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Kodaira

The Kodaira vanishing theorem is one of the most famous and
most important vanishing theorems for complex projective
varieties.

Theorem 1.1 (Kodaira)
X: smooth projective variety

D: ample Cartier divisor

Then Hq(X,OX(KX + D)) = 0 for every q > 0.

Note:

KX: canonical divisor of X

∧dim XΩX ≃ OX(KX)
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Kawamata–Viehweg

As is well-known, the Kawamata–Viehweg vanishing theorem is a
powerful generalization of the Kodaira vanishing theorem.

Theorem 1.2 (Kawamata–Viehweg)

X: smooth projective variety

D: nef and big Q-divisor

Supp{D}: SNC divisor

Then Hq(X,OX(KX + ⌈D⌉)) = 0 for every q > 0.

Note:

{D}: the fractional part of D, ⌈D⌉: the round-up of D

D: nef and big ⇐⇒ Ddim X > 0 and D ·C ≥ 0 for any curve C
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Nadel

The (algebraic version of) Nadel vanishing theorem is also a useful
generalization of Kodaira.

Theorem 1.3 (Nadel)
X: smooth projective variety

L: Cartier divisor

D: effective Q-divisor

L − D: nef and big

Then Hq(X,OX(KX + L) ⊗ J(X,D)) = 0 for every q > 0, where
J(X,D): multiplier ideal sheaf of (X,D).
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Kollár

Kollár’s results contain Kodaira as a special case.

Theorem 1.4 (Kollár)
X: smooth projective variety

Y: projective variety

f : X → Y: surjective morphism

Then we have:

(i) Rq f∗OX(KX): torsion-free for every q

(ii) Hp(Y,Rq f∗OX(KX) ⊗ OY (H)) = 0 for every p > 0 and q ≥ 0,
where H: ample Cartier divisor on Y.
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We need more general vanishing theorems for the minimal model
program (MMP, for short) for higher-dimensional algebraic
varieties.
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SNC pairs

M: smooth variety /C
X: SNC divisor on M
B: R-divisor on M such that Supp B: SNC divisor
B and X have no common components, Supp(B + X): SNC
divisor
D = B|X

Definition 2.1 (GESNC pair)

(X,D): globally embedded simple normal crossing (GESNC) pair

Definition 2.2 (SNC pair)

(Y,∆): simple normal crossing (SNC) pair
def⇐⇒ (Y,∆): Zariski locally isomorphic to a GESNC pair
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Stratum of SNC pair

(X,D): SNC pair

D ∈ [0, 1]

ν : Xν → X: normalization

KXν + Θ = ν
∗(KX + D)

Definition 2.3 (Stratum)

W: closed subvariety of X

W: stratum of (X,D)
def⇐⇒ W = ν(C), where C is a log canonical center of (Xν,Θ), or W

is an irreducible component of X
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Hodge theoretic injectivity theorem

Theorem 2.4 (Relative Hodge theoretic injectivity theorem)

(X,∆): SNC pair, ∆ ∈ [0, 1], π : X → S : proper

L: Cartier divisor on X

D: effective Weil divisor on X

Supp D ⊂ Supp∆

L ∼R,π KX + ∆

Then
Rqπ∗OX(L)→ Rqπ∗OX(L + D)

is injective for every q.
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Injectivity theorem for SNC pair

Theorem 2.5 (Injectivity for SNC pair)

(X,∆): SNC pair, ∆ ∈ [0, 1], π : X → S : proper, as before

L: Cartier divisor on X

D: effective Cartier, permissible with respect to (X,∆)

We further assume:

(i) L ∼R,π KX + ∆ + H

(ii) H: π-semi-ample R-divisor

(iii) tH ∼R,π D + D′, t ∈ R>0,
D′: effective R-Cartier R-divisor, permissible with respect to
(X,∆)

Then Rqπ∗OX(L)→ Rqπ∗OX(L + D) is injective for every q.
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Torsion-freeness and Vanishing for SNC pair

Theorem 2.6 (Torsion-freeness and Vanishing thereom)

(Y,∆): SNC pair, ∆ ∈ [0, 1], f : Y → X: proper

L: Cartier divisor on Y such that L − (KY + ∆): f -semi-ample

Then we have:

(i) Every associated prime of Rq f∗OY (L) is the generic point of
the f -image of some stratum of (Y,∆).

(ii) π : X → V: projective
L − (KY + ∆) ∼R f ∗H, H: π-ample R-divisor on X

=⇒ Rpπ∗Rq f∗OY (L) = 0 for every p > 0 and q ≥ 0.
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Main statement

Our result for SNC pairs contains Kodaira, Kawamata–Viehweg,
Nadel, Kollár, and many other powerful and useful vanishing
results as very special cases.
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MHS for cohomology with compact support

Almost all the classical vanishing theorems (Kawamata–Viehweg,
Kollár, etc.) can be proved by the E1-degeneration of

Epq
1 = Hq(X,Ωp

X)⇒ Hp+q(X,C).

My idea is to use the E1-degeneration of

Epq
1 = Hq(X,Ωp

X(log D) ⊗ OX(−D))⇒ Hp+q
c (X \ D,C),

where X: smooth projective variety, D: SNC divisor.
In my framework,

OX(KX + D) ≃ Hom(Ω0
X(log D) ⊗ OX(−D), ωX).

We do not see OX(KX + D) as
∧dim X Ω1

X(log D).
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Final remarks

Precisely speaking:

(X,D): SNC pair, or finite cyclic cover of SNC pair

We have to consider MHS on

Hk
c (X \ ⌊D⌋,C).
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Thank you

Thank you very much!
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