BIRKAR-CASCINI-HACON-M^CKERNAN

OSAMU FUJINO

1. BIRKAR-CASCINI-HACON-M^cKernan

1

In this short section, we quickly explain some results in [BCHM]. For the details, see the original paper: [BCHM]. Let us recall the definition of *log terminal models* in [BCHM].

Definition 1.1 (cf. [BCHM, Definition 3.6.7]). Let $f : X \to S$ be a projective morphism of normal quasi-projective varieties. Assume that (X, Δ) is lc and $\phi : X \dashrightarrow X'$ a birational map of normal quasiprojective varieties over S, where X' is projective over S. We put $\Delta' = \phi_* \Delta$. The pair (X', Δ') is called a *log terminal model* over S if

- (1) ϕ^{-1} contracts no divisors,
- (2) X' is \mathbb{Q} -factorial,
- (3) (X', Δ') is dlt,
- (4) $K_{X'} + \Delta'$ is f'-nef, where $f' : X' \to S$, and
- (5) $a(E, X, \Delta) < a(E, X', \Delta')$ for every ϕ -exceptional divisor $E \subset X$.

We note that (X', Δ') is automatically klt if (X, Δ) is klt by (4), (5), and the negativity lemma.

One of the main theorems of $\begin{bmatrix} bchm\\ BCHM \end{bmatrix}$ is as follows.

thm-ccc

Theorem 1.2 (cf. [BCHM, Theorems C and D]). Let $f : X \to S$ be a projective morphism of normal quasi-projective varieties and Δ an effective \mathbb{R} -divisor on X such that (X, Δ) is klt. Assume that Δ is fbig and $K_X + \Delta$ is f-pseudo-effective. Then (X, Δ) has a log terminal model over S.

Remark 1.3. Let $f : X \to S$ be a projective morphism of normal quasi-projective varieties and D an \mathbb{R} -Cartier divisor on X. Then D is f-pseudo-effective if and only if $D + \varepsilon H$ is f-big for every f-ample divisor H and every $\varepsilon > 0$.

Date: 2009/11/28, Version 1.02.

This note will be contained in my book.

¹We have to replace McKernan with M^cKernan. We have to define terminal singularities.

By combining it with [?, Theorem 5.2], we obtain the following important result.

thm-bbb Theorem 1.4 (cf. [BCHM, Corollary 1.1.2]). Let $f: X \to S$ be a projective morphism of quasi-projective varieties and Δ an effective \mathbb{Q} divisor on X such that (X, Δ) is klt. Then

$$R(X/S, K_X + \Delta) = \bigoplus_{m \ge 0} f_* \mathcal{O}_X(\lfloor m(K_X + \Delta) \rfloor)$$

is a finitely generated \mathcal{O}_X -algebra.

Theorem 1.4 implies the existence of log flips for \mathbb{Q} -factorial dlt pairs: Theorem ??. The following corollary is a special case of Theorem 1.4.

Corollary 1.5. Let X be a smooth projective variety. Then the canonical ring

$$R(X, K_X) = \bigoplus_{m \ge 0} H^0(X, \mathcal{O}_X(mK_X))$$

is a finitely generated \mathbb{C} -algebra.

Furthermore, if X is of general type. Then X has a canonical model

$$X' \simeq \operatorname{Proj} \bigoplus_{m \ge 0} H^0(X, \mathcal{O}_X(mK_X)).$$

The next theorem is one of the most important results in [BCHM]. The log minimal model program with scaling is sufficient for many applications.

thm-aaa Theorem 1.6 (cf. [BCHM, Corollary 1.4.2]). Let $f: X \to S$ be a projective morphism of normal quasi-projective varieties. Let (X, Δ) be a \mathbb{Q} -factorial klt pair such that Δ is f-big and C an effective \mathbb{R} -divisor. If $K_X + \Delta + C$ is klt and f-nef, then we can run the log minimal model program over S with scaling of C.

We explain Theorem $\frac{\text{thm}-\text{aaa}}{1.6 \text{ more}}$ explicitly.

1.7 (MMP with scaling for Q-factorial klt pairs with big boundary divisors). We use the same notation as in [??]. Assume that $K_{X_i} + \Delta_i$ is not f_i -nef. Let C_i denote the transform of C on X_i . Then we can find a $(K_{X_i} + \Delta_i)$ -negative extremal ray R_i such that $(K_{X_i} + \Delta_i + \lambda_i C_i) \cdot R_i = 0$, where

 $\lambda_i = \inf\{t \ge 0 \mid K_{X_i} + \Delta_i + tC_i \text{ is } f_i \text{-nef}\}.$

Apply the contraction theorem with respect to R_i . Then the above log minimal model program for (X, Δ) works and terminates.

We close this section with the following important result.

Corollary 1.8. Let X be a smooth projective variety of general type. Then X has a minimal model. This means that there exists a normal projective variety X' with only \mathbb{Q} -factorial terminal singularities such that X' is birationally equivalent to X and $K_{X'}$ is nef.

References

bchm [BCHM]

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

E-mail address: fujino@math.kyoto-u.ac.jp