Homework exercises for Kyoto course:

1) Let M_{0} be a ${ }^{*}$-subalgebra of $\mathcal{B}(\mathcal{H})$ and M its weak closure. Show that there is a projection $p \in M$ such that $p \in M_{0}^{\prime \prime}, m \mapsto m p$ is a weakly and strongly continuous isomorphism and $M p$ is a von Neumann algebra on $p \mathcal{H}$.
2) Show that $L^{\infty}([0,1])$ is equal to its own commutant (is "maximal abelian") on $L^{2}([0,1])$.
3) Use the ideas in the lecture to prove Goldman's theorem-that a subfactor of index two is the fixed point algebra for an action of $\mathbb{Z} / 2 \mathbb{Z}$.
4) Show that the trace of any word on the e_{i} 's is determined by the Temperly-Lieb relations and the Markov trace relation.
5) Calculate the Jones polynomial of a $(2, n)$ torus link (i.e. the closure of $\sigma_{1}^{n} \in$ B_{2}).
6) Make the following links into closed braids:

