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Abstract. We show that log canonical thresholds for complex
analytic spaces satisfy the ACC.

1. Introduction

As usual, ACC stands for the ascending chain condition and DCC
stands for the descending chain condition. In [HMX], the ACC for log
canonical thresholds, which was conjectured by Shokurov, was com-
pletely settled for algebraic varieties. We note that Shokurov raised
many conjectures that assert the ascending or descending chain con-
dition for various naturally defined invariants coming from algebraic
geometry (see, for example, [S1], [S2], [K, Chapter 18], [K1, Section 8],
and so on). In this paper, we generalize it for complex analytic spaces.

Let us start with the definition of log canonical thresholds for com-
plex analytic spaces. Note that X is a normal complex analytic space
in Definition 1.1. For various aspects of log canonical thresholds, we
strongly recommend the reader to see [K1, Sections 8, 9, and 10].

Definition 1.1 (Log canonical thresholds for complex analytic spaces).
Let (X,∆) be a log canonical pair and let M be an effective R-Cartier
R-divisor on X. Let c be a nonnegative real number such that (X,∆+
cM) is log canonical and that there exists a non-kawamata log terminal
center of (X,∆+ cM) which is contained in SuppM . Then c is called
the log canonical threshold of M with respect to (X,∆) and is usually
denoted by lct(X,∆;M). When M = 0, we put lct(X,∆;M) = +∞.

The following definition and example show the reason why we adopt
the above definition of log canonical thresholds for complex analytic
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spaces, which looks slightly different from the usual definition of log
canonical thresholds for algebraic varieties.

Definition 1.2. Let X be a normal complex variety. A prime divisor
on X is an irreducible and reduced closed subvariety of codimension
one. An R-divisor D on X is a locally finite formal sum

D =
∑
i

aiDi,

where Di is a prime divisor on X with ai ∈ R for every i and Di ̸= Dj

for i ̸= j. When ai ∈ Q holds for every i, D is called a Q-divisor on X.
Let D be an R-divisor on a normal complex variety X and let x

be a point of X. If D is written as a finite R-linear (resp. Q-linear)
combination of Cartier divisors on some open neighborhood of x, then
D is said to be R-Cartier at x (resp. Q-Cartier at x). If D is R-Cartier
(resp. Q-Cartier) at x for every x ∈ X, then D is said to be R-Cartier
(resp. Q-Cartier).

Example 1.3. We considerX = C. Let {Pn}n∈Z>0 be a set of mutually
distinct discrete points of X. We put M =

∑
n∈Z>0

n−1
n
Pn. Then M

is a Q-Cartier Q-divisor on X. In this case, (X,M) is log canonical
and (X, tM) is not log canonical for every positive real number t with
t > 1. However, there are no non-kawamata log terminal centers of
(X,M), that is, (X,M) is kawamata log terminal.

We note an obvious remark.

Remark 1.4. (1) If (X,∆) and M are both algebraic in Definition 1.1,
then it is easy to see that the following equality

lct(X,∆;M) = sup{t ∈ R | (X,∆+ tM) is log canonical}
holds.

(2) In Definition 1.1, let U be a relatively compact open subset of
X. Then we can check that

lct(U,∆|U ;M |U) = sup{t ∈ R | (U,∆|U + tM |U) is log canonical}
holds by using the resolution of singularities.

By Remark 1.4 (1), lct(X,∆;M) coincides with the usual one when
(X,∆) and M are all algebraic.

Definition 1.5. Let Tan = Tan
n (I) denote the set of log canonical pairs

(X,∆), where X is a normal complex variety of dimension n and the
coefficients of ∆ belong to a set I ⊂ [0, 1]. We put

LCTan
n (I, J) = {lct(X,∆;M) | (X,∆) ∈ Tan

n (I)},
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where the coefficients of M belong to a subset J of the positive real
numbers.

The main result of this short paper is the ACC for log canonical
thresholds for complex analytic spaces, which is a generalization of
[HMX, Theorem 1.1].

Theorem 1.6 (ACC for the log canonical threshold for complex ana-
lytic spaces). We fix a positive integer n, I ⊂ [0, 1], and a subset J of
the positive real numbers. If I and J satisfy the DCC, then LCTan

n (I, J)
satisfies the ACC.

The main ingredient of the proof of Theorem 1.6 is the ACC for nu-
merically trivial pairs, which is nothing but [HMX, Theorem 1.5] (see
Theorem 1.7), and the minimal model program for projective mor-
phisms between complex analytic spaces established in [F2]. Note that
one of the motivations of [F2] is to make the minimal model program
applicable to the study of germs of complex analytic singularities. We
also note that a similar result was obtained independently by Das,
Hacon, and Păun (see [DHP, Theorem 6.4]).

Theorem 1.7 (ACC for numerically trivial pairs, see [HMX, Theorem
1.5]). Fix a positive integer n and a set I ⊂ [0, 1], which satisfies the
DCC. Then there is a finite subset I0 ⊂ I with the following property:

If (X,∆) is an n-dimensional projective log canonical pair such that
KX + ∆ is numerically trivial and that the coefficients of ∆ belong to
I, then the coefficients of ∆ belong to I0.

We note that de Fernex, Ein, and Mustaţă established a striking
result on Shokurov’s ACC conjecture before [HMX]. Here we only
explain a very special case. For the details and some related topics, see
[dFEM], [K2], [T], and so on.

Definition 1.8 (Log canonical thresholds of holomorphic functions).
Let f be a holomorphic function in a neighborhood of 0 ∈ Cn. The log
canonical threshold of f at 0 is the number c = lct0(f) such that

• |f |−s is L2 in a neighborhood of 0 for s < c, and
• |f |−s is not L2 in a neighborhood of 0 for s > c.

Hence, if f(0) ̸= 0, then lct0(f) = +∞.
We put

HTn := {lct0(f) | f ∈ OCn,0, f(0) = 0} ⊂ R.
This means thatHTn is the set of log canonical thresholds of all possible
holomorphic functions of n variables vanishing at 0 ∈ Cn.

Then we have:
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Theorem 1.9 ([dFEM]). HTn satisfies the ACC.

Note that the following natural inclusion

HTn ⊂ LCTan
n ({0},Z>0)

holds. Therefore, Theorem 1.9 is a very special case of Theorem 1.6.
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In this paper, we will freely use [F2]. We always assume that com-
plex analytic spaces are Hausdorff and second-countable. We use the
standard notation of the theory of minimal models as in [KM], [F1],
and [F2].

2. Proof

Let us start with the definition of ACC sets and DCC sets.

Definition 2.1 (ACC sets and DCC sets, see [HMX, 3.4. DCC sets]).
Let I be a set of real numbers. We say that I satisfies the ascending
chain condition or ACC (resp. descending chain condition or DCC) if
it does not contain any infinite strictly increasing (resp. decreasing)
sequences.

We take I ⊂ [0, 1]. We put

I+ := {0}
⋃{

j ∈ [0, 1]

∣∣∣∣∣ j =
l∑

p=1

ip for some i1 . . . , il ∈ I

}
and

D(I) :=

{
a ∈ [0, 1]

∣∣∣∣ a =
m− 1 + f

m
for some m ∈ Z>0 and f ∈ I+

}
.

It is easy to see that I satisfies the DCC if and only if D(I) satisfies
the DCC.

Without any difficulties, we can prove a slight modification of [HMX,
Lemma 5.1] for complex analytic spaces by using [F2].

Lemma 2.2. We fix a positive integer n and a set 1 ∈ I ⊂ [0, 1].
Assume that (X,∆+∆′) is an (n + 1)-dimensional log canonical pair
such that ∆ ≥ 0, ∆′ ≥ 0 is R-Cartier, and the coefficients of ∆, ∆′
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and ∆ + ∆′ belong to I. We further assume that there exists a non-
kawamata log terminal center V of (X,∆+∆′) such that V ⊂ Supp∆′

with dimV ≤ dimX − 2.
Then we can construct a log canonical pair (S,Θ), where S is a

projective variety of dimension at most n, the coefficients of Θ belong
to D(I), KS +Θ is numerically trivial, and some component of Θ has
coefficient

m− 1 + f + kc

m
,

where m and k are positive integers, f ∈ I+, and c ∈ I is the coefficient
of some component of ∆′.

The proof of [HMX, Lemma 5.1] works with only some minor mod-
ifications since we can always construct dlt blow-ups by [F2] in the
complex analytic setting.

Proof of Lemma 2.2. We can replace V with a maximal (with respect
to inclusion) non-kawamata log terminal center of (X,∆ + ∆′) satis-
fying dim V ≤ dimX − 2 and V ⊂ Supp∆′. We take an analytically
sufficiently general point P of V . Then we take an open neighborhood
U of P and a Stein compact subset W of X such that U ⊂ W and
that Γ(W,OX) is noetherian. By [F2, Theorem 1.21], after shrinking
X around W suitably, we can construct a projective bimeromorphic
morphism π : Y → X with KY +∆Y = π∗(KX +∆+∆′) such that

(a) (Y,∆Y ) is divisorial log terminal,
(b) Y is Q-factorial over W ,
(c) a(E,X,∆+∆′) = −1 holds for every π-exceptional divisor E,

and
(d) there exists a π-exceptional divisor F on Y such that π(F ) = V .

Since ∆′ is R-Cartier by assumption, π∗∆′ is well-defined and is π-
numerically trivial. Hence we can find B, which is an irreducible com-
ponent of Suppπ−1

∗ ∆′, and a π-exceptional divisor S with S ∩ B ̸= ∅,
π(S) = V , and π(S ∩B) = V . By adjunction, we obtain

KS +Θ := (KY +∆Y )|S
such that the coefficients of Θ belong to D(I) and some component of
Θ has a coefficient of the form

m− 1 + f + kc

m
,

where m and k are positive integers, f ∈ I+, and c ∈ I is the coefficient
of B in π−1

∗ ∆′. We take an analytically sufficiently general point v ∈
V ∩ U and consider the fiber over v. Then we obtain (Sv,Θv), which
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is divisorial log terminal with dim Sv ≤ n, such that the coefficients of
Θv belong to D(I), some component of Θv has a coefficient of the form

m− 1 + f + kc

m

as desired, and KSv+Θv is numerically trivial. This is what we wanted.
□

Let us prove Theorem 1.6.

Proof of Theorem 1.6. We assume that c1, c2, . . . ∈ LCTan
m (I, J) such

that ci ≤ ci+1 holds for every i. It is sufficient to prove that ci = ci+1

holds for every sufficiently large i. By definition, we can take an n-
dimensional log canonical pair (Xi,∆i) and an effective R-Cartier R-
divisor Mi on Xi such that the coefficients of ∆i belong to I, the
coefficients of Mi belong to J , (Xi,∆i + ciMi) is log canonical, and
there exists a non-kawamata log terminal center Vi of (Xi,∆i + ciMi)
with Vi ⊂ SuppMi for every i.

We put

K = I ∪ {ciα ∈ [0, 1] | i ∈ Z>0, α ∈ J }
∪ {β + ciγ ∈ [0, 1] | i ∈ Z>0, β ∈ I, γ ∈ J } ∪ {1}.

Then the coefficient of ∆i, ciMi, and ∆i + ciMi belong to K. It is easy
to see that K satisfies the DCC. We also put

L = {1− α |α ∈ I}.

Then L obviously satisfies the ACC. Hence L ∩K is a finite set since
K satisfies the DCC.

If dimVi = n− 1, then the coefficient of Vi in ciMi is in the finite set
L∩K. Therefore, it is sufficient to treat the case when dim Vi ≤ n− 2
holds for every i. Hence, from now on, we assume that dim Vi ≤ n− 2
holds for every i. By Lemma 2.2, for every i, we can construct a
projective log canonical pair (Si,Θi) such that dimSi ≤ n − 1, the
coefficients of Θi belong to D(K), KSi

+Θi is numerically trivial, and
some component of Θi has coefficient

mi − 1 + fi + kiciαi

mi

,

where mi and ki are positive integers, fi ∈ K+, and αi ∈ J . By
Theorem 1.7, which is nothing but [HMX, Theorem 1.5], there exists
a finite subset K0 ⊂ D(K) such that

mi − 1 + fi + kiciαi

mi

∈ K0.
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Then, by [HMX, Lemma 5.2],

{ciαi}i∈Z>0

is a finite set. This implies that ci = ci+1 holds for every sufficiently
large i since αi ∈ J for every i.

This is what we wanted, that is, LCTan
n (I, J) satisfies the ACC. □
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