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1. introduction

1. There are curves called stable curves of Deligne-Mumford. We know
first smooth curves, then comes stable curves, relatively simple curves
with mild singularities and finite automorphism.

2. The moduli Mg of stable curves of genus g, it is now known to be a
projective scheme.

3. The moduli Mg of smooth curves of genus g is not compact, only
quasi-projective. It is compactified as the moduli Mg of stable curves
of genus g.

4. we wish to do the same for the moduli of abelian varieties AV.

2. Compactifications

1. There are many compactifications of the moduli of abelian varieties
2. Satake, Igusa
3. Mumford
4. FaltingsChai
5. However these are not compactification as the moduli of compact ob-

jects
6. I wish to construct a unique canonical compactification of the moduli of

abelian varieties as the the moduli of compact objects, abelian varieties
and their limits with extra structure, say, with non-commutative level
structure

7. The compact objects are PSQAS, and actually we can construct a
projective fine moduli scheme of the compact objects PSQASes.

3. Hesse cubics

3.1. Definition.
1. Let me give an example of the compactification
2. It is the moduli of Hesse cubics
3. Hesse cubic is thecurve defined by the equation
4. It is nonsingular elliptic curve for geenral μ, say, if μ �= ∞ or if μ3 �= 1
5. if μ = ∞ or if μ3 �= 1 then it is a 3-gon,
6. if nonsingular, it contains 9 flexes K, a constant set independent of μ,

hence any C(μ) contains K
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7. over C, Let E = C/Z + Zω, a 1-dim torus,

θk =
∑
m∈Z

e2πi(3m+k)2ω/6+2πi(3m+k)z)

8. let xk = θk, and K is the image of 3-torsions. θk satisfy the equation
of Hesse cubics.

3.2. Moduli.
1. Let us consider the moduli problem of the pair (C(μ),K)
2. two pairs (C(μ),K) and (C(μ′),K) are isom. iff

there is isom f : C(μ) → C(μ′) such that f is the identity of K.
3. Then (C(μ),K) and (C(μ′),K) are isom. iff μ = μ′.
4. because the isom f is 3 × 3 matrix, which fixes K, and sends 9 triple

tangents to 9 triple tangents, it turns out to be the identity
5. Thus the set of isom of (C(μ),K) is just the set of μ, P1.

4. Noncommutative level structure

4.1. A new difficulty.
1. in higer dimension the similar moduli theory like (C(μ),K) leads us to

a nonseparated moduli
2. because the degenerate abelian variety may be reducible in general,

and the embeddings of K into them may not be equivalent to each
other.

3. we should give up the embedded subscheme K
4. instead we consider the action which K induces on H0(C,OC (1))
5. This is the Heisenberg group and Schrödindger representatioin

4.2. Non-commutative interpretation.
1. any x ∈ K is a 3-torsion,
2. translation by any x ∈ K is lifted to γx ∈ GL(3)
3. translation by 1/3 is lifted to σ

(Recall that xk is theta)
θk(z + 1/3) = ζk

3 θk(z)
4. translation by 1/3 is lifted to τ

[θ0, θ1, θ2](z + ω/3) = [θ1, θ2, θ0](z)
5. σ(xk) = ζkxk

6. τ(xk) = xk+1.
7. G(K) = 〈σ, τ〉 is a subgroup of GL(3),
8. This is a particular case of the following general



COMPACTIFICATION OF THE MODULI SPACE OF ABELIAN VARIETIES 3

4.3. Heisenberg group.

Definition 4.4. G(K) = GH : Heisenberg group;
UH : Schrödinger representation

K = H ⊕H∨,H finite abelian, N = |H|
GH = {(a, z, α);a ∈ μN , z ∈ H,α ∈ H∨},

(a, z, α) · (b,w, β) = (abβ(z), z + w,α + β),

V : = VH = O[H∨],

(a, z, α)v(γ) = aγ(z)v(α + γ)

The action of G(K) on V is denoted UH , O = ON = Z[ζN , 1/N ].
In the Hesse cubics case, O := Z[ζ3, 1/3], H = H∨ = Z/3Z, we identify

G(3) with G(K):

σ = (1, 1, 0), τ = (1, 0, 1) ∈ G(K),N = 3.

VH = O[H∨] = O · v(0) ⊕O · v(1) ⊕O · v(2)

4.5. New formulation.
1. classical level 3 str. = Fix the 3-division points K
2. new level 3 str.=Fix the matrix form of G(K) on V 	 H0(C,L)
3. Let C: any smooth cubic, L = OC(1), Then the pair (C,L) always has

a G(K)-action τ

Definition 4.6. For C any cubic with L = OC(1), (C,ψ, τ) is a level-G(K)
structure if

1. τ is a G(K)-action on the pair (C,L),
2. ψ : C → P(VH) = P2 is the inclusion (it is a G(K)-equivariant closed

immersion by τ)
Define : (C,ψ, τ) 	 (C ′, ψ′, τ ′) isom. iff
∃ (f, F ) : (C,L) → (C ′, L′) G(K)-isom. with φ′ · f = φ
(This is equivalent to f|K = idK in the classical case.)
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3. The second talk — Stable reduction theorem

Definition 3.1. G(K) = GH : Heisenberg group;
UH : Schrödinger representation

K = H ⊕H∨,H finite abelian, N = |H|
H = H(e) = ⊕g

i=1(Z/eiZ), with ei|ei+1,

GH = {(a, z, α);a ∈ μN , z ∈ H,α ∈ H∨},
(a, z, α) · (b,w, β) = (abβ(z), z +w,α + β),

V : = VH = O[H∨],

(a, z, α)v(γ) = aγ(z)v(α + γ)

The action of G(K) on V is denoted UH , O = ON = Z[ζN , 1/N ].
In the Hesse cubics case, O := Z[ζ3, 1/3], H = H∨ = Z/3Z, we identify

G(3) with G(K):

σ = (1, 1, 0), τ = (1, 0, 1) ∈ G(K),N = 3.

VH = O[H∨] = O · v(0) ⊕O · v(1) ⊕O · v(2)

3.2. Now we wish to construct limits of abelian schemes, PSQASes and
TSQASes. We consider mainly emin(K) := e1 ≥ 3.

Let R be a CDVR, and k(η) the fraction field of R. We start with
1. an abelian scheme (Gη,Lη) and a pol. morphism

λ(Lη) :Gη → Gt
η := Pic 0(Gη),

a �→ T ∗
a (Lη) ⊗ L−1

η

2. let Kη =: ker(Lη),
3. assume chara. k(0) = R/mR is prime to |Kη|,
4. over O := ON , N =

√|Kη|, we may assume
Kη =: ker(Lη) 	 K = H(e) ⊕H(e)∨, (∃e)

5. =⇒ G(K) acts on the pair (Gη ,Lη),
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Then we have a stable reduction theorem

Theorem 3.3. (A refined version of Alexeev-Nakamura’s stable reduction
theorem) ([AN99], [N99]) Assume emin(K) ≥ 3. ∃ proper flat projective
schemes (Q,LQ) (PSQAS) and (P,LP ) (TSQAS) over R, by a finite base
change if necessary, such that
(0) (Qη,Lη) 	 (Pη ,Lη) 	 (Gη,Lη),
(1) (P,LP ) is the normalization of (Q,LQ),
(2) P0 is reduced,
(3) LQ is very ample,
(4) G(K) acts on (Q,LQ) and (P,LP ) extending the action of it on (Gη ,Lη),

Definition 3.4. The triple (X,φ, τ) or (X,L, φ, τ) is
a PSQAS with level-G(K) str. if
1. τ is a G(K)-action on the pair (X,L),
2. φ : X → P(V ) a G(K)-equiv. closed immersion

such that φ∗ : V 	 H0(X,L), L = φ∗OP(V )(1).
Define : (X,φ, τ) 	 (X ′, φ′, τ ′) isom. iff

∃ (f, F ) : (X,L) → (X ′, L′) G(K)-isom. which makes the diagram
commutative

φ′ · (f, F ) = φ : (X,L) → (P(VH ), OP(1))

• Theorem proves that the moduli is proper,
• (Q0,L0): PSQAS — projectively stable quasi-abelian scheme,
• (P0,L0): TSQAS — torically stable quasi-abelian scheme (= variety),
• In dim. ≤ 4, any PSQAS=TSQAS, in dim. one it is a smooth elliptic

or an N -gon,
• In dim. 8, PSQAS �= TSQAS for E8,
• The next theorem proves that the moduli is separated.

Theorem 3.5. ([N99],[N10],[N13]) Suppose emin(K) ≥ 3. Then (Q,L) and
(P,L) are uniquely determined by (Gη ,Lη).

Suppose given (Q,L), (Q′,L′) over R, suppose

(Qη,Lη) 	k(η) (Q′
η,L′

η) =⇒ (Q,L) 	R (Q′,L′).

How can we construct (Q,L) ?
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4. PSQAS in dimension one

4.1. Hesse cubics and thetas. R be a CDVR, q uniformizer, I = qR.
(Say, y2 = x3 − x2 − q)

θ0(q, w) =
∑
m∈Z

q9m2
w3m

= 1 + q9w3 + q9w−3 + q36w6 + · · · ,
θ1(q, w) =

∑
m∈Z

q(3m+1)2w3m+1

= qw + q4w−2 + q16w4 + · · · ,
θ2(q, w) =

∑
m∈Z

q(3m+2)2w3m+2

= qw−1 + q4w2 + q16w−4 + q25w5 + · · · .
Hence

lim
q→0

[θ0, θ1, θ2](q,w) = [1, 0, 0]

This looks strange. But

θ0(q, q−1u) = 1 + q6u3 + · · · ,
θ1(q, q−1u) = u+ q6u−2 + · · · ,
θ2(q, q−1u) = q2u2 + · · · .

Hence

lim
q→0

[θ0, θ1, θ2](q, q−1u) = [1, u, 0]

lim
q→0

[θ0, θ1, θ2](q, q−2u) = lim
q→0

[1, q−1u, u2] = [0, 1, 0] in P2.

In fact,
Let w = q−2λu (a section over a finite extension of k(η)) and u ∈ R \ I.

lim
q→0

[θ0, θ1, θ2](q, q−2λu) =

{ [1, 0, 0] (if −1/2 < λ < 1/2),
[1, u, 0] (if λ = 1/2),
[0, 1, 0] (if 1/2 < λ < 3/2),
[0, 1, u] (if λ = 3/2),
[0, 0, 1] (if 3/2 < λ < 5/2).
[u, 0, 1] (if λ = 5/2),

(1)

Thus limτ→∞ of the image of E(τ) is the 3-gon x0x1x2 = 0.

Summary 4.2. 1. This is a set-theoretic computation.
2. The limit is computed from the distribution of minima of

(3m+ k)2 − (3m+ k)λ, (m ∈ Z, k = 0, 1, 2)

for fixed λ,
3. The distri. of minima is described by Delaunay decomposition:
4. Picture of Delaunay decom. (Tomorrow)
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Definition 4.3. For λ ∈ X ⊗Z R fixed, let

Fλ := a2 − 2λa (a ∈ X = Z).

We define a Delaunay cell

D(λ) := the convex closure of all a ∈ X
that attain the minimum of Fλ

For example, D(j + (1/2)) = [j, j + 1] and λ = j + (1/2), then (by for-
getting any 0)

[θ̄k]k=0,1,2 : = lim
q→0

[θk(q, q−2(j+(1/2))u))]k=0,1,2 = [ūj , ūj+1],

Hence we have the limit

{[ūj , ūj+1] ∈ P1; ū ∈ Gm} 	 Gm.

4.4. The complex case. Come back to Hesse cubics, θk.
1. θk is Y -inv. where Y = 3Z,
2. we wish to think

E(ω) 	 Proj C[θkϑ, k = 0, 1, 2]

=∗ Proj (C[[a(x)wxϑ, x ∈ X]])Y −inv

	∗ Proj C[a(x)wxϑ, x ∈ X])/Y

3. because U = Spec A is affine, G a finite group acting on U , then

U/G = Spec AG-inv.

4. Over C, a(x) ∈ C×, and

Gm = Proj C[a(x)wxϑ, x ∈ X],

because

Uk = Spec C[a(x)wxϑ/a(k)wkϑ;x ∈ X] = Spec C[w,w−1] = Gm,

5. Hence over C we may think so:

E(ω) 	 Gm/w �→ q6w

	 Gm/{w �→ q2yw; y ∈ 3Z}
	 (Proj C[a(x)wxϑ, x ∈ X])/Y.

4.5. The scheme-theoretic limit. What happes over a CDVR R ?
Let a(x) = qx2

for x ∈ X, X = Z, Y = 3Z.
1. let

R̃ := R[a(x)wxϑ, x ∈ X],

Z = Proj R̃/Y.

2. define Sy action of Y on R̃

Sy(a(x)wxϑ) = a(x+ y)wx+yϑ

by imitating θk.
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3.

X = Proj R[a(x)wxϑ, x ∈ X],

Un = Spec R[a(x)wx/a(n)wn, x ∈ X]

= Spec R[(a(n+ 1)/a(n))w, (a(n − 1)/a(n))w−1]

= Spec R[q2n+1w, q−2n+1w−1]

	 Spec R[xn, yn]/(xnyn − q2).

4. Let X0 := X ⊗R (R/qR) and Vn = X0 ∩ Un.
Then X0 is an infinite chain of P1:
Vn = Spec k[xn, yn]/(xnyn),

5. X0/Y : 3-gon

4.6. PSQASes in the general case. Let a CDVR R, k(η) = Frac(R).
We can const. similar degenerations of AV over R if ∃ a lattice X, Y ⊂ X
[X : Y ] <∞, and

a(x) ∈ k(η)×, (x ∈ X)
such that

(i) a(0) = 1,
(ii) b(x, y) := a(x+ y)a(x)−1a(y)−1 is a symm. bilin. form on X ×X,
(iii) B(x, y) := valq b(x, y) is pos. def.,

(iv)∗ B is even and valq a(x) = B(x, x)/2.
We assume here a stronger condition (4)∗ for simplicity.
1. These data do exist in general, (Faltings-Chai)
2. Suppose an abelian scheme (Gη ,Lη), λ(Lη) : Gη → Gt

η

3. (G,L):Neron model of Gη

4. totally degenerate case: Suppose G0 is a split torus over R/qR,
5. let Gfor : formal completion of G along G0,
6. Thm(SGA): Gfor is a formal torus over R

Gfor 	 Gg
m,R,for = Spf R[[wx;x ∈ X]]I-adic

7. any θ ∈ Γ(G,L) is a conv. Fourier series, θ ∈∈ R[[wx;x ∈ X]]I-adic,

Theorem 4.7. If G is totally deg., ∃ {a(x);x ∈ X} subj. to (i)-(iv)∗ and
(v)

Γ(Gη,Lη) =
⊕

x̄∈X/Y

k(η) θx̄

where

θx̄ : =
∑
y∈Y

a(x+ y)wx+y.

The condition (v) proves (Qη,Lη) 	 (Gη ,Lη) in Theorem 3.3.
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5. The third talk — The moduli space SQg,K

By Theorem 3.3, any level G(K) PSQAS (Q0,L0) is G(K)-equivariantly
embedded into P(V ) if emin(K) ≥ 3 where V = VH := ON [v(μ);μ ∈ H∨].

5.1. The G(K)-action and the G(K)-linearization. The G(K)-action
τ on (Z,L) is ess. the same as G(K)-linearization

{φg; g ∈ G(K)}
(i) φg : L → T ∗

g (L) is a bundle isomorphism,
(ii) φgh = T ∗

hφg ◦ φh for any g, h ∈ G(K)(T ).
the action τ on (Z,L) is recovered from it as follows : By the isomorphisms

L
φh−→ T ∗

h (L)
T ∗

h φg−→ T ∗
h (T ∗

g (L)) = T ∗
gh(L),

for x ∈ Z, ξ ∈ Lx,

τ(h) · (z, ξ) = (Th(z), φh(z) · ξ).
Then τ(gh) = τ(g)τ(h) iff φgh = T ∗

hφg ◦ φh.
Now we wish to define the action of G(K) on H0(Z,L):

ρL(g)(θ) := T ∗
g−1(φg(θ)), ρ(gh) = ρ(g)ρ(h).

For a level-G(K)-PSQAS
1. H0(Q0,L0) is an irreducible G(K)-module [NS06]
2. VH is a unique irred. repres. of wt one of G(K) over Z[ζN , 1/N ], hence
3. H0(Q0,L0) 	 VH over k = R/qR,

Lemma 5.2. Assume emin(K) ≥ 3. Then
for a level-G(K) PSQAS (Q0, φ0, τ0),
∃ a unique level-G(K) PSQAS (Q′

0, i, UH ) isom. to (Q0, φ0, τ0)
where i : Q′

0 = φ0(Q0) ⊂ P(VH ) : inclusion.

Proof. • Let (Q0,L0, φ0, τ0) = (Z,L, φ, τ).
• Since φ∗ : VH 	 H0(Z,L) isom, let

ρ(φ, τ)(g)(θ) := (φ∗)−1ρL(g)(θ)φ∗ θ ∈ H0(Z,L).

• ρ(φ, τ) ∈ End (VH).
• By Schur’s lemma, ∃ A ∈ GL(VH) s.t.

UH = A−1ρ(φ, τ)A = (φ∗A)−1ρL(g)(θ)(φ∗A).

• Hence choose ψ (closed imm.) by ψ∗ = φ∗A. Then UH = ρ(ψ, τ),
• let Z ′ = ψ(Z), i : Z ′ ⊂ P(VH). (Z ′, i, UH) equiv. to (Z,φ, τ)

• Hilbχ(n): the Hilbert scheme parametrizing subschemes (Z,L) of P(VH)
with χ(Z,Ln) = ng

√|K| =: χ(n)
• (Hilbχ(n))G(K)-inv : the G(K)-inv. part of it,
• Ag,K : moduli of level G(K)-AV
• By Lemma 5.2, Ag,K = {(A′

0, i, UH );A′
0 : AV},

• Ag,K ⊂ (Hilbχ(n))G(K)-inv,
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We define
SQg,K := Ag,K ⊂ (Hilbχ(n))G(K)-inv.

Theorem 5.3. Suppose H = ⊕g
i=1(Z/eiZ), emin ≥ 3. For any closed field

k of characteristic prime to |H| =
∏g

i=1 ei,

SQg,K(k) = {(Q0, i, UH );PSQAS, i : Q0 ⊂ P(VH)}
Proof. Choose x0 ∈ SQg,K . Then x0 = (Z0,L0) ∈ SQg,K , (Z0,L0) ∈ Hilb.

• ∃ a proper flat π : (Z,L) → Spec R s.t. (Zη ,Lη) is an UH(G(K))-inv.
level G(K)-AV,

• so is (Z,L).
• by Theorem 3.3, by a finite base change if necessary ∃ a level-G(K)

PSQAS (Q,LQ) s.t.

(Qη,LQ,η) 	 (Zη,Lη)

• By Lemma 5.2 and Theorem 3.3, we may assume (Q,L) : UH(G(K))-
invariant R-subsch. of P(VH )R.

• hence (Zη,Lη) = (Qη,LQ,η) by the uniqueness of Lemma 5.2.
• (Z,L) = (Q,L), hence x0 = (Z0,L0) = (Q0,L0) is a PSQAS.

Theorem 5.4. Suppose emin(K) ≥ 3. Let N :=
√|K|. The functor SQg,K

of level-G(K) PSQASes (Q,φ, τ) over reduced base schemes is represented
by the projective Z[ζN , 1/N ]-scheme SQg,K .

SQg,K(T ) = {(Q,φ, τ); PSQAS with level-G(K) str. over T}
(I will not explain in detail.)

6. The space of closed orbits

6.1. Example. Define the action of G = C∗ on C2:

(α, x, y) �→ (αx,α−1y) (α ∈ C∗)

The quotient space of C2 by C∗ is

C2//C∗ = Spec C[x, y]G-inv = Spec C[t]

Is this the space of orbits ?
∃ four kinds of orbits:

O(a, 1) = {(x, y) ∈ C2;xy = a} (a �= 0), (closed)

O(0, 1) = {(0, y) ∈ C2; y �= 0}, (not closed)

O(1, 0) = {(x, 0) ∈ C2;x �= 0}, (not closed)

O(0, 0) = {(0,0)} (closed)

Hence

C2//C∗ = C = {O(a, 1);a �= 0;O(0, 0)} = {closed orbit}
The quotient is the space of closed orbits.
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Theorem 6.2. (Seshadri-Mumford)
k closed, X : proj. scheme,
G reductive k-group acting on X,
Xss := {semistable point} open ⊂ X

Then ∃ a proj. k-scheme Y
∃ a G-inv. surj. morphism π : Xss → Y , such that

(1) for any k-scheme Z on which G acts,
for any G-equiv. morph. φ : Z → X
∃ a unique morphism φ̄ : Z → Y such that φ̄ = πφ,

(2) For a, b of Xss

π(a) = π(b) iff O(a) ∩O(b) �= ∅
where the closure is taken in Xss,

(3) Y (k) = {G-orbit closed in Xss}.
Denote Y by Xss//G.

Recall

Definition 6.3. Let p ∈ X.
(1) p is semistable if ∃ a G-inv. homog. polynomial F on X with F (p) �= 0,
(2) p is Kempf-stable (or closed orbit) if the orbit O(p) is closed in Xss,
(3) p is properly-stable if p is Kempf-stable and the stab. subgp of p in G

is finite.

Remark 6.4. If a, b ∈ Xps,

π(a) = π(b) ⇐⇒ O(a) ∩O(b) �= ∅
⇐⇒ O(a) ∩O(b) �= ∅
⇐⇒ O(a) = O(b).

Hence in particular, the quotient space Xps//G is an ordinary orbit space
Xps/G.

Theorem 6.5. ([Gieseker82], [Mumford77]) For a connected curve C of
genus ≥ 2, the following are equivalent:

1. C is a stable curve, (moduli-stable)
2. Any Hilbert point of C embedded by |mKC | is GIT-stable,
3. Any Chow point of C embedded by |mKC | is GIT-stable.

Theorem 6.6. Let K = H ⊕H∨, N = |H|, k closed, char .k �= N .
Suppose emin(K) ≥ 3, and (Z,L) ⊂ (P(V ), OP(VH )(1)).
Suppose that (Z,L) is smoothable into a level-G(K) AV.
Then the following are equiv.:
1. (Z,L) is a PSQAS, (moduli-stable)
2. any Hilbert point of (Z,L) are GIT-stable,
3. (Z,L) is stable under (a conjugate of) G(K).

Proof. (1)→(3) Easy.
(3)→(2) by (Kempf+L very ample).
We prove (2)→(1) : PSQAS has a closed orbit. Assume (2) for (Z,L).
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• By assumption ∃ (Q,L) over a CDVR R such that
(Qη,Lη) a level-G(K) AV and (Q0,L0) = (Z,L) =: a.

• O(a) : closed by assuming (2).
• by base change may assume

∃ a level-G(K) PSQAS (Q′,L′) s.t. (Q′
η,L′

η) = (Qη,Lη).
• Let (Q′

0,L′
0) =: b. Then π(a) = π(b). π : Xss → Xss//SL.

• Hence by Seshadri-Mumford, O(a) ∩O(b) �= ∅.
• both are closed orbits. O(a) ∩O(b) �= ∅.
• Hence O(a) = O(b). This shows (Z,L) 	 (Q′

0,L′
0) PSQAS.

Corollary 6.7. For any planar cubic C
1. (C,OC(1)) is a PSQAS, (smooth or a 3-gon)
2. any Hilbert point of (Z,L) are GIT-stable,
3. (C,OC(1)) is G(3)-stable, a Hesse cubic.

Remark 6.8. (Nakamura75) ∃ a 2-dim. PSQAS (Z < L) := (Q0,L0) a
union of 2n2 copies of P2 with X/Y = (Z/nZ)⊕2.

• a(x) = qx2−xy+y2
,

• ∃ two different embeddings of K = H ⊕H∨ ⊂ Q0, A,B
• A, B are translate over k(η),
• hence (Zη ⊃ Aη) = (Zη ⊃ Bη).
• (Z ⊃ A) and (Z ⊃ B) have diff. limit,
• Thus the moduli will be non-separetd.
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