Vol. 102, No. 3 DUKE MATHEMATICAL JOURNAL © 2000

ABUNDANCE THEOREM FOR SEMI LOG
CANONICAL THREEFOLDS

OSAMU FUJINO

CONTENTS
0. INtrOdUCHION . . oot e 513
1. Definitions and preliminaries . ........... 515
2. Reduced boundaries of @ltfolds. .............. ... 517
3. Finiteness oB-pluricanonical representations ......................... 520
4. The abundance theorem for sic threefolds............................ 522
AP ENAIX. e 530

0. Introduction. The main purpose of this paper is to prove the abundance theo-
rem for semi log canonical threefolds. The abundance conjecture is a very important
problem in the birational classification of algebraic varieties. The abundance theorem
for semi log canonical surfaces was proved in [1] and [15] by D. Abramovich, L.-Y.
Fong, S. Keel, J. Kollar, and J. Mckernan. The proof uses semiresolution, and so on,
and has some combinatorial complexities. We simplify the proof and generalize the
theorem to semi divisorial log terminal surfaces (see Corollary 4.10). By our method
we can reduce the problem to the irreducible case and the finiteness of some groups.
This shows that if the log Minimal Model Program (log MMP, for short), the log
abundance conjecture farfolds, and the finiteness d@-pluricanonical representa-
tions (see Section 3) hold fgr — 1)-folds, then the abundance conjecture for semi
log canonicak-folds is true almost automatically (see Theorem A.1 in the appendix).
But unfortunately the log MMP and the log abundance conjecture are only conjectures
for n-folds withn > 4. So we prove the following theorem.

THEOREM 0.1 (Abundance theorem for slc threefoldd)et (X, A) be a proper
semi log canonical (slc, for short) threefold witkiy + A nef. ThenKx + A is
semiample.

This theorem is a generalization of the abundance theorem for log canonical three-
folds proved by S. Keel, K. Matsuki, and J. McKernan (see [16]). According to the
authors, the abundance theorem for log canonical threefolds is considered to be the
first step towards a proof of the abundance conjecture in dimension 4. We believe that
the abundance theorem for semi log canonical threefolds is the second step.
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The notion of semi log canonical singularity was first introduced in [22] for the
problem of compactifying the moduli of surfaces. For the further development of this
direction, we recommend the readers to see [10].

Let us see the scheme proposed in [2], [12], and [20]. The abundance conjecture
states: LetX be a minimaln-fold with terminal singularities. Then for sufficiently
divisible and largem € N, the linear systemmKyx| is basepoint-free. After the
minimal model program (still conjectural in dimensiegn4) produces a minimal
n-fold in the birational equivalence class, the abundance conjecture would provide
the litaka fibration morphisn®,, x| : X — Xcan Onto its canonical model, which
is absolutely crucial for the study of the birational properties of algebraic varieties.
The cited authors proposed the following inductional scheme toward a proof of the
abundance conjecture.

(i) Show that a membeb € |mKx| exists for sufficiently divisible and large
me N,

(ii) Apply the log MMP to the paiX, Dx) (the boundarpy is constructed from
D in (i)) to obtain a log minimal mode(Y, Dy). Observe that by the (generalized)
adjunction

Ky + Dy|p, = Kp, +Diff,

where Diff is the supplementary term for the equality to hold, and the(jgit Diff )
is a minimal(n — 1)-fold with semi log canonical singularities.

(iiiy Apply induction on the pair Dy, Diff ). Lift the global sections of:(K p, +
Diff ) to those ofin(Ky + Dy), which should then provide “enough” global sections
of the originalm K x to prove that the linear system K x| is basepoint-free.

In order to complete the inductional circle of steps, we consider the abundance
statement for log pairs.

(iv) Based upon the abundance for minimafolds X with terminal singularities,
prove the abundance for log pait®, D) with log canonical singularities.

(v) Based upon the abundance for log pdiXs D) with log canonical singulari-
ties, prove the abundance for log pairs with semi log canonical singularities.

In [2], [12], and [20], the authors proved the abundance conjecture for threefolds
along the line of argument described as above, establishing the inductional step (v)
in dimension 2 through some combinatorial discussions. In this paper we capture the
essential difficulty in carrying out step (v) in arbitrary dimension, as what we call the
finiteness ofB-pluricanonical representations. In dimensiog 2 or 3 where we can
prove this finiteness in dimension— 1 = 1 or 2, respectively, we establish the step
(v) in one stroke without going through the complex combinatorial arguments.

We sketch the contents of this paper. Section 1 sets up some basic definitions
and facts. In Section 2, we treat the reduced boundaries of-filtds. This is a
reformulation of [1, 12.3.2]. Section 3 deals withpluricanonical representations
(the precise definitions are given in Definition 3.1). We prove their finiteness for
curves and surfaces; it plays an important role in our proof of the abundance theorem
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for slc n-folds. In Section 4, the main section, we prove the abundance theorem
for slc threefolds. In the appendix, we reformulate the main theorem under some
assumptions such as log MMP faifolds, and we collect some known results for the
reader’s convenience.

Acknowledgements| would like to express my gratitude to Professor Shigefumi
Mori for giving me much advice and encouraging me during the preparation of this
paper. | am grateful to Professor Yoichi Miyaoka and Professor Noboru Nakayama
for giving me many useful comments. | would also like to thank Professor Nobuyoshi
Takahashi, who pointed out some mistakes. | should add gratefully that the referee’s
comments helped me revise this paper.

Notation. (1) The wordschemeés used for schemes that are separated and of finite
type overC; the termvariety stands for a reduced and irreducible scheme. A normal
scheme consists of the disjoint union of irreducible normal schemes.

(2) We freely use terminology about singularities of the p&irA), such aKawa-
mata log terminal, log terminal, divisorial log terminal, log canonid&equently
abbreviated as kit, It, dit, and Ic), angkminal For the definition of this terminology,
we refer the reader to [21, Section 2.3]. (See also [27].) In the definition in [21, Sec-
tion 2.3], A is not necessarily effective, but in this paper we asswngan effective
Q-divisor.

(3) Let f : X --» Y be a rational map. We say that@-divisor D is horizontal
(resp.,vertical) if every irreducible component @b is dominating (resp., not domi-
nating) overy.

(4) The log MMP means the log MMP fdQ-factorial dIt pairs.

(5) v denotes the numerical Kodaira dimension.

(6) We will make use of the standard notation and definitions as in [21].

1. Definitions and preliminaries. In this section, we present the basic notation
and recall the necessary results.

Definition 1.1. Let X be a reduceds, scheme. We assume that it is pure
dimensional and normal crossing in codimension 1. Aebe an effectiveQ-Weil
divisor onX (cf. [5, 16.2]) such thaKx + A is Q-Cartier.

Let X = UX; be a decomposition into irreducible components, angilef’ :=
X! — X = UX; be the normalization. AQ-divisor ® on X" is defined byK y/ +
® :=u*(Kx+A) and aQ-divisor ©; on X; by ©; := ©|.

We say thatX, A) is asemi log canonicat-fold (an slcn-fold, for short) if (X’, ®)
is lc.

We say thatX, A) is asemi divisorial log terminat-fold (an sdltz-fold, for short)
if X; is normal; that is X is isomorphic toX;, and(X’, ®) is dlt.

Remark 1.2. (1) The definition of slc above is equivalent to the one in [1] (see
[17, 4.2]).
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(2) If (X, A) is an slcr-fold, then X is seminormal (see [1, 12.2.1(8)] and [3,
Remark 4.7]).

(3) If (X, A) is a ditn-fold, then(_A , Diff (A —LAL)) is an sdlt(n — 1)-fold (see
[18, 17.5] and [21, 5.52]).

(4) Let (X, A) be lc. Then(LA_, Diff (A —LAL)) is not necessarily slc (see [18,
17.5.2 Example]). The scheme\ s is not necessarilys,. Note that [5, (16.9.1)] is
not correct.

(5) Let (X, A) be lc. If (X, 0) is Q-factorial and It, then the paii. A, Diff (A —
LAL)) is slc. SinceX has only rational singularities, especialfyjs Cohen-Macaulay,
and_A_ is Q-Cartier,_ A satisfiesS, condition.

The following lemma plays an important role in Section 2.

Lemma 1.3 (Connectedness Lemma) [26, 5.7], [18, 17.4], [13,.114¢t X andY
be normal varieties, and lef : X — Y be a proper surjective morphism with con-
nected fibers. Le\ = > d;A; be aQ-divisor on X. Letg : Z — X be a log
resolution (cf. [21, Notation 0.4(10)]) such that= fog. Let

Kzzg*(Kx+A)+Ze,-Ei, and F:=-— Z ¢ E;.

ie;<—1

Assume that

(1) if d; <0, thenf(A;) has codimension at least 2 ift

(2) —(Kx+A) is f-nef andf-big.
ThenSuppF = Supp._F . is connected in a neighborhood of any fiberkofin par-
ticular, if (X, A) is lc and(X, A —LA_) is kit, then,ALN f~1(y) is connected for
every pointy € Y.

LEmMMA-DEFINITION 1.4 (Q-factorial dit model) (cf. [15, 8.2.2]) Let (X, A) be
an Icn-fold withn < 3. Then there is a projective birational morphisfn (Y, ®) —
(X, A) such that(Y, ©) is Q-factorial dit andKy +©® = f*(Kx + A). Furthermore,
if (X,A) is dlt, then we may takg a small projective morphism that induces an
isomorphism at every generic point of a center of log canonical singularities for
the pair (Y, ®). (For the definition of a center of log canonical singularities, see
Definition 4.8.) We say thdt’, ®) is a Q-factorial dit model of(X, A).

Definition 1.5. Let (X, A) =17_,(X;, A;) and (X', A") = I"_, (X}, A) be nor-
mal schemes witlQ-divisor, such thatky + A and Kx- + A’ are Q-Cartier Q-
divisors.

We say thatf : (X, A) --» (X’, A’) is a B-birational map (resp., morphism) if
f: X --» X’ is a proper birational map (resp., morphism) and there exists a common
resolutiona : T — X, B: T — X of f: X --» X’ such thate*(Kx + A) =
B*(Kx + A'). That is, there exists a permutatiensuch thatf; : X; --» X;(l.)
is a proper birational map (resp., morphism) and there exists a common resolution

a T — X, Bi : T; —> X(’T(i) of f; such that*(Kx, + A;) = ,Bl.*(KX/a(i) +A;(l.)) on
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T; for everyi. The last condition means that if we write

Kr,=of (Kx,+A)+F  and K7, =p](Ky,  +48;0)+E,

G
thenF = E.

If there is aB-birational map from(X, A) to (X’, A), we say thai X, A) is B-
birationally equivalent tgX’, A’) and write(X, A) ~p (X', A’). Here the symboB
is the initial ofboundary

LemMMA 1.6, Let (X, A) and (Z, A") be normal varieties withQ-divisors such
that Ky + A and Kz + A’ are Q-Cartier. Letf : X — R andh : Z — R be proper
surjective morphisms onto a normal varieRyand p : X --» Z a birational map
such thatf = ho p. Assume that

(1) p~1 has no exceptional divisors;

(2) A" = pA,;

B)Kx+A=;0, Kz+A"=;,0.

Thenp is a B-birational map.

Proof. Let 8: W — X be a resolution such that the induced rational rmap
pofB: W — Zis amorphism. Letz > 0 be a sufficiently divisible integer. We have
linear equivalences

—mKw ~ —a*(m(Kz+A"))—F,

mKyw ~ B*(m(Kx+A))+E.
Adding the two we obtain
B*(Kx+A)—a*(Kz+A)=F—E.

By assumptionF — E is a-exceptional and numerically-trivial. Then F = E, that
is, a*(Kz+A) = B*(Kx+ A). O

2. Reduced boundaries of dltz-folds. The following is a reformulation of [1,
12.3.2], which fits better in our arguments.

ProposiTioN 2.1 (cf. [26, 6.9], [1, 12.3.2]) Let(X, ®) be aQ-factorial dlt n-fold
withn < 3. Let f : X — R be a projective surjective morphism onto a normal variety
R with connected fibers. Assume th&g + © is numerically f-trivial. Then one of
the following holds.

(0) dimRr =0.

(0.1) LG is connected.

(0.2) LOJ has two connected componerts and A, and there exists a ra-
tional mapv : X --» (V, P) onto aQ-factorial Ic (n — 1)-fold (V, P)
with general fiberP1. The pair(V,0) is It. Furthermore, there exists an
irreducible componenD! C A; such thatv| : (D;, Diff (© — D)) --»
(V, P) is a B-birational map fori =1, 2. l
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(1) dimR > 1.

(1.1) LO1N f~1(r) is connected for everny e R.

(1.2) The number of connected components ®f; N f~1(r) is at most two
for everyr € R. There exists a rational map: X --» (V, P) onto a
Q-factorial Ic (n — 1)-fold (V, P) with general fibefP1. The pair(V, 0)
is It. The horizontal par®” of L®. is one of the following:

(i) ®" = D}, which is irreducible, and the mapping degrded D/ :
V] = 2; there is also aB-birational involution on(D, Diff (© — D))
overV;

(i) ®" = D]+ D) such thatD! is irreducible andv|p, : (D], Diff (© —
D})) --» (V, P) is a B-birational map fori = 1, 2.

Remark 2.2. (1) In Proposition 2.1 the assumptidty 4+ © =; 0 is equivalent
to Kx +® ~q,r 0. It is because the relative log abundance theorem holds when
dimX < 3 (see Theorem A.2 in the appendix).

(2) If the log MMP holds fom-folds, then Proposition 2.1 is also true foffolds.

First, we prove the following lemma.

LeEmMMA 2.3 Let (Z, A) be a Q-factorial Ic n-fold withn > 2 and LAL # 0.
Leth : Z — R be a projective surjective morphism onto a normal varigtyvith
connected fibers. Assume the following conditions:

(1) (Z, A—eLAL) is klt, wheres is a small positive rational number;

(2) Kz4+A=,0;

(3) there is a(Kz + A — eL AJ)-extremal Fano contractiom : Z — V over R

such thadimV =n—1.
Then the horizontal para” of LA is one of the following:

(@) A" = D1, which is irreducible, andled D1 : V] = 2;

(b) A" = D1, which is irreducible, andled Dy : V] =1;

(c) A" = D1+ Dy, such thatD; is irreducible andded D; : V] =1fori =1, 2.

In the cases (a) and (c), the number of connected components_afih~1(r) is
at most two for every € R.

In the case (b), ALNA~1(r) is connected for evenye R.

Furthermore, there is &-divisor P on V such that(V, P) is a Q-factorial Ic
(n—1)-fold andK p, + Diff (A—D;) =u|p,"(Ky + P) fori =1, 2.

In the case (a), there is A-birational involutiont overV; that is,: : (D1, Diff (A —
D1)) --» (D1, Diff (A — D1)) overV is a B-birational map and? = id.

In the case (C)u|p, : D; — V is a B-birational morphism for = 1, 2. In partic-
ular, (D1, Diff (A — D1)) ~p (D2, Diff (A — D2)).

Note that(V, 0) is It.

Proof. SinceLA_ is u-ample by the assumptions (2) and (3), we hae 0.
So the general fiber of — V is P! and degA” : V] < 2, because&K; + A is
numerically a-trivial. Sinceu : Z — V is extremal, the vertical component’ of
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LA is a pullback of aQ-divisor onV and (V,0) is a Q-factorial It pair (see [7,
Corollary 3.5] or [24, Appendix]). Therefore the first part is proved.
Let Hy, Ho, ..., H,_2 be general hypersurfaces &n Consider

u t(HLNHoN--N Hy2) — HiNHaN---N Hy_o.

By using [12, 3.5.1 and 3.5.2] and [1, 12.3.4] to the above morphism, we h@ve a
divisor P on V satisfyingK p, + Diff (A — D;) = u|p,*(Ky + P). The normalization
of (D1, Diff (A — D1)) is Ic and the normalization ofV, P) in the function field
C(Dy) is Ic, sinceKp, + Diff (A — D1) = u|p,*(Ky + P). Thus(V, P) is Ic and
Q-factorial, sinceZ is Q-factorial andu is extremal. O

Proof of Proposition 2.1. If f is birational, then Connectedness Lemma 1.3
implies that we are in the case (0.1) or (1.1). Thus we may assume th&t digim X .

We run the(Kx +® — eL®_)-MMP on X over R for 0 < ¢ « 1. The end result
is a birational magp : X --» Z overR. Leth : Z — R be the induced morphism.
SinceKx +©® = 0, we obtain thaK 7 4+ p.® =, 0. Then(Z, p,®) is aQ-factorial
Ic pair (see Lemma 1.6) an, p.® —eL p,O) is Kit.

Step 1.If (Z, p«® —eLp,0O.) is a minimal model, thelkKz + p.® —eLp, O is
h-nef andKz + p,.©® =5, 0. SO—L p,®_ is h-nef. If dimR = 0, then_p,®_, = 0. By
Lemma 2.4 below, we have® = 0. If 0 < dimR < dimX, then. p,©_Nh~1(r) is
connected for every € R. By Lemma 2.4 we have the case (1.1).

Step 2.If there exists an extremal Fano contraction Z — V over R, then
—(Kz 4+ p«® —eLp,O) is u-ample. Letg : V — R be the induced morphism. We
noteh = gou.

First, assume that di® = 0. If _p,®. is connected, we have the case (0.1) by
Lemma 2.4. Thus we can assume that.®_. is not connected. Sincep,©. is
relatively ample, we have divi = dimX — 1. Then by Lemma 2.3 we have the case
(c) inLemma 2.3 and|p, : D; — V are finite, whereD; are as in Lemma 2.3(c) for
i =1,2. Itis becausd); intersectsD, by the relative ampleness @#; and D> if
u|p, or u|p, is not finite. We haveD; >~ V by Zariski’s main theorem, becau$eis
normal. By Lemma 1.6, the adjunction, and Lemma 2.4, we have the case (0.2).

Thus, we may assume difh> 1.

If dimV =dimX — 1, we get case (1.2) by Lemmas 1.6, 2.3, and 2.4 below, and
the adjunction.

Ifdim R =1, dimV =1, and dimX = 3, thenV =~ R. Sinceu is extremal_p,© .
is h-ample andp (Z/R) = 1. Then every horizontal irreducible component pf.®
is h-ample, and every vertical irreducible component pf.®_ is a pullback of a
Q-CartierQ-divisor onR. Then.p,©.Nh~1(r) is connected for every € R. We
have the case (1.1). O

The next lemma is used in the proof of Proposition 2.1.

LEMMA 2.4 If f: X —- R, h:Z — R, p: X --» Z are as in the proof of
Proposition 2.1, then the number of connected component® of £ ~1(r) is equal
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to the number of connected componentsf©_NA~1(r) for everyr € R.

Proof. p: X --» Z is a composition of flips and divisorial contractiors.--»
X! -5 X2 - ... —=5 X' -5 ... ——» Z. Use Connectedness Lemma 1.3 in each
step. Let®’ be the proper transform @ on X’. Note that_®'  is relatively ample
for each flipping or divisorial contraction aridy: +®' is numerically trivial overr.
O

3. Finiteness of B-pluricanonical representations. We consider the birational
automorphism groups of pairs.

Definition 3.1. Let (X, A) be a pair of a normal scheme anadivisor such that
Kx + A is Q-Cartier. We define

Bir(X,A) :={o : (X,A) --» (X, A) | o is aB-birational map,
Aut(X,A) :={o : X — X | o is an automorphism and*A = A}.

Since BinX, A) acts on Ho(X,0x(m(Kx + A))) for every integerm such that
m(Kyx + A) is a Cartier divisor, we can defing-pluricanonical representatiqs, :
Bir(X, A) — Aut HO(X, m(Kx + A)).

The following conjecture plays an important role when we reduce the problem to
the irreducible case.

ConJecTurE 3.2 (Finiteness oB-pluricanonical representations). et (X, A) be
ann-dimensional (not necessarily connected) proper Ic pair. AssumektRat A is
nef. Then there is a positive integep such thato,,, ., (Bir (X, A)) is finite for every
mi € N.

For Conjecture 3.2, it is obviously sufficient to prove it under the assumption that
X is irreducible. In Theorems 3.3, 3.4, and 3.5, we prove the conjecture for curves
and surfaces.

TueoreMm 3.3 (Cf. [1, 12.2.11]) Let(C, A) be a proper Ic curve. Then there is a
positive integerng such thato,,, ., (Aut(C, A)) is finite for everymi € N.

Proof. If the genusg(C) > 2, then itis trivial. Ifg(C) = 1 andA # 0, then it is
also true by [23, p. 60, Application 1]. (C) =1 andA = 0, then we putng = 12
and the theorem holds by [1, 12.2.9.1]. So we assumeGhata rational curve. If
deg K¢+ A) < 0, then there is nothing to be proved| SuppA| > 3, then Aut{C, A)
is a finite group. So we can reduce to the case where L A = {two pointg. In
this case we can prove easily thgt(Aut(C, A)) is trivial if m is even. O

THEOREM 3.4 Let (S, A) be a proper kit surface. Letg > 2 be an integer such
that mo(Ks + A) is a Cartier divisor. Theno,,,,(Bir(S, A)) is finite for every
mj € N.
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Proof. Leth:S — S be aterminal model, that iS’, A’) is terminal andK ¢/ +
AN =h*(Ks+ A) (see [19, (6.9.4)]). Note that’ is effective and. A’ = 0 by the
construction. The discrepancy of every exceptional divisor ¢§&rA’) is positive
and that of a nonexceptional divisor is nonpositive. The compesite: h~too oh
does not change discrepancies becatisea B-birational map. Thus’ is a biregular
morphism such that’*A’ = A’. We may assumeS, A) is terminal such thatA_ =
0 and replace BiiS, A) with Aut(S, A). Let f : & — S be a finite sequence of
blowings-up whose centers are ovesuch tha ¢/ +f*_1A = f*(Ks+A)+> aE;
and Suppf*—lAUZ E;) is a simple normal crossing divisor. Let > 2 be an integer
such thatng(Ks+ A) is a Cartier divisor. We pub := f*_lA +> (1/mo)E;. Then
we obtain

1
Kg+D = f*(KS+A)+Z<a,'+—>E,-.
mo

Note thatD is effective,.D. = 0, and Sup@® is a simple normal crossing divi-

sor. SinceS' — D~y S— A, o' := f~looo f acts onHO(S',09(mKg + (m —
1)"DM)). (Cf. [25, Theorem 2.1 and Proposition 1.4], [9, 811.1].) Then the image of
Aut(S, A) — Aut H(S", 0 (mKg + (m —1)" D)) is a finite group for everyn. It

was proved by I. Nakamura, K. Ueno, P. Deligne, and F. Sakai. (See [25, Theorem 5.1]
and [28, §14].) Since

HO(S,05(mamo(K s+ A))) = HO(S', 05 (mamo(K s + D)))
C HY(S',05(mKg +(m—1)"D7))

for every positive integem1 with m = mymg, the image 0fp, m, : Aut(S, A) —
Aut HO(S, mimo(K s+ A)) is a finite group. O

THEOREM 3.5 Let (S, A) be a projective Ic surface. Assume thé$ + A is nef.
Then there is a positive integetg such thatp,,,.,(Bir(S, A)) is finite for every
mi € N.

Proof. Let f := ®ks+a) : S — R be a morphism with connected fibers for a
sufficiently large and divisible integérby the log abundance theorem.

Case 1: v(S,Ks+A) =2.

Then f is a birational morphism and Bi§, A) acts onR biregularly. We putg :=
f+A. ThenKs+ A = f*(Kg+ E) and E is Bir(S, A)-invariant. Leth : § — R be
the unique minimal resolution; so we hakig' + A’ = h*(Kg + E), Bir(S, A) acts on
S’ biregularly, andA’ is Bir(S, A)-invariant. Thus, we may reduce to the case where
(S, A) is Ic, S is smooth and BifS, A) = Aut(S, A) in Theorem 3.4. Sinc& s+ A
is big, we obtain an effective Cartier divisér such thatumg(Ks+ A) ~ LAL+ D,
wherea is a sufficiently large integer andp is a sufficiently divisible integer so that
mo(K g+ A) is a Cartier divisor. Observing

(m1+a)(m0(KS+A)— \_A_n) =mimg(Ks+ A)+ D,

mi1+a
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we have
HO(S,05(mimo(Ks+A))) € HO(S, 05 ((m1+a)ymo(Ks+A) —LAJ)).
By using Theorem 3.4 for the right-hand side, we obtain the result.

Case 2: v(S,Ks+A)=1.

Let g := S — S be a minimal resolution and’ .= f*(Ks+A)— Kg > 0. We
may replacg S, A) with (S’, A’). By contracting(—1)-curves in the fibers, we may
reduce to the case whepe: S — R is aP!-bundle or a minimal elliptic surface.
When the horizontal par\* # 0, we take an irreducible componebt of A”. By
elementary transformations we may assuiniss smooth. Then

HO(S,05(mimo(K s+ A))) € HO(D, 0p(mimo(K p + Diff (A — D)))).

So we have the result by Theorem 3.3. Next we may assifme 0. Whenf : S — R
is a Pl-bundle,L AL =Y f*p; for somep; € R. Whenf : S — R is a minimal
elliptic surface, we hav&Ks ~q s 0 andA =; 0. ThenA =} q; f*p; for some
pi € R and positive rational numbers (see [4, VIII.3, VIII.4]). Bir(S, A) acts on
f(LAL). We defineB := 3} ;. a_pi- Let H be an ample Cartier divisor oR
such thatng(Ks+ A) ~ f*H. Then we havé H ~ B+ D for some effective divisor
D and some sufficiently large integer Thenbmo(Ks+ A) ~ f*(B + D). We put
A := f*B. Observing

(m1+b)<mo(Ks+A)— A) =mimo(Ks+A)+ f*D,

mi1+b

we have
HO(S, 0s(mimo(Ks+A))) € HO(S,0s((m1+b)mo(Ks+ A) — A)).
By using Theorem 3.4 for the right-hand side, we obtain a result.

Case 3: v(S,Ks+A)=0.

In this case we can show that BSt, A) acts onHO(S, mimo(Ks+ A)) trivially,
using Lemma 4.9 below. First, we replac® A) with its Q-factorial dit model (see
Lemma-Definition 1.4). So we may assume th&tA) is dit. By Proposition 4.5,
we can take a preadmissible sectiofcf. Definition 4.1). Therg*s = s for every
g € Bir(S, A) by Lemma 4.9. Since(S, Ks+ A) = 0, we have the result. O

4. The abundance theorem for slc threefolds. We introduce the notion of pread-
missible and admissible sections for the inductive proof of the abundance conjecture
for slc n-folds.

Definition 4.1. Let (X, A) be a proper sdit-fold, and letn be a sufficiently large
and divisible integer. We define admissible and preadmissible sections inductively on
dimension:
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e s € HY(X,0x(m(Kx + A))) is preadmissibleif the restrictions| i, o, €
HO(I_IZ'I_@i_I,@(]_[iL@l.J)(m(KX/+®)|(UiL®iJ))) is admissible;
e s € HO(X,0x(m(Kx+A))) isadmissibléf s is preadmissible ang*(s|xj) =
s|x; for every B-birational mapg : (X;, ®;) --» (X, ®;) for everyi, j.
Note that ifs € HO(X,0x(m(Kx + A))) is admissible, then|y, is Bir(X;, ©;)-
invariant for everyi.
We define linear subspaces BP (X, 0x (m(Kx + A))) as follows:

PA(X,m(Kx +A)) := {s is preadmissible

and
A(X,m(Kx+A)) := {s is admissibl¢.

When dimX = 1, the preadmissible section is a slight generalization afitimmalized
section (see [1, 12.2.9]). But in the higher dimensional case, the admissible and
preadmissible sections behave much better in the inductive proof of the abundance
conjecture for sla-folds.

LEmMA 4.2 Let(X, A) be a proper sla-fold, 1 : X’ — X the normalization, and
Kx+0:=u*(Kx+A).Letf:(Y,E)— (X', ®) be a proper birational morphism
suchthatY, ) isdltwithKy + & = f*(Kx'+®). ThenPA(Y,m(Ky+ E)) descends
to sections o X, A).

Proof. By the definition of slc X is S> and normal crossing in codimension 1. So,
this lemma is obvious by the definition of preadmissible sections. O

LemMMA 4.3 Let (X, A) be a properQ-factorial dit n-fold, Kx + A nef, and
S =LAL170. Assume thaf = @i ky+a) : X — R is aproper surjective morphism
onto a normal varietyR with connected fibers for a sufficiently large and divisible
integerk and f (LA L) C R. If there exist section{sci}i":l c HO(S,05(m(Kx+A)|s))
without common zeros, then there exist sect'{axm#lzl C Ho%(X,0x(rm(K x + A)))
for some integer such that
st forl<i<p,
Q) uils=1" _
0 forp<ic<l
2) {u,»}ﬁzl have no common zeros.
Proof. There is an ampl&)-Cartier Q-divisor H on R such thatKy + A ~q
f*H. We consider the following commutative diagram:

HO(X,@X(rm(KX +A))) — HO(S,@S(V"I(KX +A)ls))

T; T;

HO(R,0r(rmH)) ———— HO(T,07(rmH|7)).
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LetT := f(S) and7 the defining ideal of". By Lemma 4.4 below f|5)+0s = O7.

So the vertical arrows are isomorphisms. Sigté ample, the horizontal arrows are
surjective andz (rm H) ® I is generated by global sections for a sufficiently large
integerr. So we can get sectior{zsai}ﬁ:1 with required properties. O

We use the next lemma in Proposition 4.5.

LEmMA 4.4 Let f : X — R be a proper surjective morphism between normal
varieties with connected fibers. Assume that

(1) (X, ®) is aQ-factorial dit n-fold;

() f(LO) TR

(3) Kx+© ~q,r 0.
Then there is an exact sequence

0— fiO0x(-LO) — Op — f:0,e, — 0.

Proof. There is a positive integen and a Cartier divisorD on R such that
m(Kx+0) = f*D. Observe that

m(Kx +0)—L0,— (Kx+{0®}) = (m—1)(Kx +©).

Since Kx 4+ {®} is kit and (m — 1)(Kx + ©) is f-semiample by the assumptions
(1) and (3),R1f.0x(m(Kx + ®) —LO.) is torsion-free (see [14, 1-2-7]). By the
assumption (2),/:0 e ,(m(Kx + ®)) is a torsion sheaf. Then we have an exact
sequence
0— fi0x(m(Kx+©)—L0.)

— f«Ox (m(KX +®))

— f:0 0, (m(Kx+6)) — 0.
Tensoring0 g (— D) gives the result. O

The next proposition is the main part of the proof of the abundance theorem for sic
n-folds.

ProrosiTION 4.5 Let (X, A) be a projectiveQ-factorial dlt pair withn < 3. Let
m be a sufficiently large and divisible integer, especiallyg 27. Assume that

(1) Kx+ A is nef;

(2) A(LAL, m(Kx +A)|_a,) generate® A ,(m(K_a ,+Diff (A —LA))).
Then

PA(X,m(Kx+A)) — A(LA,m(Kx+A)| a )
is surjective, andPA(X, m(Kx + A)) generate®x (m(Kx + A)).

Proof. It is sufficient to prove this proposition for each connected component. So
we can assume thék, A) is a projectiveQ-factorial irreducible dlt pair.
Apply the log abundance theorem. We gét:= ®jxxy+a) : X — R for a
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sufficiently large and divisible integér. If LA = 0, then the proposition is trivial.
Thus, we may assumeA . # 0. We have the following possibilities by Proposition
2.1:
(1) v(X,Kx+A)=0and_A. is connected;
(2) v(X,Kx +A) > 1 and f~1(r) N LA is connected for every € R and
fLAL) =R;
(3) v(X,Kx +A) > 1 and f~1(r) N LA is connected for every € R and
S(LAD) CR;
(4) f~1(r)NLA_is not connected for somee R.
Case 1.Consider the exact sequence

0— HO(X,0x(m(Kx+A)—LAL))
— HO(X,0x(m(Kx+4)))
—> HO(\_A_:,@LAJ(m(Kx-i-A)hAJ)) _ ...

Sincev(X,Kx +A) =0, HY(X,0x(m(Kx + A) — A1) = 0 and the second and
third terms are one-dimensional. Thus, we get the result.

Case 2. We construct a morphismp : LA — C by the linear system corre-
sponding to ALAL,m(Kx + A)|_a ). Since every curve in any fiber gf|_a , goes
to a point by, there exists a morphisnf : R — C such thaty o (f| . a)) = ¢.
Fors e A(LAL,m(Kx + A)|_a_), there exists a sectionon C such thats = ¢*z.
Thus we obtain: := f*y*r € PA(X,m(Kx + A)) such thatt|_a , = s. Note that if
we write Kx + A ~q f*H as in Lemma 4.3, we hav&lO(X,0x (m(Kx + A)))
~ HOR,0r(mH)) ~ HOLAL, O A ,(m(Kx + A)|_a,). Since ALA,m(Kx +
Al a,) generate® A ,(m(K_a ,+ Diff (A —LAL))), PAX,m(Kx + A)) generates
Ox(m(Kx +A)).

Case 3.We putT := f(LAJ) C R. By Lemma 4.4 we obtaiiy = f,0_a_. Then
T is seminormal (see [3, Proposition 4.5]). As in case 2, we consgructh s — C
by ALAL, m(Kx + A)|_a,) and gety : T — C. By Lemma 4.3, we can pull back
s € ALAL,m(Kx 4+ A)|.a)) tou € PAX,m(Kx + A)) if m is a sufficiently large
and divisible integer. By Lemma 4.3 we can also check thatXRA(Kx + A))
generate®x (m(Kx + A)) if m is a sufficiently large and divisible integer.

Case 4.In this caseX is generically @P-bundle overV, P) by Proposition 2.1.
Let f: (X, A) — R be litaka fiber space and: (X', A’) — (V, P) be the last step
of the log MMP overR as in the proof of Proposition 2.1. In this casés a Fano
contraction to arin — 1)-dimensional Ic pai(V, P). By Lemma 1.6, we have that

HO(X,0x(m(Kx+A))) = HO(X',0x (m(Kx +A")).

Leta : (Y,0) - (X,A) and B : (Y,0) — (X', A") be a common log resolu-
tion of a B-birational mapp : X --» X’ such thatky + ® = «*(Kx + A) and
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Ky+0 = g*(Kx +A’). We define®? .= Zd,-:l 0®;, where® = " d,;0; (see Def-
inition 4.8). Then

HO(LAL 0 a,(m(Kx+A)|aL)) = HO(OF, Ogs (m(Ky +©)|gr))
o~ HO(I_A/J, ©|_A’_,(m(KX’ +A/)|LA’_|))

by Lemma 1.3 (see also the proof of Lemma 4.9). We note thatand_ A’ are semi-
normal (see Remark 1.2). So it is sufficient to trgét, A’) instead of X, A). Lets be
asectionin ALAL,m(Kx+A)|_a_). By the above isomorphism, we can assume that
the sectiors is in HO(LA'L,0 o ,(m(Kx'+ A')|_a7,)). We have the decomposition
LA = A"UA, whereA (resp. A’") is the horizontal (resp., vertical) partof’
with respect to the morphism Sinces| ,,» is B-birational involution invariant over
(V, P), it descends to a sectioron (V, P). By the isomorphisnH®(X, Oy (m(K x +
A)) ~ HOX', Oy (m(Kx + A"))) ~ HO(V,0y (m(Ky + P))), we can pull the sec-
tionz back to the sectiom € HO(X, Ox (m(Kx+A))) ~ HO(X',0x (m(K x' +A"))).
First, we prove that| ,,» = w| . It is true because there is a small analytic open
setU in V such that1(U) is biholomorphic toP* x U andu|,-1 .y, : P*xU — U
is a second projection. By the same argument as in [1, 12.3.4], the difference between
s|,m andw],» is at most(—1)". Since we assume that is even, we have that
NN ELAINE
Next, we check that|,» = w|,». By Lemma 2.3 A" = Y u*D;, whereD; C
LP_ is an irreducible divisor. We defing; := u*D;. It is sufficient to check that
s|g, = w|g, for everyi. Let E; be an irreducible component &; N A" such that
ulg, : Ei — D; is dominant. SinceA’" N A" # §, we can always take such;. We
consider the commutative diagram

HO(E;,0p, (m(Kx +AN|E)) — HO(E;, 05, (m(Kx + ANlg,))

L

HO(D;,0p, (m(Ky + P)|p,)) —=> HO(D;,0p, (m(Kv + P)|p,))-

The map is injective sincer|g, : 8; — D; is dominant and the left vertical map is an
isomorphism sinc®; is seminormal (see [3, Proposition 3.2]) arj@, has connected
fibers. Ass|z, = w|g;, SO we gets|g, = w|g, for everyi. Note thatg; C A" Thus
we haves = w|_a’ .

Finally, since ALAL, m(Kx+A)|_a_) generate§_a ,(m(K_a_,+Diff (A—LAL)))
by the assumption, the restriction 28", which descends to sections oW, P), gen-
erates0, . (m(Kx 4+ A')| ,n). Therefore PAX, m(Ky + A)) generate€x (m(Kx +
A)). This completes the proof. O

Remark 4.6. In Proposition 4.5 the assumptien< 3 is used for the log MMP
and the log abundance theorem, which are used in Proposition 2.1, too.
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LeEMMA 4.7. In Proposition 4.5, ifdimX < 2, then we can replacdPA(X,
m(Kx +A)) with A(X, m(Kx + A)).

Proof. For everys e A(LAL,m(Kx + A)|_a_), we can take a sectiort € PA(X,
m(Kx+A)) suchthat’|_a , = s by Proposition 4.5. If we put:= 1/|G| > _, . 8*s" €
A(X,m(Kx + A)), where G = p,,(Bir(X, A)), thent| o, = s by Lemma 4.9.
Therefore,

A(X,m(Kx+A)) — A(LAL, m(Kx +A)| al)

is surjective. Lek be a sufficiently large and divisible integer. Then®&ir A) acts on

P PA(X. lk(Kx +A)).
>0

Let N := | pr(Bir(X, A))| < oo by Section 3, and let; be theith elementary sym-
metric polynomial. We obtain

N
{s=0}> ﬂ {g}'-‘s =0} =ﬂ{0,~(gfs,...,g}kvs) =0}.

j=1 i=1
If s € PA(X,k(Kx +A)), then
U.N!/i(gfs,...,g;,s) € A(X,N!k(Kx+A)).

1

The vector space RX,k(Kx + A)) generate®x (k(Kx + A)) by Proposition 4.5.
Thus we can prove that(X, N!'k(Kx + A)) generate®x (N'!k(Kx + A)) by using
Proposition 4.5 and Lemma 4.9. O

In order to prove Lemma 4.9 we need the following definition.

Definition 4.8. Assume tha is nonsingular, Supf is a simple normal crossing
divisor, andA = )", d; A; is aQ-divisor such that/; < 1 (d; may be negative) for
everyi. In this case we say th&k, A) is B-smooth

Let (X, A) be dlt or B-smooth. A subvariety¥ of X is said to be aenter of log
canonical singularitiesf there is a proper birational morphism from a normal variety
u:Y — X and a prime divisoE on Y with the discrepancy(E, X, A) = —1 such
thatu(E) = W (cf. [13, Definition 1.3]).

Let (X, A) be dIt or B-smooth. We writeA = ) . d; A; such thatA; are distinct
prime divisors. Then th@-part of A is defined byA? := Zd,»:l A;.

If (X,A) is dIt or B-smooth, then a center of log canonical singularities is an
irreducible component of an intersection of soBwpart divisors. (See the Divisorial
Log Terminal Theorem of [27] and [21, Section 2.3].) When we consider a center of
log canonical singularitie® , we always consider the paiW, E) such thaky + & =
(Kx + A)lw, where E is defined by using the adjunction repeatedly. Note that if
(X, A) is dlt (resp.,B-smooth), theriW, E) is dlt (resp.,B-smooth) by the adjunction.

If (X,A) is dlt pair or B-smooth andW is a center of log canonical singularities,
then we writeW € X.
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LeEMMA 4.9 Let(X, A) be a puren-dimensional proper dlt pair wittK x + A nef
and letm be a sulfficiently large and divisible integer. We witie= p,, (Bir (X, A)).
If s € PA(X,m(Kx + A)), theng*s|.a, = s|.a, andg*s € PA(X,m(Kx + A)) for
everyg € G.

In particular if |G| is finite, then

Y gt e A(X.m(Kx +A)),
geG

[T&*s e A(X.mIGI(Kx+4)),
geG

and
12" sla, = (sl.an)'®.

geG

Proof. In this proof we omit the restriction symbols such [gs when there
is no confusion. Let, B8 : (Y,®) — (X, A) be a common log resolution of B-
birational mapo : X --» X such thate = 0 o 8 and p,,(0) = g. SinceLAL is
seminormal an®? — _A_ has connected fibers by Connectedness Lemma 1.3, we
havew,Ogs = O_a, andB,0gs = O_a,. Thena* and g* induce the isomorphisms
betweenHO(LAL, O s (m(Kx + A)|.aL)) and HO(OF  Ogs (m(Ky + ©)|gs)). SO
in order to proves*s|, A, = s|_a, itis sufficient to check that*(s| A ,) = 8*(s|.a )
in H9@®8, 05 (m(Ky +©)|gs)) for some common log resolutiaiy, ©).

For this purpose we prove the next two claims.

CLamm (A,). Let(T, ®)and(S, E) ben-dimensionaB-smooth pairs and : § —
T a B-birational morphism. IfW € T, then there is @’ € S such thatW’ — W is
a B-birational morphism.

CrLam (B,,). Let (T,®) and (S, E) be n-dimensional B-smooth pairs and: :
S — T a B-birational morphism. Assume th& € S. If W — h(W) is not B-
birational, then there is &’ € W such thatW’ — h(W) is a B-birational morphism
and the inclusior’ — W induces the isomorphisH (W, Ow (m(Ks+ E)|w)) =~
HOW', Oy (m(K s+ E)|w).

Proof of Claims. We prove Claim (4) and Claim (B) by induction onn. If
n =1, then (A) and (B) are trivial.

First, we treat (A). If W is a divisor, then we can take the proper transfornivof
asW’'. Otherwise, take a diviso¥ € T such thatW € V. We defineU € S as the
proper transform o¥’. By using the (A _1) to the B-birational morphisnt/ — V, we
obtainW’ € U such thatW’ — W is a B-birational morphism. Thus, we have (A

Next, we treat (B) by using (A) with [ < n. Letu : (§’, ") — S be the blowing-
up of S with centerw. If we prove (B,) for the pairS’ and the exceptional divisor
E € §', thenwe can prove (B for S. Itis becaus& € E impliesu(G) is the required
center of log canonical singularities. So we may assume Whas a divisor. By



ABUNDANCE THEOREM FOR SEMI LOG CANONICAL THREEFOLDS 529

[21, 2.45] we have a sequence of blowingsfip— 71 — --- — T = T whose
centers are the centers associated to the valuatiosuch that the rational map
S --» Tp is an isomorphism at the generic pointdf. We can replacés, E) with
the elimination of indeterminacys’, £") becauseW and its proper transform are
B-birational. So we can assume that: S — Tg is a B-birational morphism. We can
apply (A,_1) to the B-birational morphismfy : W — fo(W). So we only have to
prove (B,) to the B-birational morphisniy — 7. So we may assume théf, ) =
(Ty, ®g). We use the induction on the numbeiof the blowings-up. Wheik = 1,
we take a divisoD € Ty such that:(W) € D and its proper transformd’ € Tp. By
applying (B,_1) to D'NW € D' andh(D'NW) = h(W) € D, we have the result.
Next we apply the induction hypothesisdo Ty — T;—1. We havelU € W such that
a:U — a(W) is a B-birational morphism. Sincé : T;,_1 — T} is one blowing-up
whose center is the center associated to the valudtipmve can take a divisoV
on Ty_1 such thata(U) = a(W) € V andb : V — b(V) is B-birational. By using
(Bu—1)tob:V — b(V) we have &’ € a(U) such thatV’ — (boa)(W) =h(W) is
B-birational. By using (4) with [ <n to U — a(U) we obtain aW’ € U € W such
thatW’ — V' is B-birational. SoW’ — h(W) is B-birational. By the construction of
W', the inclusionW’ — W induces the isomorphis HO(W, Oy (m (K s + 2)|w)) =~
HOW’, 0y (m(Ks+ Z)|w)). This proves (B). O

Proof of Lemma 4.9 continuedWe return to the proof of the lemma. Lgt:
(X', A) — (X, A) be Szabd'’s resolution such th&ty + A’ = f*(Kx + A), that
is, a log resolution whose discrepancy is greater thdn(see Resolution Lemma
in [27]). Lete = Uy; and g = LB; : (Y,0) = L(Y;,0;) — (X, A) be a common
log resolution of aB-birational maps : X --+ X passing througliX’, A”) such that
a=ocofB andp,(c) =g. We writea/, 8/ : Y — X’ such thatx = foa', = fop'.
We take an irreducible divisoE ¢ ®%. Apply (B,) to thea! : ¥; — «/(¥;) such
that E € Y;. Then we obtain art’ € E or E' = E such thatE’ — o/(E) is B-
birational. Apply (B,) to the g/ : ¥; — B/(Y;). Then we obtain arE” € E’ or
E" = E’ suchthatt” — B/(E’) is B-birational. By repeating the above construction,
we obtainF € E or F = E such thate’ : F — o/(F) andg’ : F — B/(F) are
B-birational. The morphisny : «'(F) — «(F) and f : B/(F) — B(F) are B-
birational sincef is Szabd’s resolution. Them : F — «(F) and8 : F — B(F)
are B-birational. Since € PA(X, m(Kx 4+ A)), a*(slo(r)) = B*(s|gr)) ON F. Since
HO(E,m(Ky +0©)|g) ~ Ho(F,m(Ky + ©)|r) by (B,), we havex*s = *s on E.
SinceE is an arbitrary irreducible component®f , we haver*(s|_a ;) = B*(s|.a_)-
ThUSg*S|LAJ = S|LAJ'

The latter part is trivial. O

The next corollary is the main theorem of this paper, which includes Theorem 0.1
(for proper pairs, see Remark 4.11) and a generalization of [1, 12.1.1] and [15, 8.5].

CoroLLARY 4.1Q0 Let (X, A) be a projective sla-fold such thatkx + A is nef,
wheren < 3. Then|m(Kx + A)| is free for a sufficiently large and divisible integer
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m. In particular, if (X, A) is projective sdlt and: < 2, thenA(X,m(Kx + A))
generate®y (m(Kx + A)).

Proof. We prove this corollary inductively on dixi. We take the normaliza-
tion of (X, A) and take aQ-factorial dlit model(Y, E) = LI(Y;, E;) for each ir-
reducible component by Lemma-Definition 1.4. By the assumption of induction,
A(LEL, m(Ky+ B)|_g,) generate® gz ,(m(K_z_, + Diff (E —LE_))). By Proposi-
tion 4.5,

PA(Y,m(Ky +E)) — A(cEs,m(Ky+E)l.z.)

is surjective, and P&, m(Ky + E)) generate®y (m(Ky + E)). So, by Lemma 4.2,
Im(Kx + A)| is free. If dimX < 2, then we have the finiteness Btpluricanonical
representation (see Section 3). Therefore, we can replaCE, PAKy + E)) with
A(Y,m(Ky+ B)) by Lemma 4.7. So we get the latter part of this corollary. We need
the latter part for the inductional treatment. In order to prove the abundance for slc
n-folds (X, A), we use Proposition 4.5, which demands that ,(m (K _z ,+ Diff (E—
LE4))) is generated by not only RAEL, m(Ky + E)|_z,) but also ALEL, m(Ky +
E)l\_E_I)' O

Remark 4.11. Proposition 4.5, and hence Theorem 3.5 and Corollary 4.10, hold
true even for proper pairs. This can be checked, as in [16, 7.1]. Inde€d,, |18 be
a proper dlt pair such th&y + D is nef. By the log MMP, we can find @-factorial
projective dlt painX’, D’) with nef Ky + D’. By [26, 1.5],(X’, D') is B-birationally
equivalent ta X, D). By using the arguments similar to those used in Lemma 4.9 and
in case 4 in the proof of Proposition 4.5, we can reduce Proposition 4(Xfdp) to
that for the projectivéX’, D’). Therefore, we get Proposition 4.5 for proper dlt pairs.
Thus, Theorem 3.5 and Corollary 4.10 hold true for proper pairs.

APPENDIX

We can state the results similar to Corollary 4.10 in arbitrary dimension, if we list
all the necessary results (e.g., log MMP) yet to be established as the assumption.

THEOREM A.1. Assume the log MMP for dimensian

(2) If the abundance conjecture holds for dcfolds and if the finiteness d-
pluricanonical representations (see Conjecture 3.2) is true for dimengionl),
then the abundance conjecture is true forsifolds.

(2) If the abundance conjecture holds for kiolds and slan — 1)-folds, then the
abundance conjecture is true for tcfolds.

Proof. For the proof of (1), see Remarks 2.2 and 4.6, and the proof of Corol-
lary 4.10. One can prove (2) by using the same argument as in [16, Section({7].

We list the following two results for the reader’s convenience.

THEOREM A.2 (Relative log abundance theoremlet (X, A) be Ic anddimX <
3. Let f : X — S be a proper surjective morphism onto a variety Assume that
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Kx+Ais f-nef. ThenKy + A is f-semiample.

Proof. If dim S = 0, then this is nothing but the log abundance theorem (see [6],
[8], and [16]). So we may assume dir= 1. If (X, A) is klt, the proof is given, for
example, in [14, 6-1-11], [11]. Whe(X, A) is Ic, we can use the arguments in [16,
Section 7] in the relative setting. (See also [15, 8.5].) O

CoroLLARY A.3 (Threefold log canonical flips) (cf. [15, 8.1])Threefold log can-
onical flips exist.

Proof. Let (X, A) be an Ic pair andf : (X, A) — S a flipping contraction. We
take aQ-factorial dit model(X’, A") (see Lemma-Definition 1.4) and run the log
MMP over S. Then we obtain a relative minimal modgt”, A”) over S. By using
Theorem A.2 we have a relative canonical modet, A™). It is easy to check that
(X*, AT) is the flip of £. O
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