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Abstract. We show that log canonical thresholds for complex analytic spaces satisfy
the ACC.

1. Introduction

As usual, ACC stands for the ascending chain condition and DCC stands for the de-
scending chain condition. In [HMX], the ACC for log canonical thresholds, which was
conjectured by Shokurov, was completely settled for algebraic varieties. We note that
Shokurov raised many conjectures that assert the ascending or descending chain condition
for various naturally defined invariants coming from algebraic geometry (see, for example,
[S1], [S2], [K, Chapter 18], [K1, Section 8], and so on). In this paper, we generalize it for
complex analytic spaces.

Let us start with the definition of log canonical thresholds for complex analytic spaces.
Note that X is a normal complex analytic space in Definition 1.1. For various aspects of
log canonical thresholds, we strongly recommend the reader to see [K1, Sections 8, 9, and
10].

Definition 1.1 (Log canonical thresholds for complex analytic spaces). Let (X,∆) be
a log canonical pair and let M be an effective R-Cartier R-divisor on X. Let c be a
nonnegative real number such that (X,∆+ cM) is log canonical and that there exists a
non-kawamata log terminal center of (X,∆ + cM) which is contained in SuppM . Then
c is called the log canonical threshold of M with respect to (X,∆) and is usually denoted
by lct(X,∆;M). When M = 0, we put lct(X,∆;M) = +∞.

The following example shows the reason why we adopt the above definition of log
canonical thresholds for complex analytic spaces, which looks slightly different from the
usual definition of log canonical thresholds for algebraic varieties.

Example 1.2. We consider X = C. Let {Pn}n∈Z>0 be a set of mutually distinct discrete
points of X. We put M =

∑
n∈Z>0

n−1
n
Pn. Then M is a Q-Cartier Q-divisor on X. In

this case, (X,M) is log canonical and (X, tM) is not log canonical for every positive real
number t with t > 1. However, there are no non-kawamata log terminal centers of (X,M),
that is, (X,M) is kawamata log terminal.

We note an obvious remark.

Remark 1.3. (1) If (X,∆) and M are both algebraic in Definition 1.1, then it is easy to
see that the following equality

lct(X,∆;M) = sup{t ∈ R | (X,∆+ tM) is log canonical}
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holds.
(2) In Definition 1.1, let U be a relatively compact open subset of X. Then we can

check that

lct(U,∆|U ;M |U) = sup{t ∈ R | (U,∆|U + tM |U) is log canonical}
holds by using the resolution of singularities.

By Remark 1.3 (1), lct(X,∆;M) coincides with the usual one when (X,∆) and M are
all algebraic.

Definition 1.4. Let Tan = Tan
n (I) denote the set of log canonical pairs (X,∆), where

X is a normal complex variety of dimension n and the coefficients of ∆ belong to a set
I ⊂ [0, 1]. We put

LCTan
n (I, J) = {lct(X,∆;M) | (X,∆) ∈ Tan

n (I)},
where the coefficients of M belong to a subset J of the positive real numbers.

The main result of this short paper is the ACC for log canonical thresholds for complex
analytic spaces, which is a generalization of [HMX, Theorem 1.1].

Theorem 1.5 (ACC for the log canonical threshold for complex analytic spaces). We fix
a positive integer n, I ⊂ [0, 1], and a subset J of the positive real numbers. If I and J
satisfy the DCC, then LCTan

n (I, J) satisfies the ACC.

The main ingredient of the proof of Theorem 1.5 is the ACC for numerically trivial
pairs, which is nothing but [HMX, Theorem 1.5] (see Theorem 1.6), and the minimal
model program for projective morphisms between complex analytic spaces established in
[F2]. Note that one of the motivations of [F2] is to make the minimal model program
applicable to the study of germs of complex analytic singularities.

Theorem 1.6 (ACC for numerically trivial pairs, see [HMX, Theorem 1.5]). Fix a positive
integer n and a set I ⊂ [0, 1], which satisfies the DCC. Then there is a finite subset I0 ⊂ I
with the following property:

If (X,∆) is an n-dimensional projective log canonical pair such that KX +∆ is numer-
ically trivial and that the coefficients of ∆ belong to I, then the coefficients of ∆ belong
to I0.

We note that de Fernex, Ein, and Mustaţă established a striking result on Shokurov’s
ACC conjecture before [HMX]. Here we only explain a very special case. For the details
and some related topics, see [dFEM], [K2], [T], and so on.

Definition 1.7 (Log canonical thresholds of holomorphic functions). Let f be a holo-
morphic function in a neighborhood of 0 ∈ Cn. The log canonical threshold of f at 0 is
the number c = lct0(f) such that

• |f |−s is L2 in a neighborhood of 0 for s < c, and
• |f |−s is not L2 in a neighborhood of 0 for s > c.

Hence, if f(0) ̸= 0, then lct0(f) = +∞.
We put

HTn := {lct0(f) | f ∈ OCn,0, f(0) = 0} ⊂ R.
This means that HTn is the set of log canonical thresholds of all possible holomorphic
functions of n variables vanishing at 0 ∈ Cn.

Then we have:
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Theorem 1.8 ([dFEM]). HTn satisfies the ACC.

Note that the following natural inclusion

HTn ⊂ LCTan
n ({0},Z>0)

holds. Therefore, Theorem 1.8 is a very special case of Theorem 1.5.
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Numbers JP19H01787, JP20H00111, JP21H00974, JP21H04994. He would like to thank
Kenta Hashizume very much for useful discussions and comments. He also thanks Masayuki
Kawakita and Shunsuke Takagi.

In this paper, we will freely use [F2]. We always assume that complex analytic spaces are
Hausdorff and second-countable. We use the standard notation of the theory of minimal
models as in [KM], [F1], and [F2].

2. Proof

Let us start with the definition of ACC sets and DCC sets.

Definition 2.1 (ACC sets and DCC sets, see [HMX, 3.4. DCC sets]). Let I be a set of
real numbers. We say that I satisfies the ascending chain condition or ACC (resp. de-
scending chain condition or DCC) if it does not contain any infinite strictly increasing
(resp. decreasing) sequences.

We take I ⊂ [0, 1]. We put

I+ := {0}
∪{

j ∈ [0, 1]

∣∣∣∣∣ j =
l∑

p=1

ip for some i1 . . . , il ∈ I

}
and

D(I) :=

{
a ∈ [0, 1]

∣∣∣∣ a =
m− 1 + f

m
for some m ∈ Z>0 and f ∈ I+

}
.

It is easy to see that I satisfies the DCC if and only if D(I) satisfies the DCC.

Without any difficulties, we can prove a slight modification of [HMX, Lemma 5.1] for
complex analytic spaces by using [F2].

Lemma 2.2. We fix a positive integer n and a set 1 ∈ I ⊂ [0, 1]. Assume that (X,∆+∆′)
is an (n + 1)-dimensional log canonical pair such that ∆ ≥ 0, ∆′ ≥ 0 is R-Cartier,
and the coefficients of ∆, ∆′ and ∆ + ∆′ belong to I. We further assume that there
exists a non-kawamata log terminal center V of (X,∆+∆′) such that V ⊂ Supp∆′ with
dimV ≤ dimX − 2.
Then we can construct a log canonical pair (S,Θ), where S is a projective variety of

dimension at most n, the coefficients of Θ belong to D(I), KS +Θ is numerically trivial,
and some component of Θ has coefficient

m− 1 + f + kc

m
,

where m and k are positive integers, f ∈ I+, and c ∈ I is the coefficient of some component
of ∆′.

The proof of [HMX, Lemma 5.1] works with only some minor modifications since we
can always construct dlt blow-ups by [F2] in the complex analytic setting.
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Proof of Lemma 2.2. We can replace V with a maximal (with respect to inclusion) non-
kawamata log terminal center of (X,∆ + ∆′) satisfying dimV ≤ dimX − 2 and V ⊂
Supp∆′. We take an analytically sufficiently general point P of V . Then we take an open
neighborhood U of P and a Stein compact subset W of X such that U ⊂ W and that
Γ(W,OX) is noetherian. By [F2], after shrinking X around W suitably, we can construct
a projective bimeromorphic morphism π : Y → X with KY + ∆Y = π∗(KX + ∆ + ∆′)
such that

(a) (Y,∆Y ) is divisorial log terminal,
(b) Y is Q-factorial over W ,
(c) a(E,X,∆+∆′) = −1 holds for every π-exceptional divisor E, and
(d) there exists a π-exceptional divisor F on Y such that π(F ) = V .

Since ∆′ is R-Cartier by assumption, π∗∆′ is well-defined and is π-numerically triv-
ial. Hence we can find B, which is an irreducible component of Suppπ−1

∗ ∆′, and a
π-exceptional divisor S with S ∩ B ̸= ∅, π(S) = V , and π(S ∩ B) = V . By adjunction,
we obtain

KS +Θ := (KY +∆Y )|S
such that the coefficients of Θ belong to D(I) and some component of Θ has a coefficient
of the form

m− 1 + f + kc

m
,

where m and k are positive integers, f ∈ I+, and c ∈ I is the coefficient of B in π−1
∗ ∆′.

We take an analytically sufficiently general point v ∈ V ∩ U and consider the fiber over
v. Then we obtain (Sv,Θv), which is divisorial log terminal with dimSv ≤ n, such that
the coefficients of Θv belong to D(I), some component of Θv has a coefficient of the form

m− 1 + f + kc

m

as desired, and KSv +Θv is numerically trivial. This is what we wanted. □
Let us prove Theorem 1.5.

Proof of Theorem 1.5. We assume that c1, c2, . . . ∈ LCTan
m (I, J) such that ci ≤ ci+1 holds

for every i. It is sufficient to prove that ci = ci+1 holds for every sufficiently large i.
By definition, we can take an n-dimensional log canonical pair (Xi,∆i) and an effective
R-Cartier R-divisor Mi on Xi such that the coefficients of ∆i belong to I, the coefficients
of Mi belong to J , (Xi,∆i + ciMi) is log canonical, and there exists a non-kawamata log
terminal center Vi of (Xi,∆i + ciMi) with Vi ⊂ SuppMi for every i.
We put

K = I ∪ {ciα ∈ [0, 1] | i ∈ Z>0, α ∈ J } ∪ {β + ciγ ∈ [0, 1] | i ∈ Z>0, β ∈ I, γ ∈ J } ∪ {1}.
Then the coefficient of ∆i, ciMi, and ∆i + ciMi belong to K. It is easy to see that K
satisfies the DCC. We also put

L = {1− α |α ∈ I}.
Then L obviously satisfies the ACC. Hence L∩K is a finite set since K satisfies the DCC.
If dimVi = n− 1, then the coefficient of Vi in ciMi is in a finite set L ∩K. Therefore,

it is sufficient to treat the case when dimVi ≤ n − 2 holds for every i. Hence, from now
on, we assume that dimVi ≤ n− 2 holds for every i. By Lemma 2.2, for every i, we can
construct a projective log canonical pair (Si,Θi) such that dimSi ≤ n−1, the coefficients
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of Θi belong to D(K), KSi
+ Θi is numerically trivial, and some component of Θi has

coefficient
mi − 1 + fi + kiciαi

mi

,

where mi and ki are positive integers, fi ∈ K+, and αi ∈ J . By Theorem 1.6, which is
nothing but [HMX, Theorem 1.5], there exists a finite subset K0 ⊂ D(K) such that

mi − 1 + fi + kiciαi

mi

∈ K0.

Then, by [HMX, Lemma 5.2],
{ciαi}i∈Z>0

is a finite set. This implies that ci = ci+1 holds for every sufficiently large i since αi ∈ J
for every i.

This is what we wanted, that is, LCTan
n (I, J) satisfies the ACC. □
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