COMPACTIFICATION OF THE MODULI SPACE OF ABELIAN VARIETIES KYOTO, 2013 JUNE 11-13

IKU NAKAMURA

1. INTRODUCTION

- 1. There are curves called stable curves of Deligne-Mumford. We know first smooth curves, then comes stable curves, relatively simple curves with mild singularities and finite automorphism.
- 2. The moduli \overline{M}_g of stable curves of genus g, it is now known to be a projective scheme.
- 3. The moduli M_g of smooth curves of genus g is not compact, only quasi-projective. It is compactified as the moduli \overline{M}_g of stable curves of genus g.
- 4. we wish to do the same for the moduli of abelian varieties AV.

2. Compactifications

- 1. There are many compactifications of the moduli of abelian varieties
- 2. Satake, Igusa
- 3. Mumford
- 4. FaltingsChai
- 5. However these are not compactification as the moduli of compact objects
- 6. I wish to construct a unique canonical compactification of the moduli of abelian varieties as the the moduli of compact objects, abelian varieties and their limits with extra structure, say, with non-commutative level structure
- 7. The compact objects are PSQAS, and actually we can construct a projective fine moduli scheme of the compact objects PSQASes.

3. Hesse cubics

3.1. Definition.

- 1. Let me give an example of the compactification
- 2. It is the moduli of Hesse cubics
- 3. Hesse cubic is the curve defined by the equation
- 4. It is nonsingular elliptic curve for geenral μ , say, if $\mu \neq \infty$ or if $\mu^3 \neq 1$
- 5. if $\mu = \infty$ or if $\mu^3 \neq 1$ then it is a 3-gon,
- 6. if nonsingular, it contains 9 flexes K, a constant set independent of μ , hence any $C(\mu)$ contains K

Date: June 26, 2013.

7. over C, Let $E = C/Z + Z\omega$, a 1-dim torus,

$$\theta_k = \sum_{m \in \mathbf{Z}} e^{2\pi i (3m+k)^2 \omega/6 + 2\pi i (3m+k)z)}$$

8. let $x_k = \theta_k$, and K is the image of 3-torsions. θ_k satisfy the equation of Hesse cubics.

3.2. Moduli.

- 1. Let us consider the moduli problem of the pair $(C(\mu), K)$
- 2. two pairs $(C(\mu), K)$ and $(C(\mu'), K)$ are isom. iff
 - there is isom $f: C(\mu) \to C(\mu')$ such that f is the identity of K.
- 3. Then $(C(\mu), K)$ and $(C(\mu'), K)$ are isom. iff $\mu = \mu'$.
- 4. because the isom f is 3×3 matrix, which fixes K, and sends 9 triple tangents to 9 triple tangents, it turns out to be the identity
- 5. Thus the set of isom of $(C(\mu), K)$ is just the set of μ , \mathbf{P}^1 .

4. Noncommutative level structure

4.1. A new difficulty.

- 1. in higer dimension the similar moduli theory like $(C(\mu), K)$ leads us to a nonseparated moduli
- 2. because the degenerate abelian variety may be reducible in general, and the embeddings of K into them may not be equivalent to each other.
- 3. we should give up the embedded subscheme K
- 4. instead we consider the action which K induces on $H^0(C, O_C(1))$
- 5. This is the Heisenberg group and Schrödindger representatioin

4.2. Non-commutative interpretation.

- 1. any $x \in K$ is a 3-torsion,
- 2. translation by any $x \in K$ is lifted to $\gamma_x \in GL(3)$
- 3. translation by 1/3 is lifted to σ (Recall that x_k is theta)
 - $\theta_k(z+1/3) = \zeta_3^k \theta_k(z)$
- 4. translation by 1/3 is lifted to τ $[\theta_0, \theta_1, \theta_2](z + \omega/3) = [\theta_1, \theta_2, \theta_0](z)$
- 5. $\sigma(x_k) = \zeta_k x_k$
- 6. $\tau(x_k) = x_{k+1}$.
- 7. $G(K) = \langle \sigma, \tau \rangle$ is a subgroup of GL(3),
- 8. This is a particular case of the following general

4.3. Heisenberg group.

Definition 4.4. $G(K) = G_H$: Heisenberg group; U_H : Schrödinger representation

$$K = H \oplus H^{\vee}, H \text{ finite abelian}, N = |H|$$
$$G_H = \{(a, z, \alpha); a \in \mu_N, z \in H, \alpha \in H^{\vee}\},$$
$$(a, z, \alpha) \cdot (b, w, \beta) = (ab\beta(z), z + w, \alpha + \beta),$$
$$V := V_H = \mathcal{O}[H^{\vee}],$$
$$(a, z, \alpha)v(\gamma) = a\gamma(z)v(\alpha + \gamma)$$

The action of G(K) on V is denoted U_H , $\mathcal{O} = \mathcal{O}_N = \mathbf{Z}[\zeta_N, 1/N].$

In the Hesse cubics case, $\mathcal{O} := \mathbf{Z}[\zeta_3, 1/3], H = H^{\vee} = \mathbf{Z}/3\mathbf{Z}$, we identify G(3) with G(K):

$$\sigma = (1, 1, 0), \tau = (1, 0, 1) \in G(K), N = 3.$$
$$V_H = \mathcal{O}[H^{\vee}] = \mathcal{O} \cdot v(0) \oplus \mathcal{O} \cdot v(1) \oplus \mathcal{O} \cdot v(2)$$

4.5. New formulation.

- 1. classical level 3 str. = Fix the 3-division points K
- 2. new level 3 str.=Fix the matrix form of G(K) on $V \simeq H^0(C, L)$
- 3. Let C: any smooth cubic, $L = O_C(1)$, Then the pair (C, L) always has a G(K)-action τ

Definition 4.6. For *C* any cubic with $L = O_C(1)$, (C, ψ, τ) is a level-G(K) structure if

- 1. τ is a G(K)-action on the pair (C, L),
- 2. $\psi: C \to \mathbf{P}(V_H) = \mathbf{P}^2$ is the inclusion (it is a G(K)-equivariant closed immersion by τ)

Define : $(C, \psi, \tau) \simeq (C', \psi', \tau')$ isom. iff

 $\exists \ (f,F): (C,L) \to (C',L') \quad G(K)\text{-isom. with } \phi' \cdot f = \phi$

(This is equivalent to $f_{|K} = id_K$ in the classical case.)

Definition 3.1. $G(K) = G_H$: Heisenberg group; U_H : Schrödinger representation

$$K = H \oplus H^{\vee}, H \text{ finite abelian}, N = |H|$$
$$H = H(e) = \bigoplus_{i=1}^{g} (\mathbf{Z}/e_i \mathbf{Z}), \text{ with } e_i | e_{i+1},$$
$$G_H = \{(a, z, \alpha); a \in \mu_N, z \in H, \alpha \in H^{\vee}\},$$
$$(a, z, \alpha) \cdot (b, w, \beta) = (ab\beta(z), z + w, \alpha + \beta),$$
$$V := V_H = \mathcal{O}[H^{\vee}],$$
$$(a, z, \alpha)v(\gamma) = a\gamma(z)v(\alpha + \gamma)$$

The action of G(K) on V is denoted U_H , $\mathcal{O} = \mathcal{O}_N = \mathbf{Z}[\zeta_N, 1/N].$

In the Hesse cubics case, $\mathcal{O} := \mathbf{Z}[\zeta_3, 1/3], H = H^{\vee} = \mathbf{Z}/3\mathbf{Z}$, we identify G(3) with G(K):

$$\sigma = (1, 1, 0), \tau = (1, 0, 1) \in G(K), N = 3.$$
$$V_H = \mathcal{O}[H^{\vee}] = \mathcal{O} \cdot v(0) \oplus \mathcal{O} \cdot v(1) \oplus \mathcal{O} \cdot v(2)$$

3.2. Now we wish to construct limits of abelian schemes, PSQASes and TSQASes. We consider mainly $e_{\min}(K) := e_1 \ge 3$.

Let R be a CDVR, and $k(\eta)$ the fraction field of R. We start with

1. an abelian scheme $(G_{\eta}, \mathcal{L}_{\eta})$ and a pol. morphism

$$\lambda(\mathcal{L}_{\eta}) : G_{\eta} \to G_{\eta}^{t} := \operatorname{Pic}^{0}(G_{\eta}),$$
$$a \mapsto T_{a}^{*}(\mathcal{L}_{\eta}) \otimes \mathcal{L}_{\eta}^{-1}$$

- 2. let $K_{\eta} =: \ker(\mathcal{L}_{\eta}),$
- 3. assume chara. $k(0) = R/m_R$ is prime to $|K_{\eta}|$,
- 4. over $\mathcal{O} := \mathcal{O}_N$, $N = \sqrt{|K_\eta|}$, we may assume $K_\eta =: \ker(\mathcal{L}_\eta) \simeq K = H(e) \oplus H(e)^{\vee}$, $(\exists e)$

5.
$$\Longrightarrow \mathcal{G}(K)$$
 acts on the pair $(G_{\eta}, \mathcal{L}_{\eta})$,

Then we have a stable reduction theorem

Theorem 3.3. (A refined version of Alexeev-Nakamura's stable reduction theorem) ([AN99], [N99]) Assume $e_{\min}(K) \geq 3$. \exists proper flat projective schemes (Q, \mathcal{L}_Q) (PSQAS) and (P, \mathcal{L}_P) (TSQAS) over R, by a finite base change if necessary, such that

- (0) $(Q_{\eta}, \mathcal{L}_{\eta}) \simeq (P_{\eta}, \mathcal{L}_{\eta}) \simeq (G_{\eta}, \mathcal{L}_{\eta}),$
- (1) (P, \mathcal{L}_P) is the normalization of (Q, \mathcal{L}_Q) ,
- (2) P_0 is reduced,
- (3) \mathcal{L}_Q is very ample,
- (4) G(K) acts on (Q, \mathcal{L}_Q) and (P, \mathcal{L}_P) extending the action of it on $(G_\eta, \mathcal{L}_\eta)$,

Definition 3.4. The triple (X, ϕ, τ) or (X, L, ϕ, τ) is a PSQAS with level-G(K) str. if

- 1. τ is a G(K)-action on the pair (X, L),
- 2. $\phi: X \to \mathbf{P}(V)$ a G(K)-equiv. closed immersion such that $\phi^*: V \simeq H^0(X, L), \ L = \phi^* O_{\mathbf{P}(V)}(1).$

Define : $(X, \phi, \tau) \simeq (X', \phi', \tau')$ isom. iff

 $\exists \ (f,F) : (X,L) \rightarrow (X',L') \quad G(K)\text{-isom.}$ which makes the diagram commutative

$$\phi' \cdot (f, F) = \phi : (X, L) \to (\mathbf{P}(V_H), O_{\mathbf{P}}(1))$$

- Theorem proves that the moduli is proper,
- (Q_0, \mathcal{L}_0) : PSQAS projectively stable quasi-abelian scheme,
- (P_0, \mathcal{L}_0) : TSQAS torically stable quasi-abelian scheme (= variety),
- In dim. ≤ 4, any PSQAS=TSQAS, in dim. one it is a smooth elliptic or an N-gon,
- In dim. 8, PSQAS \neq TSQAS for E8,
- The next theorem proves that the moduli is separated.

Theorem 3.5. ([N99],[N10],[N13]) Suppose $e_{\min}(K) \ge 3$. Then (Q, \mathcal{L}) and (P, \mathcal{L}) are uniquely determined by $(G_{\eta}, \mathcal{L}_{\eta})$.

Suppose given $(Q, \mathcal{L}), (Q', \mathcal{L}')$ over R, suppose

$$(Q_{\eta}, \mathcal{L}_{\eta}) \simeq_{k(\eta)} (Q'_{\eta}, \mathcal{L}'_{\eta}) \Longrightarrow (Q, \mathcal{L}) \simeq_{R} (Q', \mathcal{L}').$$

How can we construct (Q, \mathcal{L}) ?

4. PSQAS in dimension one

4.1. Hesse cubics and thetas. R be a CDVR, q uniformizer, I = qR. (Say, $y^2 = x^3 - x^2 - q$)

$$\begin{aligned} \theta_0(q,w) &= \sum_{m \in \mathbf{Z}} q^{9m^2} w^{3m} \\ &= 1 + q^9 w^3 + q^9 w^{-3} + q^{36} w^6 + \cdots, \\ \theta_1(q,w) &= \sum_{m \in \mathbf{Z}} q^{(3m+1)^2} w^{3m+1} \\ &= qw + q^4 w^{-2} + q^{16} w^4 + \cdots, \\ \theta_2(q,w) &= \sum_{m \in \mathbf{Z}} q^{(3m+2)^2} w^{3m+2} \\ &= qw^{-1} + q^4 w^2 + q^{16} w^{-4} + q^{25} w^5 + \cdots \end{aligned}$$

Hence

$$\lim_{q \to 0} [\theta_0, \theta_1, \theta_2](q, w) = [1, 0, 0]$$

This looks strange. But

$$\theta_0(q, q^{-1}u) = 1 + q^6 u^3 + \cdots,$$

$$\theta_1(q, q^{-1}u) = u + q^6 u^{-2} + \cdots,$$

$$\theta_2(q, q^{-1}u) = q^2 u^2 + \cdots.$$

Hence

$$\lim_{q \to 0} [\theta_0, \theta_1, \theta_2](q, q^{-1}u) = [1, \overline{u}, 0]$$

$$\lim_{q \to 0} [\theta_0, \theta_1, \theta_2](q, q^{-2}u) = \lim_{q \to 0} [1, q^{-1}u, u^2] = [0, 1, 0] \text{ in } \mathbf{P}^2.$$

In fact,

Let $w = q^{-2\lambda}u$ (a section over a finite extension of $k(\eta)$) and $u \in R \setminus I$.

$$(1) \quad \lim_{q \to 0} [\theta_0, \theta_1, \theta_2](q, q^{-2\lambda}u) = \begin{cases} [1, 0, 0] & (\text{if } -1/2 < \lambda < 1/2), \\ [1, \overline{u}, 0] & (\text{if } \lambda = 1/2), \\ [0, 1, 0] & (\text{if } 1/2 < \lambda < 3/2), \\ [0, 1, \overline{u}] & (\text{if } \lambda = 3/2), \\ [0, 0, 1] & (\text{if } 3/2 < \lambda < 5/2). \\ [\overline{u}, 0, 1] & (\text{if } \lambda = 5/2), \end{cases}$$

Thus $\lim_{\tau\to\infty}$ of the image of $E(\tau)$ is the 3-gon $x_0x_1x_2 = 0$.

Summary 4.2. 1. This is a set-theoretic computation.

2. The limit is computed from the distribution of minima of

$$(3m+k)^2 - (3m+k)\lambda, \quad (m \in \mathbf{Z}, k = 0, 1, 2)$$

for fixed λ ,

- 3. The distri. of minima is described by Delaunay decomposition:
- 4. Picture of Delaunay decom. (Tomorrow)

Definition 4.3. For $\lambda \in X \otimes_{\mathbf{Z}} \mathbf{R}$ fixed, let

$$F_{\lambda} := a^2 - 2\lambda a \quad (a \in X = \mathbf{Z})$$

We define a Delaunay cell

$$D(\lambda) := \frac{\text{the convex closure of all } a \in X}{\text{that attain the minimum of } F_{\lambda}}$$

For example, D(j + (1/2)) = [j, j + 1] and $\lambda = j + (1/2)$, then (by forgetting any 0)

$$[\bar{\theta}_k]_{k=0,1,2} := \lim_{q \to 0} [\theta_k(q, q^{-2(j+(1/2))}u))]_{k=0,1,2} = [\bar{u}^j, \bar{u}^{j+1}],$$

Hence we have the limit

$$\{[\bar{u}^j, \bar{u}^{j+1}] \in \mathbf{P}^1; \bar{u} \in \mathbf{G}_m\} \simeq \mathbf{G}_m$$

- 4.4. The complex case. Come back to Hesse cubics, θ_k .
 - 1. θ_k is Y-inv. where $Y = 3\mathbf{Z}$,
 - 2. we wish to think

$$E(\omega) \simeq \operatorname{Proj} \mathbf{C}[\theta_k \vartheta, k = 0, 1, 2]$$

=* Proj ($\mathbf{C}[[a(x)w^x \vartheta, x \in X]])^{Y-\operatorname{inv}}$
\approx Proj $\mathbf{C}[a(x)w^x \vartheta, x \in X])/Y$

3. because U = Spec A is affine, G a finite group acting on U, then

$$U/G = \text{Spec } A^{G\text{-inv}}.$$

4. Over \mathbf{C} , $a(x) \in \mathbf{C}^{\times}$, and

$$\mathbf{G}_m = \operatorname{Proj} \, \mathbf{C}[a(x)w^x \vartheta, x \in X],$$

because

$$U_k = \operatorname{Spec} \mathbf{C}[a(x)w^x \vartheta/a(k)w^k \vartheta; x \in X] = \operatorname{Spec} \mathbf{C}[w, w^{-1}] = \mathbf{G}_m,$$

5. Hence over \mathbf{C} we may think so:

$$E(\omega) \simeq \mathbf{G}_m / w \mapsto q^6 w$$

$$\simeq \mathbf{G}_m / \{ w \mapsto q^{2y} w; y \in 3\mathbf{Z} \}$$

$$\simeq (\operatorname{Proj} \mathbf{C}[a(x) w^x \vartheta, x \in X]) / Y.$$

4.5. The scheme-theoretic limit. What happes over a CDVR R ? Let $a(x) = q^{x^2}$ for $x \in X$, $X = \mathbf{Z}$, $Y = 3\mathbf{Z}$. 1. let

$$\widetilde{R} := R[a(x)w^x\vartheta, x \in X],$$
$$Z = \operatorname{Proj} \widetilde{R}/Y.$$

2. define S_y action of Y on \widetilde{R}

$$S_y(a(x)w^x\vartheta) = a(x+y)w^{x+y}\vartheta$$

by imitating θ_k .

3.

$$\begin{aligned} \mathcal{X} &= \operatorname{Proj} R[a(x)w^x \vartheta, x \in X], \\ U_n &= \operatorname{Spec} R[a(x)w^x/a(n)w^n, x \in X] \\ &= \operatorname{Spec} R[(a(n+1)/a(n))w, (a(n-1)/a(n))w^{-1}] \\ &= \operatorname{Spec} R[q^{2n+1}w, q^{-2n+1}w^{-1}] \\ &\simeq \operatorname{Spec} R[x_n, y_n]/(x_n y_n - q^2). \end{aligned}$$

- 4. Let $\mathcal{X}_0 := \mathcal{X} \otimes_R (R/qR)$ and $V_n = \mathcal{X}_0 \cap U_n$. Then \mathcal{X}_0 is an infinite chain of \mathbf{P}^1 : $V_n = \text{Spec } k[x_n, y_n]/(x_n y_n),$
- 5. \mathcal{X}_0/Y : 3-gon

4.6. **PSQASes in the general case.** Let a CDVR R, $k(\eta) = \operatorname{Frac}(R)$. We can const. similar degenerations of AV over R if \exists a lattice $X, Y \subset X$ $[X:Y] < \infty$, and

$$a(x) \in k(\eta)^{\times}, \quad (x \in X)$$

such that

- (i) a(0) = 1,
- (ii) $b(x,y) := a(x+y)a(x)^{-1}a(y)^{-1}$ is a symm. bilin. form on $X \times X$,
- (iii) $B(x,y) := \operatorname{val}_q b(x,y)$ is pos. def.,
- (iv)* B is even and $\operatorname{val}_q a(x) = B(x, x)/2$.

We assume here a stronger condition $(4)^*$ for simplicity.

- 1. These data do exist in general, (Faltings-Chai)
- 2. Suppose an abelian scheme $(G_{\eta}, \mathcal{L}_{\eta}), \lambda(\mathcal{L}_{\eta}) : G_{\eta} \to G_{\eta}^{t}$
- 3. (G, \mathcal{L}) :Neron model of G_{η}
- 4. totally degenerate case: Suppose G_0 is a split torus over R/qR,
- 5. let G^{for} : formal completion of G along G_0 ,
- 6. Thm(SGA): G^{for} is a formal torus over R

$$G_{\text{for}} \simeq \mathbf{G}_{m,R,\text{for}}^g = \text{Spf } R[[w^x; x \in X]]^{I-\text{adic}}$$

7. any $\theta \in \Gamma(G, \mathcal{L})$ is a conv. Fourier series, $\theta \in R[[w^x; x \in X]]^{I-\text{adic}}$,

Theorem 4.7. If G is totally deg., $\exists \{a(x); x \in X\}$ subj. to (i)- $(iv)^*$ and (v)

$$\Gamma(G_{\eta}, \mathcal{L}_{\eta}) = \bigoplus_{\bar{x} \in X/Y} k(\eta) \ \theta_{\bar{x}}$$

where

$$\theta_{\bar{x}} := \sum_{y \in Y} a(x+y) w^{x+y}$$

The condition (v) proves $(Q_{\eta}, \mathcal{L}_{\eta}) \simeq (G_{\eta}, \mathcal{L}_{\eta})$ in Theorem 3.3.

5. The third talk — The moduli space $SQ_{g,K}$

By Theorem 3.3, any level G(K) PSQAS (Q_0, \mathcal{L}_0) is G(K)-equivariantly embedded into $\mathbf{P}(V)$ if $e_{\min}(K) \geq 3$ where $V = V_H := \mathcal{O}_N[v(\mu); \mu \in H^{\vee}].$

5.1. The G(K)-action and the G(K)-linearization. The G(K)-action τ on (Z, L) is ess. the same as G(K)-linearization

$$\{\phi_g; g \in G(K)\}$$

- (i) $\phi_g : \mathcal{L} \to T_g^*(\mathcal{L})$ is a bundle isomorphism,
- (ii) $\phi_{gh} = T_h^* \phi_g \circ \phi_h$ for any $g, h \in G(K)(T)$.

the action τ on (Z, L) is recovered from it as follows : By the isomorphisms

$$L \xrightarrow{\phi_h} T_h^*(L) \xrightarrow{T_h^* \phi_g} T_h^*(T_g^*(L)) = T_{gh}^*(L),$$

for $x \in \mathbb{Z}, \xi \in L_x$,

$$\tau(h) \cdot (z,\xi) = (T_h(z), \phi_h(z) \cdot \xi).$$

Then $\tau(gh) = \tau(g)\tau(h)$ iff $\phi_{gh} = T_h^*\phi_g \circ \phi_h$.

Now we wish to define the action of G(K) on $H^0(Z, L)$:

$$\rho_L(g)(\theta) := T_{q^{-1}}^*(\phi_g(\theta)), \quad \rho(gh) = \rho(g)\rho(h).$$

For a level-G(K)-PSQAS

1. $H^0(Q_0, \mathcal{L}_0)$ is an irreducible G(K)-module [NS06]

2. V_H is a unique irred. repres. of wt one of G(K) over $\mathbf{Z}[\zeta_N, 1/N]$, hence 3. $H^0(Q_0, \mathcal{L}_0) \simeq V_H$ over k = R/qR,

Lemma 5.2. Assume $e_{\min}(K) \geq 3$. Then for a level-G(K) PSQAS (Q_0, ϕ_0, τ_0) , \exists a unique level-G(K) PSQAS (Q'_0, i, U_H) isom. to (Q_0, ϕ_0, τ_0) where $i : Q'_0 = \phi_0(Q_0) \subset \mathbf{P}(V_H)$: inclusion.

Proof. • Let $(Q_0, \mathcal{L}_0, \phi_0, \tau_0) = (Z, L, \phi, \tau)$. • Since $\phi^* : V_H \simeq H^0(Z, L)$ isom, let

(1, 1)(1, 0) = (1, 2, 1) from, for

$$\rho(\phi,\tau)(g)(\theta) := (\phi^*)^{-1} \rho_L(g)(\theta) \phi^* \quad \theta \in H^0(Z,L).$$

- $\rho(\phi, \tau) \in \text{End}(V_H).$
- By Schur's lemma, $\exists A \in GL(V_H)$ s.t.

$$U_H = A^{-1} \rho(\phi, \tau) A = (\phi^* A)^{-1} \rho_L(g)(\theta)(\phi^* A).$$

- Hence choose ψ (closed imm.) by $\psi^* = \phi^* A$. Then $U_H = \rho(\psi, \tau)$,
- let $Z' = \psi(Z), i : Z' \subset \mathbf{P}(V_H)$. (Z', i, U_H) equiv. to (Z, ϕ, τ)

- Hilb^{$\chi(n)$}: the Hilbert scheme parametrizing subschemes (Z, L) of $\mathbf{P}(V_H)$ with $\chi(Z, L^n) = n^g \sqrt{|K|} =: \chi(n)$
- $(\text{Hilb}^{\chi(n)})^{G(K)-\text{inv}}$: the G(K)-inv. part of it,
- $A_{g,K}$: moduli of level G(K)-AV
- By Lemma 5.2, $A_{g,K} = \{(A'_0, i, U_H); A'_0 : AV\},\$
- $A_{q,K} \subset (\operatorname{Hilb}^{\chi(n)})^{\widetilde{G}(K)-\operatorname{inv}},$

We define

$$SQ_{g,K} := \overline{A_{g,K}} \subset (\mathrm{Hilb}^{\chi(n)})^{G(K)-\mathrm{inv}}.$$

Theorem 5.3. Suppose $H = \bigoplus_{i=1}^{g} (\mathbf{Z}/e_i \mathbf{Z})$, $e_{\min} \geq 3$. For any closed field k of characteristic prime to $|H| = \prod_{i=1}^{g} e_i$,

$$SQ_{g,K}(k) = \{(Q_0, i, U_H); PSQAS, i : Q_0 \subset \mathbf{P}(V_H)\}$$

Proof. Choose $x_0 \in SQ_{g,K}$. Then $x_0 = (Z_0, \mathcal{L}_0) \in SQ_{g,K}, (Z_0, \mathcal{L}_0) \in Hilb.$

- \exists a proper flat $\pi : (Z, \mathcal{L}) \to \text{Spec } R \text{ s.t. } (Z_{\eta}, \mathcal{L}_{\eta}) \text{ is an } U_H(G(K))\text{-inv.}$ level G(K)-AV,
- so is (Z, \mathcal{L}) .
- by Theorem 3.3, by a finite base change if necessary \exists a level-G(K) PSQAS (Q, \mathcal{L}_Q) s.t.

$$(Q_\eta, \mathcal{L}_{Q,\eta}) \simeq (Z_\eta, \mathcal{L}_\eta)$$

- By Lemma 5.2 and Theorem 3.3, we may assume $(Q, \mathcal{L}) : U_H(G(K))$ invariant *R*-subsch. of $\mathbf{P}(V_H)_R$.
- hence $(Z_{\eta}, \mathcal{L}_{\eta}) = (Q_{\eta}, \mathcal{L}_{Q,\eta})$ by the uniqueness of Lemma 5.2.
- $(Z, \mathcal{L}) = (Q, \mathcal{L})$, hence $x_0 = (Z_0, \mathcal{L}_0) = (Q_0, \mathcal{L}_0)$ is a PSQAS.

Theorem 5.4. Suppose $e_{\min}(K) \geq 3$. Let $N := \sqrt{|K|}$. The functor $SQ_{g,K}$ of level-G(K) PSQASes (Q, ϕ, τ) over reduced base schemes is represented by the projective $\mathbf{Z}[\zeta_N, 1/N]$ -scheme $SQ_{g,K}$.

 $SQ_{g,K}(T) = \{(Q, \phi, \tau); PSQAS \text{ with level-}G(K) \text{ str. over } T\}$

(I will not explain in detail.)

6. The space of closed orbits

6.1. **Example.** Define the action of $G = \mathbf{C}^*$ on \mathbf{C}^2 :

$$(\alpha, x, y) \mapsto (\alpha x, \alpha^{-1} y) \quad (\alpha \in \mathbf{C}^*)$$

The quotient space of \mathbf{C}^2 by \mathbf{C}^* is

$$\mathbf{C}^2 / / \mathbf{C}^* = \operatorname{Spec} \mathbf{C}[x, y]^{G \text{-inv}} = \operatorname{Spec} \mathbf{C}[t]$$

Is this the space of orbits ?

 \exists four kinds of orbits:

$$O(a, 1) = \{(x, y) \in \mathbf{C}^2; xy = a\} (a \neq 0), \text{ (closed)}$$
$$O(0, 1) = \{(0, y) \in \mathbf{C}^2; y \neq 0\}, \text{ (not closed)}$$
$$O(1, 0) = \{(x, 0) \in \mathbf{C}^2; x \neq 0\}, \text{ (not closed)}$$
$$O(0, 0) = \{(0, 0)\} \text{ (closed)}$$

Hence

$$\mathbf{C}^2 / / \mathbf{C}^* = \mathbf{C} = \{ O(a, 1); a \neq 0; O(0, 0) \} = \{ \text{closed orbit} \}$$

The quotient is the space of closed orbits.

Theorem 6.2. (Seshadri-Mumford) k closed, X : proj. scheme, G reductive k-group acting on X, $X_{ss} := \{semistable \ point\} \ open \subset X$

Then \exists a proj. k-scheme Y

 $\exists a G\text{-inv. surj. morphism } \pi : X_{ss} \to Y, \text{ such that}$

- (1) for any k-scheme Z on which G acts, for any G-equiv. morph. $\phi: Z \to X$ \exists a unique morphism $\overline{\phi}: Z \to Y$ such that $\overline{\phi} = \pi \phi$,
- (2) For a, b of X_{ss}

$$\pi(a) = \pi(b) \text{ iff } \overline{O(a)} \cap \overline{O(b)} \neq \emptyset$$

where the closure is taken in X_{ss} ,

(3) $Y(k) = \{G\text{-orbit closed in } X_{ss}\}.$

Denote Y by $X_{ss}//G$.

Recall

Definition 6.3. Let $p \in X$.

- (1) p is semistable if \exists a G-inv. homog. polynomial F on X with $F(p) \neq 0$,
- (2) p is Kempf-stable (or closed orbit) if the orbit O(p) is closed in X_{ss} ,
- (3) p is properly-stable if p is Kempf-stable and the stab. subgp of p in G is finite.

Remark 6.4. If $a, b \in X_{ps}$,

$$\pi(a) = \pi(b) \iff \overline{O(a)} \cap \overline{O(b)} \neq \emptyset$$
$$\iff O(a) \cap O(b) \neq \emptyset$$
$$\iff O(a) = O(b).$$

Hence in particular, the quotient space $X_{ps}//G$ is an ordinary orbit space X_{ps}/G .

Theorem 6.5. ([Gieseker82], [Mumford77]) For a connected curve C of genus ≥ 2 , the following are equivalent:

- 1. C is a stable curve, (moduli-stable)
- 2. Any Hilbert point of C embedded by $|mK_C|$ is GIT-stable,
- 3. Any Chow point of C embedded by $|mK_C|$ is GIT-stable.

Theorem 6.6. Let $K = H \oplus H^{\vee}$, N = |H|, k closed, char $.k \neq N$. Suppose $e_{\min}(K) \geq 3$, and $(Z, L) \subset (\mathbf{P}(V), O_{\mathbf{P}(V_H)}(1))$. Suppose that (Z, L) is smoothable into a level-G(K) AV. Then the following are equiv.:

- 1. (Z, L) is a PSQAS, (moduli-stable)
- 2. any Hilbert point of (Z, L) are GIT-stable,
- 3. (Z, L) is stable under (a conjugate of) G(K).

Proof. $(1) \rightarrow (3)$ Easy.

 $(3) \rightarrow (2)$ by (Kempf+L very ample).

We prove $(2) \rightarrow (1)$: PSQAS has a closed orbit. Assume (2) for (Z, L).

IKU NAKAMURA

- By assumption $\exists (Q, \mathcal{L})$ over a CDVR R such that $(Q_{\eta}, \mathcal{L}_{\eta})$ a level-G(K) AV and $(Q_0, \mathcal{L}_0) = (Z, L) =: a$.
- O(a) : closed by assuming (2).
- by base change may assume \exists a level-G(K) PSQAS (Q', \mathcal{L}') s.t. $(Q'_{\eta}, \mathcal{L}'_{\eta}) = (Q_{\eta}, \mathcal{L}_{\eta}).$
- Let $(Q'_0, \mathcal{L}'_0) =: b$. Then $\pi(a) = \pi(b)$. $\underline{\pi: X_{ss} \to X_{ss} // \text{SL}}$.
- Hence by Seshadri-Mumford, $\overline{O(a)} \cap \overline{O(b)} \neq \emptyset$.
- both are closed orbits. $O(a) \cap O(b) \neq \emptyset$.
- Hence O(a) = O(b). This shows $(Z, L) \simeq (Q'_0, \mathcal{L}'_0)$ PSQAS.

Corollary 6.7. For any planar cubic C

- 1. $(C, O_C(1))$ is a PSQAS, (smooth or a 3-gon)
- 2. any Hilbert point of (Z, L) are GIT-stable,
- 3. $(C, O_C(1))$ is G(3)-stable, a Hesse cubic.

Remark 6.8. (Nakamura75) \exists a 2-dim. PSQAS $(Z < L) := (Q_0, \mathcal{L}_0)$ a union of $2n^2$ copies of \mathbf{P}^2 with $X/Y = (\mathbf{Z}/n\mathbf{Z})^{\oplus 2}$.

- $a(x) = q^{x^2 xy + y^2}$,
- \exists two different embeddings of $K = H \oplus H^{\vee} \subset Q_0, A, B$
- A, B are translate over $k(\eta)$,
- hence $(Z_\eta \supset A_\eta) = (Z_\eta \supset B_\eta)$.
- $(Z \supset A)$ and $(Z \supset B)$ have diff. limit,
- Thus the moduli will be non-separetd.

References

[N04] I. Nakamura, Planar cubic curves, from Hesse to Mumford, Sugaku Expositions 17 (2004), 73-101.

DEPARTMENT OF MATHEMATICS, HOKKAIDO UNIVERSITY, SAPPORO, 060-0810 *E-mail address:* nakamura@math.sci.hokudai.ac.jp