Codimension-one foliations with a transversely contracting flow

Masayuki ASAOKA *
Kyoto University and UMPA, ENS de Lyon
46 Allée d’Italie, 69007, Lyon, France
e-mail: asaoka@math.kyoto-u.ac.jp
April 18, 2006

Abstract: We show that if a C^2 codimension-one foliation on three-dimensional manifold admits a transversely contracting flow, then it must be the unstable foliation of an Anosov flow.

Keywords: Anosov foliations, dominated splittings
MSC2000: Primary 57R30, Secondary 37D30

1 Introduction

Let M be a three-dimensional closed manifold and \mathcal{F} be a codimension-one foliation on M. We call a flow $\Phi = \{\Phi^t\}_{t \in \mathbb{R}}$ without stationary points \mathcal{F}-transversely contracting if it preserves each leaf of \mathcal{F} and satisfies

$$\lim_{t \to +\infty} \left\| N\Phi^t_{\mathcal{F}}(v) \right\|_{\mathcal{F}} = 0$$

for any $v \in TM/T\mathcal{F}$, where $\left\| \cdot \right\|_{\mathcal{F}}$ is a norm on the normal bundle $TM/T\mathcal{F}$ of the foliation \mathcal{F} and $N\Phi^t_{\mathcal{F}} = \{N\Phi^t_{\mathcal{F}}\}$ is the flow on $TM/T\mathcal{F}$ induced from Φ. Of course, the unstable foliation of an Anosov flow is a foliation with a transversely contracting flow.

Transversely contracting flows appear in the theory of linear deformation of foliations. We say a family $\{\alpha_t\}_{t \in [-1,1]}$ of 1-forms on M is a linear deformation of a foliation \mathcal{F} into contact structures if $\text{Ker} \alpha_0 = T\mathcal{F}$ and $(d/dt)(\alpha_t \wedge d\alpha_t) > 0$. Mitsumatsu [5] observed that if a foliation \mathcal{F} admits such a deformation $\{\alpha_t = \alpha(t, \cdot)\}_{t \in [-1,1]}$ and the intersection of the kernels of α_0 and $d\alpha_t/dt|_{t=0}$ defines an \mathcal{F}-transversely contracting flow, then $d\alpha$ is a convex symplectic structure on $M \times I$. In [6], he asked whether such a foliation must be the unstable foliation of an Anosov flow (see also Subsection 3.2 of [7]).

In this paper, we show the following result, which gives an affirmative answer to his question in the case of C^2 foliations.

*Partially supported by JSPS PostDoctoral Fellowships for Research Abroad.
Theorem 1.1. If a C^2 foliation \mathcal{F} on a three-dimensional closed manifold admits an \mathcal{F}-transversely contracting flow, then it must be the unstable foliation of an Anosov flow.

We say an Anosov flow is algebraic if it is given by the natural action of a one-parameter subgroup of a Lie group G on G/Γ, where Γ is a lattice of G. It is known that any three-dimensional algebraic Anosov flow is smoothly conjugate to either the geodesic flow on a closed surface of constant negative curvature or the suspension flow of a hyperbolic toral automorphism, up to finite covering. The former corresponds the case $G = \text{SL}(2, \mathbb{R})$ and the latter corresponds the case that G is a semi-direct product $\mathbb{R} \ltimes \mathbb{R}^2$ associated with an action $t \cdot (x, y) = (e^t x, e^{-t} y)$. By results of Barbot [2, Théorème 5.1] and Ghys [3, Théorème 4.1, 4.7], if the unstable foliation of an Anosov flow is of class C^∞, then it is diffeomorphic to the unstable foliation of an algebraic Anosov flow. In particular, if the above foliation \mathcal{F} is of class C^∞, then it is diffeomorphic to the unstable foliation of an algebraic Anosov flow.

Acknowledgments This paper was written while the author stayed at Unité de Mathématiques Pures et Appliquées, École Normale Supérieure de Lyon. He would like to thank the members of UMPA and especially Professor Étienne Ghys for his warm hospitality. The author also wish to thank an anonymous referee for helpful suggestions which improve the paper.

2 Preliminaries

In this section, we review some basic results on three-dimensional flows with invariant splittings.

We fix a three-dimensional closed manifold M and a C^r flow $\Phi = \{\Phi^t\}_{t \in \mathbb{R}}$ on M with $r \geq 1$. Suppose Φ has no stationary point. Let TM denote the tangent bundle of M and $D\Phi = \{D\Phi^t\}_{t \in \mathbb{R}}$ the flow on TM defined by the differential of Φ. Let $T\Phi$ be the one-dimensional subbundle of TM tangent to the flow Φ. We fix a norm $\|\cdot\|$ on TM.

For a subset S of M, we write \overline{S} for the closure of S. For $z \in M$, let $O(z)$ denote the orbit $\{\Phi^t(z) \mid t \in \mathbb{R}\}$ and $\omega(z)$ the ω-limit set $\bigcap_{T > 0} \{\Phi^t(z) \mid t > T\}$.

2.1 Dominated splittings

Fix a compact subset M_0 of M satisfying $\Phi^t(M_0) \subset M_0$ for any $t \geq 0$.

Lemma 2.1. If a positive-valued continuous function α on $M_0 \times \{t \geq 0\}$ satisfies

$$\alpha(z, s + t) \leq \alpha(\Phi^t(z), t) \cdot \alpha(z, s)$$

for any $z \in M_0$ and $s, t \geq 0$, and $\inf_{t \geq 0} \alpha(z, t) < 1$ for any $z \in M_0$, then there exist $C > 0$ and $\lambda \in (0, 1)$ such that $\alpha(z, t) \leq C \lambda^t$ for any $z \in M$ and $t \geq 0$.

2
Proof. By the compactness of M_0, there exist a constant $\lambda_0 \in (0,1)$, a finite open covering $\{U_i\}_{i=1}^{s_*}$ of M_0, and a sequence $\{T_i > 0\}_{i=1}^{s_*}$ such that $\alpha(z, T_i) < \lambda_0$ for any $i = 1, \ldots, s_*$ and $z \in U_i$. Put $T_* = \max\{T_i \mid i = 1, \ldots, s_*\}$ and $A_* = \sup\{\alpha(z, t) \mid t \in [0, T_*], z \in M_0\}$. For any $z \in M_0$ and $t > 0$, there exist sequences $\{t_m \geq 0\}_{m=0}^{m_*}$ and $\{i_m\}_{m=0}^{m_*}$ such that $t_0 = 0$, $t_{m_*} \leq t \leq t_{m_*+1}$, $\Phi^{t_m}(z) \in U_{i_m}$ and $t_{m+1} = t_m + T_m$ for any m. Since $t \leq m_* T_*$ and $0 \leq t - t_{m_*} \leq T_*$, we have

$$\alpha(z, t) \leq A_* \lambda_0^{m_*-1} \leq A_* \lambda_0^{(t/T_*)-1}. \quad \square$$

Let $TM|_{M_0}$ denote the restriction of TM on M_0. We say a subbundle E of $TM|_{M_0}$ is Φ-invariant if $D\Phi(E(z)) = E(\Phi(z))$ for any $z \in M_0$ and $t \geq 0$. For a Φ-invariant subbundle E of $TM|_{M_0}$, the flow $D\Phi$ induces a semi-flow $N\Phi E$ on $(TM|_{M_0})/E$ and the norm $\|\|\|$ induces a norm $\|\|_{\Phi}$ on $(TM|_{M_0})/E$. Notice that Φ is a Φ-invariant subbundle of TM. We simply write $N\Phi$ for the flow $N\Phi|_{TM}$ and $\|\|_\Phi$ for the norm $\|\|_{\Phi}$. Define two functions μ_E and μ_{Φ}^2 on $M_0 \times \{t \geq 0\}$ by

$$\mu_E(z, t) = \sup\{\|N\Phi^t(v)\|_\Phi \mid v \in E/T\Phi(z), \|v\|_\Phi \leq 1\},$$

$$\mu_{\Phi}^2(z, t) = \sup\{\|N\Phi^t(v)\|_{\Phi}^2 \mid v \in (TM|_{M_0})/E(z), \|v\|_E \leq 1\}.$$

Remark that μ_E and μ_{Φ}^2 satisfy the inequality (1).

A decomposition $TM|_{M_0} = E^- + E^+$ of $TM|_{M_0}$ is called a (non-trivial) dominated splitting for Φ if (E^-, E^+) is a pair of Φ-invariant two-dimensional subbundles with $E^- \cap E^+ = T\Phi|_{M_0}$ and there exist two constants $C > 0$ and $\lambda \in (0,1)$ such that

$$\mu_{E^-}(z, t) \cdot \mu_{E^+}(z, t)^{-1} < C\lambda^t$$

for any $z \in M_0$ and any $t > 0$. Remark that the definition does not depend on the choice of the norm on TM.

Lemma 2.2. A dominated splitting $TM|_{M_0} = E^- + E^+$ satisfies the followings:

1. E^- is uniquely determined and is continuous.

2. If $\inf_{t \geq 0} \mu_{E^-}(z, t) < 1$ for any $z \in M$, then E^- is a C^1 subbundle of $TM|_{M_0}$.

Proof. The proof is the same as the case of a hyperbolic splitting. See e.g. [4]. For the second assertion, we remark that E^- is codimension one and $N\Phi^t$ is a uniformly exponential contraction on $E^-/T\Phi$ by Lemma 2.1. \square

Proposition 2.3. The followings are equivalent for a continuous Φ-invariant two-dimensional subbundle E of $TM|_{M_0}$:

1. There exists a two-dimensional subbundle E^* of $TM|_{M_0}$ such that $TM|_{M_0} = E^* + E$ is a dominated splitting.
2. $\inf_{t>0}(\mu_E^+(z,t) \cdot \mu_E(z,t)^{-1}) < 1$ for any $z \in M_0$.

Proof. It is trivial that the former implies the latter. Suppose the latter holds. The proof is by a standard argument using the contracting mapping principle. By Lemma 2.1, there exist $C > 0$ and $\lambda \in (0,1)$ such that $\mu_E^+(z,t) \cdot \mu_E(z,t)^{-1} < C \lambda^t$ for any $z \in M_0$ and $t \geq 0$. Put $E_+ = E/T\Phi$. Let E_- be the orthogonal complement of E_+ in $(TM/T\Phi)|_{M_0}$ and fix an orthonormal framing (v_-, v_+) associated to the splitting $(TM/T\Phi)|_{M_0}$. For each $z \in M_0$, let $\left(\begin{array}{cc} a(z,t) & 0 \\ b(z,t) & c(z,t) \end{array} \right)$ be the matrix representation of $N\Phi^t$ with respect to the framing (v_-, v_+). Let $\Gamma(M_0)$ be the Banach space of bounded functions on M_0 with a norm $\| \alpha \| = \sup \{|\alpha(z)| | z \in M_0\}$. We define a semi-flow $\Gamma_\Phi = \{\Gamma^t_\Phi\}$ on $\Gamma(M_0)$ by

$$\Gamma^t_\Phi(\alpha)(z) = c(z,t)^{-1}\{a(\Phi^t(\alpha))a(z,t) - b(z,t)\}.$$

Since $|a(z,t)| = \mu_E^+(z,t)$ and $|c(z,t)| = \mu_E(z,t)$, we obtain that $||\Gamma^t_\Phi(\alpha) - \Gamma^s_\Phi(\alpha')||_F \leq C\lambda^{t-s}\|\alpha - \alpha'\|_F$ for any $\alpha, \alpha' \in \Gamma(M_0)$ and $t \geq s$. By the contracting mapping principle, there exists a unique fixed point α_Φ of Γ_Φ. Let E^s be the two-dimensional subbundle of TM such that $T\Phi \subset E^s$ and $E^s/T\Phi(z)$ is generated by $v_-(z) + \alpha_\Phi(z)v_+(z)$ for any $z \in M_0$. It is easy to check that $TM|_{M_0} = E^s + E$ is a dominated splitting. \hfill \Box

We say a compact subset Λ of M is Φ-invariant if $\Phi^t(\Lambda) = \Lambda$ for any $t \in \mathbb{R}$. By Lemma 2.2, if Λ admits a dominated splitting, then it is unique and continuous.

A Φ-invariant torus T_0 is called normally attracting if it admits a dominated splitting $TM|_{T_0} = E^- + TT_0$ such that $\lim_{t \to -\infty} \mu_{E^-}(z) = 0$ for any $z \in T_0$. A normally repelling torus is a normally attracting torus for Φ^{-1}, where Φ^{-1} is the time-reverse of Φ. We call a Φ-invariant torus T irrational if the restriction of Φ on T is topologically conjugate to an irrational linear flow.

Lemma 2.4. Any Φ-invariant compact set with a dominated splitting contains at most finitely many irrational tori and they are normally attracting or repelling.

Proof. It is a consequence of Proposition 3.9 of [1]. \hfill \Box

Remark that the uniqueness of a dominated splitting implies that any normally attracting irrational torus in Λ is tangent to E^+. Later, we use the following structure theorem of invariant sets with a dominated splitting due to Arroyo and Rodriguez Hertz.

Proposition 2.5 (Theorem 3.8 of [1]). Suppose that Φ is of class C^2 and Λ is a Φ-invariant compact set with a dominated splitting. If all periodic orbits in Λ are of saddle-type and Λ contains no irrational tori, then Λ is a hyperbolic invariant set of saddle-type.
2.2 Projectively Anosov flows

We say Φ is a projectively Anosov flow (or simply a $\mathbb{P}A$ flow) if it admits a dominated splitting $TM = E^s + E^u$ on the whole manifold M. We call the splitting a $\mathbb{P}A$ splitting. A flow is called non-degenerate if all periodic orbits are hyperbolic.

Let $\Omega(\Phi)$ denote the non-wandering set of Φ. The following is an immediate consequence of Lemma 2.4 and Proposition 2.5.

Proposition 2.6. Suppose that Φ is a C^2 non-degenerate $\mathbb{P}A$ flow. Then, there exists a decomposition $\Omega(\Phi) = \Omega_0 \cup \Omega_1 \cup \Omega_2$ of $\Omega(\Phi)$ into Φ-invariant compact sets such that

1. Ω_1 is a hyperbolic set of saddle-type,
2. Ω_0 is the union of finitely many attracting periodic orbits and finitely many Φ-invariant normally attracting irrational tori, and
3. Ω_2 is the union of finitely many repelling periodic orbits and finitely many Φ-invariant normally repelling irrational tori.

We define the stable set $W^{ss}(z)$ and the weak stable set $W^s(z)$ of $z \in M$ by

$$W^{ss}(z) = \left\{ z' \in M \mid \lim_{t \to \infty} d(\Phi^t(z), \Phi^t(z')) = 0 \right\},$$

$$W^s(z) = \bigcup_{t \in \mathbb{R}} W^{ss}(\Phi^t(z)),$$

where $d(\cdot, \cdot)$ is the distance induced from a norm $\| \cdot \|$ on TM. We also define the unstable set $W^{uu}(z)$ and the weak unstable set $W^u(z)$ of $z \in M$ by $W^{uu}(z) = W^{ss}(z; \Phi^{-1})$ and $W^u(z) = W^s(z; \Phi^{-1})$. By the stable manifold theorem, for a point z in a hyperbolic set of saddle type, $W^s(z)$ is diffeomorphic to an open annulus if it contains a periodic orbit, and is diffeomorphic to the plane otherwise.

For a Φ-invariant compact subset Λ of M, we also define the stable set $W^s(\Lambda)$ and the unstable set $W^u(\Lambda)$ by

$$W^s(\Lambda) = \left\{ z' \in M \mid \lim_{t \to \infty} \inf_{z \in \Lambda} d(\Phi^t(z'), z) = 0 \right\},$$

and $W^u(\Lambda) = W^s(\Lambda; \Phi^{-1})$. It is known that $W^s(\Lambda) = \bigcup_{z \in \Lambda} W^s(z)$ and $W^u(\Lambda) = \bigcup_{z \in \Lambda} W^u(z)$ if Λ is a hyperbolic set. In particular, we have

$$M = \Omega_2 \cup W^s(\Omega_0) \cup \left(\bigcup_{z \in \Omega_1} W^s(z) \right) = \Omega_0 \cup W^u(\Omega_2) \cup \left(\bigcup_{z \in \Omega_1} W^u(z) \right). \quad (2)$$

For a foliation \mathcal{F} on M, let $\mathcal{F}(z)$ denote the leaf of \mathcal{F} through $z \in M$.

Lemma 2.7. Suppose that Φ is a C^2 non-degenerate $\mathbb{P}A$ flow with a $\mathbb{P}A$ splitting $TM = E^s + E^u$. Then, E^s defines a C^1 foliation \mathcal{F}^s on $M \setminus \Omega_2$ and $W^s(z)$ is a connected component of $\mathcal{F}^s(z) \setminus \Omega_2$ for any $z \in \Omega_1$.

Similarly, E^u defines a C^1 foliation \mathcal{F}^u on $M \setminus \Omega_0$ and $W^u(z)$ is a connected component of $\mathcal{F}^u(z) \setminus \Omega_0$ for any $z \in \Omega_1$.

Proof. Take an open neighborhood U of Ω_2 so that $\Phi^{-t}(U) \subset U$ for any $t > 0$ and $\bigcap_{t>0} \Phi^{-t}(U) = \Omega_2$. Since $\omega(z, \Phi) \subset \Omega_0 \cup \Omega_1$, we have $\lim_{t \to -\infty} \mu_{E^s}(z, t) = 0$ for any $z \in M \setminus U$. By Lemma 2.2(2) we obtain that E^s is of class C^1 on $M \setminus U$. The invariance of E^s implies that E^s is of class C^1 on $M \setminus \Omega_2$.

To show the latter assertion, we claim that $W^s(z)$ is an open subset of $\mathcal{F}^s(z) \setminus \Omega_2$ for any $z \in \Omega_1$. Fix $z \in \Omega_1$. By the local stable manifold theorem, there exists a two-dimensional injectively immersed submanifold V such that $\Phi^t(V) \subset V$ for any $t > 0$, $\bigcap_{t>0} \Phi^{-t}(V) = \mathcal{O}(z)$, $\bigcup_{t>0} \Phi^{-t}(V) = W^s(z)$, and V is uniformly transverse to E^s. It is easy to verify that the domination property of the splitting $TM = E^s + E^u$ implies that V must be tangent to E^s. Therefore, $W^s(z)$ also is tangent to E^s. Since $W^s(z)$ and $\mathcal{F}^s(z)$ are two-dimensional, it implies the claim.

Since $W^s(\Omega_0)$ is an open subset of M and either $W^s(z) = W^s(z')$ or $W^s(z) \cap W^s(z') = \emptyset$ for any $z, z' \in M$, the claim and the equation (2) imply that $W^s(z)$ is a connected component of $\mathcal{F}^s(z) \setminus \Omega_2$ for any $z \in \Omega_1$.

We can obtain the assertion for E^u by replacing Φ with Φ^{-1}. □

3 Flows with invariant foliations

Let M be a three-dimensional closed manifold and \mathcal{F} be a codimension-one foliation on M. Let $T\mathcal{F}$ denote the tangent bundle of the foliation \mathcal{F}. For $r \geq 1$, let $\mathcal{X}^r(M)$ be the space of C^r-flows on M with the C^r-topology and $\mathcal{X}^r(\mathcal{F})$ the subspace of $\mathcal{X}^r(M)$ consisting of C^r-flows that preserve each leaf of \mathcal{F}. Remark that $\mathcal{X}^r(\mathcal{F})$ is a locally path-connected space.

Recall that a flow $\Phi \in \mathcal{X}^r(\mathcal{F})$ is \mathcal{F}-transversely contracting if $\lim_{t \to -\infty} \mu^\perp_{T\mathcal{F}}(z, t) = 0$ for any $z \in M$. Let $\mathcal{X}_{tc}^r(\mathcal{F})$ be the subset of $\mathcal{X}^r(\mathcal{F})$ consisting of \mathcal{F}-transversely contracting flows and $\mathbb{P}A_{tc}^r(\mathcal{F})$ the subset of $\mathcal{X}_{tc}^r(\mathcal{F})$ consisting of \mathcal{F}-transversely contracting $\mathbb{P}A$ flows. Remark that $\mathcal{X}_{tc}^r(\mathcal{F})$ and $\mathbb{P}A_{tc}^r(\mathcal{F})$ are open subsets of $\mathcal{X}^r(\mathcal{F})$ and any flow in $\mathbb{P}A_{tc}^r(\mathcal{F})$ admits a $\mathbb{P}A$-splitting $TM = E^s + E^u$ with $E^u = T\mathcal{F}$.

For a subset \mathcal{S} of $\mathcal{X}^r(\mathcal{F})$, we say that two flows Φ and Φ' in \mathcal{S} are \mathcal{S}-homotopic if they can be connected by a continuous path in \mathcal{S}. By the same argument as the proof of the Kupka-Smale theorem, we can show that non-degenerate flows are generic in $\mathcal{X}^r(\mathcal{F})$. Since $\mathcal{X}_{tc}^r(\mathcal{F})$ (resp. $\mathbb{P}A_{tc}^r(\mathcal{F})$) is an open subset of a locally path-connected space $\mathcal{X}^r(\mathcal{F})$, any $\mathcal{X}_{tc}^r(\mathcal{F})$ (resp. $\mathbb{P}A_{tc}^r(\mathcal{F})$)-homotopy class contains a non-degenerate flow.
3.1 Deformation to a \mathbb{PA} flow

Let M be a three-dimensional closed manifold. In this subsection, we show that any transversely contracting flow can be deformed into a \mathbb{PA} flow. More precisely, we prove the following proposition.

Proposition 3.1. Suppose that \mathcal{F} is a C^r foliation M with $r \geq 2$. Then, any $\mathcal{X}_c(\mathcal{F})$-homotopy class contains a \mathbb{PA} flow.

For flows Φ_1, Φ_2 on a manifold M and a subset U of M, we write $\Phi_1|_U = \Phi_2|_U$ if $\Phi_1^t(z) = \Phi_2^t(z)$ for any $t \geq 0$ and $z \in \bigcap_{t \in [0,1]} \Phi_1^{-t}(U)$.

Fix a flow Φ in $\mathcal{X}_c(\mathcal{F})$. To simplify notations, put $\mu = \mu_{TF}$ and $\mu^\perp = \mu_{TF}$.

Lemma 3.2. For any attracting periodic orbit $\mathcal{O}(z_\ast)$ of Φ and any neighborhood U of $\mathcal{O}(z_\ast)$, there exists a flow Φ_1 which is $\mathcal{X}_c(\mathcal{F})$-homotopic to Φ and such that $\Phi_1|_{M \setminus U} = \Phi|_{M \setminus U}$, $W^s(z_\ast; \Phi)$ is Φ_1-invariant, and

$$\lim_{t \to \infty} \mu^\perp(z, t; \Phi_1) \cdot \mu(z, t; \Phi_1)^{-1} = 0$$

for any $z \in W^s(z_\ast; \Phi)$.

Proof. Take a C^r embedding $\psi : [-1,1]^2 \to M$ so that $\psi(0,0) = z_\ast$, $\text{Im} \psi$ is transverse to Φ, and $\psi([-1,1] \times y) \subset \mathcal{F}(\psi(0,y))$ for any $y \in [-1,1]$. There exists $\delta \in (0,1)$ such that a function $\tau(x,y) = \inf \{ t > 0 \mid \Phi^t(\psi(x,y)) \in \text{Im} \psi \}$ is well-defined and of class C^r on $[-\delta, \delta]^2$. We can take C^r functions f on $[-\delta, \delta]^2$ and g on $[-\delta, \delta]$ such that $\Phi^\tau(x,y)(\psi(x,y)) = \psi(f(x,y), g(y))$ for any $(x,y) \in [-\delta, \delta]^2$. Put $U' = \{ \Phi^\tau(\psi(x,y)) \mid (x,y) \in [-\delta, \delta]^2 \}$, $t_\ast = \tau(0,0)$. Remark that U' is a neighborhood of $\mathcal{O}(z_\ast)$, t_\ast is the period of z_\ast, $f(0,0) = g(0) = 0$, $|\partial f/\partial x(0,0)| = \mu(z_\ast, t_\ast) < 1$, and $|\partial g/\partial y(0)| = \mu^\perp(z_\ast, t_\ast) < 1$. By replacing $\delta > 0$ with a smaller one, we may assume that $U' \subset U \cap W^s(z_\ast)$ and there exists $\lambda \in (0,1)$ such that $|\partial f/\partial x(x,y)| < \lambda$ and $|\partial g/\partial y(y)| < \lambda$ for any $(x,y) \in [-\delta, \delta]^2$.

Take a function f_1 on $[-\delta, \delta]^2$ so that $f_1 = f$ on $[-\delta, \delta]^2 \setminus [-\delta/2, \delta/2]^2$, $|\partial f_1/\partial x(0,0)| > |\partial f/\partial x(0,0)|$, and $|\partial f_1/\partial x(x,y)| < \lambda$ for any $(x,y) \in [-\delta, \delta]^2$. Put $F_\alpha(x,y) = ((1 - \alpha)f(x,y) + \alpha f_1(x,y), g(y))$. Then, we have $F_\alpha^n(x,y) < \lambda^n \lambda^n$ for any $n \geq 0$ and $(x,y) \in [-\delta, \delta]^2$. In particular, $\lim_{n \to \infty} F_\alpha^n(x,y) = (0,0)$. We can take a $\mathcal{X}(\mathcal{F})$-homotopy $\{ \Phi_\alpha \}_{\alpha \in [0,1]}$ such that $\Phi_0 = \Phi$, $\Phi_0|_{M \setminus U} = \Phi|_{M \setminus U}$ and $\Phi_\alpha(x,y)(\psi(x,y)) = \psi \circ F_\alpha(x,y)$ for any $\alpha \in [0,1]$. Then, z_\ast is an attracting periodic orbit of Φ_α with period t_\ast, such that $W^s(z_\ast; \Phi_\alpha) = W^s(z_\ast; \Phi)$ and $\mu^\perp(z_\ast, t_\ast; \Phi_\alpha) = |\partial g/\partial y(0)| < 1$ for any $\alpha \in [0,1]$. Since $\Phi_0|_{M \setminus U} = \Phi|_{M \setminus U}$ and Φ is \mathcal{F}-transversely contracting, it implies that $\lim_{\alpha \to 0} \mu^\perp(z, t; \Phi_\alpha) = 0$ for any $z \in M$ and $\alpha \in [0,1]$. Therefore, $\{ \Phi_\alpha \}_{\alpha \in [0,1]}$ is a $\mathcal{X}_c(\mathcal{F})$-homotopy. We also see

$$\mu(z_\ast, t_\ast; \Phi_1) = |\partial f_1/\partial x(0,0)| > |\partial g/\partial y(0)| = \mu^\perp(z_\ast, t_\ast; \Phi_1).$$

It implies the equation (3).

\[\square \]
For a flow Ψ on M, let $\text{Per}_0(\Psi)$ denote the union of all attracting periodic orbits of Ψ.

Lemma 3.3. $M \setminus W^s(\text{Per}_0(\Phi))$ admits a dominated splitting.

Proof. We use some terminology and results in the smooth ergodic theory. Refer to the supplement of [4] for example.

Take $\lambda > 0$ so that
$$\limsup_{t \to +\infty} \frac{1}{t} \log \mu^+(z, t) \leq -2\lambda$$
for any $z \in M$. Let U_* be the set of points $z \in M$ satisfying
$$\liminf_{t \to \infty} \frac{1}{t} \log \mu(z, t) < -\lambda.$$

We will show that $U_* \subset W^s(\text{Per}_0(\Phi))$. By Proposition 2.3, it completes the proof.

Fix $z_* \in U_*$. Let $\{m_t\}_{t \geq 0}$ be a family of Borel probability measures on M satisfying
$$\int_M f \, dm_t = \frac{1}{t} \int_0^t f \circ \Phi^t(z_*) \, dt$$
for any continuous function f on M. Choose a sequence $(t_i)_{i \geq 0}$ so that $\lim_{i \to \infty} t_i = \infty$ and $\frac{1}{t_i} \log \mu(z_*, t_i) \leq -\lambda$ for any i. Take the weak*-limit m_* of a subsequence of $\{m_{t_i}\}_{i \geq 0}$. Put $f_0(z) = \frac{1}{m} \log \mu(z, t) |_{t=0}$. Then, we have

$$\int_M f_0 \, dm_* \leq \limsup_{i \to \infty} \int_M f_0 \, dm_{t_i} = \limsup_{i \to \infty} \frac{1}{t_i} \log \mu(z_*, t_i) \leq -\lambda.$$

By the ergodic decomposition theorem and the Birkhoff ergodic theorem, there exists a Φ-invariant ergodic probability measure m_e satisfying $\text{supp}(m_e) \subset \text{supp}(m_*)$ and

$$\lim_{t \to \infty} \frac{1}{t} \log \mu(z, t) = \int_M f_0 \, dm_e \leq \int_M f_0 \, dm_* \leq -\lambda < 0$$

for m_*-almost every $z \in M$, where $\text{supp}(m)$ is the support of a measure m. It implies at least one Lyapunov exponent of m_e is negative. If all Lyapunov exponents of m_e are negative, then $\text{supp}(m_e)$ is an attracting periodic orbit by Pesin theory. In this case, we have $z_* \in W^s(\text{Per}_0(\Phi))$ since $\text{supp}(m_e) \cap \omega(z_0, \Phi) \neq \emptyset$.

Assume that one Lyapunov exponent is non-negative. Let $\lambda_- < \lambda_+$ be the pair of Lyapunov exponents and $TM/T\Phi = \mathcal{E}_- \oplus \mathcal{E}_+$ be the Oseledets decomposition associated with m_e. Then, we have

$$\lim_{t \to \infty} \frac{1}{t} \log ||N\Phi^t(v)||_\Phi = \lambda_+ \geq 0.$$
for m_ϵ-almost every $z \in M$ and any $v \in (TM/T\Phi)(z) \setminus E_-(z)$. The inequality (4) implies that $E_- = T\mathcal{F}/T\Phi$. Moreover, the Oseledec decomposition theorem also implies
\[
\lim_{t \to +\infty} \frac{1}{t} \log \sin \angle(E_-(\Phi^t(z)), E_+(\Phi^t(z))) = 0
\]
for m_ϵ-almost every $z \in M$, where $\angle(E, E')$ denote the angle of two subspaces E and E' of $TM/T\Phi(z')$ for $z' \in M$.

Let $\pi_{E_-}^\perp$ be the orthogonal projection from $TM/T\Phi$ to the orthogonal complement of $E_-=T\mathcal{F}/T\Phi$. Take a unit vector $v_+ \in E_+(z)$. Since $\mu_{\pi_{E_-}^\perp}^\perp(z, t; \Phi_1) = k_{\pi_{E_-}^\perp}^\perp(v_+) / k_{E_-}^\perp(v_+) k_{\Phi}$, we have
\[
\limsup_{t \to +\infty} \frac{1}{t} \log \sin \angle(E_-(\Phi^t(z)), E_+(\Phi^t(z)))
= \limsup_{t \to +\infty} \frac{1}{t} \log \left(\mu^\perp(z, t) \cdot \|N\Phi_1(v_+)\|_\Phi^{-1} \cdot \|\pi_{E_-}^\perp(v_+)\|_\Phi \right)
\leq -2\lambda - \lambda_+ < 0.
\]
It contradicts the equation (5).

Proof of Proposition 3.1. Let Φ be a flow in $\mathcal{X}_{\epsilon_0}^r(\mathcal{F})$. By a remark at the beginning of this section, we may assume that Φ is non-degenerate. By Lemma 3.3, $M \setminus W^s(\text{Per}_0(\Phi))$ admits a dominated splitting. Let Ω_0 be the union of all normally attracting irrational tori. Since Φ is \mathcal{F}-transversely contracting, Φ has neither repelling periodic orbit nor normally repelling irrational tori. Hence, Proposition 2.5 implies that $\Omega_1 = \Omega(\Phi) \setminus (\text{Per}_0(\Phi) \cup \Omega_0)$ is a hyperbolic invariant set of saddle type. Since $\text{Per}_0(\Phi) \subset \text{Per}_0(\Phi)$ is a subset of Ω_1, it is a hyperbolic invariant set. It implies that this set must be empty. In particular, $\text{Per}_0(\Phi)$ is the union of finitely many orbits.

Fix a neighborhood U of $\text{Per}_0(\Phi)$ so that $U \subset W^s(\text{Per}_0(\Phi))$. By Lemma 3.2, we can take a flow Φ_1 which is $\mathcal{X}_{\epsilon_0}^r(\mathcal{F})$-homotopic to Φ and satisfies $\Phi_1|_{M \setminus U} = \Phi|_{M \setminus U}$, $W^s(\text{Per}_0(\Phi); \Phi) = \Phi_1$-invariant, and $\lim_{t \to -\infty} \mu^+(z, t; \Phi_1) = 0$ for any $z \in W^s(\text{Per}_0(\Phi); \Phi)$. Then, Proposition 2.3 implies that Φ_1 is a \mathcal{P}A flow.

3.2 Deformation to an Anosov flow

The aim of this subsection is to show the following proposition, which completes the proof of Theorem 1.1 with Proposition 3.1.

Proposition 3.4. Suppose that \mathcal{F} is a C^r foliation on M with $r \geq 2$. Then, any $\mathcal{P}\mathcal{A}_c^r(\mathcal{F})$-homotopy class contains an Anosov flow.

To simplify the proof, we assume that \mathcal{F} is orientable and transversely orientable. For the other cases, the proof can be done with a small modification. Fix a flow Φ in $\mathcal{P}\mathcal{A}_c^r(\mathcal{F})$ with $r \geq 2$. By a remark at the beginning of this section, we may assume that Φ is non-degenerate. Let $\Lambda_\epsilon(\mathcal{F})$ be the union of closed
holonomy of W in trivial holonomy. Fix a simple closed curve γ on ψ we can take an embedding γ, since W is connected, there exists a torus T_γ such that γ is a locally maximal hyperbolic invariant set and E^e and E^s are mutually transverse, the relation \leq is a partial order. Let S_- be the subset of S consisting of $A_i \in S$ with $W^u(A_i) \cap W^s(A_\gamma(F)) \neq \emptyset$. Notice that if $A_i \in S_-$ and $A_j \leq A_i$, then $A_j \in S_-$. Since $\Phi(\Phi) \subset A_\gamma(F)$, the equation (6) implies that $M = \bigcup_{z \in \Omega_h} W^u(z) \cup A_\gamma(F)$. Since $W^u(A_\gamma(F))$ is an open and proper subset of M, the set S_- is non-empty.

Take a minimal element A_γ of S_-. Then, we have $W^u(A_\gamma) \subset A_- \cup W^s(A_\gamma(F))$. By Proposition 1 of [9], there exists a periodic point $z_h \in A_-$ and a connected component L of $W^u(z_h) \setminus O(z_h)$ such that $L \subset W^s(A_\gamma(F))$. Since L is connected, there exists a torus $T_* \subset A_\gamma(F)$ and a connected component U of $W^s(T_*) \setminus T_*$ such that $L \subset U$. By the normal hyperbolicity of T_*, we can take an embedding $\psi_* : \mathbb{T}^2 \times [0, 1] \to W^s(T_*)$ so that $\psi_*(\mathbb{T}^2 \times 0) = T_*$, $\psi_*(\mathbb{T}^2 \times [0, 1]) \subset U$, and $\psi_*(\mathbb{T}^2 \times 1)$ is transverse to Φ.

Let F_* be the restriction of F on $\psi_*(\mathbb{T}^2 \times 1)$. By the classification of C^2 Reebless foliation on $\mathbb{T}^2 \times [0, 1]$ due to Moussu and Roussarie [8], F_* must have trivial holonomy. Fix a simple closed curve γ in L which is homotopic to $O(z_h)$ in $W^u(z_h)$. Since $F(z_h) = W^u(z_h)$ by Lemma 2.7 and $F'(\gamma) \subset \psi_*(\mathbb{T}^2 \times (0, 1))$ for any sufficiently large $t > 0$, $\psi_*(\mathbb{T}^2 \times 1) \cap L$ is a closed leaf γ' of F_* which is homotopic to $O(z_h)$ in $F(z_h)$. Since z_h is a hyperbolic periodic point, the linear holonomy of F_* along γ' is non-trivial. It contradicts the result of Moussu and Roussarie. □

Second, we see that each attracting periodic orbit is contained in an invariant closed annulus.

Lemma 3.6. For any $z_h \in Per_0(\Phi) \setminus A_\gamma(F)$, there exists an embedded closed annulus $A \subset F(z_h)$ such that boundary components of A are saddle-type periodic orbits in Ω_h and the interior of A is a subset of $W^s(z_h)$.
Proof. Take an embedded closed annulus $A_0 \subset W^s(z_*) \cap \mathcal{F}(z_*)$ so that $\mathcal{O}(z_*) \subset \text{Int } A_0$ and the boundary components γ_{\pm} are transverse to Φ. By Lemma 2.7, $W^u(z)$ is a connected component of $\mathcal{F}(z) \cap \text{Per}_0(\Phi)$ for any $z \in \Omega_b$. The equation (6) implies that $\gamma_{\pm} \subset W^u(z_{\pm})$ for some $z_{\pm} \in \Omega_b$. By the Poincaré-Bendixson theorem, $W^u(z_{\pm})$ is not diffeomorphic to the plane. Hence, it is an open annulus and there exists a periodic point $z_{\pm} \in \Omega_b$ with $W^u(z_{\pm}) = W^u(z_{\pm}')$. Now, it is easy to construct a closed annulus A_{\pm} so that $\partial A_{\pm} = \{\mathcal{O}(z_*), \mathcal{O}(z_{\pm}')\}$ and Int $A_{\pm} \subset W^u(z_{\pm}) \cap W^s(z_*)$. Since $\mathcal{F}(z_*)$ is not a torus, a subset $A = A_+ \cup A_-$ of $\mathcal{F}(z_*)$ is an annulus with Int $A \subset W^s(z_*)$.

The main step of the proof is the following elimination lemma of periodic points.

Lemma 3.7. For any $z_* \in \text{Per}_0(\Phi) \setminus \Lambda_*(\mathcal{F})$, there exists a non-degenerate flow Φ_* in \mathcal{F} which is \mathcal{F}-homotopic to Φ and satisfies $\text{Per}_0(\Phi_*) = \text{Per}_0(\Phi) \setminus \mathcal{O}(z_*)$.

Proof. By Lemma 3.6, there exists an embedded annulus $A \subset \mathcal{F}(z_*)$ such that $\mathcal{O}(z_*) \subset \text{Int } A \subset W^s(z_*)$ and boundary components of A are periodic orbits in Ω_b. Since Φ admits neither repelling periodic orbits nor normally repelling irrational invariant tori, Lemma 2.2 implies that E^s is a C^1 subbundle of TM. Hence, we can take a C^1 embedding $\psi : [-2,2]^2 \to M$ so that $\text{Im } \psi \cap \text{Per}_0(\Phi) = \{\psi(0,0)\} = \{z_*\}$, $\psi(0 \times [-1,1]) = A \cap \text{Im } \psi$, $\text{Im } \psi$ is transverse to Φ, $\text{D} \psi(e_x(w)) \in E^s(\psi(w))$ and $\text{D} \psi(e_y(w)) \in E^u(\psi(w))$ for any $w \in [-2,2]^2$, where (e_x, e_y) is the natural orthonormal framing of $T\mathbb{R}^2$. Fix $\delta \in (0,1)$ so that a function $\tau(w) = \inf \{t > 0 \mid \Phi^t \circ \psi(w) \in \text{Im } \psi\}$ is well-defined and of class C^1 on $[-\delta, \delta] \times [-1-\delta, 1+\delta]$. Put $I = [-\delta, \delta]$, $J = [-1-\delta, 1+\delta]$, and define a map $F : I \times J \to [-2,2]^2$ by $\psi \circ F(w) = \Phi^w \circ \psi(w)$. Then, there exist functions f on I and g on J such that $F(x,y) = (f(x), g(y))$ for $(x,y) \in I \times J$. Remark that $f(0) = 0, g(y) = y_*$ for $y_* = 0, \pm 1$, $f'(0) < g'(0) < 1$, and $g'(\pm 1) > 1$. By replacing δ with a smaller one, we may assume that there exists $\lambda > 1$ such that $f'(x) \leq \lambda^{-1}$ for any $x \in I$ and $g'(y) \geq \lambda$ for any $y \in J \setminus [-1,1]$.

Put

$$V_a = \{\Phi^t \circ \psi(w) \mid w \in I^2, t \in [0, \tau(w)]\}$$

$$V(n) = \{\Phi^t \circ \psi(w) \mid w \in I \times g^{-n}(J), t \in [0, \tau(w)]\}$$

for $n \geq 0$. Remark that $V_a \subset W^s(z_*) \cap \left(\bigcap_{n \geq 0} V(n)\right)$ for any $n \geq 0$. We also put $\Lambda_* = \text{Per}_0(\Phi) \cup \Lambda_*(\mathcal{F}) \setminus \mathcal{O}(z_*; \Phi)$. Since $\Lambda_*(\mathcal{F})$ consists of normally attracting tori, we have $\Lambda_*(\mathcal{F}) \cap \mathcal{O}(z_*) = \emptyset$. It implies $\Lambda_*(\mathcal{F}) \cap A = \emptyset$. Recall that $\text{Per}_0(\Phi)$ consists of finitely many orbits and $\text{Per}_0(\Phi) \cap A = \mathcal{O}(z_*)$. By replacing δ with a smaller one again, we may assume that $\Lambda_* \subset V(0) = \emptyset$.

Take a neighborhood $V_* \subset \mathcal{F}$ of Λ_* so that $V_* \subset W^u(\Lambda_*) \cap \text{Per}_0(\Phi)$ and $\Phi^t(V_{\gamma}) \subset V_*$ for any $t \geq 0$. Remark that $\bigcap_{n > 0} \Phi^n(\Lambda_* = \Lambda_* \cap V_* \cup V_*$ for any $t \geq 0$. For any $z \in \mathcal{F}(V_* \cup V_a)$, we have

$$\lim_{t \to +\infty} \mu(z, -t) = 0, \quad \lim_{t \to +\infty} \mu_1(z, -t)^{-1} = 0$$

11
since \(\omega(z, \Phi^{-1}) \subset \Omega_b \). By Lemma 2.1 for \(\Phi^{-1} \), there exists \(C_* > 1 \) and \(\lambda_* \in (0, 1) \) such that

\[
\mu(z, t)^{-1} = \mu(\Phi^t(z), -t) \leq C_* \lambda_*^t, \quad (7)
\]

\[
\mu^+(z, t) = \mu^+(\Phi^t(z), -t)^{-1} \leq C_* \lambda_*^t \quad (8)
\]

for any \(t \geq 0 \) and \(z \in M \setminus \Phi^{-I}(V_* \cup V_a) \).

Put \(\lambda_0 = \inf \{ g'(y) \mid y \in J \} \) and \(K = \| D\psi \| \cdot \| D\psi^{-1} \| \). Fix \(n_0 \geq 1 \) so that \(\lambda_0 > 8C_* K \). We take a continuous family \(\{ f_t \}_{t \in [0, 1]} \) of \(C^1 \) function on \(J \) with following conditions:

- \(f_0 = g, \ (f_t)' > 1 \).
- \(f_{\alpha}(J) = g_{\alpha}(J) = \alpha \) and \((g_{\alpha})' \geq \lambda_0 / 2 \) for any \(\alpha \in [0, 1] \),
- \((g_{\alpha})'(y) > 1 \) for any \(\alpha \in [0, 1] \) and \(y \in J \setminus \bigcup_{n \geq 0} g_{\alpha}^{-n}(J) \), and
- \((g_{\alpha})'(y) \geq f'(0) \) for any \(\alpha \in [0, 1] \) and any fixed point \(y_* \) of \(g_{\alpha} \).

![Figure 1: The family \(\{ g_{\alpha} \}_{\alpha \in [0, 1]} \) and the function \(h \)](image)

We also take a smooth even function \(h \) on \(\mathbb{R} \) so that \(h|_{[0, 1]} = 0, h|_{f(J)} = 1 \), and \(h'|_{[0, 1]} \leq 0 \). See Figure 1. Define a map \(F_\alpha \) by \(F_\alpha(x, y) = (f(x), (1 - h(x))g(y) + h(x)g_{\alpha}(y)) \). The family \(\{ F_\alpha \}_{\alpha \in [0, 1]} \) induces a homotopy \(\{ F_\alpha \}_{\alpha \in [0, 1]} \) of flows such that \(F_{\alpha} \mid_{\Lambda^1 V(n_0)} = \Phi \mid_{\Lambda^1 V(n_0)} \) and \(F_{\alpha} \mid_{\Lambda^1 V(n_0)} \psi(w) = \psi \circ F_{\alpha}(w) \) for any \(w \in I \times J \). See Figure 2.

We reduce the proof to the following claim for \(\{ F_{\alpha} \} \), which we show later.

Claim 3.8. \(\text{Per}_0(\Phi_1) = \text{Per}_0(\Phi) \setminus \mathcal{O}(z_*) \), \(\{ F_{\alpha} \}_{\alpha \in [0, 1]} \) is a \(\mathcal{P} \Lambda^1_\text{c}(\mathcal{F}) \)-homotopy, and \(M \setminus W^s(\Lambda_*; \Phi_1) \) is a hyperbolic invariant set of saddle-type for \(\Phi_1 \).

Suppose the claim holds. Since \(\Phi_1 \) is of class \(C^r \) on \(M \setminus V(n_0) \) and all periodic orbits in \(M \setminus V(n_0) \) are hyperbolic, we can perturb \(\Phi_1 \) into a \(C^r \) non-degenerate flow \(\Phi_* \) which is \(\mathcal{P} \Lambda^1_\text{c}(\mathcal{F}) \)-homotopic to \(\Phi_1 \) (and hence, to \(\Phi \)) and such that \(\Phi_* \mid_{M \setminus V(n_0)} = \Phi_1 \mid_{M \setminus V(n_0)} \).

Notice that if a flow \(\Psi \) on \(M \) satisfies \(\Psi \mid_{M \setminus V(n_0)} = \Phi \mid_{M \setminus V(n_0)} \), then \(\bigcup_{t \geq 0} \Psi^t(V_*) = \Lambda_* \) and \(\bigcup_{t \geq 0} \Psi^{-t}(V_*) = W^s(\Lambda_*; \Psi) \). By the stability of isolated hyperbolic invariant sets, the claim implies that \(M \setminus W^s(\Lambda_*; \Phi_1) \) is a hyperbolic invariant
Figure 2: The family \(\{F_\alpha\}_{\alpha \in [0,1]} \)

set of saddle-type for \(\Phi_* \) if \(\Phi_* \) is sufficiently close to \(\Phi_1 \). In particular, we have \(\text{Per}_0(\Phi_*) = \text{Per}_0(\Phi_1) = \text{Per}_0(\Phi) \setminus \mathcal{O}(z_\ast) \). By approximating a homotopy connecting \(\Phi \) and \(\Phi_* \) by the one in \(\mathcal{P}_n^\alpha(F) \), we complete the proof of the lemma.

Proof of Claim 3.8. It is sufficient to show inequalities

\[
\lim_{t \to \infty} \mu^+(z, t; \Phi_\alpha) \cdot \mu(z, t; \Phi_\alpha)^{-1} = 0, \quad \lim_{t \to \infty} \mu^-(z, t; \Phi_\alpha) = 0 \quad (9)
\]

for any \(z \in M \) and \(\alpha \in [0,1] \), and

\[
\lim_{t \to \infty} \mu(z, t; \Phi_1)^{-1} = 0 \quad (10)
\]

for any \(z \in M \setminus W^s(\Lambda_\alpha; \Phi_1) \).

First, we suppose that there exists \(T_1 > 1 \) such that \(\Phi_\alpha^t(z) \notin V(n_0) \) for any \(t \geq T_1 \). In this case, we can show the inequalities (9) for \(\Phi_\alpha^t(z) \) since \(\Phi \) is a flow in \(\mathcal{P}_n^\alpha(F) \) and \(\Phi_\alpha|_{M \setminus V(n_0)} = \Phi|_{M \setminus V(n_0)} \) for any \(\alpha \in [0,1] \). It implies the same inequalities hold for \(z \). Similarly, the inequality (10) holds if \(z \notin W^s(\Lambda_\alpha; \Phi_1) \).

Second, we suppose that there exists \(T_2 > 0 \) such that \(\Phi_\alpha^t(z) \in V(n_0) \) for any \(t \geq T_2 \). Then, there exist \(t > 0 \) and \(w = (x, y) \in I \times g^{-n_0}(J) \) such that \(\Phi_\alpha^t(z) = \psi(w) \) and \(F^\alpha_n(w) \in I \times g^{-n_0}(J) \) for any \(n \geq 0 \). It implies that \(\lim_{n \to -\infty} F^\alpha_n(x, y) = (0, y_\ast) \) for some fixed point \(y_\ast \) of \(g_\alpha \). By the construction of \(g_\alpha \), the inequalities (9) and (10) hold for \(z \).

At last, we suppose that the set \(\{ t \geq 0 \mid \Phi_\alpha^t(z) \in V(n_0) \} \) consists of infinitely many connected components \(\{[t_i, t_i']\}_{i=0}^\infty \) for \(z \in M \). Since \(\Phi_\alpha^t(V_\ast) \subset V_\ast \) for any \(t \geq 0 \) and \(V_\ast \cap V(0) = \emptyset \), we have \(\Phi_\alpha(z) \notin V_\ast \) for any \(t \geq 0 \). We order \(\{[t_i, t_i']\}_{i=0}^\infty \) so that \(t_{i+1} > t_i \) for any \(i \). For each \(i \geq 1 \), there exist \((x_i, y_i) \in (I \setminus f(I)) \times g^{-n_0}(J) \), \(n_i \geq n_0 \), and \(t_i \in (t_i', t_{i+1}) \) such that \(\Phi_\alpha^t(z) = \psi(x_i, y_i) \), \(\Phi_\alpha^t(z) = \psi \circ F^\alpha_n(x_i, y_i) \), and \(F^\alpha_n(x_i, y_i) \in I \times (J \setminus g^{-1}(J)) \). Notice that \(\Phi^t(z) \notin V(n_0) \) for any \(t \in (t_i', t_{i+1}) \). Since \(n_i \geq n_0 \), we have

\[
\mu^-(\Phi_\alpha^t(z), t_i' - t_i; \Phi_\alpha) \leq K \cdot (f_n)^t \leq K \cdot (s_\alpha)^{-1}.
\]
and
\[\mu(\Phi^t_\alpha(z), t_i - t_i; \Phi_\alpha) \geq K^{-1}(\lambda_2/2)\lambda^{n_i-1} \geq 4C_\ast. \]

The latter inequality follows from
\[||DF_\alpha(e_y(x_i, y_i))|| = (1 - h(x))g'(y_i) + h(x)(g_\alpha)'(y_i) \geq \lambda_2/2 \]
and
\[||DF_\alpha(e_y(F^n_\alpha(x_i, y_i)))|| = \begin{cases} (g_\alpha)'(y_i) \geq 1 & (1 \leq n \leq n_i - n_0), \\ (g_\alpha)'(y_i) \geq \lambda & (n_i - n_0 + 1 \leq n \leq n_i). \end{cases} \]

Since \(\Phi_t^i(z) \notin V(n_0) \cup V_\ast \) for any \(t \in (t_i, t_{i+1}) \), the inequalities (7) and (8) imply
\[\mu(\Phi^t_\alpha(z), t_{i+1} - t_i; \Phi_\alpha) \geq 4, \quad \mu^\perp(\Phi^t_\alpha(z), t_{i+1} - t_i; \Phi_\alpha) \leq 1/8. \] (11)

for any \(i \geq 1 \). Therefore, the inequalities (9) and (10) hold for \(z \).

Now, we prove Proposition 3.4. Any \(\mathbb{P}A_\alpha^r(F) \)-homotopy class contains a non-degenerate flow. By Proposition 2.6, any non-degenerate flow in \(\mathbb{P}A_\alpha^r(F) \) admits only finitely many attracting periodic orbits. Hence, Lemma 3.7 implies that any \(\mathbb{P}A_\alpha^r(F) \)-homotopy class contains a non-degenerate flow \(\Phi \) such that all attracting periodic orbits are contained in \(\Lambda_\ast(F) \). By Lemma 3.5, \(\Phi \) is an Anosov flow.

References

