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1 Introduction

The birational classification of algebraic varieties is a central problem in
algebraic geometry. Starting with Riemann’s theory of curves in the 19th
century and the Italian school’s theory of surfaces at the turn of the 20th cen-
tury, passing through Kodaira’s classification of complex analytic surfaces
and the work of the Russian school under Shafarevich, a rather satisfactory
classification was obtained for algebraic varieties in low dimensions. The
first systematic attempt at a birational classification of algebraic varieties in
dimension three and above was due to Iitaka [I1]; from the 1970s onwards,
he introduced the notion of the Kodaira dimension of a general algebraic
variety, thus taking the first step in the direction of birational classification.
Iitaka’s many contributions to the subject include the definition of log Ko-
daira dimension and his additivity conjecture for Kodaira dimension [I2].
These ideas can all be summarized as the Iitaka program.

From the 1980s, Mori introduced Mori theory, or minimal model theory
as we call it from now on, and this has become the standard approach to
birational classification theory. Building on techniques worked out in the
course of his solution of the Hartshorne conjecture [M1], Mori proved his
Cone Theorem [M2], that encodes information on birational maps between
projective algebraic varieties. This epoch-making piece of work made clear
the road that minimal model theory for higher dimensional varieties was
to follow (compare [M5]). Following on from this, minimal model theory
developed as a combination of a general cohomological theory based on
Hironaka’s resolution of singularities and the Kawamata–Viehweg vanishing
theorem (a generalization of Kodaira vanishing, see Theorem 28), together
with Mori’s extremely detailed results on the classification of singularities.
During the second half of the 1980s Mori [M4] succeeded in completing the
construction of minimal models in three dimensions, and was awarded the
Fields Medal in Kyoto in 1990. During the early 1990s the conjectures
concerning minimal model theory in three dimensions were practically all
settled in a satisfactory form.

The next problem to be considered was that of extending minimal model
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theory to higher dimensions. However, Mori’s results in three dimensions
depended in an essential way on a detailed classification of singularities
[M3], [M4], so that the three dimensional methods do not extend as they
stand to higher dimensions; the great breakthroughs were followed by a
lull. Around 2000, Shokurov, who had contributed many ideas to minimal
model theory continuously from its early stages, claimed to complete the
construction of four dimensional minimal models [Sh4]. Shokurov’s papers
[Sh2]–[Sh4] are a treasure trove of ideas, but the difficulty of reading and
understanding them is also something of a trademark. A 2002 seminar at
the Cambridge Newton Institute was devoted to deciphering Shokurov [Sh4];
this produced the book [Book]1 and stimulated the rapid developments of
recent years centered around the work of Hacon and McKernan [HM3], and
Birkar, Cascini, Hacon and McKernan [BCHM]. Conjectures that until just
a few years earlier had seemed impossible to resolve fell one after another.
My purpose here is to give an introduction to some aspects of these grand
developments.

The main cues for the current developments were the ideas of Shokurov
over the last 20 years, combined with the ingenious method of Siu’s extension
theorem [Si1] based on the use of multiplier ideal sheaves. To cut a long
story short, let me state at once one of the main results.

Theorem 1 ([BCHM]) Let X be a nonsingular algebraic variety defined
over the field of complex numbers. Then the canonical ring

R(X,KX) =
⊕

m≥0

H0(X,OX (mKX))

is a finitely generated C-graded algebra.

Here, of course, the dimension of X is arbitrary. The reader having a
little experience in studying algebraic geometry should be in a position to
appreciate the power of this theorem. In what follows we always consider
varieties over the complex number field C; we need the characteristic of the
ground field to be zero to make free use of the resolution of singularities and
vanishing theorems in cohomology.

The remainder of this introductory Section 1 discusses the main theorems
and corollaries of [BCHM]. Section 2 explains the classical theory of minimal
models, including log minimal models and minimal models with scaling. 2.2
summarizes the terminology that we need. Section 3 treats the problem of

1Footnote 1, p. 37
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the existence of a special class of flips called pl flips; their existence is the
main theorem of [HM3].

Section 4 changes track slightly to explain multiplier ideals, together
with a number of results that are obtained by applying them; this topic
forms the background to the recent developments in the theory of minimal
models. In Section 5 we discuss the mechanisms of the proof of [BCHM].
Section 6 gathers together the results actually proved in [BCHM]. The final
Section 7 discusses the state of play from here onwards and states a number
of recent results related to minimal model theory.

1.1 The main theorems and their corollaries

To get started, we just state the main results of [BCHM], leaving the more
detailed explanations of the content to appear gradually. We urge the reader
who has difficulties understanding the assertions below to press on never-
theless; if the material gets really painful, please move on to 2.1.

Theorem 2 Suppose that (X,∆) is a Kawamata log terminal pair; in par-
ticular, we assume that KX + ∆ is R-Cartier. Let π : X → U be a proper
morphism between quasiprojective varieties. Assume either that KX + ∆
is π-big, or that ∆ is π-big and KX + ∆ is π-pseudoeffective. Then the
following hold:

(1) KX + ∆ has a log terminal model over U .

(2) If KX + ∆ is π-big then (X,∆) has a log canonical model over U .

(3) If KX +∆ is Q-Cartier then
⊕

m≥0
π∗OX(bm(KX + ∆)c) is a finitely

generated OU -algebra.

Everything we say is in general dimensions. Since we have stated Theo-
rem 2 in a form that will be hard for a nonexpert to grasp, we explain its
main corollaries before proceeding further. Corollary 3 follows easily from
Theorem 2 by applying the negativity lemma.

Corollary 3 Let X be a nonsingular projective variety of general type; that
is, assume KX is big. Then the following hold:

(1) X has a minimal model. That is, there exists a projective variety
X ′ birational to X such that X ′ has at worst Q-factorial terminal
singularities and KX′ is nef.
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(2) X has a canonical model. That is, there exists a projective variety X ′

birational to X such that X ′ has at worst canonical singularities and
KX′ is ample.

(3) The canonical ring

R(X,KX) =
⊕

m≥0

H0(X,OX (mKX))

is finitely generated.

In Corollary 3, only (1) needs to be proved, because then (2) and (3)
follow from the base point free theorem. This is still a formidable result.

Corollary 4 Let (X,∆) be a Kawamata log terminal pair; suppose that X
is a projective variety and ∆ a Q-divisor. Of course, we also assume that
KX + ∆ is Q-Cartier. Then the log canonical ring

R(X,KX + ∆) =
⊕

m≥0

H0(X,OX (bm(KX + ∆)c))

is finitely generated.

Note that in Corollary 4 we do not need to assume that KX + ∆ is big.
The corollary can be proved by putting together the canonical bundle for-
mula of Fujino and Mori [FM] with Theorem 2, (3). We repeat a particular
case of this result for the reader’s benefit.

Corollary 5 Let X be a nonsingular projective variety. Then the canonical
ring

⊕

m≥0
H0(X,OX (mKX)) is always finitely generated.

For X of general type, the statement of Corollary 5 is given in [Si4].

Corollary 6 Let (X,∆) be a Kawamata log terminal pair and ϕ : X → W
a flipping contraction for KX + ∆. Then the flip of ϕ exists.

Using the results of [BCHM] one can also prove the following theorem.
For the more precise statement see Kawamata [K9].

Theorem 7 ([K9]) Let X and X ′ be projective varieties having at worst Q-
factorial terminal singularities, and suppose that X and X ′ are birationally
equivalent. Assume also that KX and KX′ are both nef. Then a birational
map X 99K X ′ is equal to a composite of a finite number of flops.
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The results of [BCHM] have many applications beyond what we discuss
here; we mention here an application to moduli theory that follows from
[BCHM] using results of Karu [Kr], Kollár [Ko2] and Keel and Mori [KeM].

Theorem 8 Let Msm
H be the moduli functor that sends a scheme S to the

set of isomorphism classes of families of stable smoothable polarized n-folds
over S having Hilbert polynomial H. Then the coarse moduli space M sm

H of
Msm

H exists. Moreover, M sm
H is a projective scheme.

It may not be immediately clear just from reading the statement of the
theorem, but this result is a complete generalization to general dimensions
of the results surrounding the moduli space of curves of general type and
its compactification. However, the construction techniques have nothing
whatever to do with Mumford’s methods in terms of geometric invariant
theory. There are many further applications, but we leave these and press
on for the moment.

2 Minimal model theory

2.1 Classical minimal model theory

We now explain minimal model theory in its classical guise. In what follows
X is a normal algebraic variety and KX its canonical divisor. We start by
recalling the Cone Theorem. Please refer to 2.2 for the terminology.

Theorem 9 (Cone Theorem) Let X be a projective algebraic variety with
at worst terminal singularities. Then the following hold.

(1) There exists an at most countably infinite set of rational curves Cj ⊂ X
satisfying 0 < −KX · Cj ≤ 2 dimX and such that

NEX =
(

NEX
)

KX≥0
+

∑

R≥0[Cj ].

Here NEX is the Kleiman–Mori cone of X and
(

NEX
)

KX≥0
the part

of NEX on which KX is nonnegative.

(2) Let R ⊂ NEX be a KX-negative extremal ray. Then there exists a
unique morphism ϕR : X → Z of X to a projective variety Z satisfying
ϕR∗OX = OZ and such that for a curve C ⊂ X

ϕR(C) = point ⇐⇒ [C] ∈ R.

Moreover, ρ(X) − ρ(Z) = ρ(X/Z) = 1.
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Theorem 9, (2) is often referred to as the Contraction Theorem. For
further details, please refer to Kawamata, Matsuda and Matsuki [KMM]
(the bible of the early period of minimal model theory), as well as the
textbooks Kollár and Mori [KM] and Matsuki [Ma2].

The estimate 0 < −KX · Cj ≤ 2 dimX for the length of an extremal
ray is due to Kawamata [K4], based on Miyaoka and Mori [MM]. Thus
this part of the argument needs Mori’s technique of reduction to positive
characteristic. This estimate on the length of an extremal ray will play an
important role in the theory of minimal models with scaling that we will
explain presently.

Having said this, we can now explain classical minimal model theory.
Suppose that X is a projective variety having only Q-factorial terminal
singularities. The idea of minimal model theory is to construct a good
model of X starting out from X0 = X. In a little more detail, suppose that
we have constructed a projective variety Xi birational to X and having at
worst Q-factorial terminal singularities. If KXi

is nef then we set X∗ = Xi,
and say that X∗ is a minimal model of X. If KXi

is not nef then there
exists a KXi

-negative extremal ray R of NEXi. Consider the corresponding
contraction morphism ϕR : Xi → Y . If ϕR is not birational, then we again
set X∗ = Xi, and say that X∗ is a Mori fiber space. From now on, assume
that ϕR is birational.

(1) If ϕR contracts a divisor of Xi, we say that ϕR is a divisorial contrac-
tion. In this case we set Xi+1 = Y and return to the start.

(2) If ϕR is an isomorphism in codimension 1, we say that ϕR is a flipping
contraction. In this case, if a flip

Xi 99K X+

i

↘ ↙
Y

exists, then we set Xi+1 = X+

i and return to the starting point. Flips
are explained in detail below.

In either of the two cases (1) and (2), one sees that Xi+1 is a projec-
tive variety with at worst Q-factorial terminal singularities. For case (1)
of divisorial contraction, one sees at once by arguing on a count of the Pi-
card number that a divisorial contraction can only happen a finite number
of times. Therefore, assuming that the following two conjectures can be
solved, it follows that after a finite number of steps one obtains either a
minimal model or a Mori fiber space birational to X.
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Conjecture 10 (Flip Conjecture I: Existence of flips) Suppose that
ϕ : X →W is a flipping contraction. In other words, assume that

(1) ϕ is a projective birational morphism, and is an isomorphism in co-
dimension 1.

(2) −KX is ϕ-ample.

(3) X has at worst Q-factorial terminal singularities, and has relative
Picard number ρ(X/W ) = 1.

Then there exists a commutative diagram

X 99K X+

↘ ↙
Y

such that

(i) X+ is a normal variety, and is projective over W .

(ii) ϕ+ : X+ → W is a birational morphism, and is an isomorphism in
codimension 1.

(iii) KX+ is ϕ+-ample.

Then ϕ+ : X+ →W is called the flip of ϕ : X →W .

Conjecture 11 (Flip Conjecture II: Termination) Any chain

X0 99K X1 99K X2 99K · · ·
↘ ↙ ↘ ↙
W0 W1

of flips necessarily terminates after a finite number of steps. To put it an-
other way, there does not exist any infinite sequence of flips.

In two dimensions, there are no terminal singularities other than the
nonsingular points, and no flipping contractions. It follows from this that
every step of the minimal model theory simply contracts a −1-curve. For
3-folds, the above two conjectures were solved during the 1980s. Shokurov
[Sh1] gave an elegant solution to Flip Conjecture II, the termination, by
introducing his notion of difficulty; his proof, consisting of just a single
marvelous idea, was extremely simple. Flip Conjecture I, the existence, was
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solved by Mori [M4]. Mori’s proof consisted of a detailed and exhaustive
analysis of the form of an analytic neighborhood of the curves contracted
by a flipping contractions ϕR : X → W ; in a formidable piece of work, he
gave separate arguments to confirm the existence of the flip in each case.

Be that as it may, in the first nontrivial case of 3-folds, the theory of
minimal models was completed within 10 years of its first appearance. The
1980s was a golden age for minimal model theory. For an overall view and the
early development of the theory of minimal models and their classification,
we strongly recommend reading Kawamata’s survey articles [K10] and [K11]
as an introduction.

The first early results on the 4-dimensional case of Flip Conjecture I
were obtained by Kawamata [K3], after which the only results were by Kachi
[Kc1], [Kc2] and Takagi [Tk1], [Tk3]. The first paper to relate the extension
theorem (see Siu [Si1], Nakayama [N2], Kawamata [K8]) to the construction
of flips was Takagi [Tk3], possibly a result in advance of its time.

2.2 Terminology and preliminaries

We now spell out some of the terminology used so far without explanation,
and also carry out some necessary preliminaries before proceeding to more
advanced topics.

1. Divisors A Q-divisor or R-divisor is a formal finite sum D =
∑

diDi

of prime divisors Di with rational coefficients di (respectively, real). We
can define the round-down bDc of D by taking the integral part of each
coefficient di; the fractional part is {D} = D − bDc. The round-up of D
is dDe = −b−Dc. A divisor D is Q-Cartier (or R-Cartier) if it can be
written as a linear combination of Cartier divisors with coefficients in Q

(respectively R).
We say that two R-divisors D and D′ are R-linearly equivalent (or Q-

linearly equivalent, or linearly equivalent) if there exist finitely many rational
functions f1, . . . , fk on X and real numbers r1, . . . , rk (or rational numbers,
or integers) such that the difference D − D ′ can be written in the form
D−D′ =

∑r
i=1

ki div(fi) (here div(fi) is the principal divisor associated with
fi); we denote this linear equivalence by D ∼R D

′ (or D ∼Q D′, or D ∼ D′).
The usual notions for a Cartier divisor of ample, semi-ample and nef can
be defined in a similar way for Q-Cartier and R-Cartier divisors. (However,
there are technical issues that are strangely awkward for R-Cartier divisors.)

The introduction of Q-divisors was an important component in the co-
homological methods that led to remarkable progress in the minimal model
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theory of the 1980s; R-divisors are also required for certain limiting proce-
dures. We say that a normal variety X is Q-factorial if every prime divisor
on X is Q-Cartier. This condition is more powerful than might appears at
first sight and we assume it on many occasions as a magic invocation.

2. Discrepancy coefficients Let X be a normal variety and ∆ an R-
divisor onX. Assume thatKX+∆ is an R-Cartier divisor, and let f : Y → X
be a birational morphism from a normal variety Y . We can write

KY = f∗(KX + ∆) +
∑

E

a(E,X,∆)E,

where E runs over all prime divisors of Y ; the real coefficient a(E,X,∆) is
called the discrepancy of E with respect to (X,∆).

Next, let X be a normal variety such that KX is a Q-Cartier divi-
sor. We say that X has terminal singularities (or canonical singularities)
if for any birational morphism f : Y → X from a normal variety Y , and
any f -exceptional prime divisor E we have a(E,X, 0) > 0 (respectively
a(E,X, 0) ≥ 0). For a surface X, terminal singularities are exactly the non-
singular points, and canonical singularities are at worst Du Val singularities.
See Reid [R] for the situation for 3-fold singularities.

3. Cones Consider a proper morphism f : X → S between normal va-
rieties X and S. A relative 1-cycle for f is a formal linear combination
C =

∑

j cjCj of curves Cj on X contracted by f to a single point f(Cj) on
S. We say that Cartier divisors D,D′ on X are numerically equivalent over
S if (D · C) = (D′ · C) for every relative 1-cycle C. Similarly, we say that
relative 1-cycles C,C ′ are numerically equivalent if (D · C) = (D · C ′) for
every Cartier divisor D. We write D ≡ D ′ respectively C ≡ C ′ for numerical
equivalence. This defines two dual finite dimensional real vector spaces

N1(X/S) =
(

{Cartier divisors}/≡
)

⊗Z R,

N1(X/S) =
(

{relative 1-cycles}/≡
)

⊗Z R.

The relative Picard number is defined by ρ(X/S) = dimRN
1(X/S).

We write NE(X/S) ⊂ N1(X/S) for the closure of the convex cone
spanned by the equivalence classes of curves C such that f(C) is a point;
this is the Kleiman–Mori cone. An R-Cartier divisor D determines a linear
functional hD on N1(X/S) by hD(C) = (D · C). We say that D is f -nef2

2Footnote 2, p. 37
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if hD is nonnegative on N1(X/S). When f is a projective morphism, the
necessary and sufficient condition for D to be ample on X/S is that hD be
positive on NE(X/S) \ {0}. We write PE(X/S) for the closure of the cone
spanned by the equivalence classes of effective Cartier divisor in N 1(X/S).
We say that an R-Cartier divisor is f -pseudoeffective if its numerical equiv-
alence class is in PE(X/S). If D is an R-Cartier divisor whose numerical
equivalence class is an interior point of PE(X/S), we say that D is big.
When S is a single point, we abbreviate N1(X/S), N 1(X/S), NE(X/S),
ρ(X/S) by N1(X), N1(X), NE(X), ρ(X).

4. Pairs A pair (X,B) consisting of a normal variety X together with an
R-divisior B on X is divisorially log terminal (dlt) if all the coefficients of
B are nonnegative real numbers ≤ 1, KX + B is an R-Cartier divisor, and
in addition, there exists a resolution of singularities having the following
properties:

(a) f : Y → X is a proper birational morphism from a nonsingular variety;

(b) both Exc(f) and Exc(f)∪ f−1
∗ (B) are simple normal crossing divisors

where f−1
∗ B is the strict transform of B under f−1 and Exc(f) is the

exceptional set of f ;

(c) if we write

KY +BY = f∗(KX +B) with −BY =
∑

j

bjB
′
j ,

then bj > −1 for every j for which the component B ′
j is exceptional,

that is B′
j ⊂ Exc(f).

We say that (X,B) is Kawamata log terminal (klt) if (X,B) is dlt and
bBc = 0. Also, we say that (X,B) is purely log terminal (plt) if (X,B) is
dlt and bBc is normal. Obviously from the definition, klt implies plt and
plt implies dlt.

Suppose that X is a nonsingular variety, and that
∑

iBi is the irre-
ducible decomposition of a normal crossing divisor. Then (X,

∑

i biBi) dlt
(respectively, klt) is equivalent to 0 ≤ bi ≤ 1 (respectively 0 ≤ bi < 1) for all
i. Assuming that (X,

∑

i biBi) is dlt, it is equivalent to say that
∑

bi=1
Bi is

nonsingular or that (X,
∑

i biBi) is plt. The ability to distinguish between
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these notions of dlt, plt and klt and their usage is a prerequisite for becom-
ing a specialist in minimal model theory. For details, please refer to [Ko4]
and [F5].3

For later use, we introduce one final definition. Consider a pair (X,B)
consisting of a normal variety X and an effective R-divisor B on it such that
KX + B is an R-Cartier divisor. We say that (X,B) is a log canonical pair
if a(E,X,B) ≥ −1 for every birational morphism f : Y → X and for every
prime divisor E of Y . One checks immediately that a dlt pair (X,B) is log
canonical.

Moreover, we define a log canonical center in X to be the image under
f of a prime divisor E for which a(E,X,B) = −1.

2.3 Log minimal model theory

Two extensions to the framework of minimal model theory were already in
place well before Mori’s proof of the existence of 3-fold flips: the extension
to the relative case, which has long been standard in algebraic geometry, and
the logarithmic case as influenced by the Iitaka program (see [KMM]). What
we have said for classical minimal model theory works in exactly the same
way for a Q-factorial dlt pair (X,∆) projective over a fixed algebraic variety
S. The cone theorem and the Contraction Theorem hold for a relative Q-
factorial dlt pair (X,∆), and the remaining problems are Conjectures 12
and 14 below. Once these two conjectures are resolved, as explained in
the case of classical minimal model theory, one sees that, starting from a
given dlt pair (X,∆), after a finite number of operations, we obtain either
a log minimal model or a log Mori fiber space. Passing to the log case and
the relative case are not just generalizations for the sake of generalization,
but arise in an unavoidable way in the solution of all kinds of problems by
induction on the dimension and such-like. These two generalizations are
important points; the proofs of [BCHM] cannot be carried out successfully
without log pairs and the relative case.

Conjecture 12 (Conjecture I: existence of log flips) Let ϕ : X → W
be a flipping conjecture. That is,

(1) ϕ is a projective birational morphism and is an isomorphism in codi-
mension 1.

(2) −(KX + ∆) is ϕ-ample.

3Footnote 3, p. 37
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(3) X is Q-factorial and (X,∆) is a dlt pair; also, the relative Picard
number ρ(X/W ) = 1.

Then there exists the following commutative diagram

X 99K X+

↘ ↙
W

where

(i) X+ is a normal variety, and is projective over W .

(ii) ϕ+ : X+ → W is a birational morphism and is an isomorphism in
codimension 1.

(iii) KX+ + ∆+ is ϕ+-ample. Here ∆+ is the strict transform of ∆.

The morphism ϕ+ : X+ →W is called the log flip of ϕ : X →W

If (X+,∆+) exists then one proves that it is divisorially log terminal
and X+ is Q-factorial. The ∆ appearing in Flip Conjecture I is a priori a
general R-divisor, but one may assume that it is a Q-divisor by jiggling its
coefficients.

We prepare the following well known result for subsequent use. As we
have just said, in Proposition 13, it is enough to assume that ∆ is a Q-divisor.

Proposition 13 The necessary and sufficient condition for the flip of a
flipping contraction ϕ : X → W to exist is that the graded OW -algebra
⊕

m≥0
ϕ∗OX(bm(KX + ∆)c) is finitely generated. When this holds, X+ is

given by

X+ =
⊕

m≥0

ϕ∗OX(bm(KX + ∆)c).

In particular, Flip Conjecture I is a local problem in W .

Conjecture 14 (Conjecture II: termination of log flips) Any chain

X0 99K X1 99K X2 99K · · ·
↘ ↙ ↘ ↙
W0 W1

of log flips necessarily terminates after a finite number of steps. To put it
another way, there does not exist any infinite sequence of log flips.
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In Flip Conjecture II, we are not allowed to assume that ∆ is a Q-divisor.
This point requires some care: whether ∆ is a Q-divisor or an R-divisor
makes a subtle difference to the difficulty of the problem.

In this discussion, as in the title log minimal model theory, the pre-
fix log is sometimes included and often omitted. Flip Conjecture I is now
completely understood in arbitrary dimension and for dlt pairs. For klt
pairs, this follows from Corollary 6. Flip Conjecture II is not yet completely
solved. The fact that infinite sequences of flips do not exist within a special
framework is one of the main topics of [BCHM].

Before proceeding further, we give the rigorous definition of minimal
model and log canonical model.

Definition 15 (Log minimal and canonical models) Let π : X → U
be a projective morphism between quasiprojective varieties. Let (X,∆)
be a dlt pair and ϕ : X 99K Y a birational map over U such that ϕ−1 does
not contract any divisor; here we set Γ = ϕ∗∆. If KY + Γ is ample over
U and a(E,X,∆) ≤ a(E, Y,Γ) holds for every ϕ-exceptional divisor E then
we say that Y is a log canonical model of (X,∆).

We say that (Y,Γ) is a log terminal model of (X,∆) if (Y,Γ) is Q-factorial
and dlt, KY + Γ is nef over U and a(E,X,∆) < a(E, Y,Γ) holds for every
ϕ-exceptional divisor E. We also often call this simply a (log) minimal
model.

Note that the minimal models that arise as a result of log minimal model
theory are log minimal models in the sense of Definition 15.

The 3-fold log flip Conjecture I was proved by Shokurov [Sh2]. This
paper was extremely difficult to read, and practically no-one has read it
in fine detail. Takagi’s paper [Tk2] is based on deciphering [Sh2]. The
papers4 [CK] and [Ko3] showed that the result of [Sh2] can be recovered by
putting together the methods of the paper [K6] that solved the 3-fold log
flip Conjecture II with Mori’s magnum opus [M4]. Be that as it may, [Sh2]
was a paper that introduced a wealth of new concepts and ideas into the
world of minimal model theory.5

2.4 MMP with scaling

Here we explain the MMP with scaling. The idea itself was already present
in [Sh2], but using it effectively was crucial to the success of [BCHM].

4Footnote 4, p. 37
5Footnote 5, p. 37
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NE(X/S)

R

KX +B +H = 0

KX +B + λH = 0

KX +B < 0

KX +B = 0
KX +B > 0

Figure 1: The choice of extremal ray in MMP with scaling.

Let π : X → U be a projective morphism between quasiprojective vari-
eties. The reader averse to the relative case may take U to be a single point.
Let (X,∆) be a Q-factorial dlt pair. Suppose that we also have an effective
R-Cartier divisor C such that KX + ∆ + C is nef over U and (X,∆ + C)
is dlt. If KX + ∆ is nef then (X,∆) is itself a log terminal model over U .
Thus we can assume that KX + ∆ is not nef. In this case, there exists a
(KX +∆)-negative extremal ray R ⊂ NE(X/U) and a threshold value λ ∈ R

such that 0 < λ ≤ 1 and KX + ∆ + λC is nef but (KX + ∆ + λC) · R = 0.
The existence of this R follows from the bound on the length of extremal
ray (the statement ≤ 2 dimX of Theorem 9, (1)).

Consider the contraction morphism ϕR : X → Y associated with this R.
If ϕR is not birational then ϕR : (X,∆) → Y is the thing that we call a
log Mori fiber space. In what follows we assume that ϕR is birational. If
f = ϕR is a divisorial contraction then we replace X by Y , ∆ by f∗∆ and
C by λf∗C. If ϕR is a flipping contraction then we apply the flip X 99K Y ,
and replace X by X+, ∆ by its strict transform ∆+ and C by λ times its
strict transform λC+.

After this, one sees that the newKX +∆+C is again nef over U and is Q-
factorial and dlt. Now we repeat the above procedure. In the final analysis,
what the procedure is doing is just running an ordinary minimal model
program for KX +∆ over U , but we choose the (KX +∆)-negative extremal
ray R to be the ray in N1(X/U) in which the hyperplane KX +∆+λC = 0
touches the cone NE(X/U) (see Figure 1). This conditional MMP is called
the MMP with scaling by C; we run the MMP while successively decreasing
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C.
In [BCHM] it is proved, assuming that (X,∆) is klt and ∆ is big, that

MMP with scaling works in all dimension. Let us state this as a theorem.

Theorem 16 Let π : X → U be a morphism between normal quasiprojective
varieties. Suppose that (X,∆) is Q-factorial klt and ∆ is big. If KX +∆+C
is klt and π-nef then the MMP over U with scaling by C works. That is, the
flips that are needed in the course of the MMP necessarily exist, and infinite
sequences of flips do not occur.

3 The existence of pl flips

Although it may seem somewhat abrupt, this section consists of commentary
on Hacon and McKernan’s proof of the existence of pl flips [HM3]; our
explanation parallels [HM4]. We first recall the definition of pl flipping
contraction, also introduced by Shokurov in [Sh2]. This notion is extremely
cunning, and its advantages should gradually become apparent as we proceed
through the following sections.

Definition 17 We say that a proper birational morphism f : X → Z be-
tween normal varieties is a pl flipping contraction if it satisfies the following
conditions:

(1) f is an isomorphism in codimension 1, and has Picard number 1.

(2) X is Q-factorial and ∆ is a Q-divisor.

(3) (X,∆) is purely log terminal (plt) and S = b∆c is irreducible.

(4) Both −(KX + ∆) and −S are f -ample.

The flip f+ : X+ → Z of a pl flipping contraction f : X → Z is called a pl
flip.

The main theorem of [HM3] is as follows

Theorem 18 Assume that the MMP works in dimension n − 1. That is,
assume that Flip Conjectures I and II both hold in dimension n − 1. Then
n dimensional pl flips exist.

We now outline the proof of this, following [HM4]. We first recall some
definitions.
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Definition 19 Let D be a divisor on a normal variety X, and assume that
the linear system |D| is nonempty. Then we write F = FixD for the fixed
part of |D| and MobD = D − F for its mobile part.

Since the problem is local in Z (see Proposition 13), in what follows
we assume throughout that Z is affine. It will eventually be enough to
prove that the OZ -graded algebra R =

⊕

m≥0
H0(X,OX (m(KX + ∆)))

is finitely generated. Write B = {∆} for the fractional part, and write
(KX + S +B)|S = KS +BS .6 Consider the restriction map

ρ :
⊕

m≥0

H0(X,OX (m(KX + S +B))) →
⊕

m≥0

H0(S,OS(m(KS +BS))),

and write RS for the image of ρ. One sees easily that the finite generation
of R is equivalent to the finite generation of RS ; this fact follows easily from
conditions (1) and (4) in the definition of pl flipping contraction. If ρ were
surjective then one could show by induction on the dimension that RS is
finitely generated. In general however we have no way of knowing whether
ρ is surjective or otherwise.

At this point, the real proof is performed along the following main lines.
First, consider a birational projective morphism g : Y → X from a nonsin-
gular variety Y and set KY + Γ = g∗(KX + ∆) +E, where g∗Γ = ∆ and E
is an effective exceptional divisor. If we assume that k(KX + ∆) is Cartier
then

H0(X,OX (mk(KX + ∆))) ' H0(Y,OY (mk(KY + Γ)))

holds for every positive integer m. We now set

Gm =
1

mk
Fix(mk(KY + Γ)) ∧ Γ,

where ∧ denotes the greatest common divisor. In other words, if

1

mk
Fix(mk(KY + Γ)) =

∑

j

ajDj and Γ =
∑

j

bjDj

we set Gm =
∑

j min{aj , bj}Dj . Then

H0(Y,OY (mk(KY + Γ))) ' H0(Y,OY (mk(KY + Γm)))

6Footnote 6, p. 37
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where we have set Γm = Γ − Gm. So far we haven’t said anything beyond
the obvious. Now by taking a suitable choice of g : Y → X, we can arrange
that the restriction map

H0(Y,OY (mKY + Γm))) → H0(T,OT (mKT + Θm)))

is surjective. Here T is the strict transform of S and Θm = (Γm − T )|T .
At this point we make ingenious use of the extension theorem based on
multiplier ideals that start with Siu’s paper [Si1]; compare Theorem 20
below. Here we must observe that we must make an appropriate choice of
g : Y → X depending on m. That is, Y depends on the index m. However,
T can be chosen independently of m.

Theorem 20 (Extension theorem) Let Y be a nonsingular variety and
T ⊂ Y a nonsingular divisor on Y . Suppose that π : Y → Z is a projective
morphism to a normal affine variety Z. Let L be a Cartier divisor on Y
and suppose that L ∼Q m(KY + T +B) for a positive integer m. We make
the following assumptions:

(1) The support of T +B is a simple normal crossing divisor, and T and
B have no common components.

(2) B is an effective Q-divisor with bBc = 0.

(3) We can write B in the form B ∼Q A+C, with A an ample Q-divisor
and C an effective Q-divisor whose support does not contain T .

(4) There exists a positive integer p such that the base locus of |pL| does
not contain any log canonical center of (Y, T + dBe).

Then the natural restriction map H0(Y,OY (L)) → H0(T,OT (L)) is sur-
jective.

We make some observations. The case that we really need is when π is a
birational morphism. In this case, assumptions (1–4) are easy to satisfy, and
they do not present any problems in applications. At first sight they may
seem completely artificial conditions, but one has to bear with them. One
could say that minimal model theory was sadly deficient until the appearance
of this type of theorem in Siu’s paper [Si1] in the late 1990s. For more details
on multiplier ideal sheaves, see Section 4.

To return to the point. If we set RT =
⊕

m≥0
H0(T,OT (mk(KT +

Θm))), we see that RT = RS , so the question is to prove that RT is finitely
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generated. We choose suitable positive integers k and s and set l = ks, and
consider RT (s) =

⊕

m≥0
H0(T,OT (ml(KT + Θm)). Then RT (s) has the

following properties:

(1) The inequality iΘi + jΘj ≤ (i+ j)Θi+j holds for every i, j; this condi-
tion is called convexity. In addition, the limit Θ = lim

i→∞
Θi exists; this

condition is called boundedness.

(2) (T,Θ) is klt. In general Θ is an R-divisor.7

(3) We set Mm = Mob(ml(KT + Θm)) and Dm = Mm/m. Then the limit
D = lim

m→∞
Dm is a semiample R-divisor.

(4) There exists a Q-divisor F on T that satisfies dF e ≥ 0, and such that

Mob djDis + F e ≤ jDjs

holds for every i ≥ j � 0.

We give additional commentary on these points one by one. (1) and (2)
are fairly clear by construction. Condition (4), called asymptotic saturation,
is one of the marvelous discoveries contained in [Sh4]. The involved notation
in (4) makes it hard to understand, but the proof involves nothing more than
Kawamata–Viehweg vanishing. (3) follows from the MMP in n− 1 dimen-
sions, using the finiteness of the set of minimal models. This point will turn
up later (see 5.5), where we discuss it in more detail. Roughly speaking, it
uses the fact that we can choose the minimal model of (T,Θm) independently
of m. The problem of the finiteness of minimal models appears naturally
here. Given (3) and (4), one sees that there exists a positive m0 such that
D = Dm0

. At this point we need some Diophantine approximation (see
[K2]). In particular, D turns out to be a semiample Q-divisor. Once this
point is understood, the finite generation of

⊕

m≥0
H0(T,OT (mD)) implies

the finite generation of RT (s). One needs a little argument for this, but we
obtain the finite generation of RT = RS . Therefore this proves the existence
of pl flips.

Finally, we examine the asymptotic saturation condition (4) for Y an
affine curve. When we study the flip problem, Y has dimension ≥ 3, but the
ideas become completely transparent in the case of curves. The inequality
we consider is Mob djDis + F e ≤ jDjs, but let us set s = 1 for simplicity.
Write Di =

∑

dm,iPm and F =
∑

amPm; by assumption am > −1. Set

7Footnote 7, p. 37
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D = limi→∞Di =
∑

dmPm. The condition Mob djDi + F e ≤ jDj then just
means that djdm,i + ame ≤ jdm,j for each m. Letting i→ ∞, we get

djdm + ame ≤ jdm,j ≤ jdm.

This holds for every j, and it follows that dm is a rational number. We also
see that dm,j0 = dm for some j0. Therefore Dj0 = D. The general case is
slightly more involved, but the mechanism is the same.

4 Multiplier ideal sheaves

4.1 Multiplier ideal sheaves and applications

We now change the subject somewhat, to examine through the multiplier
ideal sheaves used in the proof of the existence of pl flips, together with their
applications. The notion of multiplier ideal was introduced by Nadel [Nd] in
the course of studying Kähler–Einstein metrics on Fano manifolds. We note
that the idea of multiplier ideals themselves was introduced in Kohn’s study
of the ∂-Neumann problem, although the setup was different (see [Kh] and
[Si3]). After this, multiplier ideals are applied systematically by Demailly,
Siu and Tsuji in the problem of base points freedom of linear systems. Please
consult [D2] for the definition of singular Hermitian metrics and their asso-
ciated multiplier ideal sheaves. The majority of singular Hermitian metrics
that are used in application to algebraic geometry are those associated to
Q-divisors. In this context, the following definition should be sufficient.

Definition 21 Let X be a nonsingular variety and D an effective Q-divisor.
Let f : Y → X be a proper birational morphism from a nonsingular algebraic
variety such that Supp(f ∗D) ∪ Exc f is a simple normal crossing divisor.
Then the multiplier ideal sheaf associated to D is defined by

J (D) = f∗OY (KY/X − bf∗Dc) ⊂ OX ,

where KY/X = KY − f∗KX .

Since we are omitting all explanations of the analytic approach, we are
unable to give any details, but generalizing the Hermitian metrics that ap-
pear in the Kodaira vanishing theorem to singular Hermitian metrics gives
the result known as Nadel’s vanishing theorem, and the Kawamata–Viehweg
vanishing theorem is a particular case of this (see Theorem 28). If we restrict
attention to the singular Hermitian metrics associated to a Q-divisors then
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Nadel’s vanishing theorem is nothing other than the Kawamata–Viehweg
vanishing theorem (see [D1] and [D2]). The most important results from
the first period of applications of multiplier ideals to algebraic geometry are
those of Anghern and Siu [AS]. One of their results is the following.

Theorem 22 Let X be a nonsingular n-fold and L an ample Cartier divi-
sor. Then KX +mL is generated by its global sections for all m >

(

n+1

2

)

.

The particular importance of the paper [AS], in addition to its marvelous
results, is as the first application of Ohsawa–Takegoshi extension theorem
[OT] to problems of algebraic geometry. In the final analysis, as far as this
part is concerned, it can be replaced by a purely algebraic argument (see
[Ko4] and [L]), using the inversion of adjunction that is a corollary of the
Kawamata–Viehweg vanishing theorem. Siu, who observed the importance
of the Ohsawa–Takegoshi extension theorem, proved the following major
result, the invariance of plurigenera [Si1].

Theorem 23 Let f : X → S be a smooth proper morphism between nonsin-
gular quasiprojective varieties.8 Suppose in addition that every fiber Xs =
f−1(s) of f is of general tpe. Then for every positive integer m, the pluri-
genus Pm(Xs) = H0(Xs,OXs

(mKXs
)) does not depend on s.

It was known [N1] that in the event that minimal model theory could be
completely established, this theorem would appear as a corollary, but Siu
gave a direct proof. His paper [Si1] made use of results from complex analysis
such as the Ohsawa–Takegoshi extension and Skoda division theorems, but
Kawamata [K7] and Nakayama [N2] succeeded in making the proof algebraic
and generalized it in a number of directions. Kawamata [K7] proved the
deformation invariance of canonical singularities and Nakayama [N2] proved
the deformation invariance of terminal singularities. We put their results
together as follows:

Theorem 24 Let f : X → S be a flat morphism from a germ of an algebraic
variety to a nonsingular germ of an algebraic variety, and suppose that the
central fiber X0 = f−1(0) has at worst canonical singularities (respectively,
terminal singularities). Then X itself has at worst canonical singularities
(respectively, terminal singularities). In particular, every fiber Xs = f−1(s)
has at worst canonical singularities (respectively, terminal singularities).

8Footnote 8, p. 38
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This subject is discussed in detail in Kawamata [K8] and Lazarsfeld [L].
Theorem 20, which was used effectively in the course of the proof of pl flips
is also obtained by a generalization of this method. After this, Siu finally
obtained the following result [Si2].

Theorem 25 Let f : X → S be a smooth proper morphism between non-
singular quasiprojective varieties. Then for any positive m, the plurigenus
Pm(Xs) = h0(Xs,OXs

(mKXs
) is independent of s ∈ S.

In other words, he obtained a complete solution to the deformation in-
variance of plurigenera, getting rid of the assumption that the fibers are
of general type. Takayama generalized Theorem 25, covering also the case
that the fibers have canonical singularities and the case of a reducible cen-
tral fiber; we refer to [Ty2] for the precise statements. It should be noted
that when the fibers are not restricted to be of general type, the only known
proofs of Theorem 25 are analytic. Most recently, Păun [P] gave a remark-
able simplification of Siu’s proof. As a somewhat grandiose overview, this
consists simply of a clever use of the Ohsawa–Takegoshi extension theorem,
and does not involve the Skoda division theorem, or difficult vanishing theo-
rems, or H̊ormander style ∂-equations. It uses only an assertion of Ohsawa–
Takegoshi extension theorem type, that sections can be extended under L2

estimates. If Siu had in the first place solved the deformation invariance of
plurigenera directly by Păun’s method, then history might well have taken
a different turn, with none of [K7], [K8] or [N2] coming into existence.

As another application, Hacon and McKernan [HM1] and Takayama
[Ty1] obtained the following marvelous result. Both papers use an argu-
ment that turns the argument of Tsuji [Ts1] and [Ts2] on its head. It is no
coincidence that the two papers appeared at the same time, use the same
kind of method and passing through the same intermediate results. In con-
strast to Tsuji [Ts1] and [Ts2], both [HM1] and [Ty1] give purely algebraic
proofs.

It is reasonable to describe Theorem 20 as constructed specifically for
application to the proof of the following result.

Theorem 26 Let X be an n-dimensional nonsingular projective variety of
general type. Then there exists a positive integer mn depending only on n
such that the linear system |mKX | gives a birational map for every m ≥ mn.

Several of the results discussed in this section were first obtained using
analytic proofs; but except for the result of [Si2], [Ty2] and [P], algebraic
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proofs are now known for all the results. However, if we consider, say,
Enoki’s proof [E] of the Kollár injectivity theorem [Ko1], it sometimes hap-
pens that the analytic proofs subsequently obtained seem to be superior in
some respects.

4.2 The injectivity and vanishing theorems

As the reader will already have noticed, the proofs of practically all the
results given so far use the Kawamata–Viehweg vanishing theorem. We now
recall Kollár’s injectivity theorem, which generalizes this. In this section we
work in the following setup. Let X be a nonsingular projective variety, L a
Cartier divisor on X and D an effective Q-divisor on X.

Theorem 27 (Kollár’s injectivity theorem) Assume that H ∼Q L−D
is semiample. Then there exists a positive integer m such that mH is
Cartier; let s ∈ H0(X,OX (mH)) be a nonzero global section. Then multi-
plication by s induces maps

×s : H i(X,OX (KX + L) ⊗ J (D)) → H i(X,OX (KX + L+mH) ⊗ J (D))

that are injective for every i.

More general assertions are given in Ohsawa [O] and Fujino [F7] and [F8].
One of the ultimate generalizations of Theorem 27 is obtained in [F9] (see
Theorem 41). We obtain the following result as a corollary of Theorem 27.

Theorem 28 (Kawamata–Viehweg–Nadel vanishing) Suppose L−D
is nef and big. Then

Hi(X,OX (KX + L) ⊗ J (D)) = 0 for every i > 0.

We discuss Theorem 28 first. Using Kodaira’s lemma and simple prop-
erties of multiplier ideals, we may assume that L−D is ample. Theorem 28
then follows from Theorem 27 and Serre vanishing.

Next, we look at the proof of Theorem 27 following [F7] (compare [F12]).
Suppose that kL ∼ kH+kD for k a positive integer, where both kH and kD
are Cartier divisors. Consider the singular Hermitian metric h1 on OX(kD)
naturally associated to the effective divisor kD, and let h2 be a smooth
Hermitian metric on OX(kH); define the metric hL on OX(L) by (h1h2)

1/k.
This is a smooth Hermitian metric on the complement Y = X \SuppD. We
can construct an appropriate complete Kähler metric on Y , and develop the
theory of harmonic integrals on Y with respect to these metrics.
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Then
Hi(X,OX (KX + L) ⊗ J (D))

(or H i(X,OX (KX +L+mH)⊗J (D))) can be realized as the vector space
Hn,i(Y,L) of OX(L)-valued harmonic (n, i)-forms on Y (resp., the vector
space Hn,i(Y,L + mH) of OX(L + mH)-valued forms). Using Nakano’s
formula, we see that ×s maps Hn,i(Y,L) to Hn,i(Y,L+mH); this uses the
condition on the curvature of hL. Now it is clear that ×s : Hn,i(Y,L) →
Hn,i(Y,L+mH) is injective, and we obtain the result.

This proof clarifies the assumptions of the theorem, and is much sim-
pler than the original proof that makes repeated use of ramified covers and
resolution of singularities. Moreover, working on Y instead of X also ob-
viates the need for approximations of singular Hermitian metrics that are
commonly used in the L2 theory. When D = 0 the above proof becomes
extremely simple: Y = X, so that we also don’t need singular Hermitian
metrics. In this case Theorem 27 is contained in Enoki’s theorem [E]. A
commentary in Japanese is given in [F12].9

5 The existence of minimal models

In this section we explain the general strategy of the proof of Theorem 2.
Let (X,∆) be an n-dimensional projective klt pair; we wish to construct a
minimal model of (X,∆) in the case that ∆ is big and KX + ∆ is pseudo-
effective. The proof proceeds by induction on the dimension. For reasons of
space, we only give a detailed discussion of the argument that MMP with
scaling in dimension (n− 1) implies the existence of n-dimensional minimal
models. This is the material around [BCHM], Sections 4–5.

5.1 The existence of pl flips

This point has already been explained; however, we revisit the argument
from the viewpoint of induction on the dimension. In Section 3 we proved
the existence of pl flips assuming minimal model theory in dimension (n−1).
In fact on reexamining the proof of Section 3, one sees that it is enough to
have MMP with scaling in dimension (n−1) for a Q-factorial klt pair (X,∆)
where ∆ is a big R-divisor. Therefore in what follows we may assume freely
the existence of pl flips in dimension n.

9Footnote 9, p. 38
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5.2 Special termination

We now explain an important theorem called special termination. In what
follows, we assume that (X,∆) is a divisorially log terminal pair and S =
b∆c.

Theorem 29 (Special termination) Assume MMP with scaling holds in
dimension ≤ n − 1. Suppose that X = X0 99K X1 99K · · · 99K Xi 99K

Xi+1 99K is a MMP with scaling for (X,∆). Then after a finite number of
steps, Xi 99K Xi+1 is an isomorphism in a neighborhood of Si. This means
that MMP with scaling stops in a neighborhood of b∆c.

This theorem also has its origins in Shokurov [Sh2]. The assertion in
general dimension is the starting point of [Sh4]. The rigorous proof was
given in Fujino [F6].10 Of course, these papers were written without using
the framework of MMP with scaling, but the proof in [F6] applies without
problem in this setup. We discuss here just the main issue. Let (X,S+B) be
a dlt pair; here S is an irreducible prime divisor, and we write B =

∑

j bjBj

with 0 < bj ≤ 1. Define the divisor BS on S by (KX +S+B)|S = KS +BS .
Then the coefficients of BS that are not equal to 1 belong to the set

S(B) =







1 −
1

m
+

∑

j

rjbj
m

∣

∣

∣

∣

∣

∣

m ∈ Z>0, rj ∈ Z≥0







.

This is the so-called adjunction formula (see [F5]) originating with Shokurov
[Sh2]. It takes account of the influence of the singularities in codimension 1
on S, that is, in codimension 2 on X; here we use classification results on
the singularities of dlt surface pairs. The pair (S,BS) is n− 1-dimensional,
and by induction we can apply MMP with scaling to it. The assertion we
are aiming for is proved using the properties of the set S(B) containing the
coefficients of BS and the theory of MMP with scaling. In conclusion, if the
theory of MMP with scaling holds in dimensions up to n−1, the MMP with
scaling in dimension n terminates in a neighborhood of b∆c.

This special termination theorem is more powerful than it appears, and
termination in this form is enough to construct minimal models. We examine
this below. Once again, this idea appears first in [Sh2], and is reproduced
in Kollár [FA] and Kollár and Mori [KM]. What [F6] calls the reduction
theorem, assuming the theorem on special termination, corresponds to the
following step. The main idea of [Sh2] was that the existence of general flips
can be proved if we have pl flips and special termination.

10Footnote 10, p. 38
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5.3 Construction of minimal models

We start by preparing some simple lemmas.

Proposition 30 Suppose that the special termination theorem Theorem 29
holds in dimension n. Assume in addition that the following conditions hold:

(1) (X,Θ) is an n-fold Q-factorial dlt pair.

(2) There exists a positive real number c and effective R-divisors H and
F so that we have the expression KX + Θ ∼R cH + F .

(3) (X,Θ +H) is a dlt pair and KX + Θ +H is nef.

(4) SuppF ⊂ bΘc.

Then a minimal model of (X,Θ + tH) exists for any t with 0 ≤ t ≤ 1.

The proof consists simply of running an MMP with scaling. Condition
(3) allows us to run an MMP with scaling by H. There is absolutely no
problem with the Cone Theorem and the Contraction Theorem, which hold
in any dimension. According to the assumptions of MMP with scaling, the
extremal ray R we choose at each step satisfiesH ·R > 0 and (KX+Θ)·R < 0.
Now by condition (2) it follows that F · R < 0. Using condition (4), we see
that every flipping contraction is a pl flipping contraction. The existence of
pl flips is already known. so that we can carry out the MMP.

The only remaining issue is to check that this procedure stops after
finitely many steps. If this MMP does not terminate, we deduce from F ·R <
0 and SuppF ⊂ bΘc that the modification that occurs at every step happens
inside bΘc. This would contradict special termination. Therefore it does
terminate.

In fact the construction of minimal models is as follows. We write it as
a theorem.11 Theorem 31 also gives the solution to Flip Conjecture I for
n-fold log pairs.

Theorem 31 Let (X,∆) be an n-fold klt pair, and assume that ∆ is big and
KX + ∆ ∼R D ≥ 0. Assume that special termination holds in dimension n.

Then a minimal model of (X,∆) exists.

The proof is as follows.
First, a slight tedious point: the divisors we consider are all Q-divisors;

in actuality, the proof of finiteness of minimal models does not go through
11Footnote 11, p. 38
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properly without generalizing everything to R-divisor. By using the theorem
on resolution of singularities, we can make the following assumptions:

(1) X is nonsingular and KX + ∆ ∼Q D ≥ 0. Here Supp(∆ + D) is a
simple normal crossing divisor.

(2) There exists an effective ample Q-divisor A and an effective Q-divisor
B such that ∆ can be expressed ∆ = A+B.

(3) We can write D = rM + F , where M is a mobile effective divisor,
and F is an effective Q-divisor every irreducible component of which is
contained in the stable base locus of D. In other word, the components
of F are contained in the base locus Fix |mD| for every positive integer
m.

(4) ∆ and M have no common components.

Let F =
∑k

i=1
ai∆i where ∆ =

∑l
i=1

bi∆i; here k ≤ l. Then setting ∆′ =
∑k

i=1
(1 − bi)∆i, we define F ′ = F + ∆′ and Θ = ∆ + ∆′. By construction

SuppF ′ ⊂ bΘc. Taking H to be a suitable ample divisor, we can arrange
that (X,Θ +M +H) is a dlt pair, K + Θ +M ∼Q 0 ·H + (r + 1)M + F ′,
K + Θ +M +H is nef and Supp(M + F ′) ⊂ bΘ +Mc.

Applying MMP with scaling by H to (X,Θ+M), by Proposition 30, we
conclude that there exists a minimal model of (X,Θ +M). Hence we may
assume from the start that (X,Θ + M) itself is already a minimal model.
Thus K + Θ ∼Q rM + F ′, K + Θ + M is nef, and moreover SuppF ′ ⊂
bΘc. Now applying MMP with scaling by M , again by Proposition 30, we
conclude that a minimal model of (X,Θ) exists. We need a small argument
for this, but one can see that a minimal model of (X,Θ) is also a minimal
model of (X,∆).12 This allows us to conclude that minimal models exist.
The difficulty is that to complete the induction on dimension, we must also
prove the termination problem for the n-dimensional MMP with scaling. In
addition, in Theorem 31 we assumed that KX + ∆ ∼Q D ≥ 0; however,
in Theorem 2 we only assumed KX + ∆ to be pseudoeffective. This subtle
little difference is actually technically an extremely awkward point.

5.4 Termination of MMP with scaling

We now want to consider the termination problem for the n-fold MMP with
scaling. We start by fixing the setup.

12Footnote 12, p. 38
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Let (X,∆) be a Q-factorial dlt pair, and suppose that KX + ∆ +H is a
nef divisor and is dlt. Then we can run an MMP with scaling by H.

Theorem 32 If we assume that there are only finitely many minimal models
of (X,∆ + tH) for 0 ≤ t ≤ 1, then an MMP scaled by H must terminate.

This is pretty clear. At each stage of an MMP X0 99K X1 99K · · · 99K

Xi 99K Xi+1 99K, there exists a decreasing sequence of real numbers 1 ≥ t1 ≥
t2 ≥ · · · such that KXi

+ ∆i + tiHi is a minimal model for KX + ∆ + tiH.
Thus it is clear from the assumption that an infinite series of flips cannot
exist; indeed, there are only finitely many possibilities for the models in the
first place. Here the finiteness of minimal models arises as an important
issue.

5.5 Finite number of minimal models

We consider here the finiteness of minimal models in an extremely simple
case; the assertion in this case is sufficient for the application to the proof
of the existence of pl flips. The complete proof of [BCHM] requires a more
involved assertion (cf. Theorem 36). First, some preparations. Let V be a
finite dimensional affine subspace in the real vector space of Weil divisors
on X, and assume that V is defined over the field of rational numbers. Let
A be an R-divisor on X that we suppose not to have common component
with any divisors in V . Set VA =

{

∆ = A+B
∣

∣ B ∈ V
}

and

LA =
{

∆ ∈ VA

∣

∣ (X,∆) is a log canonical pair
}

.

One sees at once that LA is a compact polytope.13

Theorem 33 Assume that for every n-fold klt pair (X,∆) with ∆ big and
KX + ∆ ∼R D ≥ 0, a minimal model of (X,∆) always exists. Let X be an
n-fold normal projective variety and A a general ample Q divisor on X. In
what follows, A is always fixed.

Let C ⊂ LA be a rational polytope, and suppose that KX + ∆ is klt for
any ∆ ∈ C and KX + ∆ ∼R D ≥ 0 holds.

Then there exists a finite number of rational maps ϕi : X 99K Yi for
1 ≤ i ≤ k such that for any ∆ ∈ C one of (Yi, ϕi∗∆) is a minimal model of
(X,∆).

13Footnote 13, p. 38
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The proof is as follows. First pick a ∆0 ∈ C. By compactness of C, it
is enough to prove the theorem in a neighborhood of ∆0. In what follows,
we shrink C to a neighborhood of ∆0 as necessary. Using the assumption,
choose a minimal model ϕ : X 99K Y of KX + ∆0. A simple argument
shows that we can replace (X,∆0) by (Y, ϕ∗∆0). So we argue assuming
that (X,∆0) is replaced from the start by (Y, ϕ∗∆0). Then we can use the
base-point free theorem.14 There exists a morphism f : X → Z such that
KX +∆0 ∼R,Z 0. This means that there exists a Cartier divisor C on Z such
that KX + ∆0 ∼R ϕ

∗C. Then considering a sufficiently small neighborhood
of ∆0, one sees that a relative minimal model of (X,∆) over Z is a minimal
model in the usual sense. So we work over Z from now on.

Pick some Θ ∈ C. We can take a divisor ∆ in the boundary of C so
that Θ is on the line segment joining ∆0 and ∆, and we can write Θ−∆0 =
λ(∆−∆0). Noting thatKX+Θ ∼R,Z λ(KX+∆), one sees that ϕ : X 99K Y a
minimal model of (X,Θ) over Z and ϕ : X 99K Y a minimal model of (X,∆)
over Z are equivalent conditions. ∆ is a divisor in the boundary of C, so
that the theorem follows by induction on the dimension of C.

I hope that this explains the significance of the finiteness of minimal
models. Once finiteness of minimal models is established, this settles the
termination of MMP with scaling for n-folds, and completes the induction
by the dimension.

5.6 What is still missing

I hope that the treatment so far explains the general mechanism. However, a
number of pieces are still missing. The biggest of these, is the step showing
that KX + ∆ pseudoeffective implies that KX + ∆ ∼R D ≥ 0. We have
completely omitted this. This result, known as a nonvanishing theorem, is
in some sense the newest piece in [BCHM]; for this, see Theorem 37. Next,
our treatment of the finiteness of minimal models only covered klt pairs,
whereas in actuality we need to set things up slightly more generally in
order for induction on the dimension to go through.

In addition, to settle the problem of termination of flips, we need finite-
ness in a stronger sense than that of Theorem 33 (compare Theorem 36).
One proves the finiteness of log canonical models using the argument of The-
orem 33, and finally we show the finiteness of weakly log canonical models.
This part of the argument is extremely technical. It turns out to be impor-
tant to observe the fact that when (X,∆) is klt and ∆ is big, NE(X) has

14Footnote 14, p. 38
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only finitely many (KX + ∆)-negative extremal rays. This material is not
really appropriate for a survey article, and we refer the reader to [BCHM],
Sections 6–7. Or to put it the other way around, this survey covers practi-
cally the whole argument of [BCHM] except for the approximately 10 pages
of Sections 6–7.

6 What is actually proved

Here we discuss what [BCHM] actually proved. We hope that the mean-
ing and function of the theorems should already be clear in overall terms
from the discussion in Section 5. We follow the statements with a brief
explanation of the proof of the nonvanishing theorem.

Theorem 34 (Existence of pl flips) Let f : X → Z be a pl flipping con-
traction from an n-fold purely log terminal pair (X,∆). Then the flip
f+ : X+ → Z exists.

Theorem 35 (Existence of log terminal models) Let π : X → U be a
projective morphism between normal quasiprojective varieties, where X is
an n-fold. Let (X,∆) be a klt pair, and assume that ∆ is big over U . If
there exists an effective R-divisor D with KX +∆ ∼R,U D then KX +∆ has
a log terminal model.

Theorem 36 (Finite number of models) Let π : X → U be a projective
morphism between normal quasiprojective varieties, with X an n-fold. Fix
a general ample Q-divisor A on X over U .

Assume that there exists ∆0 such that KX + ∆0 is klt. Let C ⊂ LA be
a finite convex rational polytope. We assume that one of the two following
conditions hold:

(1) KX + ∆ is big for any ∆ ∈ C, or

(2) C = LA.

Then there exist finitely many birational maps ψj : X 99K Zj over U
(for 1 ≤ j ≤ l) such that for any ∆ ∈ C and any weak log canonical model
ψ : X 99K Z of (X,∆) over U there is a j and an isomorphism ξ : Zj → Z
such that ψ = ξ ◦ ψj.

Theorem 37 (Nonvanishing) Consider a projective morphism π : X →
U between normal quasiprojective varieties, with X an n-fold. If KX +∆ is
π-pseudoeffective and ∆ is π-big then there exists an effective R-divisor D
such that KX + ∆ ∼R,U D.
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As proved in Section 3 and 5.1 if we assume MMP with scaling in di-
mension n − 1 then we can prove the existence of n-fold pl flips. This is
Theorem 34. Then one can use the argument of 5.3 to prove the existence
of minimal models, giving Theorem 35. Next one proves the finiteness of
models under assumption (1) of Theorem 36. The existence of an effective
R-divisor D such that KX + ∆ ∼R,U D ≥ 0 follows from the fact that
K + ∆ is π-big, so that we can use Theorem 35, which has already been
proved. One obtains Theorem 36 under assumption (1) using the argument
explained in 5.5.

Note in passing that it is not enough to consider Theorem 36 only for klt
pairs, so that the setup is extremely artificial. The assertion itself concerns
the finiteness not only of minimal models, but also of weakly log canonical
models. We refer to the original paper [BCHM] for the subtleties surround-
ing this material.

The proof of the Nonvanishing Theorem 37 uses case (1) of Theorem 36.
It is proved by an ingenious combination of the argument of Nakayama [N3],
Shokurov’s classical argument for the Nonvanishing Theorem [Sh1] and the
finiteness of minimal models. This is possibly one of the main innovations
of [BCHM]. The proof is made more difficult by the fact that we cannot
just work with Q-divisors, but have to extend the argument to R-divisors.
Once the Nonvanishing Theorem 37 is proved, one sees that Theorem 35
holds under the weaker condition that KX +∆ is π-pseudoeffective. Finally,
one proves the remaining case of Theorem 36 using this. The crux of the
argument here was essentially proved in 5.5. Here we finish the proof by
induction on dimension: knowing the finiteness of models Theorem 36, one
can solve the problem of termination in the the n-fold MMP with scaling
(see 5.4).

7 Problems for the future

To conclude, we consider a number of related unsolved problems

7.1 Termination of flips

The termination of flips is one of the most important unsolved problems.
Up to now, the 3-fold case is completely solved; see [Sh1], [K6], [Sh3] and
compare [Ko3]. The 4-fold case was started in [KMM], and continued in
[Ma1], [F2], [F3], [F4], with the best current result probably due to Alexeev,
Hacon and Kawamata [AHK]. However, the problem is still not completely
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solved. The above papers all rely on generalizations of the notion of difficulty
introduced by Shokurov [Sh1].

Completely different approaches have been suggested by Birkar [B1] and
Shokurov [Sh5]. Here we explain the approach of [Sh5] to solving Flip Con-
jecture II. Let X be a normal n-fold and ∆ an effective R-divisor on X such
that KX + ∆ is R-Cartier. Write Γ ⊂ [0, 1] for the set of coefficients of ∆.
Define the minimal log discrepancy function mld: X → R ∪ {−∞} by

mldx = infE a(E,X,∆) + 1.

Here x is a scheme theoretic point of X, and the minimum runs over all
E a divisor on a normal projective variety Y having a birational morphism
f : Y → X such that f(E) = x. One also writes mldx = a(E,X,∆) + 1.
Then there are two fundamental conjectures.15

Conjecture 38 (Ascending chain condition) Define the set

A(Γ,m) =
{

a(y, Y,B) + 1
}

in terms of the totality of all Y,B, y satisfying the following conditions: Y
is a normal m-fold, B an R-divisor with all its coefficients contained in Γ
and such that KY +B is R-Cartier, and y ∈ Y a closed point.

Then A(Γ,m) satisfies the ascending chain condition. That is, for any
sequence a1 ≤ a2 ≤ · · · ≤ ak ≤ · · · with ai ∈ A(Γ,m), there exists k0 such
that ak = ak0

for every k ≥ k0.

Conjecture 39 (Lower semicontinuity) Let Y be a normal m-fold and
B an R-divisor all of whose coefficients are contained in Γ and such that
KY +B is R-Cartier. Then for any point y ∈ Y there exists a neighborhood
U ⊂ Y of y such that mld(y) = infy′∈U mld(y′); here y′ ∈ U is a closed point,
and mld(y) = a(y, Y,B)+1, mld(y′) = a(y′, Y,B)+1 (see also Ambro [A1]).

These two conjectures imply the following theorem.

Theorem 40 Let X0 99K X1 99K · · · 99K Xi 99K Xi+1 99K · · · be a chain
of flips starting from (X,∆), and suppose that every flip Xi 99K Xi+1 is
projective over a fixed variety S. Suppose that Conjectures 38 and 39 hold
in dimension up to dimX. Then the given sequence of flips terminates after
finitely many steps.

15Footnote 15, p. 38
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It follows that solving Conjectures 38 and 39 would complete minimal
model theory. In the case that Y has only locally complete intersection
singularities, Conjecture 39 is proved using the theory of jet schemes (see
Ein, Mustaţă and Yasuda [EMY] and [EM]). In general it is still unsolved.
Conjecture 38 remains unsolved at present despite a number of attempts
to solve it by people around Shokurov (see Birkar and Shokurov [BS] and
[Sh5]).

7.2 Minimal model theory for log canonical pairs

One believes that minimal model theory will eventually hold for lc pairs.
To accomplish this, one must be able to extend the Cone Theorem and
the Contraction Theorem, the starting point of minimal model theory, to lc
pairs. Thinking back through the proof of the Cone Theorem leads us back
inevitably to the Kawamata–Viehweg vanishing theorem. In the world of klt
pairs, the Kawamata–Viehweg vanishing theorem holds, which enables us to
carry out induction on the dimension. This is the method used repeatedly
by Kawamata, known as the X-method.

Ambro [A2] observed that proving a generalization of Kollár vanish-
ing and torsion-free theorem (see [Ko1]) for embedded normal crossing pairs
would allow the X-method to be applied successfully in the world of quasilog
varieties, so that finally we would be able to prove the Cone Theorem and the
Contraction Theorem for lc pairs. We note that generalizing the Kawamata–
Viehweg vanishing theorem to lc pairs (see [F9]) is insufficient for induction.
Thus in fact the crux of the problem is concentrated around proving a gen-
eralization of Kollár’s theorems16. Here, following [F9], we prove the gener-
alization of Kollár’s theorem needed for minimal model theory for lc pairs.

LetM be a nonsingular projective variety and Y a simple normal crossing
divisor on Y . We write an R-divisor D on M as D =

∑

diDi; suppose that
0 ≤ di ≤ 1 holds for all i. Suppose also that D and Y have no common
components, and that Supp(D+Y ) is a simple normal crossing divisor onM .
Write B = D|Y . In what follows, we consider the pair (Y,B). Write ν : Y ′ →
Y for the normalization of Y , and set KY ′ +BY ′ = ν∗(KY +B); then (Y ′, B′)
is a lc pair. We define a stratum of (Y,B) to be an irreducible component
of Y or the image under ν of a lc center of (Y ′, B′). In addition, say that
an R-Cartier divisor A on Y is admissible for (Y,B) if its support does not
contain any stratum of (Y,B). We then obtain the following generalization
of Kollár’s injectivity theorem [Ko1].

16Footnote 16, p. 38
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Theorem 41 Suppose that Y is complete. Let L be a Cartier divisor of Y
and A an effective Cartier divisor admissible for (Y,B). Assume also the
following:

(1) L ∼R KY +B +H.

(2) H is a semiample R-Cartier divisor.

(3) One can write tH ∼R A+ A′ with t a positive real number and A′ an
effective R-Cartier divisor that is admissible for (Y,B).

Then the map Hq(Y,OY (L)) → Hq(Y,OY (L+A)) induced by the inclu-
sion homomorphism OY ↪→ OY (A) is injective for all q.

From Theorem 41 we deduce the following theorem. Here (i) generalizes
Kollár’s torsion free theorem, and (ii) generalizes Kollár’s vanishing theorem.

Theorem 42 Let f : Y → X be a proper morphism and L a Cartier divisor
on Y . Suppose also that H ∼R L − (KY + B) is f -semiample. Then we
obtain the following two assertions:

(i) Every associated prime of Rqf∗OY (L) is the generic point of the image
under f of some stratum of (Y,B).

(ii) Let π : X → V be a projective morphism. Suppose also that H can
be written in the form H ∼R f∗H ′ where H ′ is a π-ample R-Cartier
R-divisor on X.

Then Rpπ∗R
qf∗OY (L) = 0 holds for all p > 0 and q ≥ 0.

We refer to [F9] for the detailed proof, which is extremely cumbersome:
we have what could be called a noncompact normal crossing V -variety, and
cohomology groups having compact support on it; the proof involves ana-
lyzing a mixed Hodge structure introduced on this. Be that as it may, this
theorem allows us to establish the basic framework of minimal model theory
for lc pairs. To complete the minimal model theory we still need to resolve
Flip Conjectures I and II. As far as Flip Conjecture II is concerned, one sees
that if we can prove it for klt pairs then the result also follows for lc pairs.
For details, we refer to [F6] and [F10]. The problem is thus the existence
of flips. The 3-fold case was proved by Keel and Kollár [KK]. In the 4-fold
case, we used the result of [F1] to give the proof in [F10], although this
turned into a hugely elaborate proof, involving the use of the Abundance
Theorem for reducible 3-fold.

Let’s end by giving a discussion of the Abundunce Conjecture.
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7.3 The abundance conjecture

The Abundunce Conjecture is the following statement. There are several
different versions, and our statement is probably the most general. The
conjecture has been around for more than 20 years, but there has been little
progress so far in dimension ≥ 4.

Conjecture 43 Let (X,∆) be a log canonical pair and π : X → S a proper
morphism. If KX + ∆ is nef over S then KX + ∆ is semiample over S.

After Kawamata’s survey [K11], the 3-fold case of the Abundance Con-
jecture was settled in Keel, Matsuki and McKernan [KKMc1] (see also
[KKMc2]). At present, the conjecture has been generalized to the case
of reducible 3-fold semi log canonical pairs (see [F1]). This can be viewed
as a first step towards the 4-fold case; in fact, as we mentioned above, it
was used in the proof of the Flip Conjecture for 4-fold lc pairs. It seems
that the Abundance Conjecture is a much deeper statement than the other
conjectures, but actually, we don’t really understand too much. We write
out a special case of the above conjecture.

Conjecture 44 Let X be a projective variety with at worst terminal singu-
larities. If KX is nef then KX is semiample.

This conjecture asserts that a minimal model has a natural Iitaka fibra-
tion. The following conjecture, which should serve as a possible starting
point for Conjecture 44 is still unsolved.

Conjecture 45 Let X be a nonsingular projective variety and assume that
KX is pseudoeffective. Then there exists a positive integer m for which
H0(X,OX (mKX)) 6= 0. In other words, X has nonnegative Kodaira dimen-
sion κ(X).

Boucksom, Demailly, Păun and Peternell [BDPP] obtained a characteri-
zation of the pseudoeffective cone PE(X) of a projective variety X (see also
Lazarsfeld [L]). Putting this together with the result of Mori and Miyaoka
[MM], gives the following result.

Theorem 46 Let X be a nonsingular projective variety. Then KX is not
pseudoeffective if and only if X is uniruled.
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Thus Conjecture 45 asserts that if X is not uniruled then κ(X) ≥ 0.
Although not as it stands providing direct progress towards Conjec-

ture 45, a possible tool in solving it is the considerable simplification due to
Kebekus, Solá Conde and Toma [KST] of Miyaoka’s theorem (see [Mi] and
[S-B]); their main result depends on Graber, Harris and Starr [GHS]. Re-
cently, the [GHS] results have led to a considerable clarification of the status
of rationally connected varieties (see also Hacon and McKernan [HM2]).

Here we add a remark concerning Kawamata’s result [K1]. The following
is well known as a direct corollary of the main theorem of [K1].

Theorem 47 Let (X,∆) be a klt pair with ∆ a Q-divisor, and suppose that
KX + ∆ is nef. If the Kodaira dimension κ(KX + ∆) equals the numerical
Kodaira dimension ν(KX + ∆) then KX + ∆ is semiample.

Thus for a klt pair (X,∆), the abundance conjecture asserts the equal-
ity κ(KX + ∆) = ν(KX + ∆) of the Kodaira dimension and the numerical
Kodaira dimension. The proof of [K1] depends on the so-called X-method
of induction on the dimension. However, in contrast to the usual base point
free theorem, we are in a situation where the Kawamata–Viehweg vanishing
theorem does not hold, and we use instead a generalization of Kollár’s injec-
tivity theorem. To be able to apply induction on the dimension successfully,
we need to prove something like an extension of Kollár’s result to generalized
normal crossing variety. This is close to the situation considered in Ambro
[A2]; or rather, Ambro [A2] appears as an adaptation of Kawamata’s result
[K1] to the new situation. An alternative proof of the main result Kawamata
[K1] is given in Fujino [F11]; this uses the canonical bundle formula to re-
duce to the usual well known base point free theorem. Whereas Kawamata’s
proof [K1] is based on an appeal to mixed Hodge structures for reducible
varieties, the proof of [F11] depends instead on a reduction to variation of
Hodge structures using the theory of canonical extensions of Hodge bundles.
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Footnotes

1. The seven authors of [Book] were Florin Ambro, Alessio Corti, FU-
JINO Osamu, Christopher Hacon, János Kollár, James McKernan and
TAKAGI Hiromichi. It would possibly be better described as a col-
lection of articles. The actual seminar participants were Corti playing
the central role, together with Ambro, Fujino, Kawakita, McKernan
and Takagi. Before this, a seminar deciphering [Sh2] led by Kollár
was held at Utah in 1992, resulting in the collection [FA]; Corti and
McKernan took part in the Utah seminar, while the other members
were youngsters.

2. Nef is an acronym for numerically effective or numerically eventually
free.

3. It should be noted that the main references [KMM], [FA], [KM], [Ma2],
all use slightly different definitions of log terminal singularities. For
details, see [F5].

4. In writing this survey, we reworked Corti and Kollár [CK]. In doing
so, we observed that the condition in the second half of [CK], (5.1.2)
should be that the centre of E is a curve contained in bDc.

5. Shokurov [Sh2] introduced many of the notions of log terminal pair,
most importantly divisorially log terminal and purely log terminal; at
the same time, he introduced the ideas discussed below: inversion of
adjunction, pl flips and special termination. [Sh2] also contains the
famous Shokurov connectedness lemma.

6. If (X,S + B) is plt then (S,BS) is klt. The converse statement, that
(S,BS) klt implies that (X,S+B) is plt is a neighborhood of S is the
inversion of adjunction.

7. This is the first appearance of R-divisors. The problem of the finite
number of minimal models appears naturally in the proof of the next
property (3); in this argument, it is insufficient to work with ratio-
nal numbers, the argument needing the continuity property of real
numbers.
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8. In Theorem 23 and Theorem 25 it is enough to take S to be the open
disk.

9. This was completely unknown to most algebraic geometry experts.
Following Enoki [E], Takegoshi [Tg] and Ohsawa [O] continued this
direction of research, which seems to have been well known among
complex geometers in Japan.

10. A particular 3-dimensional case of special termination was proved in
Shokurov [Sh2]. The general statement and proof for 3-folds is con-
tained in Kollár and Matsuki [KMa]. Shokurov [Sh4] contains an ex-
tremely general assertion in general dimension; however, this only gives
a sketch in the context of a special 4-dimensional case. [F6] devel-
ops a formalism allowing an induction on the dimension to be carried
through successfully, and contains a rigorous proof in arbitrary dimen-
sion.

11. This theorem was simplified and generalized in Birkar [B2]. In this,
the assumption ∆ big is not necessary. However, the assumption that
∆ is big is needed in what follows for the finiteness of minimal models.
Here we follow [BCHM]. See also Kollár’s commentary in the lecture
notes [CHKLM].

12. This part requires that ∆ is big. Under this assumption, we can deduce
that K + Θ nef implies it is semiample.

13. Here Q-divisors are not sufficient; it is for this reason that we must
consider R-divisors.

14. Here the assumption that ∆0 is big is very effective.

15. Shokurov [Sh5] treats this in a more general setup.

16. Ambro [A2] gives a proof of a generalization of Kollá’s theorem; un-
fortunately, I am unable to follow this proof even in the case of a
nonsingular projective variety.

8 Updates and addenda added in proof

8.1 Update of December 2007

As of December 2007, the preprint of Birkar, Cascini, Hacon and McKernan
[BCHM] is in the course of a major revision and yet to be submitted; this is
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an epoch-making paper, that must be published after appropriate laundry
work. According to Hacon and McKernan, the Sarkisov program, which
studies birational maps between two different Mori fiber spaces, can also
be completely generalized to higher dimensional as an application of the
theorem on finiteness of models (Theorem 36); their result has subsequently
appeared [HM5].

Shokurov [Sh6] is an attempt to construct minimal models (or Mori fiber
spaces) without imposing conditions on K + ∆.

8.2 Author’s Addendum, December 2009

This survey was written in the summer 2007. Since then, [BCHM] has
given new treatments of Special termination (see 5.2) and Finite number
of models (Theorem 36), thereby considerably simplifying the arguments of
[BCHM]. We refer the reader to [BCHM] for details, and also to two new
survey articles [D] and [K12].

Birkar’s papers [B2], [B3], [B4], and [B6] treat the problem of the ex-
istence of log minimal models. In [BP], the nonvanishing theorem (The-
orem 37) was proved without running the MMP with scaling. The proof
relates more closely to Siu’s extension theorem. We note that the termina-
tion of 4-fold log flips is still open [B5]. The finite generation of log canonical
ring for 4-fold log canonical pairs has been settled in [F18]. The paper [F18]
also contains a partial answer to the 4-fold abundance conjecture.

The contents of 7.2 has been greatly expanded in [F16], a completely
revised and expanded version of [F9] and [F10]. In [F17] and [F20], we
apply [BCHM] to give a short and quick proof of the Cone and Contraction
Theorems for log canonical pairs. This new approach is described in detail
in [F21] in full generality. In a series of papers [F13], [F14], and [F15], we
give various applications of our new vanishing and torsion-free theorem (see
Theorem 41). The paper [F19] is an elementary introduction to the theory
of quasi-log varieties by Ambro [A2].
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[D] S. Druel, Existence de modèles minimaux pour les variétés de
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