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On inversion of adjunction

By Osamu Fujino∗) and Kenta Hashizume∗∗)

Abstract: We first announce our recent result on adjunction and inversion of adjunction.

Then we clarify the relationship between our inversion of adjunction and Hacon’s inversion of

adjunction for log canonical centers of arbitrary codimension.
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1. Introduction In [9], we established the

following adjunction and inversion of adjunction for

log canonical centers of arbitrary codimension in full

generality.

Theorem 1.1 (Adjunction and Inversion of

Adjunction, see [9]). Let X be a normal variety

and let ∆ be an effective R-divisor on X such that

KX + ∆ is R-Cartier. Let W be a log canonical

center of (X,∆) and let ν : Z → W be the normal-

ization of W . Then there exist a b-potentially nef

R-b-divisor M and an R-b-divisor B on Z such that

BZ is effective with

ν∗(KX +∆) = KZ +MZ +BZ .

More precisely, there exists a projective birational

morphism p : Z ′ → Z from a smooth quasi-

projective variety Z ′ such that

(i) M = MZ′ and MZ′ is a potentially nef R-
divisor on Z ′,

(ii) K+B = KZ′ +BZ′ ,

(iii) SuppBZ′ is a simple normal crossing divisor

on Z ′,

(iv) ν ◦p
(
B>1
Z′

)
=W ∩Nlc(X,∆) holds set theoret-

ically, and

(v) ν◦p
(
B≥1
Z′

)
=W∩

(
Nlc(X,∆) ∪

∪
W ̸⊂W † W †

)
,

where W † runs over log canonical centers of

(X,∆) which do not contain W , holds set the-

oretically.

For the details of Theorem 1.1, see [9]. On the

other hand, Hacon introduced a b-divisor, which

is denoted by B(W ;X,∆), and formulated his in-

version of adjunction for log canonical centers of

arbitrary codimension in [10], and the b-divisor is

also studied in the context of generalized pairs in

[3, Theorem 6.7]. We note that the definition of

B(W ;X,∆) is different from our definition of B in

Theorem 1.1. The goal of this paper is to prove
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that B(W ;X,∆) = B always holds. The following

theorem is the main result of this paper.

Theorem 1.2. Let X be a normal variety

and let ∆ be an effective R-divisor on X such that

KX+∆ is R-Cartier. Let W be a log canonical cen-

ter of (X,∆). Then Hacon’s B(W ;X,∆) coincides

with the R-b-divisor B on Z in Theorem 1.1, where

Z is the normalization of W . Hence our adjunc-

tion and inversion of adjunction for log canonical

centers of arbitrary codimension completely gener-

alizes Hacon’s inversion of adjunction.

By Theorem 1.2, Hacon’s inversion of adjunc-

tion for log canonical centers of arbitrary codimen-

sion in [10] now becomes a very special case of The-

orem 1.1. We think that the definition of B in [8]

and [9] is more natural than Hacon’s definition of

B(W ;X,∆) in [10]. However, B(W ;X,∆) seems to

be easier to compute than B. Hence Theorem 1.2

is important and useful.

Remark 1.3. In [10], Hacon defined

B(W ;X,∆) under the extra assumption that ∆ is

a boundary Q-divisor on X such that KX + ∆ is

Q-Cartier. However, his definition works for effec-

tive R-divisors ∆ such that KX + ∆ is R-Cartier
without any modifications. By definition, it is

obvious that B(W ;X,∆) ≤ B always holds.

Let us quickly explain the proof of Theorem 1.1

for the reader’s convenience. First we take a suit-

able resolution of singularities of the pair (X,∆).

Next, by using the framework of quasi-log schemes

(see [6, Chapter 6]), we construct a natural quasi-

log scheme structure on Z (see [7]). Then we apply

the theory of basic R-slc-trivial fibrations and ob-

tain B and M satisfying (i), (ii), (iii), and (v) (see

[9]). Finally, we prove (iv) with the aid of the mini-

mal model program for log canonical pairs (see [8]).

We strongly recommend the interested reader to see

[7], [8], and [9].

In this paper, we will only use the minimal

model program at the level of [2]. We will freely use

the standard notation and definitions of the mini-

mal model program as in [5] and [6] (see also [7]).

2. B(W ;X,∆) and B Let us recall the

definition of B(W ;X,∆) and B.
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Definition 2.1 (B(W ;X,∆) and B). Let X

be a normal variety and let ∆ be an R-divisor on

X such that KX + ∆ is R-Cartier and that ∆ is

effective in a neighborhood of the generic point of a

closed subvarietyW . Assume thatW is a log canon-

ical center of (X,∆). Let ν : Z →W be the normal-

ization of W . For any proper birational morphism

ρ : Z̃ → Z from a normal variety Z̃, we consider

prime divisors T over X such that a(T,X,∆) = −1

and that the center of T on X is W . We take a

suitable resolution f : Y → X with KY + ∆Y =

f∗(KX+∆) so that ∆Y is a simple normal crossing

divisor on Y , T is a prime divisor on Y , and the

induced map fT : T 99K Z̃ is a morphism. We put

∆T = (∆Y − T )|T . For any prime divisor P on Z̃,

we shrink Z̃ and assume that P is Cartier. Then

we define a real number αP,T by

αP,T = sup

λ ∈ R

∣∣∣∣∣∣
(T,∆T + λf∗TP ) is sub

log canonical over the

generic point of P

 .

It is easy to see that αP,T is independent of the

resolution f : Y → X and is well-defined. The trace

BZ̃ of B on Z̃ is defined by

BZ̃ =
∑
P

(1− inf
T
αP,T )P

where P runs over prime divisors on Z̃ and T runs

over prime divisors over X such that a(T,X,∆) =

−1 and that the center of T on X is W .

We choose and fix one prime divisor T over X

such that a(T,X,∆) = −1 and that the center of T

on X is W . The trace B(W ;X,∆)Z̃ of B(W ;X,∆)

is defined by

B(W ;X,∆)Z̃ =
∑
P

(1− αP,T )P

where P runs over prime divisors on Z̃. By defini-

tion, B(W ;X,∆) ≤ B always holds.

Remark 2.2. Although it is not obvious, we

can check that B is a well-defined R-b-divisor on

Z. On the other hand, we can easily see that

B(W ;X,∆) is a well-defined R-b-divisor on Z, but
it is not clear whether B(W ;X,∆) is independent

of the choice of T or not. In Theorem 1.2, we

prove that B = B(W ;X,∆) holds. This implies

that B(W ;X,∆) is independent of the choice of T .

Moreover, by the proof of Theorem 1.2, the well-

definedness of B is clear.

Precisely speaking, Hacon claims that

B(W ;X,∆) is independent of the choice of the

divisor T without proof in [10]. In this paper, we

prove it in a slightly more general setting.

3. Proof of Theorem 1.2 In this section,

we prove Theorem 1.2. Before the proof of Theorem

1.2, we prepare three lemmas.

Lemma 3.1. Let X be a normal variety and

let ∆ be an R-divisor on X such that KX + ∆ is

R-Cartier. Let f : X → Y be a projective surjective

morphism onto a smooth curve Y such that KX +

∆ ∼R,f 0. Let P be a closed point of Y such that

(X,∆) is divisorial log terminal over Y \ P . We

take the log canonical threshold bP of (X,∆) with

respect to f∗P . Let F be a connected component of

f−1(P ). Assume that F contains a log canonical

center of (X,∆ + bP f
∗P ). Let S be an irreducible

component of
(
∆h

)=1
, that is, S is a codimension

one log canonical center of (X,∆) which is domi-

nant onto Y by f . Then S ∩ F always contains a

log canonical center of (X,∆ + bP f
∗P ). Hence, if

ν : Sν → S is the normalization of S and ∆Sν is the

R-divisor on Sν defined by KSν +∆Sν = ν∗(KX +

∆), then (Sν ,∆Sν + bP ν
∗(f |S)∗P ) has a log canon-

ical center mapping to P .

Proof. Without loss of generality, we may as-

sume that Y is quasi-projective by shrinking Y

around P . By replacing ∆ with ∆+mf∗P for some

sufficiently large positive integer m, we may assume

that ∆ is effective with ∆ ≥ f∗P . In this situation,

the log canonical threshold bP is a nonpositive num-

ber. We take a resolution of singularities of X suit-

ably and run a minimal model program with scaling

of an ample divisor as in the proof of [7, Theorem

3.9]. Then we have a dlt blow-up g : Z → X of

(X,∆) with KZ +∆Z = g∗(KX +∆) such that

• Z is Q-factorial,

• g is small over Y \ P , and

• the pair
(
Z,∆<1

Z + Supp∆≥1
Z

)
is divisorial log

terminal.

For the details of the construction of g : Z → X,

see [7, Theorem 3.9]. By replacing f : (X,∆) →
Y and F with f ◦ g : (Z,∆Z) → Y and g−1(F )

respectively, we may assume that X is Q-factorial

and
(
X,∆<1 + Supp∆≥1

)
is divisorial log terminal.

Hence
(
X, (∆ + bP f

∗P )>0
)
is a Q-factorial diviso-

rial log terminal pair. Note that

KX + (∆+ bP f
∗P )>0 ∼R,f −(∆ + bP f

∗P )<0 ≥ 0.

If Supp(∆+ bP f
∗P )=1 ⊃ F , then it is obvious that

∆ + bP f
∗P is effective in a neighborhood of F and

that S∩F contains a log canonical center of (X,∆+

bP f
∗P ). Therefore, from now on, we assume that

Supp(∆+bP f
∗P )=1 ̸⊃ F . Let F =

∑
i Fi be the ir-

reducible decomposition of F . If Fi ̸⊂ Supp(∆ +

bP f
∗P )=1, then we take 0 < εi ≪ 1. If Fi ⊂

Supp(∆ + bP f
∗P )=1, then we put εi = 0. Let

f : X
h−→ Ȳ → Y be the Stein factorization. Then(

X, (∆ + bP f
∗P )>0 +

∑
i εiFi

)
is a Q-factorial di-

visorial log terminal pair with
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KX + (∆+ bP f
∗P )>0 +

∑
i

εiFi

∼R,h −(∆ + bP f
∗P )<0 +

∑
i

εiFi ≥ 0.

We shrink Ȳ around h(F ) and run a minimal model

program of KX + (∆ + bP f
∗P )>0 +

∑
i εiFi over

Ȳ with scaling of an ample divisor. Then, after

finitely many steps, we get X ′ with the following

commutative diagram:

X

h ��@
@@

@@
@@

@
ϕ //_______ X ′

h′
~~}}
}}
}}
}}

Ȳ

such that ∆′ + bP (f
′)∗P is effective in a neigh-

borhood of F ′ and that (∆′ + bP (f
′)∗P )=1 ≥ F ′,

where f ′ : X ′ → Ȳ , ∆′ = ϕ∗∆, and F ′ = ϕ∗F .

For the details of the above minimal model pro-

gram, see [4] (see also the techniques of very ex-

ceptional divisors discussed in [1, Section 3]). This

means that S′ ∩ F ′ contains a log canonical cen-

ter of (X ′,∆′ + bP (f
′)∗P ), where S′ = ϕ∗S as

usual. Hence there exists a prime divisor E over

S′ such that a(E,S′,∆S′ + bP (f
′|S′)∗P ) = −1

and E maps to P , where KS′ + ∆S′ = (KX′ +

∆′)|S′ . By the construction of ϕ : X 99K X ′, we

have a(E,S,∆S + bP (f |S)∗P ) = −1. We note

that (X,∆<1 + Supp∆≥1) is divisorial log termi-

nal. Hence S ∩ F always contains a log canonical

center of (X,∆+ bP f
∗P ).

Remark 3.2. In Lemma 3.1, we assume that

F contains no log canonical center of (X,∆ +

bP f
∗P ). Then (X,∆+(bP +ε)f

∗P ) is log canonical

in a neighborhood of F for 0 < ε≪ 1. In this situa-

tion, (Sν ,∆Sν +(bP +ε)ν∗(f |S)∗P ) is log canonical

by adjunction. Hence (Sν ,∆Sν + bP ν
∗(f |S)∗P ) has

no log canonical center mapping to P .

Lemma 3.3. Let X be a normal quasi-

projective variety and let W be a closed subvariety

of X. Let φ : W̃ → W be a projective birational

morphism from a normal variety W̃ . Then we can

construct a projective birational morphism ψ : X̃ →
X from a normal variety X̃ such that ψ is an iso-

morphism over the generic point of W with the fol-

lowing commutative diagram:

(3.1) W̃� _

ι̃

��

φ // W� _

ι

��
X̃

ψ
// X,

where ι and ι̃ are closed embeddings.

Proof. By [11, Chapter II, Theorem 7.17],

there exists a coherent ideal sheaf I onW such that

φ : W̃ → W corresponds to the blow-up of I. We

put J = Ker(OX → OW → OW /I). Then J is

a coherent ideal sheaf on X. Let ψ′ : X ′ → X be

the blow-up of J . Then we obtain the following

commutative diagram by [11, Chapter II, Corollary

7.15].

W̃� _

ι′

��

φ // W� _

ι

��
X ′

ψ′
// X

By construction, ψ′ is an isomorphism over the

generic point of W . Let ν : X̃ → X ′ be the normal-

ization of X ′. Since W̃ is normal by assumption,

W̃ → X ′ factors through X̃. Then we get the de-

sired diagram (3.1) such that W̃ → X̃ is a closed

embedding and that ψ : X̃ → X is an isomorphism

over the generic point of W .

Lemma 3.4. Let (Y,∆Y ) be a Q-factorial di-

visorial log terminal pair and let f : Y → X be a

projective morphism with f∗OY ≃ OX and KY +

∆Y ∼R,f 0. Let V be a reduced divisor on Y such

that V ≤ ∆=1
Y and f(Vi) is independent of i ∈ I,

where V =
∑
i∈I Vi is the irreducible decomposition

of V . We set W = f(Vi). Suppose that W ⊊ X and

that no log canonical center of (Y,∆Y − V ) maps

into W by f . Then f∗OV ≃ OW holds.

Proof. We can take a projective birational mor-

phism g : Z → Y from a smooth variety Z such

that g is an isomorphism over the generic point

of any log canonical center of (Y,∆Y ) and that

Exc(g) ∪ Supp g−1
∗ ∆Y is a simple normal crossing

divisor on Z. Then we can write KZ + ∆Z =

g∗(KY +∆Y )+E with ∆Z = g−1
∗ ∆Y such that ⌈E⌉

is effective and g-exceptional. Let VZ be the strict

transform of V on Z. We have −VZ + ⌈E⌉ ∼R,f◦g
KZ + ∆Z − VZ + {−E}. By the vanishing theo-

rem of Reid–Fukuda type (see [6, Theorem 3.2.11]),

Rig∗OZ(−VZ + ⌈E⌉) = 0 for every i > 0. We note

that g∗OZ(−VZ + ⌈E⌉) ≃ OY (−V ) holds since ⌈E⌉
is effective and g-exceptional. We consider the fol-

lowing long exact sequence:

0 −→ f∗OY (−V ) −→ f∗OY −→ f∗OV

δ−→ R1f∗OY (−V ) −→ · · · .

By [5, Theorem 6.3 (i)] (see also [6, Theorem

3.16.3 (i)]), there exists no associated prime of

R1f∗OY (−V ) ≃ R1(f ◦ g)∗OZ(−VZ + ⌈E⌉) in W =

f(V ). Hence the above connecting homomorphism

δ is zero. Therefore, OX ≃ f∗OY → f∗OV is sur-

jective. Thus the natural map OW → f∗OV is an

isomorphism.

Let us start the proof of Theorem 1.2.

Proof of Theorem 1.2. We will prove B =

B(W ;X,∆) under a slightly weaker assumption

that ∆ is only effective in a neighborhood of the

generic point of W .
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Step 1. We take an arbitrary projective bira-

tional morphism Z̃ → W from a normal variety Z̃.

We have to prove BZ̃ = B(W ;X,∆)Z̃ . By taking

an affine open cover of X, we may assume that X is

quasi-projective. By applying Lemma 3.3 to Z̃ →
W and W ↪→ X, we get the following commutative

diagram:

Z̃� _

��

// W� _

��
X̃

ψ
// X,

where ψ : X̃ → X is a projective birational mor-

phism from a normal variety such that ψ is an iso-

morphism over the generic point of W . We put

KX̃ + ∆̃ = ψ∗(KX + ∆). Since ψ is an isomor-

phism over the generic point of W , ∆̃ is effective in

a neighborhood of the generic point of Z̃ and Z̃ is a

log canonical center of (X̃, ∆̃). By replacing (X,∆)

andW with (X̃, ∆̃) and Z̃, respectively, we may fur-

ther assume that W is normal. By this reduction,

all we have to do is to prove BW = B(W ;X,∆)W .

Step 2. We take an effective Cartier divisor

D on X such that W ̸⊂ SuppD and Supp∆<0 ⊂
SuppD. We consider the pair (X,∆ + mD) for

some sufficiently large positive integer m such that

∆ + mD is effective. We take a projective bira-

tional morphism f : Y → X from a smooth quasi-

projective variety Y such that f−1(W ) and Exc(f)

are divisors on Y such that the union of f−1(W ),

Exc(f), Supp f−1
∗ ∆, and Supp f−1

∗ D is contained

in a simple normal crossing divisor. We put KY +

∆Y = f∗(KX + ∆) and KY + ∆Y + mf∗D =

f∗(KX +∆+mD). We define V =
∑
i∈I Vi, where

Vi runs over components of ∆=1
Y with f(Vi) = W .

By construction, there exists no log canonical center

of (Y,∆Y −V ) mapping to W over a neighborhood

of the generic point of W . Let T be the prime di-

visor over X which was chosen in order to define

B(W ;X,∆). Let S be any prime divisor over X

such that a(S,X,∆) = −1 and that the center of

S on X is W . We may assume that S and T are

components of V by taking f : Y → X suitably.

To prove Theorem 1.2, it is sufficient to check that

αP,Vi
is independent of the choice of i ∈ I.

Step 3. By running a minimal model pro-

gram with scaling of an ample divisor as in the proof

of [7, Theorem 3.9], we get a dlt blow-up f ′ : Y ′ →
X of (X,∆+mD) with the following commutative

diagram.

Y

f   @
@@

@@
@@

@
ϕ //_______ Y ′

f ′
~~}}
}}
}}
}}

X

We put KY ′ + ∆Y ′ = (f ′)∗(KX + ∆), and we de-

fine Γ to be the sum of (∆Y ′ + (f ′)∗mD)
<1

and

Supp (∆Y ′ + (f ′)∗mD)
≥1

. By construction, Y ′ is

Q-factorial and (Y ′,Γ) is divisorial log terminal.

For the details, see [7, Theorem 3.9]. Therefore,

f ′ : (Y ′,∆Y ′) → (X,∆) is a dlt blow-up over a

neighborhood of the generic point of W . By con-

struction again, ϕ does not contract any compo-

nents of V . We put V ′ = ϕ∗V and V ′
i = ϕ∗Vi for

every i ∈ I. We note that (Y ′, V ′) is divisorial log

terminal since V ′ ≤ Supp (∆Y ′ + (f ′)∗mD)
≥1

. In

particular, V ′
i is normal for every i ∈ I. We can take

a Zariski open neighborhood U of the generic point

of W over which f ′ : (Y ′,∆Y ′) → (X,∆) is a dlt

blow-up and no log canonical center of (Y ′,∆Y ′ −
V ′) maps to W by f ′. By applying Lemma 3.4 to

f ′ : (Y ′,∆Y ′)|(f ′)−1(U) → U , we obtain that the nat-

ural mapOW → f ′∗OV ′ is an isomorphism on U . On

the other hand, since every irreducible component

of V ′ is dominant ontoW , we see that SpecW f ′∗OV ′

is a variety. Therefore, sinceW is normal, the finite

birational morphism SpecW f ′∗OV ′ → W is an iso-

morphism by Zariski’s main theorem. This implies

that f ′ : V ′ → W has connected fibers. We put

KV ′
i
+∆V ′

i
= (KY ′ +∆Y ′)|V ′

i
and f ′i = f ′|V ′

i
: V ′

i →
W for every i ∈ I. We shrink W and assume that

P is Cartier. Then we set

αP,V ′
i
= sup

λ ∈ R

∣∣∣∣∣∣
(V ′
i ,∆V ′

i
+ λ(f ′i)

∗P ) is

sub log canonical over

the generic point of P

 .

It is easy to see that αP,Vi
= αP,V ′

i
holds for every

i ∈ I. Therefore, to prove that αP,Vi is independent

of the choice of i ∈ I, it is sufficient to prove that

αP,V ′
i
is independent of the choice of i ∈ I.

Step 4. We take a prime divisor P onW . By

cutting down X by general hyperplanes, we assume

that W is a smooth curve and P is a closed point.

By shrinking X suitably around P , (V ′
i ,∆V ′

i
) is di-

visorial log terminal over W \P for every i ∈ I. We

put

cP = sup

λ ∈ R

∣∣∣∣∣∣
(V ′
i ,∆V ′

i
+ λ(f ′i)

∗P ) is

sub log canonical for

every i ∈ I

 .

By definition, there exists i0 ∈ I such that αP,V ′
i0

=

cP holds. From now on, we will prove that αP,V ′
i
=

cP holds for every i ∈ I. If #I = 1, then there

is nothing to prove. Hence we may assume that

#I ≥ 2. To obtain αP,V ′
i
= cP for every i ∈ I, it is

sufficient to prove the following claim.

Claim. Let F be any connected component of

f ′−1
i (P ) and let B be any irreducible component of

(∆h
V ′
i
)=1 for some i ∈ I. Then B ∩F contains a log

canonical center of (V ′
i ,∆V ′

i
+ cP (f

′
i)

∗P ).

Proof of Claim. We note that for any j ∈ I

there exists some k ∈ I with k ̸= j such that V ′
j ∩
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V ′
k ̸= ∅ and that some irreducible component of V ′

j ∩
V ′
k is dominant onto W by f ′ since f ′ : V ′ →W has

connected fibers and every irreducible component

of V ′ is dominant onto W by f ′. We take an ir-

reducible component A of V ′
j ∩ V ′

k with j ̸= k such

that A is dominant ontoW by f ′. We note that A is

an irreducible component of (∆h
V ′
j
)=1 and (∆h

V ′
k
)=1

by adjunction. Let Gj be a connected component

of (f ′j)
−1(P ). Then A∩Gj contains a log canonical

center of (V ′
j ,∆V ′

j
+ cP (f

′
j)

∗P ) if and only if A ∩
Gk contains a log canonical center of (V ′

k,∆V ′
k
+

cP (f
′
k)

∗P ), where Gk is the connected component

of (f ′k)
−1(P ) containing A ∩ Gj . We first apply

Lemma 3.1 to f ′i0 : (V
′
i0
,∆V ′

i0
+cP (f

′
i0
)∗P ) →W and

then use the connectedness of the fibers of f ′ : V ′ →
W . By repeating this argument, we finally obtain

that B ∩ F always contains a log canonical center

of (V ′
i ,∆V ′

i
+ cP (f

′
i)

∗P ).

As we mentioned above, we see that αP,V ′
i
is

independent of i ∈ I. This is what we wanted.

The above arguments show that BW =

B(W ;X,∆)W holds. We finish the proof of The-

orem 1.2.

Remark 3.5. In Step 3 in the proof of Theo-

rem 1.2, we proved that f ′ : V ′ →W has connected

fibers. Note that W is normal by the reduction

argument in Step 1 in the proof of Theorem 1.2.

However, it is not clear whether f ′ : V ′
i → W has

connected fibers or not. Hence we need a somewhat

artificial formulation in Lemma 3.1.
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