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Part I: Main Results (English, this slide, unfortunately,
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Part II: Ideas, Backgroud, History, and so on (Japanese, no
slides, fortunately, not technical)
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SNC pairs

M: smooth variety /C
X: SNC divisor on M
B: R-divisor on M such that Supp B: SNC divisor
B and X have no common components, Supp(B + X): SNC
divisor
D = B|X

Definition 2.1 (GESNC pair)

(X,D): globally embedded simple normal crossing (GESNC) pair

Definition 2.2 (SNC pair)

(Y,∆): simple normal crossing (SNC) pair
def⇐⇒ (Y,∆): Zariski locally isomorphic to a GESNC pair
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Stratum of SNC pair

(X,D): SNC pair

D ∈ [0, 1]

ν : Xν → X: normalization

KXν + Θ = ν
∗(KX + D)

Definition 2.3 (Stratum)

W: closed subvariety of X

W: stratum of (X,D)
def⇐⇒ W = ν(C), where C is a log canonical center of (Xν,Θ), or W

is an irreducible component of X

Osamu Fujino The foundations of the minimal model program
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Hodge theoretic injectivity theorem

Theorem 2.4 (Relative Hodge theoretic injectivity theorem)

(X,∆): SNC pair, ∆ ∈ [0, 1], π : X → S : proper

L: Cartier divisor on X

D: effective Weil divisor on X

Supp D ⊂ Supp∆

L ∼R,π KX + ∆

Then
Rqπ∗OX(L)→ Rqπ∗OX(L + D)

is injective for every q.

Osamu Fujino The foundations of the minimal model program
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Injectivity theorem for SNC pair

Theorem 2.5 (Injectivity for SNC pair)

(X,∆): SNC pair, ∆ ∈ [0, 1], π : X → S : proper, as before

L: Cartier divisor on X

D: effective Cartier, permissible with respect to (X,∆)

We further assume:

(i) L ∼R,π KX + ∆ + H

(ii) H: π-semi-ample R-divisor

(iii) tH ∼R,π D + D′, t ∈ R>0,
D′: effective R-Cartier R-divisor, permissible with respect to
(X,∆)

Then Rqπ∗OX(L)→ Rqπ∗OX(L + D) is injective for every q.
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Torsion-freeness and Vanishing for SNC pair

Theorem 2.6 (Torsion-freeness and Vanishing thereom)

(Y,∆): SNC pair, ∆ ∈ [0, 1], f : Y → X: proper

L: Cartier divisor on Y such that L − (KY + ∆): f -semi-ample

Then we have:

(i) Every associated prime of Rq f∗OY (L) is the generic point of
the f -image of some stratum of (Y,∆).

(ii) π : X → V: projective
L − (KY + ∆) ∼R f ∗H, H: π-ample R-divisor on X

=⇒ Rpπ∗Rq f∗OY (L) = 0 for every p > 0 and q ≥ 0.

Osamu Fujino The foundations of the minimal model program
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Vanishing theorem of Reid–Fukuda type

We can generalize Theorem 2.6 (ii) as follows.

Theorem 2.7 (Vanishing theorem of Reid–Fukuda type)

Use the same notation as in Theorem 2.6

(Y,∆): GESNC, or Y: quasi-projective (extra assumption!)

H: nef and log big over V with respect to f : (Y,∆)→ X, that
is, H: nef over V and H| f (W): big over V for every stratum W of
(Y,∆)

Then Rpπ∗Rq f∗OY (L) = 0 for every p > 0 and q ≥ 0.

We can see that these results contain various classical results as
special cases.

Osamu Fujino The foundations of the minimal model program
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Kawamata–Viehweg

Theorem 2.8 (Kawamata–Viehweg)

X: smooth projective variety

D: nef and big Q-divisor

Supp{D}: SNC divisor

Then Hq(X,OX(KX + ⌈D⌉)) = 0 for every q > 0.

Kawamata–Viehweg is a generalization of Kodaira.

Theorem 2.9 (Kodaira)
X: smooth projective variety

D: ample Cartier divisor

Then Hq(X,OX(KX + D)) = 0 for every q > 0.
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Nadel

Theorem 2.10 ((algebraic version of) Nadel)

X: smooth projective variety

L: Cartier divisor

D: effective Q-divisor

L − D: nef and big

Then Hq(X,OX(KX + L) ⊗ J(X,D)) = 0 for every q > 0, where
J(X,D): multiplier ideal sheaf of (X,D).

Osamu Fujino The foundations of the minimal model program
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Kollár

Theorem 2.11 (Kollár)
X: smooth projective variety

Y: projective variety

f : X → Y: surjective morphism

Then we have:

(i) Rq f∗OX(KX): torsion-free

(ii) Hp(Y,Rq f∗OX(KX) ⊗ OY (H)) = 0 for every p > 0 and q ≥ 0,
where H: ample Cartier divisor on Y.
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Main statement

Our result for SNC pairs contains Kodaira, Kawamata–Viehweg,
Nadel, Kollár, and many other powerful and useful vanishing
results as very special cases.
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MHS for cohomology with compact support

Almost all the classical vanishing theorems (Kawamata–Viehweg,
Kollár, etc.) can be proved by the E1-degeneration of

Epq
1 = Hq(X,Ωp

X)⇒ Hp+q(X,C).

My idea is to use the E1-degeneration of

Epq
1 = Hq(X,Ωp

X(log D) ⊗ OX(−D))⇒ Hp+q
c (X \ D,C),

where X: smooth projective variety, D: SNC divisor.
In my framework,

OX(KX + D) ≃ Hom(Ω0
X(log D) ⊗ OX(−D), ωX).

We do not see OX(KX + D) as
∧dim X Ω1

X(log D).

Osamu Fujino The foundations of the minimal model program
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Some remarks

Precisely speaking:
(X,D): SNC pair, or finite cyclic cover of SNC pair

We have to consider MHS on

Hk
c (X \ ⌊D⌋,C).

By considering VMHS, we have various semipositivity theorems
(Fujino–Fujisawa, Fujino–Fujisawa–Saito).

(X,D): projective SNC pair, D: reduced
f : X → Y: surjective, Y: smooth projective variety

Under some suitable assumptions, we obtain that

Rq f∗OX(KX/Y + D)

is a semipositive locally free sheaf for every q.

Osamu Fujino The foundations of the minimal model program
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Cone Theorem

Theorem 3.1 (Cone and contraction theorem)

(X,∆): projective log canonical pair

Then
NE(X) = NE(X)KX+∆≥0 +

∑
j

R j.

R j: (KX + ∆)-negative extremal ray

Then there is a contraction morphism

φR j : X → Y

associated to R j.

It was classically well-know for “log terminal” pairs.
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MMP for log canonical pairs

(X,∆): projective log canonical pair

Then we can run the minimal model program (MMP) (with scaling).
Thus we obtain a sequence of flips and divisorial contractions.

(X,∆) = (X0,∆0)d (X1,∆1)d · · ·d (Xk,∆k)d

Conjecture 3.2 (Flip Conjecture II)

There are no infinite sequences of flips.

This conjecture is widely open. It is well-known that it is sufficient
to prove that Conjecture 3.2 holds for kawamata log terminal pairs.

Osamu Fujino The foundations of the minimal model program
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Open problem for log canonical pairs

Conjecture 3.3 (Finite generation of log canonical ring)

X: smooth projective variety

∆: Q-divisor, Supp∆: SNC divisor, ∆ ∈ [0, 1]

Then
R(X,∆) =

⊕
m≥0

H0(X,OX(m(KX + ∆)))

is a finitely generated C-algebra.

Conjecture 3.3 was completely solved for kawamata log
terminal (KLT) pairs by BCHM
It also holds for KLT pairs in Fujiki’s class C (Fujino).
It implies the existence of good minimal models, abundance
conjecture, and so on (Fujino–Gongyo).

Osamu Fujino The foundations of the minimal model program
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SLC pairs

X: equidimensional variety, Serre’s S 2 condition, normal
crossing in codimension one

∆: effective R-divisor on X, no components of ∆ are contained
in Sing X.

KX + ∆: R-Cartier

ν : Xν → X: normalization, KXν + Θ = ν
∗(KX + ∆)

Definition 4.1 (SLC pair)

(X,∆): semi-log canonical (SLC) pair
def⇐⇒ (Xν,Θ): log canonical

pair

Osamu Fujino The foundations of the minimal model program
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Why SLC?

Example 4.2

nodal pointed curve is SLC

We need the notion of SLC pairs in order to compactify some
moduli spaces (Kollár–Shepherd-Barron, Alexeev, ...)
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Cone Theorem for SLC pairs

Theorem 4.3 (Cone and contraction theorem)

(X,∆): projective SLC pair

Then
NE(X) = NE(X)KX+∆≥0 +

∑
j

R j.

R j: (KX + ∆)-negative extremal ray

Then there is a contraction morphism

φR j : X → Y

associated to R j.
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Remarks on SLC pairs

quasi-projective SLC pair has a natural quasi-log structure
(Ambro, Fujino)

Kodaira-type vanishing theorems hold for SLC pairs !

We can generalize many results for kawamata log terminal
pairs to SLC pairs !!

Unfortunately, we can not run the minimal model program for
SLC pairs (Kollár, Fujino)
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Thank you

Thank you very much!
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