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Generalities on von Neumann algebras

A von Neumann (vN) algebra is a *-algebra of operators acting on a

Hilbert space, M C B(H), that contains 1 = idy and satisfies any of the
following equivalent conditions:

1 M is closed in the weak operator (wo) topology.
2 M is closed in the strong operator (so) topology.
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Examples.(a) If S = §* C B(H), then the commutant (or centralizer) of S
in B(H), S" :={y € B(H) | yx = xy,Vx € S}, satisfies 2 above, so it is a
vN algebra; (b) if p € P(M), then pMp C B(p(H)) is vN algebra.

e von Neumann’s Bicommutant Theorem shows that M C B(H)
satisfies the above conditions iff M = (M') = M".

e Kaplansky Density Theorem shows that if M C B(H) is a vN algebra
and My C M is a *-sublgebra that's wo-dense in M, then (I\/Io)lso = (M);.

e A vN algebra M is closed to polar decomposition and Borel functional
calculus. Also, if {x;}; C (My)1 is an increasing net, then sup; x; € M,

and if {p;}; C M are mutually orthogonal projections, then >, p; € M.
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e B(H) itself is a vN algebra.

e Let (X, ) be a standard Borel probability measure space (pmp). Then
the function algebra LX = L*°(X, u) with its essential sup-norm || ||co,
can be represented as a *-algebra of operators on the Hilbert space

[?X = L%(X, ), as follows: for each x € L®X, let A(x) € B(L?X) denote
the operator of (left) multiplication by x on L2X, i.e., A\(x)(§) = x&,

V&€ € 12X. Then x +— A(x) is clearly a *-algebra morphism with
IAC)NIB12x) = lIX]lo, Vx. Its image A C B(L2X) satisfies A" = A, in
other words A is a maximal abelian *-subalgebra (MASA) in B(L2X).

Indeed, if T € A’ then let £ = T(1) € L°X. Denote by A(€) : L2X — L1X
the operator of (left) multiplication by &, which by Cauchy-Schwartz is
bounded by ||¢]]2. But T : L2X — L2X C L'X is also bounded as an
operator into L1X, and A(&), T coincide on the || ||2-dense subspace
L>®X C L?X (Exercise!) Thus, A\(€) = T on all L2, forcing £ € L>®X
(Exercisel).

This shows that A is a vN algebra (by vN's bicommutant thm). 20



A key example: the hyperfinite Il; factor

A vN algebra M is called a factor if its center, Z(M) := M’ N M, is trivial,
Z(M) =

e Let Ry be the algebraic infinite tensor product M(C)®, viewed as
inductive limit of the increasing sequence of algebras M (C) = M(C)®"
via the embeddings x — x ® Iy,. Endow Ry with the norm

Ix|| = |Ix||myn. if X € Man C Rg, which is clearly a well defined operator
norm, i.e., satisfies || x*x|| = ||x||2. One also endows Ry with the functional
7(x) = Tr(x)/2", for x € M, which is well defined, positive

(T(x*x) > 0,Vx) and satisfies 7(xy) = 7(yx),Vx,y € Ry, 7(1) =1, i.e., it
is a trace state. Define the Hilbert space L2(Ry) as the completion of Ry
with respect to the Hilbert-norm ||y||2 = 7(y*y)'/?, y € Ry, and denote
Ry the copy of Ry as a subspace of L?(Rp).

For each x € Ry define the operator A\(x) on L2(Ro) by A\(x)(¥) = Xy,

Yy € Ry. Note that Ry > x — A(x) € B(L? ) is a *-algebra morphism with
IAGAN = [Ix]l, ¥x. Moreover, (A(x)(1),1),2 = 7(x).

B(
1
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One similarly defines p(x) to be the operator of right multiplication by x
on L2(Ry), for which we have [A(y), p(x)] =0, ¥x,y € Ro.
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One similarly defines p(x) to be the operator of right multiplication by x
on L2(Ry), for which we have [A(y), p(x)] =0, ¥x,y € Ro.

One can easily see that the vN algebra R := A(Ro) " = A(Ro)  is a factor
(Exercise!). It can alternatively be defined by R = p(Ry)’ (Exercise!). This
is the hyperfinite Il; factor.
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One can easily see that the vN algebra R := A(Ro) " = A(Ro)  is a factor
(Exercise!). It can alternatively be defined by R = p(Ry)’ (Exercise!). This
is the hyperfinite Il; factor.

Yet another way to define R is as the completion of Ry in the topology of
convergence in the norm ||x||2 = 7(x*x)%/? of sequences that are bounded
in the operator norm (Exercise!). Notice that, in both definitions, 7
extends to a trace state on R. Note also that if one denotes by Dy C Ry
the natural “diagonal subalgebra” (...), then (Do, 7|p,) coincides with the
algebra of dyadic step functions on [0, 1] with the Lebesgue integral. So its
closure in R in the above topology, (D, 7p), is just (L*°([0,1]), [ du).
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in the operator norm (Exercise!). Notice that, in both definitions, 7
extends to a trace state on R. Note also that if one denotes by Dy C Ry
the natural “diagonal subalgebra” (...), then (Do, 7|p,) coincides with the
algebra of dyadic step functions on [0, 1] with the Lebesgue integral. So its
closure in R in the above topology, (D, 7p), is just (L*°([0,1]), [ du).

Note that (Rp, 7) (and thus R) is completely determined by the sequence
of partial isometries vi = e, v, = (M7 eb,)el,, n > 2, with p, = v,V
satisfying 7(p,) =27 " and p, ~ 1 — >, p; (Exercise!)
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Finite factors: some equivalent characterizations

Let M be a vN factor. The following are equivalent:

1° M is a finite vN algebra, i.e., if p € P(M) satisfies p ~ 1 = 1y, then
p =1 (any isometry in M is necessarily a unitary element).

2° M has a trace state 7 (i.e., a functional 7 : M — C that's positive,
T(x*x) > 0, with 7(1) = 1, and is tracial, 7(xy) = 7(yx),Vx,y € M).
3° M has a trace state 7 that's completely additive, i.e.,

T(Xipi) = Xit(pi), Y{pi}i € P(M) mutually orthogonal projections.
4° M has a trace state 7 that's normal, i.e., 7(sup; x;) = sup; 7(x;),
V{xi}i C (M4)1 increasing net.

Thus, a vN factor is finite iff it is tracial. Moreover, such a factor has a
unique trace state 7, which is automatically normal and faithful,
and satisfies co{uxu™* | v € U(M)} N C1 = {7(x)1}, Vx € M.
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Some preliminary lemmas

Lemma 1

If a vN factor M has a minimal projections, then M = B(ézl), for some /.
Moreover, if M = B(Ezl), then the following are eq.:

1° M has a trace.
2° || < 0.
3° M is finite, ie. ue M, t*u=1= uu* =1

Proof. Exercise.

7/20



Some preliminary lemmas

Lemma 1

If a vN factor M has a minimal projections, then M = B(¢2]), for some /.
Moreover, if M = B(Ezl), then the following are eq.:

1° M has a trace.
2° || < 0.
3° M is finite, ie. ue M, t*u=1= uu* =1

Proof. Exercise.

Lemma 2

If M is finite then:

(a) p,ge P(M),p~q=1-p~1—gq.
(b) pMp is finite Vp € P(M), i.e., g € P(M), g < p, g ~ p, then g = p.

Proof. Use the comparison theorem (Exercise).
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Lemma 3

If M vN factor with no atoms and p € P(M) is so that dim(pMp) = oo,
then 3Py, Py € P(M), Py ~ P1, Py + P1 = p.

Proof. Consider the family F = {(p?,p}),- | with p?,pj-l all mutually
orthogonal < p such that p? ~ p,-l, Vi}, with its natural order. Clearly
inductively ordered. If (p?, p});c/ is a maximal element, then
Po=3;p2 P1 =3, p} will do (for if not, then the comparison Thm.
gives a contradiction).
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Lemma 3

If M vN factor with no atoms and p € P(M) is so that dim(pMp) = oo,
then 3Py, Py € P(M), Py ~ P1, Py + P1 = p.

Proof. Consider the family F = {(p?,p}),- | with p?,pj-l all mutually
orthogonal < p such that p? ~ p,-l, Vi}, with its natural order. Clearly
inductively ordered. If (p?, p});c/ is a maximal element, then
Po=3;p2 P1 =3, p} will do (for if not, then the comparison Thm.
gives a contradiction).

Lemma 4

If M is a factor with no minimal projections, then 3{p,}, C P(M)
mutually orthogonal such that p, ~1—>"" , p;, Vn.

Proof. Apply L3 recursively.
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Lemma 5

If M is a finite factor and {pp}, C P(M) are as in L4, then:

(a) If p < pp, Vn, then p = 0. Equivalently, if p # 0, then 3n such that
pn < p. Moreover, if n is the first integer such that p, < p and p}, < p,
Pp ~ Pn, then p — pj, < pp.

(b) If {gn}n C P(M) increasing and g, < g € P(M) and q — qn < pn, Vn,
then g, ' q (with so-convergence).

(C) Zn Pn = L.

Proof. If p =~ pj, < p,, ¥n, then P =" pj, and Po = >, p,; satisfy
Py < P and Py ~ P, contradicting the finiteness of M. Rest is Exercise!
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Proof. If p =~ pj, < p,, ¥n, then P =" pj, and Po = >, p,; satisfy
Py < P and Py ~ P, contradicting the finiteness of M. Rest is Exercise!

Lemma 6

Let M be a finite factor without atoms. If p € P(M), #£ 0, then 3 a
unique infinite sequence 1 < n; < np < ... such that p decomposes as

P = _4>1 Pn, for some {p;, }x C P(M) with p, ~ py,, k.

Proof. Apply Part (a) of L5 recursively (Exercise!).
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If M is a finite factor without atoms, then we let dim : P(M) — [0, 1] be
defined by dim(p) = 0 if p =0 and dim(p) = >_;2; 27, if p # 0, where
n < np < ..., are given by L4.
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If M is a finite factor without atoms, then we let dim : P(M) — [0, 1] be
defined by dim(p) = 0 if p =0 and dim(p) = >_;2; 27, if p # 0, where
n < np < ..., are given by L4.

dim satisfies the conditions:
(a) dim(p,) = 27"
(b) If p, g € P(M) then p ~ q iff dim(p) < textdim(q)

(c) dim is completely additive: if g; € P(M) are mutually orthogonal,
then dim():,-q;) = Z,-dim(q,-).

Proof: Exercisel.
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If M is a finite factor without atoms, then we let dim : P(M) — [0, 1] be
defined by dim(p) = 0 if p =0 and dim(p) = >_;2; 27, if p # 0, where
n < np < ..., are given by L4.

Lemma 7

dim satisfies the conditions:

(a) dim(pp) =27"

(b) If p, g € P(M) then p ~ q iff dim(p) < textdim(q)

(c) dim is completely additive: if g; € P(M) are mutually orthogonal,
then dim(X;q;) = X;dim(q;).

Proof:- Exercise!.

Lemma 8 (Radon-Nykodim trick)

Let ¢, : P(M) — [0, 1] be completely additive functions, ¢ # 0, and
e > 0. There exists p € P(M) with dim(p) = 27" for some n > 1, and
0 > 0, such that 6p(q) < ¥(q) < (1 +¢)0¢p(q), Yq € P(pMp).
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Proof. Denote F = {p | In with p ~ p,}. Note first we may assume ¢
faithful: take a maximal family of mutually orthogonal non-zero
projections {e;}; with ¢(ej) =0, Vi, then let f =1 — %", e; # 0 (because
©(1) # 0); it follows that ¢ is faithful on fMf, and by replacing with some
fo < fin F, we may also assume f € F. Thus, proving the lemma for M
is equivalent to proving it for fMf, which amounts to assuming ¢ faithful.
If 9 = 0, then take § = 0. If ¢ # 0, then by replacing ¢ by (1) "1y and
1 by (1)1, we may assume (1) = 9(1) = 1. Let us show this implies:

(1) 3g € F, s.t. Vgo € F, go < g, we have p(go) < 1(go). For if not then
(2) Vg € F,3go € F, g0 < g s.t. v(go) > ¥(go).

Take a maximal family of mut. orth. projections {g;}; C F, with

o(gi) > Y(gi) Vi If1 =58 #0, thentake g € F, g <1-> . g (cf.

L5) and apply (2) to get go < g, go € F with p(go) > (o),
contradicting the maximality. Thus,

1= sO(Z g) = Zw(gi) > Zi/}(gi) = %Z)(Z g)=v(1) =1,

a contradiction. Thus, (1) holds true.
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Define 6 = sup{¢' | ¢'(go) < ¥(g0), Vg0 < g, 80 € F}-

Clearly 1 < 60 < oo and f¢(go) < ¥(go), Vg0 < g,80 € F. Moreover, by
def. of 6, there exists go € F, go < g, s.t., 0p(go) > (1 +¢) " 9(go).

We now repeat the argument for ¢ and (1 + )¢ on goMgp, to prove that
(3) 3g’ € F, g’ < go, such that for all gj € F, g} < go, we have

1(g9) < O(1 + 2)¢(gp)-

Indeed, for if not, then

(4)Vg' € F. g’ < go, gy < g’ in F s.t. ¥(gg) > 0(1 +€)(gy).

But then we take a maximal family of mutually orthogonal g/ < go in F,
s.t. ¥(g!) > 60(1 +¢<)p(g!), and using L5 and (4) above we get

Y. & = go. This implies that ¢(go) > 6(1 + €)¢(go0) > (&), a
contradiction. Thus, (3) above holds true for some g’ < gp in F . Taking
p =g, we get that any g € F under p satisfies both 6¢(q) < 1(q) and
¥(q) < 6(1+¢)p(q). By complete additivity of ¢, and L6, we are done.
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We now apply L8 to ¢ = dim and ¢ a vector state on M C B(H), to get:

Ve > 0, 3p € P(M) with dim(p) = 2" for some n > 1, and a vector
(thus normal) state ¢ on pMp such that, Vg € P(pMp), we have
(1+¢)"wo(q) < dim(q) < (1 +¢)po(q)-

Proof: trivial by L8
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We now apply L8 to 1) = dim and ¢ a vector state on M C B(H), to get:

Lemma 9

Ve > 0, 3p € P(M) with dim(p) = 27" for some n > 1, and a vector
(thus normal) state ¢g on pMp such that, Vq € P(pMp), we have
(1+¢)"wo(q) < dim(q) < (1 +¢)po(q)-

Proof: trivial by L8

Lemma 10

With p, ¢g asin L9, let vi = p, v, ..., von € M such that v;v;* = p,
Yoivivi=1. Let p(x) := 2,2”1 wo(vixvi), x € M. Then ¢ is a normal
state on M satisfying p(x*x) < (1 + &)p(xx*), Vx € M.

Proof. Note first that @o(x*x) < (14 €)po(xx*), ¥x € pMp (Hint: do it
first for x partial isometry, then for x with x*x having finite spectrum). To
deduce the inequality for ¢ itself, note that 3 _; v/'v; = 1 implies that for
any x € M we have

x) =Y wo(vix* (D viv)xvi) Zcpo vix* v ) (vjxv;))
i J
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<1+ a)Zcpo((vjxv,-)(v,-x*vj*)) =...=(1+¢)p(xx").
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<1+ a)Zcpo((vjxv,-)(v,-x*vj*)) =...=(1+¢)p(xx").

Lemma 11
If isa state on M that satisfies p(x*x) < (1 + &)p(xx*), Vx € M, then
(1+e)e(p) < dim(p) < (1+¢)¢(p), ¥p € P(M).

Proof. By complete additivity, it is sufficient to prove it for p € F, for
which we have for vi, ..., von as in L10 ¢(p) = ¢(vi'vj) < (1 +)p(v;v)),
Vj, so that

2"p (1+¢) Zcp(vJ = (1+ ¢)2"dim(p)

and similarly 2"dim(p) =1 < (1 +€)2"¢(p).
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Proof of Thm A

Define 7 : M — C as follows. First, if x € (M) then we let

T(x) = 7(Xp27"ey) = £,27"dim(ep), where x = ¥,27 "¢, is the (unique)
dyadic decomposition of 0 < x < 1. Extend 7 to M, by homothety, then
further extend to My, by 7(x) = 7(xy) — 7(x_), where for x = x* € Mp,
X = x4 — x_ is the dec. of x into its positive and negative parts.

Finally, extend 7 to all M by 7(x) = 7(Rex) + i7(Imx).
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Proof of Thm A

Define 7 : M — C as follows. First, if x € (M) then we let

T(x) = 7(Xp27"ey) = £,27"dim(ep), where x = ¥,27 "¢, is the (unique)
dyadic decomposition of 0 < x < 1. Extend 7 to M, by homothety, then
further extend to My, by 7(x) = 7(xy) — 7(x_), where for x = x* € Mp,

X = x4 — x_ is the dec. of x into its positive and negative parts.

Finally, extend 7 to all M by 7(x) = 7(Rex) + i7(Imx).

By L11, Ve > 0, Jp normal state on M such that |7(p) — ¢(p)| <&,

Vp € P(M). By the way 7 was defined and the linearity of ¢, this implies
I7(x) — o(x)| < e, Vx € (My)1, and thus |7(x) — p(x)| < 4e, Vx € (M);.
This implies |7(x + y) — 7(x) — 7(y)| < 8¢, Vx,y € (M);. Since e >0
was arbitrary, this shows that 7 is a linear state on M.

By definition of 7, we also have 7(uxu*) = 7(x), Vx € M, u € U(M), so T
is a trace state. From the above argument, it also follows that 7 is a norm
limit of normal states, which implies 7 is normal as well.
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Finite v\ algebras

Theorem A’

Let M be a vN algebra that's countably decomposable (i.e., any family of
mutually orthogonal projections is countable). The following are
equivalent:

1° M is a finite vN algebra, i.e., if p € P(M) satisfies p ~ 1 = 1y, then
p =1 (any isometry in M is necessarily a unitary element).

2° M has a faithful normal (equivalently completely additive) trace state 7.
Moreover, if M is finite, then there exists a unique normal faithful central
trace, i.e., a linear positive map ctr : M — Z(M) that satisfies

ctr(1) =1, ctr(zixzp) = zictr(x)za, ctr(xy) = ctr(yx), x,y € M, z; € Z.

Any trace 7 on M is of the form 7 = g o ctr, for some state ¢y on Z.
Also, co{uxu*™ | u e UM)} N Z = {ctr(x)}, Vx € M.

Proof of 2° = 1°: If 7 is a faithful trace on M and u*u = 1 for some
ue M, then 7(1 —wu*)=1—-7(uu*) =1—7(v*u) =0, thus uu* = 1.
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LP-spaces from tracial algebras

e A *-operator algebra My C B(#) that's closed in operator norm is called
a C*-algebra. Can be described abstractly as a Banach algebra My with a
*_operation and the norm satisfying the axiom ||x*x|| = ||x||?, Vx € M.

e If My is a unital C*-algebra and 7 is a faithful trace state on Mp, then
for each p > 1, ||x||, = 7(|x|P)}/P, x € Mp, is a norm on Mp. We denote
LP Mg the completion of (Mo, || ||5). One has ||x||, < ||x|lq.

V1< p<qg< oo, thus LPMy D LIMy.

Note that L2Mp is a Hilbert space with scalar product (x, y), = 7(y*x).
The map My 3 x — A(x) € B(L?) defined by \(x)(§) = %y is a *-algebra
isometric representation of Mg into B(L?) with 7(x) = (\(x)1,1)..
Similarly, p(x)(¥) = yx defines an isometric representation of (Mp)°P on
L2M0. One has [)\(Xl),p(Xg)] =0, VX,' < Mo.

More generally, [1x|| = sup{||xylly | ¥l < 1}. Also,

llyllz = sup{|7(xy)| | x € (M)1}. In particular, T extends to L' M.

Exercise!
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Abstract characterizations of finite vN algebras

Let (M, 7) be a unital C*-algebra with a faithful trace state. The following
are equivalent:

1° The image of A : M — B(L2(M, 7)) is a vN algebra (i.e., is wo-closed).
2° A\(M) = p(M)’ (equivalently, p(M) = A(M)’).

3° (M); is complete in the norm ||x||2,-.

4° As Banach spaces, we have M = (L}(M, 7))*, where the duality is
given by (M, L1M) 3 (x, Y) — 7(xY).

Proof. One uses similar arguments as when we represented L*°([0,1]) as a
vN algebra and as in the construction of R (Exercise!).
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Il; factors: definition and basic properties

An oo-dim finite factor M (so M # M,,(C), Vn) is called a Il; factor.

e R is a factor, has a trace, and is co-dimensional, so it is a |l; factor.

e The construction of the trace on a non-atomic factor satisfying the
finiteness axiom in Thm A is based on splitting recursively 1 dyadically into
equivalent projections, with the underlying partial isometries generating
the hyperfinite Il; factor R. Thus, R embeds into any ll; factor.

e If AC M is a maximal abelian *-subalgebra (MASA) in a Il; factor M,
then A is diffuse (i.e., it has no atoms).

e The (unique) trace 7 on a ll; factor M is a dimension function on P(M),
i.e., 7(p) = 7(q) iff p ~ q, with 7(P(M)) = [0, 1] (continuous dimension).

e E:

e If B C Mis vN alg, the orth. projection eg : [°M — B
positive on M = M, so it takes M onto B, implementing a cond. expect.

Eg : M — B that satisfies 7 o Eg = 7. It is unique with this property.
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Amplifications of Il; factors

e If n > 2 then M,(M) = M,(C) ® M is a Il factor with trace state
T((xi)i) = 220 m(xi)/n, Y(x;)ij € Mn(M).

e If 0 # p € P(M), then pMp is a ll; factor with trace state 7(p) 17,
whose isomorphism class only depends on 7(p).

e Given any t >0, let n > t and p € P(M,(M)) be so that 7(p) = t/n.
We denote the isomorphism class of pM,(M)p by M* and call it the
amplification of M by t (Exercise: show that this doesn't depend on the
choice of n and p.)

e We have (M®)f = M*t, Vs, t > 0 (Exercise). One denotes
F(M)={t>0]| M* ~ M}. Clearly a multiplicative subgroup of R,
called the fundamental group of M. It is an isom. invariant of M.
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