , we can assume that the relative Picard number
ρ(X/Y ) = 1. In particular, −(KX + B) is f -ample. Therefore, we can
assume that −(KX +B1) is f -ample and −(KX +Bi) = −si(KX +B1)
in N1(X/Y ) with si ≤ 1 for any i ≥ 2. Thus, it is sufficient to find a
rational curve C such that f(C) is a point and that −(KX + B1) ·C ≤
2 dimX. So, we can assume that KX + B is Q-Cartier and lc. By
[BCHM], there is a birational morphism g : (W, BW ) → (X, B) such
that KW + BW = g∗(KX + B), W is Q-factorial, BW is effective, and
(W, {BW}) is klt. By [K, Theorem 1], we can find a rational curve
C ′ on W such that −(KW + BW ) · C ′ ≤ 2 dim W = 2 dim X and that
C ′ spans a (KW + BW )-negative extremal ray. Note that Kawamata’s
proof works in the above situation with only small modifications. See
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the proof of Theorem 10-2-1 in [M] and Remark 2.13 below. By the
projection formula, the g-image of C ′ is a desired rational curve. So,
we finish the proof. �

Remark 2.13. Let (X, D) be an lc pair, D an R-divisor. Let φ :
X → Y be a projective morphism and H a Cartier divisor on X.
Assume that H − (KX + D) is f -ample. By Theorem 3.12 (ii) below,
Rqφ∗OX(H) = 0 for any q > 0 if X and Y are algebraic varieties. If this
vanishing theorem holds for analytic spaces X and Y , then Kawamata’s
original argument in [K] works directly for lc pairs. In that case, we
do not need the results in [BCHM] in the proof of Proposition 2.12.
We consider the proof of [M, Theorem 10-2-1] when (X, D) is lc such
that (X, {D}) is klt. We need R1φ∗OX(H) = 0 after shrinking X and
Y analytically. In our situation, (X, D − εxDy) is klt for 0 < ε � 1.
Therefore, H − (KX + D − εxDy) is φ-ample and (X, D − εxDy) is
klt for 0 < ε � 1. Thus, we can apply the analytic version of the
relative Kawamata–Viehweg vanishing theorem. So, we do not need
the analytic version of Theorem 3.12 (ii).

By Proposition 2.12, Lemma 2.6 in [B] holds for lc pairs. For the
proof, see [B, Lemma 2.6]. It may be useful for the MMP with scaling.

Proposition 2.14. Let (X, B) be an lc pair, B an R-divisor, and

f : X → Y a projective morphism between algebraic varieties. Let C
be an effective R-Cartier divisor on X such that KX + B + C is f -nef

and (X, B + C) is lc. Then, either KX + B is also f -nef or there is a

(KX + B)-negative extremal ray R such that (KX + B + λC) · R = 0,
where λ := inf{ t ≥ 0 | KX +B+tC is f -nef }. Of course, KX +B+λC
is f -nef.

3. Quasi-log varieties

In this section, we quickly review the theory of quasi-log varieties by
Ambro according to [A, Section 4]. This formulation is indispensable
for the proofs of the cone, contraction, and base point free theorems
for lc pairs. This section will help the reader to understand Ambro’s
ideas. If the reader is interested only in Theorem 2.1, then it may be
better to see [F11]. The following definition is due to Ambro (see [A,
Definition 4.1]).

Definition 3.1 (Quasi-log varieties). A quasi-log variety is a scheme
X endowed with an R-Cartier R-divisor ω, a proper closed subscheme
X−∞ ⊂ X, and a finite collection {C} of reduced and irreducible sub-
varieties of X such that there is a proper morphism f : (Y, BY ) → X



10 OSAMU FUJINO

from an embedded simple normal crossing pair satisfying the following
properties:

(1) f ∗ω ∼R KY + BY .
(2) The natural map OX → f∗OY (p−(B<1

Y )q) induces an isomor-
phism

IX−∞
→ f∗OY (p−(B<1

Y )q − xB>1
Y y),

where IX−∞
is the defining ideal sheaf of X−∞.

(3) The collection of subvarieties {C} coincides with the image of
(Y, BY )-strata that are not included in X−∞.

For the definition of simple normal crossing pairs, see Definition 3.8
below. We sometimes simply say that [X, ω] is a quasi-log pair. We use
the following terminology according to Ambro. The subvarieties C are
the qlc centers of X, X−∞ is the non-qlc locus of X, and f : (Y, BY ) →
X is a quasi-log resolution of X. We say that X has qlc singularities

if X−∞ = ∅. Note that a quasi-log variety X is the union of its qlc
centers and X−∞. A relative quasi-log variety X/S is a quasi-log variety
X endowed with a proper morphism π : X → S.

Remark 3.2. In [A, Definition 4.1], Ambro only required that f :
(Y, BY ) → X is a proper morphism from an embedded normal cross-
ing pair with the conditions (1), (2), and (3) in Definition 3.1. For
the definition of normal crossing pairs, see [A, Definition 2.3]. How-
ever, we can always construct an embedded simple normal crossing pair
(Y ′, BY ′) and a proper morphism f ′ : (Y ′, BY ′) → X with the above
conditions (1), (2), and (3) by blowing up M suitably, where M is the
ambient space of Y (see [A, p.218, embedded log transformations, and
Remark 4.2.(iv)]). Therefore, there are no differences between Defini-
tion 3.1 and [A, Definition 4.1]. If we adopt Ambro’s original definition,
then we often have to write “We can assume that (Y, BY ) is an em-
bedded simple normal crossing pair by taking suitable blow-ups of the
ambient space”in various arguments. We note that the proofs of the
vanishing and injectivity theorems on normal crossing pairs are much
harder than on simple normal crossing pairs (see [F6]). Therefore, there
are no advantages to adopt normal crossing pairs. See also Remark 3.9.

Remark 3.3. In Definition 3.1, we assume that ω is an R-Cartier R-
divisor. However, it may be better to see ω ∈ Pic(X)⊗ZR. It is because
the quasi-log canonical class ω is defined up to R-linear equivalence and
we often restrict ω to a subvariety of X.

Remark 3.4. By Definition 3.1, X has only qlc singularities if and only
if BY is a subboundary. We can easily see that X\X−∞ is semi-normal.
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Remark 3.5. To prove the cone and contraction theorems for lc pairs,
it is enough to treat quasi-log varieties with only qlc singularities. For
the details, see [F11].

To understand Definition 3.1, we have to recall the definitions of
simple normal crossing varieties and simple normal crossing pairs.

Definition 3.6 (Simple normal crossing varieties). A variety X has
normal crossing singularities if, for every closed point x ∈ X,

ÔX,x '
C[[x0, · · · , xN ]]

(x0 · · ·xk)

for some 0 ≤ k ≤ N , where N = dim X. Furthermore, if each irre-
ducible component of X is smooth, X is called a simple normal crossing

variety. If X is a normal crossing variety, then X has only Gorenstein
singularities. Thus, it has an invertible dualizing sheaf ωX . So, we
can define the canonical divisor KX such that ωX ' OX(KX). It is a
Cartier divisor on X and is well defined up to linear equivalence.

Definition 3.7 (Simple normal crossing divisors). Let X be a simple
normal crossing variety. We say that a Cartier divisor D is a normal

crossing divisor on X if, in the notation of Definition 3.6, we have

ÔD,x '
C[[x0, · · · , xN ]]

(x0 · · ·xk, xi1 · · ·xil)

for some {i1, · · · , il} ⊂ {k + 1, · · · , N}. Let ε0 : X0 → X be the
normalization and D a normal crossing divisor on X. If D0 = ε∗0D is
a simple normal crossing divisor on X0 in the usual sense, then D is
called a simple normal crossing divisor on X.

Definition 3.8 (Simple normal crossing pairs). We say that the pair
(X, B) is a simple normal crossing pair if the following conditions are
satisfied.

(1) X is a simple normal crossing variety, and
(2) B is an R-Cartier R-divisor whose support is a simple normal

crossing divisor on X.

We say that a simple normal crossing pair (X, B) is embedded if there
exists a closed embedding ι : X → M , where M is a smooth variety
of dimension dim X + 1. We put KX0 + Θ = ε∗0(KX + B), where
ε0 : X0 → X is the normalization of X. A stratum of (X, B) is an
irreducible component of X or the image of some lc center of (X0, Θ≤1)
on X. A Cartier divisor D on a simple normal crossing pair (X, B) is
called permissible with respect to (X, B) if D contains no strata of the
pair (X, B).
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Remark 3.9. By Proposition 4.2 below, we can assume that there
exists an R-divisor D on M , where M is the ambient space of Y , such
that Supp(D +Y ) is simple normal crossing on M and that BY = D|Y
in Definition 3.1. This fact, which is missing in [A] and is non-trivial,
is very useful and seems to be indispensable for some applications. We
will discuss the details in Section 4.

Remark 3.10 (Multicrossing vs simple normal crossing). In [A, Sec-
tion 2], Ambro discussed multicrossing singularities and multicrossing

pairs. However, we think that simple normal crossing varieties and
simple normal crossing divisors on them are sufficient for the later
arguments in [A]. Therefore, we did not introduce the notion of mul-

ticrossing singularities and their simplicial resolutions in [F6]. For the
theory of quasi-log varieties, we may not even need the notion of simple

normal crossing pairs. See Remark 3.9, Remark 4.9, and [F11].

Let us recall the definition of nef and log big divisors for the vanishing
theorem.

Definition 3.11 (Nef and log big divisors). Let f : (Y, BY ) → X
be a proper morphism from an embedded simple normal crossing pair
(Y, BY ). Let π : X → V be a proper morphism and H an R-Cartier
R-divisor on X. We say that H is nef and log big over V if and only if
H|C is nef and big over V for any C, where

(i) C is a qlc center when X is a quasi-log variety and f : (Y, BY ) →
X is a quasi-log resolution, or

(ii) C is the image of a stratum of (Y, BY ) when BY is a subbound-
ary.

If X is a quasi-log variety with only qlc singularities and f : (Y, BY ) →
X is a quasi-log resolution, then the above two cases (i) and (ii) coin-
cide. When (X, BX) is an lc pair, we choose a log resolution of (X, BX)
to be f : (Y, BY ) → X, where KY +BY = f ∗(KX +BX). We note that
if H is ample over V then it is obvious that H is nef and log big over
V .

The following theorem is one of the key results in the theory of quasi-
log varieties. It is a combination of Theorem 4.4 and Theorem 7.3 in
[A]. From now on, we adopt Definition 1.2 for the definition

of quasi-log varieties. We will see that Definition 1.2 is equivalent
to Definition 3.1 in Section 4.

Theorem 3.12 (Adjunction and vanishing theorem). Let [X, ω] be a

quasi-log pair and X ′ the union of X−∞ with a (possibly empty) union

of some qlc centers of [X, ω].
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(i) Assume that X ′ 6= X−∞. Then X ′ is a quasi-log variety, with

ω′ = ω|X′ and X ′
−∞ = X−∞. Moreover, the qlc centers of

[X ′, ω′] are exactly the qlc centers of [X, ω] that are included in

X ′.

(ii) Assume that π : X → S is proper. Let L be a Cartier divisor on

X such that L−ω is nef and log big over S. Then IX′ ⊗OX(L)
is π∗-acyclic, where IX′ is the defining ideal sheaf of X ′ on X.

Theorem 3.12 is the hardest part to prove in the theory of quasi-log
varieties. It is because it depends on the non-trivial injectivity and
vanishing theorems for simple normal crossing pairs. The adjunction
for normal divisors on normal varieties is investigated in [F10].

Proof. By blowing up the ambient space M of Y , we can assume that
the union of all strata of (Y, BY ) mapped to X ′, which is denoted by Y ′,
is a union of irreducible components of Y . We put KY ′ +BY ′ = (KY +
BY )|Y ′ and Y ′′ = Y −Y ′. We claim that [X ′, ω′] is a quasi-log pair and
that f : (Y ′, BY ′) → X ′ is a quasi-log resolution. By the construction,
f ∗ω′ ∼R KY ′ + BY ′ on Y ′ is obvious. We put A = p−(B<1

Y )q and
N = xB>1

Y y. We consider the following short exact sequence

0 → OY ′′(−Y ′) → OY → OY ′ → 0.

By applying ⊗OY (A − N), we have

0 → OY ′′(A − N − Y ′) → OY (A − N) → OY ′(A − N) → 0.

By applying f∗, we obtain

0 → f∗OY ′′(A − N − Y ′) → f∗OY (A − N) → f∗OY ′(A − N)

→ R1f∗OY ′′(A − N − Y ′) → · · · .

By Theorem 3.13 (i), the support of any non-zero local section of
R1f∗OY ′′(A−N −Y ′) can not be contained in X ′ = f(Y ′). Therefore,
the connecting homomorphism f∗OY ′(A−N) → R1f∗OY ′′(A−N −Y ′)
is a zero map. Thus,

0 → f∗OY ′′(A − N − Y ′) → IX−∞
→ f∗OY ′(A − N) → 0

is exact. We put IX′ = f∗OY ′′(A − N − Y ′). Then IX′ defines a
scheme structure on X ′. We define IX′

−∞

= IX−∞
/IX′ . Then IX′

−∞

'
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f∗OY ′(A−N) by the above exact sequence. By the following diagram:

0 // f∗OY ′′(A − N − Y ′)

��

// f∗OY (A − N)

��

// f∗OY ′(A − N) //

��

0

0 // f∗OY ′′(A − Y ′) // f∗OY (A) // f∗OY ′(A)

0 // IX′

OO

// OX

OO

// OX′
//

OO

0,

we can see that OX′ → f∗OY ′(p−(B<1
Y ′ )q) induces an isomorphism

IX′

−∞

→ f∗OY ′(p−(B<1
Y ′ )q − xB>1

Y ′ y). Therefore, [X ′, ω′] is a quasi-log

pair such that X ′
−∞ = X−∞. By the construction, the property about

qlc centers are obvious. So, we finish the proof of (i).
Let f : (Y, BY ) → X be a quasi-log resolution as in the proof of (i).

Then f ∗(L − ω) ∼R f ∗L − (KY ′′ + BY ′′) on Y ′′, where KY ′′ + BY ′′ =
(KY + BY )|Y ′′ . Note that

f ∗L−(KY ′′+BY ′′) = (f ∗L+A−N−Y ′)|Y ′′−(KY ′′+{BY ′′}+B=1
Y ′′−Y ′|Y ′′)

and that any stratum of (Y ′′, B=1
Y ′′ − Y ′|Y ′′) is not mapped to X−∞ =

X ′
−∞. Then by Theorem 3.13 (ii),

Rpπ∗(f∗OY ′′(f ∗L + A − N − Y ′)) = Rpπ∗(IX′ ⊗OX(L)) = 0

for any p > 0. Thus, we finish the proof of (ii). �

Theorem 3.13 (cf. [A, Theorems 3.2, 7.4]). Let (Y, S + B) be an

embedded simple normal crossing pair such that S + B is a boundary

R-divisor, S is reduced, and xBy = 0. Let f : Y → X be a proper

morphism and L a Cartier divisor on Y .

(i) Assume that H ∼R L−(KY +S+B) is f -semi-ample. Then ev-

ery non-zero local section of Rqf∗OY (L) contains in its support

the f -image of some strata of (Y, S + B).
(ii) Let π : X → V be a proper morphism and assume that H ∼R

f ∗H ′ for some π-nef and π-log big R-Cartier R-divisor H ′ on

X. Then, every non-zero local section of Rqf∗OY (L) contains

in its support the f -image of some strata of (Y, S + B), and

Rqf∗OY (L) is π∗-acyclic, that is, Rpπ∗R
qf∗OY (L) = 0 for any

p > 0.

For the rigorous proof of Theorem 3.13, see [F6, Theorems 5.7 and
5.16]. Ambro’s original proof of Theorem 3.13 in [A, Section 3] contains
various errors. It was a serious obstacle in the theory of quasi-log vari-
eties. The next example shows that the definition of quasi-log varieties
is reasonable.



NOTES ON THE LOG MINIMAL MODEL PROGRAM 15

Example 3.14. Let (X, BX) be an lc pair. Let f : Y → (X, BX)
be a log resolution such that KY + S + B = f ∗(KX + BX), where
Supp(S + B) is simple normal crossing, S is reduced, and xBy ≤ 0.
We put KS+BS = (KX+S+B)|S and consider the short exact sequence
0 → OY (p−Bq − S) → OY (p−Bq) → OS(p−BSq) → 0. Note that
BS = B|S since Y is smooth. By the Kawamata–Viehweg vanishing
theorem, R1f∗OY (p−Bq − S) = 0. This implies that f∗OS(p−BSq) '
Of(S) since f∗OY (p−Bq) ' OX . This argument is well known as the
proof of the connectedness lemma. We put W = f(S) and ω = (KX +
BX)|W . Then [W, ω] is a quasi-log pair with only qlc singularities and
f : (S, BS) → W is a quasi-log resolution.

Example 3.14 is a very special case of Theorem 3.12 (i), that is, ad-
junction from [X, KX + BX ] to [W, ω]. For other examples, see [F7,
§5], where we treat toric polyhedra as quasi-log varieties. In the proof
of Theorem 3.12 (i), we used Theorem 3.13 (i), which is a generaliza-
tion of Kollár’s injectivity theorem, instead of the Kawamata–Viehweg
vanishing theorem. The notion of lcs locus is important for X-method
on quasi-log varieties.

Definition 3.15 (LCS locus). The LCS locus of a quasi-log pair [X, ω],
denoted by LCS(X) or LCS(X, ω), is the union of X−∞ with all qlc
centers of X that are not maximal with respect to the inclusion. The
subscheme structure is defined in Theorem 3.12 (i), and we have a
natural embedding X−∞ ⊆ LCS(X). In [F11], LCS(X, ω) is denoted
by Nqklt(X, ω).

The next proposition is easy to prove. However, in some applications,
it may be useful. For the proof, see [A, Proposition 4.7].

Proposition 3.16. Let X be a quasi-log variety whose LCS locus is

empty. Then X is normal.

The following result is an easy consequence of the vanishing theo-
rem: Theorem 3.13. For much more general results, see [A, Section
6].

Proposition 3.17. Let (X, B) be a proper lc pair. Assume that −(KX+
B) is nef and log big and that (X, B) is not klt. Then there exists a

unique minimal lc center C0 such that every lc center contains C0. In

particular, LCS(X) = LCS(X, KX + B) is connected.

The next theorem easily follows from [F1, Section 2].

Theorem 3.18. Let (X, B) be a projective lc pair. Assume that KX+B
is numerically trivial. Then LCS(X) = LCS(X, KX + B) has at most

two connected components.
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Proof. By [BCHM], there is a birational morphism f : (Y, BY ) →
(X, B) such that KY + BY = f ∗(KX + B), Y is projective and Q-
factorial, BY is effective, and (Y, {BY }) is klt. Therefore, it is suffi-
cient to prove that xBY y has at most two connected components. We
assume that xBY y 6= 0. Then KY + {BY } is Q-factorial klt and is not
pseudo-effective. Apply the arguments in [F1, Proposition 2.1] with us-
ing the MMP with scaling (see [BCHM]). Then we obtain that xBY y

and LCS(X) have at most two connected components. �

The first benefit of the theory of quasi-log varieties is the following
base point free theorem. The proof in [A] is not difficult. Note that
the vanishing theorem (see Theorem 3.12 (ii)), which plays important
roles in that proof, is non-trivial and is very deep.

Theorem 3.19 (Base point free theorem for quasi-log varieties). As-

sume that X/S is a projective quasi-log variety. Let L be a π-nef

Cartier divisor on X such that

(i) qL − ω is π-ample for some positive real number q, and

(ii) OX−∞
(mL) is π|X−∞

-generated for m � 0.

Then OX(mL) is π-generated for m � 0.

Proof. We note that we can assume that S is affine without loss of
generality. The original proof consists of four steps. We repeat Step 3
in the proof of [A, Theorem 5.1] with slight modifications for the later
usage. For the other steps, see [A, Theorem 5.1]. When S is a point
and X−∞ = ∅, the proof of Theorem 3.19 is described in [F11].

Step 3. In this step, we prove that Bsπ|mL| is not contained in Bsπ|m
′L|

for m′ � 0 under the assumption that OX(mL) is π-generated on a
non-empty subset containing LCS(X, ω). Note that Bsπ|mL| is the lo-
cus on X where OX(mL) is not π-generated. Let f : (Y, BY ) → X be a
quasi-log resolution. For a general member D ∈ |mL|, we may assume
that (Y, BY + f ∗D) is a global embedded simple normal crossing pair
by Proposition 4.8 below (see also Definition 4.5). Let c be maximal
such that B′

Y = BY + cf ∗D is a subboundary above X \ X−∞. Then
f : (Y, B′

Y ) → X is a quasi-log resolution of a quasi-log variety X with
ω′ = ω + cD and X ′

−∞ = X−∞. Moreover, [X, ω′] has a qlc center C
that intersects Bsπ|mL|. (In [A], Ambro claims that C is included in
Bsπ|mL|. However, in general, it is not true.) Applying Step 1 with
q′ = q + cm, we infer that OX(m′L) is π-generated on C for m′ � 0.

We note that q′L − ω′ = qL − ω is π-ample. �

The following result is a corollary of Theorem 3.19. It is enough
powerful.
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Theorem 3.20 (Base point free theorem for lc pairs). Let (X, B) be

an lc pair. Let L be a π-nef Cartier divisor on X, where π : X → S
is a projective morphism. Assume that qL − (KX + B) is π-ample for

some positive real number q. Then OX(mL) is π-generated for m � 0.

In [A, Section 5], Ambro proved the cone theorem for quasi-log vari-
eties, whose proof is essentially the same as the usual one for klt pairs.
The paper [F11] will help the reader to understand it. So, we do not
repeat it here. For the precise statement, see [A, Theorem 5.10]. Here,
we discuss the following non-trivial example. The construction is the
same as Kollár’s construction of reducible surfaces whose log canonical
rings are not finitely generated.

Example 3.21. We consider the first projection p : P1 × P1 → P1.
We take a blow-up µ : Z → P1 × P1 at (0,∞). Let A∞ (resp. A0) be
the strict transform of P1 × {∞} (resp. P1 × {0}) on Z. We define
M = PZ(OZ ⊕OZ(A0)) and X is the restriction of M on (p ◦ µ)−1(0).
Then X is a simple normal crossing divisor on M . More explicitly, X
is a P1-bundle over (p◦µ)−1(0) and is obtained by gluing X1 = P1 ×P1

and X2 = PP1(OP1 ⊕ OP1(1)) along a fiber. In particular, [X, KX ]
is a quasi-log pair with only qlc singularities. By the construction,
M → Z has two sections. Let D+ (resp. D−) be the restriction of the
section of M → Z corresponding to OZ ⊕ OZ(A0) → OZ(A0) → 0
(resp. OZ ⊕ OZ(A0) → OZ → 0). Then it is easy to see that D+

is a nef Cartier divisor on X and D+ − KX is nef and log big with
respect to [X, KX ]. Therefore, the linear system |mD+| is free for
m � 0 by Theorem 5.1 below (see also Remark 3.22). We take a
general member B0 ∈ |mD+| with m ≥ 3. We consider KX + B
with B = D− + B0 + B1 + B2, where B1 and B2 are general fibers of
X1 = P1 × P1 ⊂ X. We note that B0 does not intersect D−. Then
(X, B) is an embedded simple normal crossing pair. In particular,
[X, KX + B] is a quasi-log pair with X−∞ = ∅. It is easy to see that
there exists only one curve C on X2 = PP1(OP1 ⊕ OP1(1)) ⊂ X such
that C · (KX + B) < 0. Note that (KX + B)|X1

is ample on X1. By
Ambro’s cone theorem (cf. [A, Theorem 5.10]), we obtain

NE(X) = NE(X)(KX+B)≥0 + R≥0[C].

By the contraction theorem, we have ϕ : X → W which contracts
C. We can easily see that W is a simple normal crossing surface but
KW + BW , where BW = ϕ∗B, is not Q-Cartier. Therefore, we can not
run the LMMP for reducible varieties.
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The above example implies that the cone and contraction theorems
for quasi-log varieties do not directly produce the LMMP for quasi-log
varieties.

Remark 3.22. In Example 3.21, M is a projective toric variety. Let E
be the section of M → Z corresponding to OZ ⊕OZ(A0) → OZ(A0) →
0. Then, it is easy to see that E is a nef Cartier divisor on M . There-
fore, the linear system |E| is free. In particular, |D+| is free on X.
Note that D+ = E|X . So, |mD+| is free for any m ≥ 0.

We close this section with my advice.

Remark 3.23 (How to read [A]). In my opinion, the main contribu-
tions of [A] are the definition of quasi-log varieties (see [A, Definition
4.1]), and adjunction and the vanishing theorem for quasi-log varieties
(see [A, Theorem 4.4]). To grasp the definition of quasi-log varieties,
we have to read various remarks in [A, Remark 4.2] and consider some
examples (see [A, Example 4.3]). We also recommend the reader to
see Section 4 below. The reader will find that it is better to adopt
Definition 1.2 instead of [A, Definition 4.1]. To justify the vanishing
theorem, the reader has to consult [F6]. It is technically the hardest
part to understand in the theory of quasi-log varieties. We do not have
to read the latter half of [A, Section 4] to understand Sections 5, 6,
and 7 in [A]. The arguments in [A, Section 5] seem to be more or less
well known to the experts. So, we did not touch Section 5 in [A] here.
The paper [F11] will help the reader to understand [A, Section 5].

4. Fundamental lemmas

We will discuss some fundamental results on the quasi-log resolu-
tions. They are missing in [A]. By the results in this section, the
theory of quasi-log varieties becomes much more useful. First, we treat
an elementary result on discrepancies.

Proposition 4.1. Let f : Z → Y be a proper birational morphism

between smooth varieties and let BY be an R-divisor on Y such that

SuppBY is simple normal crossing. Assume that KZ + BZ = f ∗(KY +
BY ) and that SuppBZ is simple normal crossing. Then we have

f∗OZ(p−(B<1
Z )q − xB>1

Z y) ' OY (p−(B<1
Y )q − xB>1

Y y).

Furthermore, let S be a simple normal crossing divisor on Y such that

S ⊂ SuppB=1
Y . Let T be the union of the irreducible components of

B=1
Z that are mapped into S by f . Assume that Suppf−1

∗ BY ∪ Exc(f)
is simple normal crossing on Z. Then we have

f∗OT (p−(B<1
T )q − xB>1

T y) ' OS(p−(B<1
S )q − xB>1

S y),
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where (KZ + BZ)|T = KT + BT and (KY + BY )|S = KS + BS.

Proof. By KZ + BZ = f ∗(KY + BY ), we obtain

KZ =f ∗(KY + B=1
Y + {BY })

+ f ∗(xB<1
Y y + xB>1

Y y) − (xB<1
Z y + xB>1

Z y) − B=1
Z − {BZ}.

If a(ν, Y, B=1
Y + {BY }) = −1 for a prime divisor ν over Y , then we

can check that a(ν, Y, BY ) = −1 by using [KM, Lemma 2.45]. Since
f ∗(xB<1

Y y + xB>1
Y y) − (xB<1

Z y + xB>1
Z y) is Cartier, we can easily see

that f ∗(xB<1
Y y+xB>1

Y y) = xB<1
Z y+xB>1

Z y+E, where E is an effective
f -exceptional divisor. Thus, we obtain

f∗OZ(p−(B<1
Z )q − xB>1

Z y) ' OY (p−(B<1
Y )q − xB>1

Y y).

Next, we consider

0 → OZ(p−(B<1
Z )q − xB>1

Z y − T )

→ OZ(p−(B<1
Z )q − xB>1

Z y) → OT (p−(B<1
T )q − xB>1

T y) → 0.

Since T = f ∗S − F , where F is an effective f -exceptional divisor, we
can easily see that

f∗OZ(p−(B<1
Z )q − xB>1

Z y − T ) ' OY (p−(B<1
Y )q − xB>1

Y y − S).

We note that

(p−(B<1
Z )q − xB>1

Z y − T ) − (KZ + {BZ} + (B=1
Z − T ))

= −f ∗(KY + BY ).

Therefore, every local section of R1f∗OZ(p−(B<1
Z )q− xB>1

Z y−T ) con-
tains in its support the f -image of some strata of (Z, {BZ}+B=1

Z −T )
by Theorem 3.13 (i).

Claim. No strata of (Z, {BZ} + B=1
Z − T ) are mapped into S by f .

Proof of Claim. Assume that there is a stratum C of (Z, {BZ}+B=1
Z −

T ) such that f(C) ⊂ S. Note that Suppf ∗S ⊂ Suppf−1
∗ BY ∪ Exc(f)

and SuppB=1
Z ⊂ Suppf−1

∗ BY ∪ Exc(f). Since C is also a stratum of
(Z, B=1

Z ) and C ⊂ Suppf ∗S, there exists an irreducible component G
of B=1

Z such that C ⊂ G ⊂ Suppf ∗S. Therefore, by the definition of
T , G is an irreducible component of T because f(G) ⊂ S and G is an
irreducible component of B=1

Z . So, C is not a stratum of (Z, {BZ} +
B=1

Z − T ). It is a contradiction. �

On the other hand, f(T ) ⊂ S. Therefore,

f∗OT (p−(B<1
T )q − xB>1

T y) → R1f∗OS(p−(B<1
T )q − xB>1

T y − T )
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is a zero map by the assumption on the strata of (Z, B=1
Z − T ). Thus,

f∗OT (p−(B<1
T )q − xB>1

T y) ' OS(p−(B<1
S )q − xB>1

S y).

We finish the proof. �

The next proposition is the main result in this section. Proposition
4.1 becomes very powerful if it is combined with Proposition 4.2. See
Proposition 4.6 below.

Proposition 4.2. In Definition 3.1, let M be the ambient space of

Y . We can assume that there exists an R-divisor D on M such that

Supp(D + Y ) is simple normal crossing and BY = D|Y .

Proof. We can construct a sequence of blow-ups Mk → Mk−1 → · · · →
M0 = M with the following properties.

(i) σi+1 : Mi+1 → Mi is the blow-up along a smooth irreducible
component of SuppBYi

for any i ≥ 0,
(ii) we put Y0 = Y , BY0

= BY , and Yi+1 is the strict transform of
Yi for any i ≥ 0,

(iii) we define KYi+1
+ BYi+1

= σ∗
i+1(KYi

+ BYi
) for any i ≥ 0,

(iv) there exists an R-divisor D on Mk such that Supp(Yk + D) is
simple normal crossing on Mk and that D|Yk

= BYk
, and

(v) σ∗OYk
(p−(B<1

Yk
)q − xB>1

Yk
y) ' OY (p−(B<1

Y )q − xB>1
Y y), where

σ : Mk → Mk−1 → · · · → M0 = M .

We note that we can directly check σi+1∗OYi+1
(p−(B<1

Yi+1
)q−xB>1

Yi+1
y) '

OYi
(p−(B<1

Yi
)q − xB>1

Yi
y) for any i ≥ 0 by computations similar to the

proof of Proposition 4.1. We replace M and (Y, BY ) with Mk and
(Yk, BYk

). �

Remark 4.3. In the proof of Proposition 4.2, Mk and (Yk, BYk
) depend

on the order of blow-ups. If we change the order of blow-ups, we have
another tower of blow-ups σ′ : M ′

k → M ′
k−1 → · · · → M ′

0 = M , D′, Y ′
k

on M ′
k, and D′|Y ′

k
= BY ′

k
with the desired properties. The relationship

between Mk, Yk, D and M ′
k, Y

′
k, D

′ is not clear.

The following corollary is obvious by Proposition 4.1.

Corollary 4.4. Let X be a normal variety and let B be an R-divisor

on X such that KX + B is R-Cartier. Let fi : Yi → X be a log

resolution of (X, B) for i = 1, 2. We put KYi
+ BYi

= f ∗
i (KX + B).

Then fi : (Yi, BYi
) → X defines a quasi-log structure on [X, KX +B] for

i = 1, 2. By taking a common log resolution of (Y1, BY1
) and (Y2, BY2

)
suitably and applying Proposition 4.1, we can see that these two quasi-

log structures coincide. Moreover, let X ′ be the union of X−∞ with

a union of some qlc centers of [X, KX + B]. Then we can see that
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f1 : (Y1, BY1
) → X and f2 : (Y2, BY2

) → X induce the same quasi-log

structure on [X ′, (KX + B)|X′ ] by Proposition 4.1.

Before we go further, let us introduce the notion of global embedded

simple normal crossing pairs. A global embedded simple normal cross-
ing pair is a special case of Ambro’s embedded simple normal crossing
pairs (see Definition 3.8).

Definition 4.5 (Global embedded simple normal crossing pairs). Let
Y be a simple normal crossing divisor on a smooth variety M and let D
be an R-divisor on M such that Supp(D+Y ) is simple normal crossing
and that D and Y have no common irreducible components. We put
BY = D|Y and consider the pair (Y, BY ). We call (Y, BY ) a global

embedded simple normal crossing pair.

The final results in this section are very useful and indispensable for
some applications.

Proposition 4.6. Let [X, ω] be a quasi-log pair and let f : (Y, BY ) →
X be a quasi-log resolution. Assume that (Y, BY ) is a global embedded

simple normal crossing pair as in Definition 4.5. Let σ : N → M
be a proper birational morphism from a smooth variety N . We define

KN + DN = σ∗(KM + D + Y ) and assume that Suppσ−1
∗ (D + Y ) ∪

Exc(σ) is simple normal crossing on N . Let Z be the union of the

irreducible components of D=1
N that are mapped into Y by σ. Then

f ◦σ : (Z, BZ) → X is a quasi-log resolution of [X, ω], where KZ+BZ =
(KN + DN)|Z.

The proof of Proposition 4.6 is obvious by Proposition 4.1.

Remark 4.7. In Proposition 4.6, σ : (Z, BZ) → (Y, BY ) is not nec-
essarily a composition of embedded log transformations and blow-ups
whose centers contain no “strata”(see [A, Section 2]). Compare Propo-
sition 4.6 with [A, Remark 4.2.(iv)].

Proposition 4.8. Let f : (Y, BY ) → X be a quasi-log resolution of a

quasi-log pair [X, ω], where (Y, BY ) is a global embedded simple normal

crossing pair as in Definition 4.5. Let E be a Cartier divisor on X such

that SuppE contains no qlc centers of [X, ω]. By blowing up M , the

ambient space of Y , inside Suppf ∗E, we can assume that (Y, BY +f ∗E)
is a global embedded simple normal crossing pair.

Proof. First, we take a blow-up of M along f ∗E and apply Hironaka’s
resolution theorem to M . Then we can assume that there exists a
Cartier divisor F on M such that Supp(F ∩ Y ) = Suppf ∗E. Next, we
apply Szabó’s resolution lemma to Supp(D + Y + F ) on M . Thus, we
obtain the desired properties by Proposition 4.1. �
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Remark 4.9. By Remark 4.3, Propositions 4.1, 4.6, and 4.8, it is
better to adopt Definition 1.2 instead of Definition 3.1. If we start
with Definition 1.2, we do not have to introduce the notion of simple

normal crossing pairs. Definition 4.5 is sufficient for our purposes.

5. Base point free theorem of Reid–Fukuda type

One of my motivations to study [A] is to understand [A, Theorem
7.2], which is a complete generalization of [F2]. The following theorem
is a special case of Theorem 7.2 in [A], which was stated without proof.
Here, we will reduce it to Theorem 3.19 by using Kodaira’s lemma.

Theorem 5.1. (Base point free theorem of Reid–Fukuda type). Let

[X, ω] be a quasi-log pair with X−∞ = ∅, π : X → S a projective
morphism, and L a π-nef Cartier divisor on X such that qL−ω is nef

and log big over S for some positive real number q. Then OX(mL) is

π-generated for m � 0.

Remark 5.2. In [A, Section 7], Ambro said that the proof of [A,
Theorem 7.2] is parallel to [A, Theorem 5.1]. However, I could not
check it. Steps 1, 2, and 4 in the proof of [A, Theorem 5.1] work
without any modifications. In Step 3 (see the proof of Theorem 3.19),
q′L − ω′ is π-nef, but I think that q′L − ω′ = qL − ω is not always log
big over S with respect to [X, ω′]. So, we can not directly apply the
argument in Step 1 to this new quasi-log pair [X, ω′].

Proof. We divide the proof into three steps.

Step 1. We take an irreducible component X ′ of X. Then X ′ has a
natural quasi-log structure induced by X (see Theorem 3.12 (i)). By
the vanishing theorem (see Theorem 3.12 (ii)), we have R1π∗(IX′ ⊗
OX(mL)) = 0 for m ≥ q. Therefore, we obtain that π∗OX(mL) →
π∗OX′(mL) is surjective for m ≥ q. Thus, we can assume that X is
irreducible for the proof of this theorem by the following commutative
diagram.

π∗π∗OX(mL) −−−→ π∗π∗OX′(mL) −−−→ 0y
y

OX(mL) −−−→ OX′(mL) −−−→ 0

Step 2. Without loss of generality, we can assume that S is affine.
Since qL − ω is nef and big over S, we can write qL − ω ∼R A + E
by Kodaira’s lemma, where A is a π-ample Q-Cartier Q-divisor on X
and E is an effective R-Cartier R-divisor on X. We note that X is
projective over S and that X is not necessarily normal. By Lemma 5.3
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below, we have a new quasi-log structure on [X, ω̃], where ω̃ = ω + εE,
for 0 < ε � 1.

Step 3. By the induction on the dimension, OLCS(X,ω)(mL) is π-generated
for m � 0. Note that π∗OX(mL) → π∗OLCS(X,ω)(mL) is surjective
for m ≥ q by the vanishing theorem (see Theorem 3.12 (ii)). Then
OLCS(X,eω)(mL) is π-generated for m � 0 by the above lifting result and
by Lemma 5.3. In particular, O eX−∞

(mL) is π-generated for m � 0.

We note that qL − ω̃ ∼R (1 − ε)(qL − ω) + εA is π-ample. Therefore,
by Theorem 3.19, we obtain that OX(mL) is π-generated for m � 0.

We finish the proof. �

Lemma 5.3. Let [X, ω] be a quasi-log pair with X−∞ = ∅. Let E be

an effective R-Cartier R-divisor on X. Then [X, ω + εE] is a quasi-log

pair with the following properties for 0 < ε � 1.

(i) We put [X, ω̃] = [X, ω + εE]. Then [X, ω̃] is a quasi-log pair

and LCS(X, ω̃) = LCS(X, ω) as closed subsets of X.

(ii) There exist natural surjective homomorphisms OLCS(X,eω) → OLCS(X,ω) →

0 and OLCS(X,eω) → O eX−∞

→ 0, that is, LCS(X, ω) and X̃−∞

are closed subschemes of LCS(X, ω̃), where X̃−∞ is the non-qlc

locus of [X, ω̃].

Proof. Let f : (Y, BY ) → X be a quasi-log resolution of [X, ω]. We can
assume that (Y, BY ) is a global embedded simple normal crossing pair
as in Definition 4.5 and that the union of all strata of (Y, BY ) mapped
into LCS(X, ω), which we denote by Y ′, is a union of irreducible com-
ponents of Y . We put Y ′′ = Y − Y ′. Then f∗OY ′′(A − Y ′|Y ′′) is
ILCS(X,ω), that is, the defining ideal sheaf of LCS(X, ω) on X, where
A = p−(B<1

Y )q. For the details, see the proof of Theorem 3.12 (i).

Claim (cf. Proposition 4.8). By modifying M birationally, we can as-

sume that (f ′′)∗E + BY ′′ has a simple normal crossing support on Y ′′,

where f ′′ = f |Y ′′ and KY ′′ + BY ′′ = (KY + BY )|Y ′′ .

Proof of Claim. First, we note that (f ′′)∗E contains no strata of Y ′′.

We can construct a proper birational morphism h : M̃ → M from a

smooth variety M̃ such that KfM
+DfM

= h∗(KM +Y +D), h−1((f ′′)∗E)

is a divisor on M̃ , and Exc(h) ∪ Supph−1
∗ (Y + D) ∪ h−1((f ′′)∗E) is

simple normal crossing on M̃ . By Szabó’s resolution lemma, we can

assume that h is an isomorphism outside h−1((f ′′)∗E). Let Ỹ be the
union of the irreducible components of D=1

fM
that are mapped into Y .

By Proposition 4.1, we can replace M , Y , and D with M̃ , Ỹ , and

D̃ = DfM
− Ỹ . �
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We put B̃ = (f ′′)∗E and consider f ′′ : (Y ′′, BY ′′ + εB̃) → X, where
KY ′′ + BY ′′ = (KY + BY )|Y ′′ . Then we have (f ′′)∗(ω + εE) ∼R KY ′′ +

BY ′′ + εB̃ and this gives a desired quasi-log structure on [X, ω̃], with
ω̃ = ω + εE, if 0 < ε � 1. �

As a special case, we obtain the following base point free theorem of
Reid–Fukuda type for log canonical pairs.

Theorem 5.4. (Base point free theorem of Reid–Fukuda type for lc
pairs). Let (X, B) be an lc pair. Let L be a π-nef Cartier divisor on X,

where π : X → S is a projective morphism. Assume that qL−(KX +B)
is π-nef and π-log big for some positive real number q. Then OX(mL)
is π-generated for m � 0.

We believe that the above theorem holds under the assumption that
π is only proper. However, our proof needs projectivity of π.

Remark 5.5. In Theorem 5.4, if LCS(X, ω), where ω = KX + B, is
projective over S, then we can prove Theorem 5.4 under the weaker
assumption that π : X → S is only proper. It is because we can apply
Theorem 5.1 to LCS(X, ω). So, we can assume that OX(mL) is π-
generated on a non-empty open subset containing LCS(X, ω). In this
case, we can prove Theorem 5.4 by applying the usual X-method to L
on (X, B). We note that LCS(X, ω) is always projective over S when
dim LCS(X, ω) ≤ 1. The reader can find a different proof in [Fk] when
(X, B) is a log canonical surface, where Fukuda used the MMP with
scaling for dlt surfaces.

Finally, we explain the reason why we assumed that X−∞ = ∅ and
π is projective in Theorem 5.1.

Remark 5.6 (Why X−∞ is empty?). Let C be a qlc center of [X, ω].
Then we have to consider a quasi-log variety X ′ = C ∪ X−∞ for the
inductive arguments. In general, X ′ is reducible. It sometimes happens
that dim C < dim X−∞. We do not know how to apply Kodaira’s
lemma to reducible varieties. So, we assume that X−∞ = ∅ in Theorem
5.1.

Remark 5.7 (Why π is projective?). We assume that S is a point in
Theorem 5.1 for simplicity. If X−∞ = ∅, then it is enough to treat
irreducible quasi-log varieties by Step 1. Thus, we can assume that X
is irreducible. Let f : Y → X be a proper birational morphism from
a smooth projective varieties. If X is normal, then H0(X,OX(mL)) '
H0(Y,OY (mf ∗L)) for any m ≥ 0. However, X is not always normal
(see Example 5.8 below). So, it sometimes happens that OY (mf ∗L)
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has many global sections but OX(mL) has only a few global sections.
Therefore, we can not easily reduce the problem to the case when X
is projective. This is the reason why we assume that π : X → S is
projective.

Example 5.8. Let M = P2 and let X be a nodal curve on M . Then
(M, X) is an lc pair. By Example 3.14, [X, KX ] is a quasi-log variety
with only qlc singularities. In this case, X is irreducible, but it is not
normal.
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