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0. Introduction. The main purpose of this paper is to prove the abundance theo-
rem for semi log canonical threefolds. The abundance conjecture is a very important
problem in the birational classification of algebraic varieties. The abundance theorem
for semi log canonical surfaces was proved in [1] and [15] by D. Abramovich, L.-Y.
Fong, S. Keel, J. Kollár, and J. Mckernan. The proof uses semiresolution, and so on,
and has some combinatorial complexities. We simplify the proof and generalize the
theorem to semi divisorial log terminal surfaces (see Corollary 4.10). By our method
we can reduce the problem to the irreducible case and the finiteness of some groups.
This shows that if the log Minimal Model Program (log MMP, for short), the log
abundance conjecture forn-folds, and the finiteness ofB-pluricanonical representa-
tions (see Section 3) hold for(n−1)-folds, then the abundance conjecture for semi
log canonicaln-folds is true almost automatically (see Theorem A.1 in the appendix).
But unfortunately the log MMP and the log abundance conjecture are only conjectures
for n-folds withn≥ 4. So we prove the following theorem.

Theorem 0.1 (Abundance theorem for slc threefolds). Let (X,�) be a proper
semi log canonical (slc, for short) threefold withKX +� nef. ThenKX +� is
semiample.

This theorem is a generalization of the abundance theorem for log canonical three-
folds proved by S. Keel, K. Matsuki, and J. McKernan (see [16]). According to the
authors, the abundance theorem for log canonical threefolds is considered to be the
first step towards a proof of the abundance conjecture in dimension 4. We believe that
the abundance theorem for semi log canonical threefolds is the second step.
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The notion of semi log canonical singularity was first introduced in [22] for the
problem of compactifying the moduli of surfaces. For the further development of this
direction, we recommend the readers to see [10].

Let us see the scheme proposed in [2], [12], and [20]. The abundance conjecture
states: LetX be a minimaln-fold with terminal singularities. Then for sufficiently
divisible and largem ∈ N, the linear system|mKX| is basepoint-free. After the
minimal model program (still conjectural in dimension≥ 4) produces a minimal
n-fold in the birational equivalence class, the abundance conjecture would provide
the Iitaka fibration morphism
|mKX | : X→ Xcan onto its canonical model, which
is absolutely crucial for the study of the birational properties of algebraic varieties.
The cited authors proposed the following inductional scheme toward a proof of the
abundance conjecture.

(i) Show that a memberD ∈ |mKX| exists for sufficiently divisible and large
m ∈N.

(ii) Apply the log MMP to the pair(X,DX) (the boundaryDX is constructed from
D in (i)) to obtain a log minimal model(Y,DY ). Observe that by the (generalized)
adjunction

KY +DY |DY
=KDY

+Diff ,

where Diff is the supplementary term for the equality to hold, and the pair(DY ,Diff )
is a minimal(n−1)-fold with semi log canonical singularities.

(iii) Apply induction on the pair(DY ,Diff ). Lift the global sections ofm(KDY
+

Diff ) to those ofm(KY +DY ), which should then provide “enough” global sections
of the originalmKX to prove that the linear system|mKX| is basepoint-free.

In order to complete the inductional circle of steps, we consider the abundance
statement for log pairs.

(iv) Based upon the abundance for minimaln-foldsX with terminal singularities,
prove the abundance for log pairs(X,D) with log canonical singularities.

(v) Based upon the abundance for log pairs(X,D) with log canonical singulari-
ties, prove the abundance for log pairs with semi log canonical singularities.

In [2], [12], and [20], the authors proved the abundance conjecture for threefolds
along the line of argument described as above, establishing the inductional step (v)
in dimension 2 through some combinatorial discussions. In this paper we capture the
essential difficulty in carrying out step (v) in arbitrary dimension, as what we call the
finiteness ofB-pluricanonical representations. In dimensionn= 2 or 3 where we can
prove this finiteness in dimensionn−1= 1 or 2, respectively, we establish the step
(v) in one stroke without going through the complex combinatorial arguments.

We sketch the contents of this paper. Section 1 sets up some basic definitions
and facts. In Section 2, we treat the reduced boundaries of dltn-folds. This is a
reformulation of [1, 12.3.2]. Section 3 deals withB-pluricanonical representations
(the precise definitions are given in Definition 3.1). We prove their finiteness for
curves and surfaces; it plays an important role in our proof of the abundance theorem
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for slc n-folds. In Section 4, the main section, we prove the abundance theorem
for slc threefolds. In the appendix, we reformulate the main theorem under some
assumptions such as log MMP forn-folds, and we collect some known results for the
reader’s convenience.

Acknowledgements.I would like to express my gratitude to Professor Shigefumi
Mori for giving me much advice and encouraging me during the preparation of this
paper. I am grateful to Professor Yoichi Miyaoka and Professor Noboru Nakayama
for giving me many useful comments. I would also like to thank Professor Nobuyoshi
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comments helped me revise this paper.

Notation. (1) The wordschemeis used for schemes that are separated and of finite
type overC; the termvarietystands for a reduced and irreducible scheme. A normal
scheme consists of the disjoint union of irreducible normal schemes.

(2) We freely use terminology about singularities of the pair(X,�), such asKawa-
mata log terminal, log terminal, divisorial log terminal, log canonical(frequently
abbreviated as klt, lt, dlt, and lc), andterminal. For the definition of this terminology,
we refer the reader to [21, Section 2.3]. (See also [27].) In the definition in [21, Sec-
tion 2.3],� is not necessarily effective, but in this paper we assume� is an effective
Q-divisor.

(3) Let f : X ��� Y be a rational map. We say that aQ-divisor D is horizontal
(resp.,vertical) if every irreducible component ofD is dominating (resp., not domi-
nating) overY .

(4) The log MMP means the log MMP forQ-factorial dlt pairs.
(5) ν denotes the numerical Kodaira dimension.
(6) We will make use of the standard notation and definitions as in [21].

1. Definitions and preliminaries. In this section, we present the basic notation
and recall the necessary results.

Definition 1.1. Let X be a reducedS2 scheme. We assume that it is puren-
dimensional and normal crossing in codimension 1. Let� be an effectiveQ-Weil
divisor onX (cf. [5, 16.2]) such thatKX+� isQ-Cartier.

Let X = ∪Xi be a decomposition into irreducible components, and letµ : X′ :=
�X′i → X = ∪Xi be the normalization. AQ-divisor� onX′ is defined byKX′ +
� := µ∗(KX+�) and aQ-divisor�i onX′i by �i :=�|X′i .

We say that(X,�) is asemi log canonicaln-fold (an slcn-fold, for short) if(X′,�)

is lc.
We say that(X,�) is asemi divisorial log terminaln-fold (an sdltn-fold, for short)

if Xi is normal; that is,X′i is isomorphic toXi , and(X′,�) is dlt.

Remark 1.2. (1) The definition of slc above is equivalent to the one in [1] (see
[17, 4.2]).
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(2) If (X,�) is an slcn-fold, thenX is seminormal (see [1, 12.2.1(8)] and [3,
Remark 4.7]).

(3) If (X,�) is a dltn-fold, then(���,Diff (�−���)) is an sdlt(n−1)-fold (see
[18, 17.5] and [21, 5.52]).

(4) Let (X,�) be lc. Then(���,Diff (�− ���)) is not necessarily slc (see [18,
17.5.2 Example]). The scheme��� is not necessarilyS2. Note that [5, (16.9.1)] is
not correct.

(5) Let (X,�) be lc. If (X,0) isQ-factorial and lt, then the pair(���,Diff (�−
���)) is slc. SinceX has only rational singularities, especially,X is Cohen-Macaulay,
and��� isQ-Cartier,��� satisfiesS2 condition.

The following lemma plays an important role in Section 2.

Lemma 1.3 (Connectedness Lemma) [26, 5.7], [18, 17.4], [13, 1.4]. LetX andY
be normal varieties, and letf : X→ Y be a proper surjective morphism with con-
nected fibers. Let� = ∑

di�i be aQ-divisor onX. Let g : Z → X be a log
resolution (cf. [21, Notation 0.4(10)]) such thath := f ◦g. Let

KZ = g∗(KX+�)+
∑

eiEi, and F := −
∑

i:ei≤−1

eiEi.

Assume that
(1) if di < 0, thenf (�i) has codimension at least 2 inY ;
(2) −(KX+�) is f -nef andf -big.

ThenSuppF = Supp�F� is connected in a neighborhood of any fiber ofh. In par-
ticular, if (X,�) is lc and(X,�−���) is klt, then���∩f−1(y) is connected for
every pointy ∈ Y .

Lemma-Definition 1.4 (Q-factorial dlt model) (cf. [15, 8.2.2]). Let (X,�) be
an lcn-fold withn≤ 3. Then there is a projective birational morphismf : (Y,�)→
(X,�) such that(Y,�) isQ-factorial dlt andKY +�= f ∗(KX+�). Furthermore,
if (X,�) is dlt, then we may takef a small projective morphism that induces an
isomorphism at every generic point of a center of log canonical singularities for
the pair (Y,�). (For the definition of a center of log canonical singularities, see
Definition 4.8.) We say that(Y,�) is aQ-factorial dlt model of(X,�).

Definition 1.5. Let (X,�) = �n
i=1(Xi,�i) and(X′,�′) = �n

i=1(X
′
i ,�

′
i ) be nor-

mal schemes withQ-divisor, such thatKX +� andKX′ +�′ areQ-CartierQ-
divisors.

We say thatf : (X,�) ��� (X′,�′) is a B-birational map (resp., morphism) if
f :X ��� X′ is a proper birational map (resp., morphism) and there exists a common
resolutionα : T → X, β : T → X′ of f : X ��� X′ such thatα∗(KX +�) =
β∗(KX′ +�′). That is, there exists a permutationσ such thatfi : Xi ��� X′σ(i)
is a proper birational map (resp., morphism) and there exists a common resolution
αi : Ti→Xi , βi : Ti→X′σ(i) of fi such thatα∗i (KXi

+�i)= β∗i (KX′
σ(i)
+�′σ(i)) on
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Ti for everyi. The last condition means that if we write

KTi = α∗i (KXi
+�i)+F and KTi = β∗i

(
KX′

σ(i)
+�′σ(i)

)+E,
thenF = E.

If there is aB-birational map from(X,�) to (X′,�′), we say that(X,�) is B-
birationally equivalent to(X′,�′) and write(X,�)∼B (X′,�′). Here the symbolB
is the initial ofboundary.

Lemma 1.6. Let (X,�) and (Z,�′) be normal varieties withQ-divisors such
thatKX+� andKZ+�′ areQ-Cartier. Letf : X→ R andh : Z→ R be proper
surjective morphisms onto a normal varietyR and p : X ��� Z a birational map
such thatf = h◦p. Assume that

(1) p−1 has no exceptional divisors;
(2) �′ = p∗�;
(3) KX+�≡f 0, KZ+�′ ≡h 0.

Thenp is aB-birational map.

Proof. Let β : W → X be a resolution such that the induced rational mapα =
p◦β :W → Z is a morphism. Letm> 0 be a sufficiently divisible integer. We have
linear equivalences

−mKW ∼−α∗
(
m(KZ+�′)

)−F,
mKW ∼ β∗

(
m(KX+�)

)+E.
Adding the two we obtain

β∗(KX+�)−α∗(KZ+�′)= F −E.
By assumption,F −E is α-exceptional and numericallyα-trivial. ThenF = E, that
is, α∗(KZ+�′)= β∗(KX+�).

2. Reduced boundaries of dltn-folds. The following is a reformulation of [1,
12.3.2], which fits better in our arguments.

Proposition 2.1 (cf. [26, 6.9], [1, 12.3.2]). Let(X,�) be aQ-factorial dltn-fold
with n≤ 3. Letf :X→ R be a projective surjective morphism onto a normal variety
R with connected fibers. Assume thatKX+� is numericallyf -trivial. Then one of
the following holds.

(0) dimR = 0.
(0.1) ��� is connected.
(0.2) ��� has two connected components�1 and�2, and there exists a ra-

tional mapv : X ��� (V ,P ) onto aQ-factorial lc (n−1)-fold (V ,P )

with general fiberP1. The pair(V ,0) is lt. Furthermore, there exists an
irreducible componentD′i ⊂�i such thatv|D′i : (D′i ,Diff (�−D′i )) ���
(V ,P ) is aB-birational map fori = 1,2.
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(1) dimR ≥ 1.
(1.1) ���∩f−1(r) is connected for everyr ∈ R.
(1.2) The number of connected components of���∩ f−1(r) is at most two

for everyr ∈ R. There exists a rational mapv : X ��� (V ,P ) onto a
Q-factorial lc (n−1)-fold (V ,P ) with general fiberP1. The pair(V ,0)
is lt. The horizontal part�h of ��� is one of the following:
(i) �h = D′1, which is irreducible, and the mapping degreedeg[D′1 :

V ] = 2; there is also aB-birational involution on(D′1,Diff (�−D′1))
overV ;

(ii) �h = D′1+D′2 such thatD′i is irreducible andv|D′i : (D′i ,Diff (�−
D′i )) ��� (V ,P ) is aB-birational map fori = 1,2.

Remark 2.2. (1) In Proposition 2.1 the assumptionKX +� ≡f 0 is equivalent
to KX +� ∼Q,f 0. It is because the relative log abundance theorem holds when
dimX ≤ 3 (see Theorem A.2 in the appendix).

(2) If the log MMP holds forn-folds, then Proposition 2.1 is also true forn-folds.

First, we prove the following lemma.

Lemma 2.3. Let (Z,�) be aQ-factorial lc n-fold with n ≥ 2 and ��� �= 0.
Let h : Z → R be a projective surjective morphism onto a normal varietyR with
connected fibers. Assume the following conditions:

(1) (Z,�−ε���) is klt, whereε is a small positive rational number;
(2) KZ+�≡h 0;
(3) there is a(KZ +�− ε���)-extremal Fano contractionu : Z → V overR

such thatdimV = n−1.
Then the horizontal part�h of ��� is one of the following:

(a) �h =D1, which is irreducible, anddeg[D1 : V ] = 2;
(b) �h =D1, which is irreducible, anddeg[D1 : V ] = 1;
(c) �h =D1+D2, such thatDi is irreducible anddeg[Di : V ] = 1 for i = 1,2.
In the cases (a) and (c), the number of connected components of���∩h−1(r) is

at most two for everyr ∈ R.
In the case (b),���∩h−1(r) is connected for everyr ∈ R.
Furthermore, there is aQ-divisor P on V such that(V ,P ) is aQ-factorial lc

(n−1)-fold andKDi
+Diff (�−Di)= u|Di

∗(KV +P) for i = 1,2.
In the case (a), there is aB-birational involutionι overV ; that is,ι : (D1,Diff (�−

D1)) ��� (D1,Diff (�−D1)) overV is aB-birational map andι2= id.
In the case (c),u|Di

:Di → V is aB-birational morphism fori = 1,2. In partic-
ular, (D1,Diff (�−D1))∼B (D2,Diff (�−D2)).
Note that(V ,0) is lt.

Proof. Since��� is u-ample by the assumptions (2) and (3), we have�h �= 0.
So the general fiber ofZ → V is P1 and deg[�h : V ] ≤ 2, becauseKZ +� is
numericallyh-trivial. Sinceu : Z → V is extremal, the vertical component�v of



ABUNDANCE THEOREM FOR SEMI LOG CANONICAL THREEFOLDS 519

��� is a pullback of aQ-divisor onV and (V ,0) is aQ-factorial lt pair (see [7,
Corollary 3.5] or [24, Appendix]). Therefore the first part is proved.

Let H1,H2, . . . ,Hn−2 be general hypersurfaces onV . Consider

u−1(H1∩H2∩·· ·∩Hn−2
)−→H1∩H2∩·· ·∩Hn−2.

By using [12, 3.5.1 and 3.5.2] and [1, 12.3.4] to the above morphism, we have aQ-
divisorP onV satisfyingKDi

+Diff (�−Di)= u|Di
∗(KV +P). The normalization

of (D1,Diff (�−D1)) is lc and the normalization of(V ,P ) in the function field
C(D1) is lc, sinceKD1 +Diff (�−D1) = u|D1

∗(KV +P). Thus (V ,P ) is lc and
Q-factorial, sinceZ isQ-factorial andu is extremal.

Proof of Proposition 2.1. If f is birational, then Connectedness Lemma 1.3
implies that we are in the case (0.1) or (1.1). Thus we may assume that dimR < dimX.

We run the(KX+�− ε���)-MMP onX overR for 0< ε � 1. The end result
is a birational mapp : X ��� Z overR. Let h : Z→ R be the induced morphism.
SinceKX+�≡f 0, we obtain thatKZ+p∗�≡h 0. Then(Z,p∗�) is aQ-factorial
lc pair (see Lemma 1.6) and(Z,p∗�−ε�p∗��) is klt.
Step 1.If (Z,p∗�− ε�p∗��) is a minimal model, thenKZ+p∗�− ε�p∗�� is

h-nef andKZ+p∗�≡h 0. So−�p∗�� is h-nef. If dimR = 0, then�p∗��= 0. By
Lemma 2.4 below, we have���= 0. If 0< dimR < dimX, then�p∗��∩h−1(r) is
connected for everyr ∈ R. By Lemma 2.4 we have the case (1.1).
Step 2. If there exists an extremal Fano contractionu : Z → V over R, then
−(KZ+p∗�−ε�p∗��) is u-ample. Letg : V → R be the induced morphism. We
noteh= g ◦u.

First, assume that dimR = 0. If �p∗�� is connected, we have the case (0.1) by
Lemma 2.4. Thus we can assume that�p∗�� is not connected. Since�p∗�� is
relatively ample, we have dimV = dimX−1. Then by Lemma 2.3 we have the case
(c) in Lemma 2.3 andu|Di

:Di→ V are finite, whereDi are as in Lemma 2.3(c) for
i = 1,2. It is becauseD1 intersectsD2 by the relative ampleness ofD1 andD2 if
u|D1 or u|D2 is not finite. We haveDi � V by Zariski’s main theorem, becauseV is
normal. By Lemma 1.6, the adjunction, and Lemma 2.4, we have the case (0.2).

Thus, we may assume dimR ≥ 1.
If dim V = dimX−1, we get case (1.2) by Lemmas 1.6, 2.3, and 2.4 below, and

the adjunction.
If dimR = 1, dimV = 1, and dimX = 3, thenV � R. Sinceu is extremal,�p∗��

is h-ample andρ(Z/R)= 1. Then every horizontal irreducible component of�p∗��
is h-ample, and every vertical irreducible component of�p∗�� is a pullback of a
Q-CartierQ-divisor onR. Then�p∗��∩h−1(r) is connected for everyr ∈ R. We
have the case (1.1).

The next lemma is used in the proof of Proposition 2.1.

Lemma 2.4. If f : X → R, h : Z → R, p : X ��� Z are as in the proof of
Proposition 2.1, then the number of connected components of���∩f−1(r) is equal
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to the number of connected components of�p∗��∩h−1(r) for everyr ∈ R.
Proof. p : X ��� Z is a composition of flips and divisorial contractions.X ���

X1 ��� X2 ��� · · · ��� Xi ��� · · · ��� Z. Use Connectedness Lemma 1.3 in each
step. Let�i be the proper transform of� onXi . Note that��i� is relatively ample
for each flipping or divisorial contraction andKXi+�i is numerically trivial overR.

3. Finiteness ofB-pluricanonical representations. We consider the birational
automorphism groups of pairs.

Definition 3.1. Let (X,�) be a pair of a normal scheme and aQ-divisor such that
KX+� isQ-Cartier. We define

Bir(X,�) := {σ : (X,�) ��� (X,�) | σ is aB-birational map},
Aut(X,�) := {σ :X→X | σ is an automorphism andσ ∗�=�}.

Since Bir(X,�) acts onH 0(X,�X(m(KX +�))) for every integerm such that
m(KX+�) is a Cartier divisor, we can defineB-pluricanonical representationρm :
Bir(X,�)→ Aut H 0(X,m(KX+�)).

The following conjecture plays an important role when we reduce the problem to
the irreducible case.

Conjecture 3.2 (Finiteness ofB-pluricanonical representations). Let (X,�) be
ann-dimensional (not necessarily connected) proper lc pair. Assume thatKX+� is
nef. Then there is a positive integerm0 such thatρm1m0(Bir(X,�)) is finite for every
m1 ∈N.

For Conjecture 3.2, it is obviously sufficient to prove it under the assumption that
X is irreducible. In Theorems 3.3, 3.4, and 3.5, we prove the conjecture for curves
and surfaces.

Theorem 3.3 (Cf. [1, 12.2.11]). Let (C,�) be a proper lc curve. Then there is a
positive integerm0 such thatρm1m0(Aut(C,�)) is finite for everym1 ∈N.
Proof. If the genusg(C) ≥ 2, then it is trivial. Ifg(C) = 1 and� �= 0, then it is

also true by [23, p. 60, Application 1]. Ifg(C)= 1 and�= 0, then we putm0= 12
and the theorem holds by [1, 12.2.9.1]. So we assume thatC is a rational curve. If
deg(KC+�) < 0, then there is nothing to be proved. If|Supp�| ≥ 3, then Aut(C,�)

is a finite group. So we can reduce to the case where� = ��� = {two points}. In
this case we can prove easily thatρm(Aut(C,�)) is trivial if m is even.

Theorem 3.4. Let (S,�) be a proper klt surface. Letm0 ≥ 2 be an integer such
that m0(KS +�) is a Cartier divisor. Thenρm1m0(Bir(S,�)) is finite for every
m1 ∈ N.
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Proof. Let h : S′ → S be a terminal model, that is,(S′,�′) is terminal andKS′ +
�′ = h∗(KS+�) (see [19, (6.9.4)]). Note that�′ is effective and��′� = 0 by the
construction. The discrepancy of every exceptional divisor over(S′,�′) is positive
and that of a nonexceptional divisor is nonpositive. The compositeσ ′ := h−1◦σ ◦h
does not change discrepancies becauseσ ′ is aB-birational map. Thusσ ′ is a biregular
morphism such thatσ ′∗�′ =�′. We may assume(S,�) is terminal such that���=
0 and replace Bir(S,�) with Aut(S,�). Let f : S′ → S be a finite sequence of
blowings-up whose centers are over� such thatKS′ +f−1∗ �= f ∗(KS+�)+∑

aiEi

and Supp(f−1∗ �∪∑
Ei) is a simple normal crossing divisor. Letm0 ≥ 2 be an integer

such thatm0(KS+�) is a Cartier divisor. We putD := f−1∗ �+∑
(1/m0)Ei . Then

we obtain

KS′ +D = f ∗(KS+�)+
∑(

ai+ 1

m0

)
Ei.

Note thatD is effective,�D� = 0, and SuppD is a simple normal crossing divi-
sor. SinceS′ −D �f S −�, σ ′ := f−1 ◦ σ ◦ f acts onH 0(S′,�S′(mKS′ + (m−
1)�D�)). (Cf. [25, Theorem 2.1 and Proposition 1.4], [9, §11.1].) Then the image of
Aut(S,�)→ AutH 0(S′,�S′(mKS′ + (m−1)�D�)) is a finite group for everym. It
was proved by I. Nakamura, K. Ueno, P. Deligne, and F. Sakai. (See [25, Theorem 5.1]
and [28, §14].) Since

H 0(S,�S

(
m1m0(KS+�)

))=H 0(S′,�S′
(
m1m0

(
KS′ +D

)))
⊂H 0(S′,�S′

(
mKS′ +(m−1)�D�

))
for every positive integerm1 with m = m1m0, the image ofρm1m0 : Aut(S,�)→
AutH 0(S,m1m0(KS+�)) is a finite group.

Theorem 3.5. Let (S,�) be a projective lc surface. Assume thatKS+� is nef.
Then there is a positive integerm0 such thatρm1m0(Bir(S,�)) is finite for every
m1 ∈N.

Proof. Let f := 
|k(KS+�)| : S→ R be a morphism with connected fibers for a
sufficiently large and divisible integerk by the log abundance theorem.

Case 1: ν(S,KS+�)= 2.
Thenf is a birational morphism and Bir(S,�) acts onR biregularly. We put2 :=

f∗�. ThenKS+� = f ∗(KR+2) and2 is Bir(S,�)-invariant. Leth : S′ → R be
the unique minimal resolution; so we haveKS′ +�′ = h∗(KR+2), Bir(S,�) acts on
S′ biregularly, and�′ is Bir(S,�)-invariant. Thus, we may reduce to the case where
(S,�) is lc, S is smooth and Bir(S,�) = Aut(S,�) in Theorem 3.4. SinceKS+�
is big, we obtain an effective Cartier divisorD such thatam0(KS+�) ∼ ���+D,
wherea is a sufficiently large integer andm0 is a sufficiently divisible integer so that
m0(KS+�) is a Cartier divisor. Observing

(m1+a)
(
m0(KS+�)− 1

m1+a ���
)
=m1m0(KS+�)+D,
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we have

H 0(S,�S

(
m1m0(KS+�)

))⊂H 0(S,�S

(
(m1+a)m0(KS+�)−���

))
.

By using Theorem 3.4 for the right-hand side, we obtain the result.

Case 2: ν(S,KS+�)= 1.
Let g := S′ → S be a minimal resolution and�′ := f ∗(KS +�)−KS′ > 0. We

may replace(S,�) with (S′,�′). By contracting(−1)-curves in the fibers, we may
reduce to the case wheref : S → R is aP1-bundle or a minimal elliptic surface.
When the horizontal part�h �= 0, we take an irreducible componentD of �h. By
elementary transformations we may assumeD is smooth. Then

H 0(S,�S

(
m1m0(KS+�)

))⊂H 0(D,�D

(
m1m0

(
KD+Diff (�−D)

)))
.

So we have the result by Theorem 3.3. Next we may assume�h = 0. Whenf : S→ R

is aP1-bundle,��� =∑
f ∗pi for somepi ∈ R. Whenf : S → R is a minimal

elliptic surface, we haveKS ∼Q,f 0 and� ≡f 0. Then� =∑
aif
∗pi for some

pi ∈ R and positive rational numbersai (see [4, VIII.3, VIII.4]). Bir(S,�) acts on
f (���). We defineB :=∑

pi∈f (���) pi . Let H be an ample Cartier divisor onR
such thatm0(KS+�)∼ f ∗H . Then we havebH ∼ B+D for some effective divisor
D and some sufficiently large integerb. Thenbm0(KS +�) ∼ f ∗(B+D). We put
A := f ∗B. Observing

(m1+b)
(
m0(KS+�)− 1

m1+bA
)
=m1m0(KS+�)+f ∗D,

we have

H 0(S,�S

(
m1m0(KS+�)

))⊂H 0(S,�S

(
(m1+b)m0(KS+�)−A))

.

By using Theorem 3.4 for the right-hand side, we obtain a result.

Case 3: ν(S,KS+�)= 0.
In this case we can show that Bir(S,�) acts onH 0(S,m1m0(KS +�)) trivially,

using Lemma 4.9 below. First, we replace(S,�) with itsQ-factorial dlt model (see
Lemma-Definition 1.4). So we may assume that(S,�) is dlt. By Proposition 4.5,
we can take a preadmissible sections (cf. Definition 4.1). Theng∗s = s for every
g ∈ Bir(S,�) by Lemma 4.9. Sinceν(S,KS+�)= 0, we have the result.

4. The abundance theorem for slc threefolds.We introduce the notion of pread-
missible and admissible sections for the inductive proof of the abundance conjecture
for slcn-folds.

Definition 4.1. Let (X,�) be a proper sdltn-fold, and letm be a sufficiently large
and divisible integer. We define admissible and preadmissible sections inductively on
dimension:
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• s ∈ H 0(X,�X(m(KX +�))) is preadmissibleif the restrictions|(�i��i�) ∈
H 0(�i��i�,�(�i��i�)(m(KX′ +�)|(�i��i�))) is admissible;
• s ∈H 0(X,�X(m(KX+�))) isadmissibleif s is preadmissible andg∗(s|Xj

)=
s|Xi

for everyB-birational mapg : (Xi,�i) ��� (Xj ,�j ) for everyi,j .
Note that if s ∈ H 0(X,�X(m(KX +�))) is admissible, thens|Xi

is Bir(Xi,�i)-
invariant for everyi.

We define linear subspaces ofH 0(X,�X(m(KX+�))) as follows:

PA
(
X,m(KX+�)

) := {s is preadmissible}

and

A
(
X,m(KX+�)

) := {s is admissible}.
When dimX = 1, the preadmissible section is a slight generalization of thenormalized
section (see [1, 12.2.9]). But in the higher dimensional case, the admissible and
preadmissible sections behave much better in the inductive proof of the abundance
conjecture for slcn-folds.

Lemma 4.2. Let(X,�) be a proper slcn-fold,µ :X′ →X the normalization, and
KX′ +� := µ∗(KX+�). Letf : (Y,2)→ (X′,�) be a proper birational morphism
such that(Y,2) is dlt withKY+2= f ∗(KX′ +�). ThenPA(Y,m(KY+2)) descends
to sections on(X,�).

Proof. By the definition of slc,X is S2 and normal crossing in codimension 1. So,
this lemma is obvious by the definition of preadmissible sections.

Lemma 4.3. Let (X,�) be a properQ-factorial dlt n-fold, KX +� nef, and
S = ��� �= 0. Assume thatf =
|k(KX+�)| :X→ R is a proper surjective morphism
onto a normal varietyR with connected fibers for a sufficiently large and divisible
integerk andf (���) � R. If there exist sections{si}pi=1⊂H 0(S,�S(m(KX+�)|S))
without common zeros, then there exist sections{ui}li=1⊂H 0(X,�X(rm(KX+�)))

for some integerr such that

(1) ui |S =
{
sri for 1≤ i ≤ p,

0 for p < i ≤ l;
(2) {ui}li=1 have no common zeros.

Proof. There is an ampleQ-CartierQ-divisor H on R such thatKX +� ∼Q
f ∗H . We consider the following commutative diagram:

H 0
(
X,�X

(
rm(KX+�)

))
�� H 0

(
S,�S

(
rm(KX+�)|S

))

H 0
(
R,�R(rmH)

)∼=
��

�� H 0
(
T ,�T (rmH |T )

)
.

∼=
��
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Let T := f (S) andIT the defining ideal ofT . By Lemma 4.4 below,(f |S)∗�S = �T .
So the vertical arrows are isomorphisms. SinceH is ample, the horizontal arrows are
surjective and�R(rmH)⊗IT is generated by global sections for a sufficiently large
integerr. So we can get sections{ui}li=1 with required properties.

We use the next lemma in Proposition 4.5.

Lemma 4.4. Let f : X → R be a proper surjective morphism between normal
varieties with connected fibers. Assume that

(1) (X,�) is aQ-factorial dlt n-fold;
(2) f (���) � R;
(3) KX+�∼Q,f 0.

Then there is an exact sequence

0−→ f∗�X(−���)−→ �R −→ f∗���� −→ 0.

Proof. There is a positive integerm and a Cartier divisorD on R such that
m(KX+�)= f ∗D. Observe that

m(KX+�)−���−(KX+{�})= (m−1)(KX+�).

SinceKX + {�} is klt and (m− 1)(KX +�) is f -semiample by the assumptions
(1) and (3),R1f∗�X(m(KX +�)− ���) is torsion-free (see [14, 1-2-7]). By the
assumption (2),f∗����(m(KX +�)) is a torsion sheaf. Then we have an exact
sequence

0−→ f∗�X

(
m(KX+�)−���

)
−→ f∗�X

(
m(KX+�)

)
−→ f∗����

(
m(KX+�)

)−→ 0.

Tensoring�R(−D) gives the result.

The next proposition is the main part of the proof of the abundance theorem for slc
n-folds.

Proposition 4.5. Let (X,�) be a projectiveQ-factorial dlt pair with n ≤ 3. Let
m be a sufficiently large and divisible integer, especiallym ∈ 2Z. Assume that

(1) KX+� is nef;
(2) A(���,m(KX+�)|���) generates����(m(K���+Diff (�−���))).

Then

PA
(
X,m(KX+�)

)−→ A
(
���,m(KX+�)|���

)
is surjective, andPA(X,m(KX+�)) generates�X(m(KX+�)).

Proof. It is sufficient to prove this proposition for each connected component. So
we can assume that(X,�) is a projectiveQ-factorial irreducible dlt pair.

Apply the log abundance theorem. We getf := 
|k(KX+�)| : X → R for a
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sufficiently large and divisible integerk. If ��� = 0, then the proposition is trivial.
Thus, we may assume��� �= 0. We have the following possibilities by Proposition
2.1:

(1) ν(X,KX+�)= 0 and��� is connected;
(2) ν(X,KX +�) ≥ 1 and f−1(r) ∩ ��� is connected for everyr ∈ R and

f (���)= R;
(3) ν(X,KX +�) ≥ 1 and f−1(r) ∩ ��� is connected for everyr ∈ R and

f (���) � R;
(4) f−1(r)∩��� is not connected for somer ∈ R.
Case 1.Consider the exact sequence

0−→H 0(X,�X

(
m(KX+�)−���

))
−→H 0(X,�X

(
m(KX+�)

))
−→H 0(���,����

(
m(KX+�)|���

))−→ ·· · .
Sinceν(X,KX+�) = 0, H 0(X,�X(m(KX+�)− ���)) = 0 and the second and
third terms are one-dimensional. Thus, we get the result.
Case 2.We construct a morphismϕ : ��� → C by the linear system corre-

sponding to A(���,m(KX+�)|���). Since every curve in any fiber off |��� goes
to a point byϕ, there exists a morphismψ : R → C such thatψ ◦ (f |���) = ϕ.
For s ∈ A(���,m(KX+�)|���), there exists a sectiont on C such thats = ϕ∗t .
Thus we obtainu := f ∗ψ∗t ∈ PA(X,m(KX+�)) such thatu|��� = s. Note that if
we write KX +� ∼Q f ∗H as in Lemma 4.3, we haveH 0(X,�X(m(KX +�)))

� H 0(R,�R(mH)) � H 0(���,����(m(KX +�)|���)). Since A(���,m(KX +
�)|���) generates����(m(K���+Diff (�−���))), PA(X,m(KX+�)) generates
�X(m(KX+�)).
Case 3.We putT := f (���) � R. By Lemma 4.4 we obtain�T = f∗����. Then

T is seminormal (see [3, Proposition 4.5]). As in case 2, we constructϕ : ���→ C

by A(���,m(KX+�)|���) and getψ : T → C. By Lemma 4.3, we can pull back
s ∈ A(���,m(KX+�)|���) to u ∈ PA(X,m(KX+�)) if m is a sufficiently large
and divisible integer. By Lemma 4.3 we can also check that PA(X,m(KX +�))

generates�X(m(KX+�)) if m is a sufficiently large and divisible integer.
Case 4.In this case,X is generically aP1-bundle over(V ,P ) by Proposition 2.1.

Let f : (X,�)→ R be Iitaka fiber space andu : (X′,�′)→ (V ,P ) be the last step
of the log MMP overR as in the proof of Proposition 2.1. In this caseu is a Fano
contraction to an(n−1)-dimensional lc pair(V ,P ). By Lemma 1.6, we have that

H 0(X,�X

(
m(KX+�)

))�H 0(X′,�X′
(
m(KX′ +�′)

))
.

Let α : (Y,�) → (X,�) and β : (Y,�) → (X′,�′) be a common log resolu-
tion of a B-birational mapp : X ��� X′ such thatKY +� = α∗(KX +�) and
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KY +�= β∗(KX′ +�′). We define�B :=∑
di=1�i , where�=∑

di�i (see Def-
inition 4.8). Then

H 0(���,����
(
m(KX+�)|���

))�H 0(�B,��B

(
m(KY +�)|�B

))
�H 0(��′�,���′�

(
m(KX′ +�′)|��′�

))
by Lemma 1.3 (see also the proof of Lemma 4.9). We note that��� and��′� are semi-
normal (see Remark 1.2). So it is sufficient to treat(X′,�′) instead of(X,�). Let s be
a section in A(���,m(KX+�)|���). By the above isomorphism, we can assume that
the sections is in H 0(��′�,���′�(m(KX′ +�′)|��′�)). We have the decomposition
��′�=�′h∪�′v, where�′h (resp.,�′v) is the horizontal (resp., vertical) part of��′�
with respect to the morphismu. Sinces|

�′h is B-birational involution invariant over
(V ,P ), it descends to a sectiont on (V ,P ). By the isomorphismH 0(X,�X(m(KX+
�)))�H 0(X′,�X′(m(KX′ +�′)))�H 0(V ,�V (m(KV +P))), we can pull the sec-
tion t back to the sectionw ∈H 0(X,�X(m(KX+�)))�H 0(X′,�X′(m(KX′ +�′))).

First, we prove thats|
�′h = w|

�′h . It is true because there is a small analytic open
setU in V such thatu−1(U) is biholomorphic toP1×U andu|u−1(U) : P1×U → U

is a second projection. By the same argument as in [1, 12.3.4], the difference between
s|
�′h andw|

�′h is at most(−1)m. Since we assume thatm is even, we have that
s|
�′h = u|

�′h .
Next, we check thats|�′v = w|�′v . By Lemma 2.3,�′v =∑

u∗Di , whereDi ⊂
�P � is an irreducible divisor. We defineEi := u∗Di . It is sufficient to check that
s|Ei
= w|Ei

for every i. Let 2i be an irreducible component ofEi ∩�′h such that
u|2i
: 2i → Di is dominant. Since�′h∩�′v �= ∅, we can always take such2i . We

consider the commutative diagram

H 0
(
Ei,�Ei

(
m(KX′ +�′)|Ei

))
�� H 0

(
2i,�2i

(
m(KX′ +�′)|2i

))

H 0
(
Di,�Di

(
m(KV +P)|Di

))∼=
��

id �� H 0
(
Di,�Di

(
m(KV +P)|Di

))
.

ι

��

The mapι is injective sinceu|2i
:2i→Di is dominant and the left vertical map is an

isomorphism sinceDi is seminormal (see [3, Proposition 3.2]) andu|Ei
has connected

fibers. Ass|2i
= w|2i

, so we gets|Ei
= w|Ei

for everyi. Note that2i ⊂�′h. Thus
we haves = w|��′�.

Finally, since A(���,m(KX+�)|���) generates����(m(K���+Diff (�−���)))
by the assumption, the restriction to�′h, which descends to sections on(V ,P ), gen-
erates�

�′h(m(KX′ +�′)|�′h). Therefore PA(X,m(KX+�)) generates�X(m(KX+
�)). This completes the proof.

Remark 4.6. In Proposition 4.5 the assumptionn ≤ 3 is used for the log MMP
and the log abundance theorem, which are used in Proposition 2.1, too.
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Lemma 4.7. In Proposition 4.5, ifdimX ≤ 2, then we can replacePA(X,
m(KX+�)) with A(X,m(KX+�)).

Proof. For everys ∈ A(���,m(KX+�)|���), we can take a sections′ ∈ PA(X,
m(KX+�)) such thats′|��� = s by Proposition 4.5. If we putt := 1/|G|∑g∈Gg∗s′ ∈
A(X,m(KX + �)), whereG = ρm(Bir(X,�)), then t |��� = s by Lemma 4.9.
Therefore,

A
(
X,m(KX+�)

)−→ A
(
���,m(KX+�)|���

)
is surjective. Letk be a sufficiently large and divisible integer. Then Bir(X,�) acts on⊕

l≥0

PA
(
X,lk(KX+�)

)
.

Let N := |ρk(Bir(X,�))| <∞ by Section 3, and letσi be theith elementary sym-
metric polynomial. We obtain

{s = 0} ⊃
N⋂
j=1

{
g∗j s = 0

}= N⋂
i=1

{
σi

(
g∗1s, . . . ,g∗Ns

)= 0
}
.

If s ∈ PA(X,k(KX+�)), then

σ
N !/i
i

(
g∗1s, . . . ,g∗Ns

) ∈ A
(
X,N !k(KX+�)

)
.

The vector space PA(X,k(KX+�)) generates�X(k(KX+�)) by Proposition 4.5.
Thus we can prove that A(X,N !k(KX+�)) generates�X(N !k(KX+�)) by using
Proposition 4.5 and Lemma 4.9.

In order to prove Lemma 4.9 we need the following definition.

Definition 4.8. Assume thatX is nonsingular, Supp� is a simple normal crossing
divisor, and� =∑

i di�i is aQ-divisor such thatdi ≤ 1 (di may be negative) for
everyi. In this case we say that(X,�) is B-smooth.

Let (X,�) be dlt orB-smooth. A subvarietyW of X is said to be acenter of log
canonical singularitiesif there is a proper birational morphism from a normal variety
µ : Y → X and a prime divisorE on Y with the discrepancya(E,X,�)=−1 such
thatµ(E)=W (cf. [13, Definition 1.3]).

Let (X,�) be dlt orB-smooth. We write� =∑
i di�i such that�i are distinct

prime divisors. Then theB-part of � is defined by�B :=∑
di=1�i .

If (X,�) is dlt or B-smooth, then a center of log canonical singularities is an
irreducible component of an intersection of someB-part divisors. (See the Divisorial
Log Terminal Theorem of [27] and [21, Section 2.3].) When we consider a center of
log canonical singularitiesW , we always consider the pair(W,2) such thatKW+2=
(KX +�)|W , where2 is defined by using the adjunction repeatedly. Note that if
(X,�) is dlt (resp.,B-smooth), then(W,2) is dlt (resp.,B-smooth) by the adjunction.

If (X,�) is dlt pair orB-smooth andW is a center of log canonical singularities,
then we writeW � X.
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Lemma 4.9. Let (X,�) be a puren-dimensional proper dlt pair withKX+� nef
and letm be a sufficiently large and divisible integer. We writeG = ρm(Bir(X,�)).
If s ∈ PA(X,m(KX+�)), theng∗s|��� = s|��� andg∗s ∈ PA(X,m(KX+�)) for
everyg ∈G.
In particular if |G| is finite, then∑

g∈G
g∗s ∈ A

(
X,m(KX+�)

)
,

∏
g∈G

g∗s ∈ A
(
X,m|G|(KX+�)

)
,

and ∏
g∈G

g∗s|��� = (s|���)|G|.

Proof. In this proof we omit the restriction symbols such as|�B when there
is no confusion. Letα,β : (Y,�)→ (X,�) be a common log resolution of aB-
birational mapσ : X ��� X such thatα = σ ◦ β and ρm(σ) = g. Since��� is
seminormal and�B→ ��� has connected fibers by Connectedness Lemma 1.3, we
haveα∗��B = ���� andβ∗��B = ����. Thenα∗ andβ∗ induce the isomorphisms
betweenH 0(���,����(m(KX+�)|���)) andH 0(�B,��B (m(KY +�)|�B )). So
in order to proveg∗s|��� = s|��� it is sufficient to check thatα∗(s|���)= β∗(s|���)
in H 0(�B,��B (m(KY +�)|�B )) for some common log resolution(Y,�).

For this purpose we prove the next two claims.

Claim (An). Let(T ,�) and(S,2) ben-dimensionalB-smooth pairs andh : S→
T a B-birational morphism. IfW � T , then there is aW ′ � S such thatW ′ →W is
a B-birational morphism.

Claim (Bn). Let (T ,�) and (S,2) be n-dimensionalB-smooth pairs andh :
S → T a B-birational morphism. Assume thatW � S. If W → h(W) is not B-
birational, then there is aW ′ � W such thatW ′ → h(W) is aB-birational morphism
and the inclusionW ′ →W induces the isomorphismH 0(W,�W(m(KS+2)|W)) �
H 0(W ′,�W ′(m(KS+2)|W ′)).

Proof of Claims. We prove Claim (An) and Claim (Bn) by induction onn. If
n= 1, then (A1) and (B1) are trivial.

First, we treat (An). If W is a divisor, then we can take the proper transform ofW

asW ′. Otherwise, take a divisorV � T such thatW � V . We defineU � S as the
proper transform ofV . By using the (An−1) to theB-birational morphismU → V , we
obtainW ′ � U such thatW ′ →W is aB-birational morphism. Thus, we have (An).

Next, we treat (Bn) by using (Al) with l < n. Let u : (S′,2′)→ S be the blowing-
up of S with centerW . If we prove (Bn) for the pairS′ and the exceptional divisor
E � S′, then we can prove (Bn) for S. It is becauseG � E impliesu(G) is the required
center of log canonical singularities. So we may assume thatW is a divisor. By
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[21, 2.45] we have a sequence of blowings-upT0 → T1 → ··· → Tk = T whose
centers are the centers associated to the valuationW such that the rational map
S ��� T0 is an isomorphism at the generic point ofW . We can replace(S,2) with
the elimination of indeterminacy(S′,2′) becauseW and its proper transform are
B-birational. So we can assume thatf0 : S→ T0 is aB-birational morphism. We can
apply (An−1) to theB-birational morphismf0 : W → f0(W). So we only have to
prove (Bn) to theB-birational morphismT0→ T . So we may assume that(S,2) =
(T0,�0). We use the induction on the numberk of the blowings-up. Whenk = 1,
we take a divisorD � T1 such thath(W) � D and its proper transformD′ � T0. By
applying (Bn−1) to D′ ∩W � D′ andh(D′ ∩W) = h(W) � D, we have the result.
Next we apply the induction hypothesis toa : T0→ Tk−1. We haveU � W such that
a : U → a(W) is aB-birational morphism. Sinceb : Tk−1→ Tk is one blowing-up
whose center is the center associated to the valuationW , we can take a divisorV
on Tk−1 such thata(U) = a(W) � V andb : V → b(V ) is B-birational. By using
(Bn−1) to b : V → b(V ) we have aV ′ � a(U) such thatV ′ → (b◦a)(W)= h(W) is
B-birational. By using (Al) with l < n to U → a(U) we obtain aW ′ � U � W such
thatW ′ → V ′ isB-birational. SoW ′ → h(W) isB-birational. By the construction of
W ′, the inclusionW ′ →W induces the isomorphismH 0(W,�W(m(KS+2)|W))�
H 0(W ′,�W ′(m(KS+2)|W ′)). This proves (Bn).

Proof of Lemma 4.9 continued.We return to the proof of the lemma. Letf :
(X′,�′)→ (X,�) be Szabó’s resolution such thatKX′ +�′ = f ∗(KX +�), that
is, a log resolution whose discrepancy is greater than−1 (see Resolution Lemma
in [27]). Let α = �αi andβ = �βi : (Y,�) = �(Yi,�i)→ (X,�) be a common
log resolution of aB-birational mapσ : X ��� X passing through(X′,�′) such that
α = σ ◦β andρm(σ)= g. We writeα′,β ′ : Y →X′ such thatα = f ◦α′,β = f ◦β ′.
We take an irreducible divisorE ⊂ �B . Apply (Bn) to theα′i : Yi → α′i (Yi) such
thatE � Yi . Then we obtain anE′ � E or E′ = E such thatE′ → α′(E) is B-
birational. Apply (Bn) to the β ′i : Yi → β ′i (Yi). Then we obtain anE′′ � E′ or
E′′ = E′ such thatE′′ → β ′(E′) isB-birational. By repeating the above construction,
we obtainF � E or F = E such thatα′ : F → α′(F ) andβ ′ : F → β ′(F ) are
B-birational. The morphismf : α′(F ) → α(F ) and f : β ′(F ) → β(F ) are B-
birational sincef is Szabó’s resolution. Thenα : F → α(F ) andβ : F → β(F )

areB-birational. Sinces ∈ PA(X,m(KX+�)), α∗(s|α(F ))= β∗(s|β(F )) onF . Since
H 0(E,m(KY +�)|E) � H 0(F,m(KY +�)|F ) by (Bn), we haveα∗s = β∗s onE.
SinceE is an arbitrary irreducible component of�B , we haveα∗(s|���)= β∗(s|���).
Thusg∗s|��� = s|���.

The latter part is trivial.

The next corollary is the main theorem of this paper, which includes Theorem 0.1
(for proper pairs, see Remark 4.11) and a generalization of [1, 12.1.1] and [15, 8.5].

Corollary 4.10. Let (X,�) be a projective slcn-fold such thatKX+� is nef,
wheren ≤ 3. Then|m(KX+�)| is free for a sufficiently large and divisible integer
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m. In particular, if (X,�) is projective sdlt andn ≤ 2, thenA(X,m(KX +�))

generates�X(m(KX+�)).

Proof. We prove this corollary inductively on dimX. We take the normaliza-
tion of (X,�) and take aQ-factorial dlt model(Y,2) = �(Yi,2i) for each ir-
reducible component by Lemma-Definition 1.4. By the assumption of induction,
A(�2�,m(KY +2)|�2�) generates��2�(m(K�2�+Diff (2− �2�))). By Proposi-
tion 4.5,

PA
(
Y,m(KY +2)

)−→ A
(
�2�,m(KY +2)|�2�

)
is surjective, and PA(Y,m(KY +2)) generates�Y (m(KY +2)). So, by Lemma 4.2,
|m(KX+�)| is free. If dimX ≤ 2, then we have the finiteness ofB-pluricanonical
representation (see Section 3). Therefore, we can replace PA(Y,m(KY +2)) with
A(Y,m(KY +2)) by Lemma 4.7. So we get the latter part of this corollary. We need
the latter part for the inductional treatment. In order to prove the abundance for slc
n-folds(X,�), we use Proposition 4.5, which demands that��2�(m(K�2�+Diff (2−
�2�))) is generated by not only PA(�2�,m(KY +2)|�2�) but also A(�2�,m(KY +
2)|�2�).

Remark 4.11.Proposition 4.5, and hence Theorem 3.5 and Corollary 4.10, hold
true even for proper pairs. This can be checked, as in [16, 7.1]. Indeed, let(X,D) be
a proper dlt pair such thatKX+D is nef. By the log MMP, we can find aQ-factorial
projective dlt pair(X′,D′) with nefKX′ +D′. By [26, 1.5],(X′,D′) isB-birationally
equivalent to(X,D). By using the arguments similar to those used in Lemma 4.9 and
in case 4 in the proof of Proposition 4.5, we can reduce Proposition 4.5 for(X,D) to
that for the projective(X′,D′). Therefore, we get Proposition 4.5 for proper dlt pairs.
Thus, Theorem 3.5 and Corollary 4.10 hold true for proper pairs.

Appendix

We can state the results similar to Corollary 4.10 in arbitrary dimension, if we list
all the necessary results (e.g., log MMP) yet to be established as the assumption.

Theorem A.1. Assume the log MMP for dimensionn.
(1) If the abundance conjecture holds for lcn-folds and if the finiteness ofB-

pluricanonical representations (see Conjecture 3.2) is true for dimension(n− 1),
then the abundance conjecture is true for slcn-folds.

(2) If the abundance conjecture holds for kltn-folds and slc(n−1)-folds, then the
abundance conjecture is true for lcn-folds.

Proof. For the proof of (1), see Remarks 2.2 and 4.6, and the proof of Corol-
lary 4.10. One can prove (2) by using the same argument as in [16, Section 7].

We list the following two results for the reader’s convenience.

Theorem A.2 (Relative log abundance theorem). Let (X,�) be lc anddimX ≤
3. Let f : X → S be a proper surjective morphism onto a varietyS. Assume that
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KX+� is f -nef. ThenKX+� is f -semiample.

Proof. If dim S = 0, then this is nothing but the log abundance theorem (see [6],
[8], and [16]). So we may assume dimS ≥ 1. If (X,�) is klt, the proof is given, for
example, in [14, 6-1-11], [11]. When(X,�) is lc, we can use the arguments in [16,
Section 7] in the relative setting. (See also [15, 8.5].)

Corollary A.3 (Threefold log canonical flips) (cf. [15, 8.1]). Threefold log can-
onical flips exist.

Proof. Let (X,�) be an lc pair andf : (X,�)→ S a flipping contraction. We
take aQ-factorial dlt model(X′,�′) (see Lemma-Definition 1.4) and run the log
MMP overS. Then we obtain a relative minimal model(X′′,�′′) overS. By using
Theorem A.2 we have a relative canonical model(X+,�+). It is easy to check that
(X+,�+) is the flip off .
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