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ABSTRACT. The main purpose of this paper is to make the sub-
additivity theorem of the logarithmic Kodaira dimension for mor-
phisms of relative dimension one, which is Kawamata’s theorem,
more accessible. We give a proof without depending on Kawa-
mata’s original paper. For this purpose, we discuss algebraic fiber
spaces whose general fibers are of general type in detail. We also
discuss elliptic fibrations. One of the main new ingredients of our
proof is the effective freeness due to Popa and Schnell, which is a
clever application of Kollar’s vanishing theorem. We note that our
approach to the subadditivity conjecture of the Kodaira dimen-
sion is slightly simpler and clearer than the classical approaches
thanks to the weak semistable reduction theorem by Abramovich
and Karu. Obviously, this paper is heavily indebted to Viehweg’s

ideas.
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1. INTRODUCTION

This paper is a completely revised and extremely expanded version
of the author’s unpublished short note [I'1]:

e Osamu Fujino, C,,,_ revisited, preprint (2003).

Roughly speaking, the final section (see Section 9) of this paper is a
slightly expanded and revised version of the above short note and the
other sections are new. If the reader is familiar with @, ,,—1 and C’I ne1l

and is only interested in én,n,l (see Theorem 1.1), then we recommend
him to go directly to Section 9.

Let us recall 67%”—17 that is, the subadditivity theorem of the log-
arithmic Kodaira dimension for morphisms of relative dimension one,
which is the main result of | |. Note that [ ] is one of Kawa-
mata’s master theses to the Faculty of Science, University of Tokyo.

Theorem 1.1 (] , Theorem 1]). Let f : X — Y be a dominant
morphism of algebraic varieties defined over the complex number field
C. We assume that the general fiber X, = f~'(y) is an irreducible
curve. Then we have the following inequality for logarithmic Kodaira
dimensions:

R(X) > R(Y) +R(X,).

Note that Theorem 1.1 plays very important roles in [I'13]. The main
purpose of this paper is to make Theorem 1.1 more accessible. Since the
author is not sure if some technical arguments in | | are correct, we
give a proof of Theorem 1.1 without depending on Kawamata’s original
paper | ]. In general, we have the following conjecture.

Conjecture 1.2 (Subadditivity of logarithmic Kodaira dimension).
Let f . X — Y be a dominant morphism between algebraic varieties
whose general fibers are irreducible. Then we have the following in-
equality

R(X) =2 ®(Y) + R(Xy),
where X, is a sufficiently general fiber of f : X — Y.

Therefore, Theorem 1.1 says that Conjecture 1.2 holds true when
dim X —dimY = 1. Conjecture 1.2 is usually called Conjecture Unm
when dim X = n and dimY = m. Thus, Theorem 1.1 means that
6n,n-1 is true. We note the following theorem, which is one of the
main consequences of [F'11].

Theorem 1.3. Conjecture 1.2 follows from the generalized abundance
congecture for projective divisorial log terminal pairs.
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The generalized abundance conjecture is one of the most important
and difficult problems in the minimal model program and is still open.
For the details, see [['11] and [I'10].

Before we go further, let us quote the introduction of |

reader’s convenience.

without depending on Kawamata’s paper |

| for the

In spite of its importance, the proof of én,n_l is not
so easy to access for the younger generation, includ-
ing myself. After | ] was published, the birational
geometry has drastically developed. When Kawamata
wrote | |, the following techniques and results are

not known nor fully matured.
e Kawamata’s covering trick,

e moduli theory of curves, especially, the notion of
level structures and the existence of tautological

families,

e various notions of singularities such as rational sin-

gularities, canonical singularities, and so on.

See [ , 82, [ , Section 5], | , Part 1], [ ],
[Vi2], and [ . In the mid 1990s, de Jong gave us
fantastic results: [(J1] and [dJ2]. The alteration para-

digm generated the weak semistable reduction theorem
[ |. This paper shows how to simplify the proof of
the main theorem of | ] by using the weak semistable
reduction. The proof may look much simpler than Kawa-

mata’s original proof (note that we have to read |

]

and [Vi2] to understand | |). However, the alter-
ation theorem grew out from the deep investigation of
the moduli space of stable pointed curves (see [lJ1] and
[1J2]). So, don’t misunderstand the real value of this
paper. We note that we do not enforce Kawamata’s ar-
guments. We only recover his main result. Of course,

this paper is not self-contained.

Anyway, it is much easier to give a rigorous proof of Theorem 1.1

] than to check all the

details of [ | and correct some mistakes in | ]. We note that
, Lemma 2] does not take Viehweg’s correction [Vi2] into account.

[
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1.4 (Background and motivation). In the proof of | , Lemma 4],
Kawamata considered the following commutative diagram:
Xo
/
X1 g9
N
Xo
in order to prove R'f,Ox,(—D;) = 0 for every ¢ > 0. In the first
half of the proof of | , Lemma 4], he proved R'g.Ox,(—Dy) = 0
for every ¢ > 0 by direct easy calculations. The author is not sure if
Kawamata’s argument in the proof of | , Lemma 4] is sufficient for

proving R'f,Ox,(—D;) = 0 for every i > 0 from R'g.Ox,(—Dy) = 0
for every ¢ > 0. Of course, we can check R'f,Ox,(—D;) =0 for i > 0
as follows.

Let us consider the usual spectral sequence:

EP = RP f, R, Ox,(—Dy) = RP*g,0x,(—Dy).

Note that h.Ox,(—Dy) ~ Ox,(—D;) by the definitions of Dy and D;.
Since

By’ ~ R'f,0x,(—D;) — R'g,0x,(—Dy) =0,
we obtain R'f,Ox,(—D;) = 0. By applying this argument to h :
Xo — Xi, we can prove R'h,Ox,(—Dy) = 0. This is a crucial step.
This implies that EY 1 =0 for every p. Thus we obtain the inclusion

B3 ~ E20 — R?g,Ox,(—Dy) = 0.
Therefore, we have E3° ~ R2f,Ox, (—D;) = 0. As above, we obtain

R2h,Ox,(—Dg) = 0. This implies that EY' = EP* = 0 for every p.
Then we get the inclusion

EYY ~ B30 s R3g,0x,(—Dy) =0

and ES’O ~ R3f.Ox,(—D;) = 0. By repeating this process, we finally
obtain R'f,Ox, (—D;) = 0 for every i > 0.

The author does not know whether the above understanding of | ,
Lemma 4] is the same as what Kawamata wanted to say in the proof
of [ , Lemma 4] or not. It seemed to the author that Kawamata
only proves that the composition

Rf.(po1) 0 12 : Ox,(—D2) — R f.Ox,(—Dy)
S RAROx,(—Do)
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is a quasi-isomorphism in the derived category of coherent sheaves on
Xs. Of course, we think that we can easily check the statement of
[ , Lemma 4] by using the weak factorization theorem in | ],
which was obtained much later than | ].

As we have already pointed it out above, | | does not take
Viehweg’s correction [Vi2] into account. Note that the statement of
[ , Lemma 2| is obviously wrong. This mistake comes from an
error in [Vil]. Therefore, we have to correct the statement of | :
Lemma 2| and modify some related statements in | | in order to
complete the proof of Theorem 1.1 in | ].

Anyway, the author gave up checking the technical details of | ]

and correcting mistakes in | |, and decided to give a proof of Theo-
rem 1.1 without depending on | |. We will not use | , Lemma
2] nor | , Lemma 4]. We will adopt a slightly different approach

to Theorem 1.1 in this paper. The author believes that his decision is
much more constructive. We also note that the reader does not have to
refer to [Vil] in order to understand the proof of Theorem 1.1 in this
paper. Therefore, the author thinks that the proof of Theorem 1.1 in
this paper is much more accessible than the original proof in | ]-

Let us recall various conjectures related to Conjecture 1.2. Obvi-
ously, Conjecture 1.2 is a generalization of the famous litaka conjecture

C.

Conjecture 1.5 (Ilitaka Conjecture C'). Let f : X — Y be a surjec-
tive morphism between smooth projective varieties with connected fibers.
Then the inequality

K(X) = k(Xy) +£(Y)
holds, where X, is a sufficiently general fiber of f : X — Y.

The following more precise conjecture is due to Viehweg.

Conjecture 1.6 (Generalized litaka Conjecture CT). Let f : X —
Y be a surjective morphism between smooth projective varieties with
connected fibers. Assume that K(Y) > 0. Then the inequality

R(X) > R(X,) + max{Var(f), x(Y)}
holds, where X, is a sufficiently general fiber of f : X — Y.

In Section 6, we describe that Conjecture 1.6 follows from Viehweg’s
conjecture ) (see Conjecture 1.7 below). For this purpose, we treat
the basic properties of weakly positive sheaves and big sheaves, and
Viehweg’s base change trick in Section 3. Almost everything in Section
3 is contained in Viehweg’s papers [Vi3] and [Vi1]. Moreover, we discuss



6 OSAMU FUJINO

very important Viehweg’s arguments for direct images of pluricanonical
bundles and adjoint bundles in Section 5, which are also contained
in Viehweg’s papers [Vi3] and [Vi1]. Our treatment in Section 6 is
essentially the same as Viehweg’s original one (see [Vi3, §7]). However,
it is slightly simplified and refined by the use of the weak semistable
reduction theorem due to Abramovich—Karu (see | D).

We note that Viehweg’s conjecture @) is as follows:

Conjecture 1.7 (Viehweg Conjecture Q). Let f: X — Y be a surjec-
tive morphism between smooth projective varieties with connected fibers.
Assume that Var(f) = dimY. Then f*w?gl/“y is big for some positive
integer k.

If dim X = n and dimY = m in the above conjectures, then Con-
jectures C, C*, and @ are usually called Conjectures Cy, ,,,, C,F,, and
Qn,m respectively.

In | |, Kawamata proves Conjecture 1.7 under the assumption
that the geometric generic fiber of f : X — Y has a good minimal
model (see | , Theorem 1.1]). Note that | ], which is a gener-
alization of Viehweg’s paper [Vi4], treats infinitesimal Torelli problems
for the proof of Conjecture 1.7. In this paper, we do not discuss infin-
itesimal Torelli problems nor the results in | ].

In Section 7, we give a relatively simple proof of Viehweg’s conjecture
@ (see Conjecture 1.7) under the assumption that the geometric generic
fiber of f: X — Y is of general type. The main theorem of Section 7,
that is, Theorem 7.1, is slightly better than the well-known results by
Kollar [I<02] and Viehweg [Vi0] for algebraic fiber spaces whose general
fibers are of general type.

Theorem 1.8 (Theorem 7.1 and Remark 7.3). Let f : X — Y be a
surjective morphism between smooth projective varieties with connected
fibers. Assume that the geometric generic fiber Xz of f: X — Y s of
general type and that Var(f) = dimY . Then there exists a generically
finite surjective morphism 7 :Y' —'Y from a smooth projective variety
Y’ such that f;w?yf/y, is a semipositive and big locally free sheaf on
Y’ for some positive integer k, where X' is a resolution of the main
component of X xy Y and f': X' — Y is the induced morphism.

We do not need the theory of variations of (mixed) Hodge structure
for the proof of Theorem 1.8. One of the main new ingredients of
Theorem 1.8 (see Theorem 7.1) is the effective freeness due to Popa—

Schnell (see | ).

Theorem 1.9 (Theorem 4.1). Let f : X — Y be a surjective mor-
phism from a smooth projective variety X to a projective variety Y
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with dimY = n. Let k be a positive integer and let L be an ample
invertible sheaf on'Y such that |L| is free. Then we have
HZ(}/’ f*w?}k ® £®l) -0

for every i > 0 and every |l > nk + k —n. By Castelnuovo-Mumford
reqularity, f*w?}k ® L& is generated by global sections for every | >
k(n+1).

We prove this effective freeness in Section 4 for the reader’s conve-
nience (see Theorem 4.1). The proof of Theorem 4.1 is a clever ap-
plication of a generalization of Kollar’s vanishing theorem and is very
simple. Anyway, we have:

Theorem 1.10 (..., Kollar, Viehweg, ...). Let f : X — Y be a surjec-
tive morphism between smooth projective varieties with connected fibers
whose general fibers are of general type. Then we have

R(X) = K(X,) + max{Var(f), k(V)}
=dim X — dimY + max{Var(f),x(Y)}
where X, is a sufficiently general fiber of f : X — Y.

In Section 8, we quickly review elliptic fibrations and see that Con-
jecture 1.7 holds for elliptic fibrations. Therefore, we have:

Theorem 1.11 (Viehweg, ...). Let f : X — Y be a surjective mor-
phism between smooth projective varieties with connected fibers whose
general fibers are elliptic curves. Then we have
k(X) > k(X,) +max{Var(f),x(Y)}
— max{Var(f), x(Y)}
where X, is a sufficiently general fiber of f : X — Y.
By combining Theorem 1.10 with Theorem 1.11, we have:

Corollary 1.12 (Viehweg [Vil]). Let f: X — Y be a surjective mor-
phism between smooth projective varieties whose general fibers are ir-
reducible curves. Then we have

R(X) 2 k(X)) +K(Y)
where X, is a general fiber of f : X — Y.

Note that the proof of Theorem 1.1 in Section 9 uses Theorem 1.10
and Theorem 1.11. More precisely, we use the solution of Conjecture
1.7 for morphisms of relative dimension one. We also note that Kawa-
mata’s original proof of Theorem 1.1 heavily depends on Viehweg’s
paper [Vil]. We do not directly use [Vil] in this paper. Therefore, the
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reader can understand the proof of Theorem 1.1 in this paper without
referring to [Vil].

Finally, this paper is also an introduction to Viehweg’s theory of
weakly positive sheaves and big sheaves. Some of Viehweg’s arguments

in [Vi3] and [Vi4] are simplified by the use of the weak semistable
reduction theorem due to Abramovich and Karu. We hope that this
paper will make Viehweg’s ideas in [Vi3] and [Vi1] more accessible.

Acknowledgments. The author was partially supported by Grant-in-
Aid for Young Scientists (A) 24684002 and Grant-in-Aid for Scientific
Research (S) 24224001 from JSPS. He thanks Tetsushi Ito for useful
discussions. He also thanks Takeshi Abe and Kaoru Sano for answering
his questions. The original version of [I'1] was written in 2003 in Prince-
ton. The author was grateful to the Institute for Advanced Study for
its hospitality. He was partially supported by a grant from the National
Science Foundation: DMS-0111298. He would like to thank Professor
Noboru Nakayama for comments on [I'1] and Professor Kalle Karu for
sending him [Kar]. Finally, he thanks Jinsong Xu for pointing out a
mistake in a preliminary version of this paper.

We will work over C, the complex number field, throughout this
paper.

2. PRELIMINARIES

In this section, we collect some basic notations and results for the
reader’s convenience. For the details, see [U], | ], [Mo], [F6], [F'10],
and so on.

2.1 (Generically generation). Let F be a coherent sheaf on a smooth

quasi-projective variety X. We say that F is generated by global sec-

tions over U, where U is a Zariski open set of X, if the natural map
H%X,f) & OX — F

is surjective over U. We say that F is generically generated by global
sections if F is generated by global sections over some nonempty Zariski
open set of X.

2.2. Let F be a coherent sheaf on a normal variety X. We put
F* =Homo, (F,Ox)
and
Fr = (F*).
We also put R
SU(F) = (5*(F)™
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for every positive integer o, where S*(F) is the a-th symmetric product
of F, and

det(F) = (N F)"

where r = rankF. When X is smooth, d/\et(]: ) is invertible since it is a
reflexive sheaf of rank one.

We note the following definition of exceptional divisors.

2.3 (Exceptional divisors). Let f : X — Y be a proper surjective
morphism between normal varieties. Let E be a Weil divisor on X.
We say that E is f-exceptional if codimy f(SuppE) > 2. Note that f is
not always assumed to be birational. When f : X — Y is a birational
morphism, Exc(f) denotes the exceptional locus of f.

We sometimes use Q-divisors in this paper.

2.4 (Operations for Q-divisors). Let D = ). a;D; be a Q-divisor on a
normal variety X, where D; is a prime divisor on X for every ¢, D; # D;
for i # j, and a; € Q for every i. Then we put |[D| = > .|a;]D;,
{D} = D — |D|, and [D] = —|—D]. Note that |a;] is the integer
which satisfies a; — 1 < |a;] < a;. We also note that | D], [D], and
{D} are called the round-down, round-up, and fractional part of D
respectively.

2.5 (Dualizing sheaves and canonical divisors). Let X be a normal
quasi-projective variety. Then we put wy = H~4mX(w3,), where w% is
the dualizing complex of X, and call wx the dualizing sheaf of X. We
put wx ~ Ox(Kx) and call Kx the canonical divisor of X. Note that
Kx is a well-defined Weil divisor on X up to the linear equivalence.
Let f: X — Y be a morphism between Gorenstein varieties. Then we
put wy/;y = wx ® f*w%?_l.

2.6 (Singularities of pairs). Let X be a normal variety and let A be an
effective Q-divisor on X such that Kx+A is Q-Cartier. Let f : Y — X
be a resolution of singularities. We write

and a(E;, X, A) = a;. Note that the discrepancy a(E, X, A) € Q can
be defined for every prime divisor E over X. If a(E, X, A) > —1 for
every exceptional divisor E over X, then (X, A) is called a plt pair. If
a(E, X,A) > —1 for every divisor E over X, then (X,A) is called a
kit pair. In this paper, if A =0 and a(E, X,0) > 0 for every divisor F
over X, then we say that X has only canonical singularities.
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For the details of singularities of pairs, see [I'6] and [F'10].

2.7 (litaka dimension and Kodaira dimension). Let D be a Cartier di-
visor on a normal projective variety X. The [itaka dimension (X, D)
is defined as follows:

max{dim ®y,,p (X if |mD| # 0 for some m > 0
m(X,D):{WDO{ mo(X)} i 1D £

where ®,,,p| : X --» [pdim[mD] 4 d ®,,,p|(X) denotes the closure of the
image of the rational map ®,,p|. Let D be a Q-Cartier divisor on X.
Then we put

—00 otherwise

k(X,D) = k(X,moD)
where my is a positive integer such that mgD is Cartier.

Let X be a smooth projective variety. Then we put k(X)) = x(X, Kx).
Note that x(X) is usually called the Kodaira dimension of X. If X is

an arbitrary projective variety. Then we put (X) = x(X, K %), where
X — X is a projective birational morphism from a smooth projective

variety X.
The following inequality is well known and is easy to check.

Lemma 2.8 (Easy addition). Let f : X — Y be a surjective morphism
between normal projective varieties with connected fibers and let D be
a Q-Cartier divisor on X. Then we have

k(X,D) <dimY + k(X,, Dy)
where X, is a general fiber of f: X —Y and D, = D|x, .

Proof. We take a large and divisible positive integer m such that ®,,p, :
X --» PV gives an litaka fibration. We consider the following diagram

X-ZL=PN xy > pN
fl%
Y

where ¢ = ®,,p| X f and p; and p; are natural projections. Let Z be
the image of ¢ in PV x Y. Then we obtain that

k(X,D) =dimp(2)
< dim Z
=dimY +dim Z,
<dimY + k(X,, D|x,)
where y is a general point of Y. This is the desired inequality. O
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2.9 (Logarithmic Kodaira dimension). Let V' be an irreducible alge-
braic variety. By Nagata, we have a complete algebraic variety V which
contains V' as a dense Zariski open subset. By Hironaka, we have
a smooth projective variety W and a projective birational morphism
p: W — Vsuch that if W = p=*(V), then D =W —W = = (V —=V)
is a simple normal crossing divisor on W. The logarithmic Kodaira
dimension ®(V') of V' is defined as

7(V) = &(W, Ky + D)

where x denotes litaka dimension in 2.7. Note tﬁat_ﬁ(V) is well defined,
that is, (V) is independent of the choice of (W, D).
We note the following easy but important example.

Example 2.10. Let C' be a (not necessarily complete) smooth curve.
Then we can easily see that

—00o C=PlorAl,
R(C)=<¢0 C' is an elliptic curve or G,,,
1 otherwise.

2.11 (Sufficiently general fibers). Let f : X — Y be a morphism
between algebraic varieties. Then a sufficiently general fiber F of f :
X — Y means that F = f~!(y) where y is any point contained in
a countable intersection of nonempty Zariski open subsets of Y. A
sufficiently general fiber is sometimes called a very general fiber in the
literature.

2.12 (Horizontal and vertical divisors). Let f: X — Y be a dominant
morphism between normal varieties and let D be a Q-divisor on X.
We can write D = Dy + Dyer such that every irreducible component
of Dyor (resp. Dyer) is mapped (resp. not mapped) onto Y. If D = Dy,
(resp. D = Do), D is said to be horizontal (resp. vertical).

In this paper, we will repeatedly use the notion of weakly semistable
morphisms due to Abramovich-Karu (see | | and [IKar]).

2.13 (Weakly semistable morphisms). Let f: X — Y be a projective
surjective morphism between quasi-projective varieties. Then f : X —
Y is called weakly semistable if

(i) the varieties X and Y admit toroidal structures (Ux C X) and
(Uy C Y) with Uy = f_l(Uy>,
(ii) with this structure, the morphism f is toroidal,
(iii) the morphism f is equidimensional,
(iv) all the fibers of the morphism f are reduced, and
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(v) Y is smooth.
Note that (Ux C X) and (Uy C Y) are toroidal embeddings without
self-intersection in the sense of | , Chapter II, §1]. For the detalils,
see [ ] and [I<ar].
The following lemma is easy but very useful.

Lemma 2.14. Let f : X — Y and g : Z — Y be weakly semistable.
Then V. = X Xy Z has only rational Gorenstein singularities. We
consider the following commutative diagram.

xX<2-v

ol

Y <T A
Then we have that

g/*WX/Y = Wyy/z

and

* Xn o ! Ik .Xn . ! Xn
g f*WX/Y =9 W)y = LWy

for every integer n.

Proof. By the flat base change theorem [Ve, Theorem 2| (see also [H1],
(], and so on), we see that V' is Gorenstein and g"wx/y = wyyz. Since
f and g are weakly semistable, we see that V' is smooth in codimension
one. Therefore, V' is a normal variety. Since V is local analytically
isomorphic to a toric variety, V' has only rational singularities. By the

flat base change theorem (see [H2, Chapter III, Proposition 9.3]), we
obtain g* f*w?};by = flq *w;@;%, for every integer n. O

The following lemma is an easy consequence of Kawamata’s covering
trick and Abhyankar’s lemma (see | , Corollary 19]).

Lemma 2.15. Let f : Y — X be a finite surjective morphism from a
normal projective variety Y to a smooth projective variety X. Assume
that f is étale over X\ Xy, where Xy is a simple normal crossing divisor
on X. Then we can take a finite surjective morphism g : Z — 'Y from
a smooth projective variety Z such that foqg : Z — X 1is étale over
X\ Xz, where Xz is a simple normal crossing divisor on X such that

Yy < 3z and that Supp(f o g)*¥y is a simple normal crossing divisor
on Z.

Proof. Without loss of generality, we may assume that f : Y — X is
Galois. We put Xy = > D;, where D; is a prime divisor for every ¢ and
D; # Dj for i # j. We write f*D; = m;(f*D;)req for every i. By taking
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a Kawamata cover 7 : X — X from a smooth projective variety X ,
where X is étale over X \X %, X5 is a simple normal crossing divisor on
X with ¥y < ¥g, and 7°D; = Zj m;; D;; such that m; divides m;; for
every i, j, where 7*D; = > ;mi;Djj is the irreducible decomposition of
7*D;. Let Z be the normalization of an irreducible component of the
fiber product Y x x X.

y<1-7

o

X%)?

Then Z is étale over X. Therefore, Z is a smooth projective variety.
Moreover, Z — X is étale over X \ ¥, with ¥z = X and Supp(f o
g)*>z is a simple normal crossing divisor on Z. U

Finally, we give some supplementary results on abelian varieties for
the reader’s convenience (see [['2, §5. Some remaks on Abelian vari-
eties]). We will use Corollary 2.19 in the proof of Theorem 1.1 in
Section 9.

2.16 (On Abelian varieties). Let Y be a not necessarily complete va-
riety and let A be an Abelian variety. We put Z = Y x A. Let
i Ax A— A be the multiplication. Then A acts on A naturally by
the group law of A. This action induces a natural action on Z. We
denote it by m : Z x A — Z, that is,

m: ((y,a),b) — (y,a+b),
where (y,a) € YxA=Zandbe A. Let py; : ZxAxA — Zx Abethe
projection onto the (1,7)-factor for i = 2,3, and let pag : Z X A X A —
A x A be the projection onto (2, 3)-factor. Let p: Z x A x A — Z be
the first projection and let p; : Z x A x A — A be the i-th projection
for i = 2,3. We define the projection p : Z =Y x A — A. We fix a
section s : A — Z such that s(A) = {yo} x A for a point yo € Y. We
define morphisms as follows:
i =p;o (s xidyg X idy) fori=2,3
To3 = Pa3 0 (8 X idg X idy), and
W:pXidAX’idA.
Let L be an invertible sheaf on Z. We define an invertible sheaf £ on
Z x A x A as follows:
L=p*L® (idzy x p)*m*L @ (p;om*L)*™" @ (pjgm* L)~
Q@ T ((mhap*s* L) ' @ mys* L @ mis*L).
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Lemma 2.17. Under the above notation, we have that
L~ OZXAXA'

Proof. 1t is easy to see that the restrictions £ to Z x {0} x A and
Z x A x {0} are trivial by the definition of £, where 0 is the origin
of A. We can also check that the restriction of £ to s(A) x A x A is
trivial (see [Mu, Section 6, Corollary 2]). In particular, £](;y}xaxa is
trivial for any point zy € s(A) C Z. Therefore, by the theorem of cube
(see [Mu, Section 6, Theorem]), we obtain that £ is trivial. O

We write T, = m|zxqa) : Z ~ Z x {a} — Z, that is,
To: (y,b) = (y,b +a),
for (y,b) €Y x A= Z.
Corollary 2.18. By restricting L to Z x {a} x {b}, we obtain
LT L~T'LoT;L,
where a,b € A.
As an application of Corollary 2.18, we have:

Corollary 2.19. Let D be a Cartier divisor on Z. Then we have
2D~T;D+T*,D

for every a € A. In particular, if Y is complete and D 1is effective and
is mot vertical with respect to Y x A — A, then k(Z, D) > 0.

Proof. We put L = Ox(D) and b = —a. Then we have 2D ~ T¥D +
T*.D by Corollary 2.18. We assume that D is not vertical. Then
we have SuppD # SuppT, D if we choose a € A suitably. Therefore,
k(X,D) > 0if D is effective and is not vertical. O

3. WEAKLY POSITIVE SHEAVES AND BIG SHEAVES

In this section, we discuss the basic properties of weakly positive
sheaves and big sheaves. We also discuss Viehweg’s base change trick.
Almost everything is contained in Viehweg’s papers [Vi3] and [Vid].

Definition 3.1 (Weak positivity and bigness). Let F be a torsion-
free coherent sheaf on a smooth quasi-projective variety W. We say
that F is weakly positive if, for every positive integer o and every
zimple invertible sheaf H, there exists a positive integer 8 such that
S(F)RH®P is generically generated by global sections. We say that a
nonzero torsion-free coherent sheaf F is big if, for every ample invertible
sheaf H, there exists a positive integer a such that S*(F) @ H® ! is
weakly positive.
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Note that there are several different definitions of weak positivity
(see [Mo, (5.1) Definition]).

Remark 3.2. If 58 (F) ® H®? is generically generated by global sec-

tions, then §aﬁv(}“) ® H®P7 is also generically generated by global
sections for every positive integer ~.

Remark 3.3. Let £ be an invertible sheaf on a smooth projective
variety X. Then L is weakly positive if and only if £ is pseudo-effective.
We also note that £ is big in the sense of Definition 3.1 if and only if
L is big in the usual sense, that is, (X, £) = dim X.

We will use the notion of semipositive locally free sheaves in Section

7.

Definition 3.4 (Semipositivity). Let £ be a locally free sheaf of finite
rank on a smooth projective variety X. If Op, (5)(1) is nef, then & is
said to be semipositive or nef.

Remark 3.5. Let £ be a semipositive locally free sheaf on a smooth
projective variety X. Let H be an ample invertible sheaf on X and let
a be a positive integer. Then there exists a positive integer (3, such
that S*?(£) ® H®P is generated by global sections for every integer
B > By. Note that Op,(¢)(a) ® 7H is an ample invertible sheaf on
P(€), where 7 : Px(€) — X. Therefore, £ is weakly positive.

We can easily check the following properties of weakly positive sheaves.

Lemma 3.6 ([Vi3, (1.3) Remark and Lemma 1.4]). Let F and G be
torsion-free coherent sheaves on a smooth quasi-projective variety W .
Then we have the following properties.

(i) In order to check whether F is weakly positive, we may replace
W with W\ ¥ for some closed subset ¥ of codimension > 2.

(ii) Let F — G be a generically surjective morphism. If F is weakly
positive, then G 1is also weakly positive.

(iii) If S“(F) is weakly positive for some positive integer a, then F
18 weakly positive.

(iv) Let § : W — W” be a projective birational morphism to a
smooth quasi-projective variety W" and let E be a §-exceptional
Cartier divisor on W. If F @ Ow(FE) is weakly positive, then
0.F is weakly positive.

(v) Let 7 : W' — W be a finite morphism from a smooth quasi-
projective variety W'. If T*F is weakly positive, then F is
weakly positive. -

(vi) If F is weakly positive, then det(F) is weakly positive.
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(vil) If F and G are weakly positive, then F®G /torsion is also weakly
positive.

Proof. (i) and (ii) are obvious by the definition of weakly positive
sheaves. By the natural map

SSP(F) — SP(F),

which is generically surjective, we obtain (iii). (iv) is obvious by (i).
Let ‘H be an ample invertible sheaf on W. In order to prove (v), we
may shrink W and may assume that F is locally free by (i). Since
7 F is weakly positive, we see that S?*?(7*F) @ 7*H®P is generically
generated by global sections for every positive integer o and some large
positive integer 3. We note that we have a surjection

TSP (F) @ H® — S0 (F) @ H®”.
Hence we obtain a generically surjective morphism

P r.ow @ H® — S8 (F) @ H*.

finite

We may assume that 7,0y~ ® H®P is generated by global sections
since we may assume that [ is sufficiently large (see Remark 3.2). Thus
28 ( F)@H®? is generically generated by global sections. This means
that F is weakly positive. So we obtain (v). We put r = rank(F).
Let a be a positive integer and let 'H be an ample invertible sheaf.
Then there exists a positive integer 3 such that S (F) @ H®’ is

generically generated. Hence cfe;c(]: )®ab @ H®Y is generically generated
for b = rank(S®%"(F))3. Thus, we obtain (vi). Since we do not use
(vii) in this paper, we omit the proof of (vii) here. For the proof, see
[Vi1, Lemma 3.2 iii)]. Note that the proof of (vii) is much harder than
the proof of the other properties. O

For bigness, we have the following lemma.

Lemma 3.7 ([Vi!, Lemma 3.6]). Let F be a nonzero torsion-free coher-
ent sheaf on a smooth quasi-projective variety W. Then the following
three conditions are equivalent.

(i) There exist an ample invertible sheaf H on W, some positive
integer v, and an inclusion @H — S”(F), which is an iso-
morphism over a nonempty Zariski open set of W.

(ii) For every invertible sheaf M on W, there exists some positive

integer v such that 3\7(,7:) ®@ M@ is weakly positive. In par-
ticular, F is a big sheaf.



SUBADDITIVITY OF THE LOGARITHMIC KODAIRA DIMENSION 17

(iii) There exist some positive integer v and an ample invertible sheaf
M such that S7(F) @ M®1 is weakly positive.

Proof. First, we assume (i). For every positive integer (3, there exists a
map @ H®? — 5% (F), which is generically surjective. If we choose 3
large enough, we may assume that H®? ® M®~! is very ample. There-
fore, §ﬁ”(}" ) ® M®!is weakly positive by the generically surjective
map @ H®® © M@ — §7(F) @ M®! by Lemma 3.6 (ii). Thus we
obtain (ii). Since (iii) is a special case of (ii), (iii) follows from (i).
Next, we assume (iii). If §7(F) ® M® L is weakly positive for some

ample invertible sheaf M on W, then S2%7(F) @ M®=28 @ M®P ig
generically generated by global sections for some positive integer [.
Thus we get a map

@M@vﬁ — 5% (F),

finite
which is surjective over a nonempty Zariski open set of W. By choos-
ing rank(§ 287(F)) copies of M®P such that the corresponding sections
generates the sheaf 5%7(F) @ M®# in the general point of W, we
obtain (i) with H = M®? and v = 23. O

3.8 (Viehweg’s base change trick). Let us discuss Viehweg’s clever base
change arguments. They are very useful and important. The following
results are contained in [Vi3, §3]. We closely follow [\Mo, §4].

Lemma 3.9 ([Mo, (4.9) Lemmal). Let V' be an irreducible reduced
Gorenstein variety and let p : V' — V' be a resolution. Then, for every
positive integer n, we have p.w{) C wi". Furthermore, if V has only
rational singularities, then we have wi"™ = p.wiy for every positive

integer n.

Proof. Since V' is Cohen-Macaulay, we may assume that p is finite by
shrinking V' in order to check p,wi) C w{™. Since p is birational, the
trace map p.wyr — wy gives p,wyr C wy. Since p is finite, we obtain
wyr C p*wy by pwwyr C wy. Therefore, we have

Pl C pu(wyr @ prw™ ) = puwyr @ W C W

by induction on n. We further assume that V' has only rational singu-
larities. Then it is well known that V' has only canonical Gorenstein
singularities. Therefore, we have wy" = p,w(," for every positive inte-

ger n. 0

Lemma 3.10 (Base Change Theorem, see [Mo, (4.10)]). Let f : V —
W be a projective surjective morphism between smooth quasi-projective
varieties. Let 7 : W' — W be a flat projective surjective morphism
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from a smooth quasi-projective variety W'. We consider the following
commutative diagram:

V"V
fl fl;/f
W%W’

where V.=V xw W' and p : V' — V is a resolution. Then we have
the following properties.

(i) There is an inclusion
f’w{‘?,”/w, c 7 (/s WV/W)
for every positive integer n. B
Let P be a codimension one point of W'. Assume that V' has

only rational singularities over a neighborhood of P. Then we

have

Fioh = Fwn, =7 (fady)

at P.

(ii) Let P be a codimension one point of W'. If T(P) is a codimen-
sion one point of W and [ is semistable in a neighborhood of
T(P), then V' has only rational Gorenstein singularities over a
netghborhood of P.

(iii) There is an inclusion

TJ,W%ZW C ([ wV/W ® T*WW’/W)**7

which is an isomorphism at codimension one point P of W if f
or T 1s semistable in a neighborhood of P.

Proof. Since 7 is flat, V is an irreducible reduced Gorenstein variety
and wy = p*wy w by the flat base change theorem [Ve, Theorem 2]

(see also [I1], [('], and so on). Then we have that 7 f*wV/W fiw? V/W
for every positive integer n by the flat base change theorem (see [H2,
Chapter III, Proposition 9.3]). By Lemma 3.9, we have p*w{ij’,”/w, C

®n : /. @n * N o
WE e Therefore, we obtain flwy) )y, C 7" fuwy )y, for every positive

integer n. The latter statement in (i) is obvious by the above argument
and Lemma 3.9. B

For (ii), it is sufficient to prove that V' has only rational singularities
over a neighborhood of P. By shrinking W around 7(P), we may
assume that 7(P) is a smooth divisor on W and that f : V' — W is
(weakly) semistable. By shrinking W' around P, we may assume that
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P = 771(7(P)) and that P is a smooth divisor on W’. Then we obtain
that f:V — W’ is weakly semistable by [ , Lemma 6.2]. Thus, 1%
has only rational Gorenstein singularities.

By (i), we have

T*flwgfn/w =T7.f. (“JV//W/ ® fl*”%/?/w)

T*((f/wgln/wf) W’/W)
C (7" f wV/W) ® wW,/W)
C (f*w\//w ® T*UJW//W)**

by projection formula. This is nothing but the inclusion in (iii). With-
out loss of generality, we may shrink W and assume that f is also flat
for (iii). Since (iii) is symmetric with respect to f and 7, it is enough
to check that the inclusion is an equality at P when f is semistable in
a neighborhood of P. Then, by (i) and (ii), we have the equality at
P. O

3.11 (Viehweg’s fiber product trick). Let f : V' — W be a projective
surjective morphism between smooth quasi-projective varieties and let
VS =V xw V Xw -+ xw V be the s-fold fiber product. Let V) be
an arbitrary resolution of the component of VV* dominating W and let

f© Ve — W be the induced morphism. Note that fi <)y %Z)/W is

independent of the choice of resolution V) for every positive integer
n.

Corollary 3.12 ([Vi3, Lemma 3.5] and [\Mo, (4.11) Corollary]). Let
f:V —= W be a projective surjective morphism between smooth quasi-
projective varieties. Let s and n be arbitrary positive integers. Then
there exists a generically isomorphic injection

0 (1O )" (®f www) |

Let P be a codimension one point of W such that f is semistable in a
neighborhood of P. Then a is an isomorphism at P.

Proof. Since deleting closed subsets of W of codimension > 2 does not
change the double dual of torsion-free sheaves we may assume that
f@ are flat for i = 1,2,---,s and that f, wV/W is locally free on W.

By Lemma 3.10 (iii), we obtam an injection

s—1
fPw {%Z)/W‘_)f‘”ww@f v s?s n /W
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such that the above injection is an isomorphism at P if f is semistable
in a neighborhood of P. This proves the assertion by induction on
S. 0

3.13. Let f: X — Y be a surjective morphism between smooth pro-
jective varieties with connected fibers. Then we can always take a
generically finite surjective morphism 7 : Y’ — Y from a smooth pro-
jective variety Y’ such that f': X’ — Y’ is semistable in codimension
one (see [ ] and [Vi3, Proposition 6.1]) or f' : X’ — Y factors
through a weak semistable reduction fT: XT — Y (see [ , Theorem
0.3]), where X’ is a resolution of the main component of X xy Y.

X~—X

1l

Y%Y’

Lemma 3.14. In the notation in 5.13, if f’wX, y+ 15 big for some

positive integer n, then f, wX/Y 15 also big.

Proof. Let 'H be an ample invertible sheaf on Y. Then there exists a
positive integer a such that S“(f’wX,/Y,) ® T*H®1 is weakly positive
by Lemma 3.7. By removing a suitable closed subset ¥ of codimension
> 2 from Y, we assume that f*w?}?Y is locally free and that 7 is finite
and flat. Then, by Lemma 3.10, we obtain a generically isomorphic
injection

(flw_;eé?/y/) ® T*H(X)—l C T*(Sa(f*wX/y) ® H® 1)

By Lemma 3.6 (i), (ii), and (v), we see that g“(f*wX/Y) ®@ H® ! i
weakly positive. This means that f.w%) Iy is big. D

We close this section with a useful observation.

3.15. By Lemma 3.14, we may assume that f : X — Y is semistable
in codimension one or

xS xt Ly

such that fT: XT — Y is weakly semistable and that § is a resolution
of singularities when we prove Viehweg’s conjecture @ (see Conjecture
1.7).
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4. EFFECTIVE FREENESS DUE TO POPA—SCHNELL

In this section, we discuss the effective freeness due to Popa—Schnell

(see | ]). The following statement is a special case of | , The-
orem 1.7].
Theorem 4.1 ([ , Theorem 1.4]). Let f: X — Y be a surjective

morphism from a smooth projective variety X to a projective variety
Y with dimY = n. Let k be a positive integer and let L be an ample
invertible sheaf on'Y such that |L| is free. Then we have

HZ(K f*w?ék ® £®l) =0

for every i > 0 and every | > nk + k —n. By Castelnuovo—Mumford
reqularity, f*w_‘?}k ® L% is generated by global sections for every | >
k(n+1).

The proof of Theorem 4.1 is surprisingly easy. Before we prove The-
orem 4.1, we note the following remark.

Remark 4.2. In Theorem 4.1, by Kollar’s vanishing theorem (see [I<o01,
Theorem 2.1 (iii)]), we have

H(Y, fawx @ A®) =0

for every i > 0 and every [ > 0, where A is any ample invertible sheaf
on Y. Therefore, by Castelnuovo-Mumford regularity, we obtain that
fiwx ® L% is generated by global sections for every | > n + 1.

Let us prove Theorem 4.1.
Proof of Theorem j.1. Let us consider
M =1Im (f*f*w?ék — w?}k) .

By taking blow-ups, we may assume that M is an invertible sheaf such
that W = M ® Ox(FE) for some effective divisor £ on X. We may
further assume that SuppF is a simple normal crossing divisor. We can
take the smallest integer m > 0 such that f*w?}k ® L®™ is generated
by global sections because £ is ample. Then w?}k ® Ox(—FE) ® f*Lo™
is also generated by global sections. Note that w$* ® Ox(—E) = M,
fiM = f.wF and f*f.M — M is surjective. Therefore, we can take

a smooth general effective divisor D such that Supp(D + E) is a simple
normal crossing divisor on X such that

EKx +mf*L~D+ E,
where £ = Ox(L). Thus we have
k—1 k—1 k—1

kEk—1)Kxy ~g ——D FE— *L.
( JKx ~q D+ — . mf
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So we obtain

1
KKy — V“TEJ FIf'L

k—1 k—1 k —
~o K —D —F S L.
Q Kx + 2 +{ ? }+<l k m)f

By the vanishing theorem (see, for example, [I'0, Theorem 6.3 (ii)]),
which is a generalization of Kollar’s vanishing theorem, we obtain

H(Y, flwdF @ £ =0

for every i > 0 if | — %m > 0. Note that

f:O0x (kKX — {%EJ) ~ fuwi

by the definition of E. Therefore, if [ > —m +n, then f.wF @ L% is
generated by global sections by Castelnuovo Mumford regularlty By
the choice of m, we obtain

k—1
m§7m+n+1.

This implies m < k(n + 1). Therefore, we obtain that if
k—1
[ > T-k(n~l—1):kn+k—n—1

then
HZ(K f*w;@ék ® £®l) =0
for every ¢ > 0. O
By combining Theorem 4.1 with Viehweg’s fiber product trick (see

Corollary 3.12), we can easily recover Viehweg’s weak positivity theo-
rem.

Theorem 4.3 (Viehweg’s weak positivity theorem (see [Vi3, Theorem
II])). Let f : X — Y be a surjective morphism between smooth projec-
tive varieties. Then f, wX/Y 15 weakly positive for every positive integer

k.
The following proof is due to Popa—Schnell (see [ D).

Proof. Let f* : X®* = X Xy X Xy --- Xy X — Y be the s-fold fiber
product. Then we obtain a generically isomorphic injection

s k
a:f¥ ?(5 <® f*wX/Y>
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for every k > 1 and every s > 1 by Corollary 3.12, where X*) — X* is
a resolution of the component of X* dominating Y and £ : X®) -y
is the induced morphism. Let H be any ample invertible sheaf on Y.
We take a positive integer p such that [H®P| is base point free. Then,
by Theorem 4.1, we obtain that

fw X(s)/Y®w F @ ROy

is generated by global sections for every s > 1 and every k > 1, where
n = dimY. From now on, we fix a positive integer k. We take a
positive integer ¢ such that |H®" ® w{‘?‘k| is base point free for every
integer r > ¢. Then

<® f*WX/y> ®H®ﬁ

is generically generated by global sections for every 3 > g + pk(n + 1)
by the generically isomorphic injection a. Therefore, for every positive
integer «,

Saﬁ(f*wX/Y) H@ﬂ
is generically generated by global sections for 5 > g + pk(n + 1). This
implies that f,w®" XY is weakly positive. U

Remark 4.4. The proof of Theorem 4.3 says that

<® £, wX/Y> ® Wik @ ABkCHD

is generated by global sections over U, where A is an ample invertible
sheaf on Y such that |A| is free and U is a nonempty Zariski open set
of Y such that f is smooth over U. Note that the inclusion a in the
proof of Theorem 4.3 is an isomorphism over U.

We close this section with an obvious corollary of Theorem 4.1.

Corollary 4.5. Let f : X — Y be a surjective morphism from a
projective variety X to a smooth projective variety Y. Assume that X
has only rational Gorenstein singularities. Let L be an ample invertible
sheaf on'Y such that |£| is free and let k be a positive integer. Then

is generated by global sections for | > k(dimY + 1).

Proof. Since X has only rational Gorenstein singularities, X has only
canonical Gorenstein singularities. Therefore, by replacing X with its
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resolution, we may assume that X is a smooth projective variety. Then
this corollary follows from Theorem 4.1. O

We will use this corollary in the proof of Theorem 7.1.

5. WEAK POSITIVITY OF DIRECT IMAGES OF PLURICANONICAL
BUNDLES

Let us discuss weak positivity of direct images of (pluri-)canonical
divisors and adjoint divisors, and some related topics. We closely follow
[Vi3, §5] and [Vid, 83].

Lemma 5.1 ([Vi3, Theorem 4.1)). Let f : V. — W be a surjective
morphism between smooth projective varieties. Then f.wyw is weakly
positive.

This result is well known. We have already proved a more general
result (see Theorem 4.3) by using the effective freeness due to Popa—
Schnell (see Theorem 4.1). So we omit the detailed proof here. Note
that this lemma can be proved without using the theory of variations of
Hodge structure (see, for example, [[<ol] and [ViD, 5. Weak positivity]).
We can prove it as an application of Kollar’s vanishing theorem (see
also the proof of Theorem 4.3 and [I'5, Section 5]).

For the reader’s convenience, we give a sketch of the original proof
of Lemma 5.1.

Sketch of the proof of Lemma 5.1. Let 3 be a closed subset of W such
that f is smooth over Wy = W\ X. Let 7 : W/ — W be a projective
birational morphism from a smooth projective variety W' such that
f71(2) is a simple normal crossing divisor on W’. By Lemma 3.6 (iv),
we can replace W with W’. In this situation, f.wy,w is locally free
and can be characterized as the upper canonical extension of a suitable
Hodge bundle. By Lemma 3.6 (v), (ii), and the unipotent reduction
theorem, we may further assume that all the local monodromies on
Ref,,Cy, around Y are unipotent, where d = dim X — dimY and
fo=[flw: Vo= fHWy) — Wy. In this case, we know that f.wyw
is a semipositive locally free sheaf by the theory of variations of Hodge

structure (see | , Theorem 5]). Therefore, we obtain that f.wyw
is weakly positive (see Remark 3.5). O
Remark 5.2. The Hodge theoretic part of | | seems to be insuffi-
cient. So we recommend the reader to see [I'l'] and [[']'S] for the Hodge

theoretic aspect of the semipositivity of f.wy,u and some generaliza-
tions.
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The following lemma may look technical and artificial but is a very
important lemma.

Lemma 5.3 ([Vi3, Lemma 5.1]). Let f : V. — W be a projective
surjective morphism between smooth quasi-projective varieties. Let L
and M be invertible sheaves on 'V and let E be an effective divisor on
V' such that SuppE is a simple normal crossing divisor. Assume that

LN = M ® Ov(E)

for some positive integer N. We further assume that there ezists a
nonempty Zariski open set U of W such that some power of M 1is
generated by global sections over f~*(U). Then we obtain that

felwyyw ® ﬁ(i))

1s weakly positive for 0 <i < N — 1, where

e - oo (2]

Proof. Since the statement is compatible with replacing N by NN', E
by N'E, and M by M®N" for some positive integer N’, we may assume
that M itself is generated by global sections over f~(U). Without loss
of generality, we may shrink U if necessary. Let B + F' be the zero set
of a general section of M such that every irreducible component of B
is dominant onto W and that SuppF C V' \ f~}(U). By Bertini, we
may assume that B is smooth and Supp(B + E) is a simple normal
crossing divisor on f~}(U). We note that M = Oy (B + F). By taking
a suitable birational modification outside f~!(U), we may assume that
B is smooth and that Supp(B + E + F) is a simple normal crossing
divisor. In fact, if p: V' — V is a birational modification which is an
isomorphism over f~}(U) and if £' = p*L, M' = p*M, and E' = p*E,
then we can easily check that p,(wy ® L£'@) is contained in wy @ L.
By construction, p,(wy: ® L£'®) coincides with wy @ L on f~1(U).
When we prove the weak positivity of fi(wyw ® L), by replacing
E with F + F, we may assume that ' = 0 (see Lemma 3.6 (ii)).
Note that every irreducible component of F' is vertical with respect
to f: V. — W. By taking a cyclic cover p : Z' — X associated to
LPY = B+ E, that is, Z' is the normalization of Specy @Z].V_l LE7,

=1
Let Z be a resolution of the cyclic cover Z’ and let g : Z — W be the
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corresponding morphism.

g4 Py
w

It is well known that Z’ has only quotient singularities and

-1
P«QxWz = Pz = @WV & L(l)
=0

Thus, we obtain
N-1
Gz /w @ felwyyw ® E(Z)).
i=0

Therefore, by Lemma 5.1 and Lemma 3.6 (ii), f.(wyw ® L") is weakly
positive for every 0 <i < N — 1. L]

As an application of Lemma 5.4, we have:

Lemma 5.4 ([Vi3, Corollary 5.2]). Let f : V. — W be a projective
surjective morphism between smooth quasi-projective varieties and let
H be an ample invertible sheaf on W such that §”(f*w§fw ® H*) is
generically generated by global sections for a given positive integer k

and some positive integer v. Then f*w{?fw ® H®*1 is weakly positive.

Proof. By replacing W with W\ ¥, where ¥ is a suitable closed subset
of codimension > 2, we may assume that f is flat and that f*w{‘?fw is
locally free. We put £ = wyw ® f*H and

M =T (f*(furthy @ HE) = wihy @ [HEF).

By taking blow-ups, we may assume that M is invertible and that
L = M@ Oy (E) for some effective divisor E on V such that SuppF
is a simple normal crossing divisor. By assumption, we see that M®¥
is generated by global sections over f~1(U), where U is a nonempty
Zariski open set of W. By Lemma 5.3, we obtain that f,(wyw&L*D)
is weakly positive, where

LED = £l o O, (— {%EJ) .

Note that
M ® f*H(X)—l C wyw ® E(k_l)
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and that
fe(wyyw ® L*-D ) C f*w\//w Q HEL,
By the definition of M, we have
FMOH = fulwyw ® L57V) = fwlly, @ HO
Thus we obtain that
£, wV/W & HE1

is weakly positive. O
By using Lemma 5.4, Viehweg cleverly obtained:

Theorem 5.5 (Viehweg’s weak positivity theorem (see [Vi3, Theorem
). Let f:V — W be a surjective morphism between smooth projec-
tive varieties. Then f*wV/W 1s weakly positive for every positive integer
k.

Note that we have already proved Theorem 5.5 by using the effective
freeness due to Popa-Schnell (see Theorem 4.3). However, we give
Viehweg’s original proof here since it is interesting and useful for some
other applications (see, for example, [I'8]).

Proof. We divide the proof into two steps.
Step 1. Let ‘H be any ample invertible sheaf on W. We put
r=min{s € Z-y ; f*”%;cw ® H®*1 is weakly positive}.
By definition, we can find a positive integer v such that
Su(f WV/W) & HER Y & HEV

is generically generated by global sections. By Lemma 5.4, we have that
I« wV w © H®F=" is weakly positive. The choice of r allows this only if
(r—1)k—1 < rk—r, equivalently, » < k. Therefore, f. wV/W Q HEK*—k
is weakly positive.

Step 2. Let a be a positive integer. By Lemma 5.6 below, we can take
a finite flat morphism 7 : W — W’ from a smooth projective variety W’
such that 7*H = H'®? for d = 2a(k* — k) + 1. We put V' =V xy W'.
Then we may assume that V' is a smooth projective variety by Lemma
5.6 below. Let f': V' — W’ be the induced morphism.

V~—o1V

L

W%W’
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By applying the result obtained in Step 1 to f’: V' — W', we obtain
that
Qk ®kZ—k
iyl @ H
is Weakly positive. Since f’wv,/W, =T7"f, wV/W, we see that 7 f, wv/W®

H/ER kg weakly positive. Let 3 be a large positive integer such that
SQaﬁ(T f*wv/w ® H'E - M@ H®P = *52a5(f*wv/w) Q TFH®P
is generically generated by global sections. Let W be a nonempty

Zariski open set of W such that G2a8 (f« wV/W) is locally free and that

codimy, (W' \ W) > 2. By shrinking W, we may assume that W = V.
Then we have a surjection

*52a6< " V/W) ® H@ﬁ S2a,8(f WV/W> ® H®B-
Therefore, we obtain a homomorphism
T*OW’ ® H®ﬁ — SQaﬁ(f*wv/W) ® H®2ﬂ

which is surjective over a nonempty Zariski open set. Without loss of
generality, we may assume that T*OW/ ® H®8 is generated by global
sections (see Remark 3.2). Thus, S28( f*“v/w) ® H®? is generated by

global sections over a nonempty Zariski open set.
This means that f*wgfw is weakly positive. U

The following covering construction is very important and useful. We
have already used it in the proof of Theorem 5.5. The description of

Kawamata’s covering trick in [[1V, 3.19. Lemma] is very useful for our
purpose (see also | , 5.3. Kawamata’s covering] and [Vi7, Lemma
2.5]).

Lemma 5.6. Let f : V. — W be a projective surjective morphism
between smooth quasi-projective varieties and let H be a Cartier divisor
on W. Let d be an arbitrary positive integer. Then we can take a finite
flat morphism 7 : W' — W from a smooth quasi-projective variety W’
and a Cartier divisor H' on W' such that 7H ~ dH' and that V' =
V xw W' is a smooth quasi-projective variety with wy: jwr = p*wyr jwr,
where p: V' — V.

Proof. We take general very ample Cartier divisors D; and D, with the
following properties.
(l) H ~ D1 - DQ,
(ii) Dy, Dy, f*D1, and f*Dy are smooth,
(iii) Dy and D9 have no common components, and
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(iv) Supp(D;+ Ds) and Supp(f*D;+ f*D5) are simple normal cross-
ing divisors.

We take a finite flat cover due to Kawamata with respect to W and
Dy + D5. Then we obtain 7 : W/ — W and H’ such that 7*H ~ dH'.
By the construction of the above Kawamata cover 7 : W/ — W, we
may assume that the ramification locus ¥ of 7 in W is a general simple
normal crossing divisor. This means that f*P is a smooth divisor for
any irreducible component P of ¥ and that f*} is a simple normal
crossing divisor on V. In this situation, we can easily check that V' =
V xw W' is a smooth quasi-projective variety.

V/L>V

Y

W’?W

By construction, we can also easily check that wy y = p*wy,w by the
Hurwitz formula. 0

Remark 5.7. In the proof of Lemma 5.6, let S be any simple normal
crossing divisor on V. Then we can choose the ramification locus X of
7 such that f*P ¢ S for any irreducible component P of ¥ and that
72U S is a simple normal crossing divisor on V. If we choose X as

above, then we obtain that p*S is a simple normal crossing divisor on
%8

Remark 5.8. As an interesting and useful generalization of Theorem
5.5, we have the twisted weak positivity theorem mainly due to Viehweg
and Campana. For the details, see [I'9] (see also [I'13, Section 8]).

The following lemma is also an application of Lemma 5.3.

Lemma 5.9 ([Vi3, Lemma 5.4]). Let f : V. — W be a projective
surjective morphism between smooth quasi-projective varieties. Let k
be a positive integer and let k' be any multiple of k with k' > 2. Assume
that we have an inclusion

H — (f*w{iffw)**

for some ample invertible sheaf H on W. Then there exists a finite
surjective morphism T : W' — W from a smooth quasi-projective vari-
ety W' such that V' =V xyw W' is a smooth quasi-projective variety
with the following properties:

: * ®uv  _ ptr, QU " .
(i) 7 f*wV/W = f*wV,/W, for every positive integer v, and
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(i) there exists an ample invertible sheaf H' on W' such that
®k ®-1
fiwyty @ H

18 weakly positive.

Proof. By the natural map
HE — S(fuwiy) = SM(fawiih) = (fawiim )™,

we may assume that k& = k' > 1. By taking blow-ups, if necessary, we
may assume that there exist an invertible sheaf N on V and a simple
normal crossing divisor ) ; Ej on V, where Ej is smooth for every j

and E; # E; for i # j, such that

= Im (f [ wV/W - W%;CW)

N® OV(ZE’E w?fw,
J
N = FH o 0u(Y 7).
J

such that 7; > 0 if E; is not f-exceptional. We take a nonempty Zariski
open set U’ of W such that f is flat over U’. By shrinking U’, we may
assume that E; = E;| ;-1 is dominant onto U if E; # 0. We put

i, if B #0 v; ifE; #0
W = ) and v; = .

We take a large integer b such that b > v; for all j. We take a gen-
eral ﬁnite cover 7 : W — W such that V' = V xy W’ is smooth,
T* *wv/W = f’wV,/W, for every m > 1, and 7"H = A®*+! for some
ample invertible sheaf A on W’ by Lemma 5.6 (see also Remark 5.7).
For simplicity, we may assume that W = W’ and that H = A%+l By
Theorem 5.5, f*w{‘ffw is weakly positive. Therefore, there exists some
v > 0 such that

-1 (fwv/w)®A®”

is generically generated by global sections. We can take an effec-
tive f-exceptional divisor B on V' such that (f. wV/W)** = filwyyw ®
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Oy (B))®" for every n < v(b— 1)k. We put £ = wyyw @ Oy(B) ®
f*A®TL N = bk, and
M= LN @ O0y(=) (b + 1)) Ey).
J
By construction, we may assume that there is an effective divisor F' on
V such that SuppF C V' \ f~1(U’) and that

OV( ) V/W X Ov(k‘B Z(/‘j + Vj)E) ® f*H®—1

by choosing B sufficiently large. Then we can check that

®b—1
M= (wV/W®OV (kB — Zuj ) ® f*A® Oy(F).

The natural maps

(b-1)
I Sre=1) (f WV/W) - (ngw ® Oy (kB — ZMJE))
J
— M® @ frFA®TY
are surjective on f~}(U’). Thus the assumptions of Lemma 5.3 are

satisfied, that is, M®” is generated by global sections over f~!(U) for
some nonempty Zariski open set U of W. By the choice of b, we have

L(k‘— 1)§)€€Mj +Vj)J <+ L%J _

for every j. This means that the sheaf wy/yw ® L*=1D contains N ®
frA®=E=D on f~1(U’). We put H' = A®*~!. Then the inclusion

felwyw @ L) — f*(wV/W ® Oy (kB)) @ H'®!

is an isomorphism on U’. Thus, f*wv w ® H'®~1 is weakly positive by
Lemma 5.3. 0

As an application of Lemma 5.9, we have:

Proposition 5.10 ([Vil, Proposition 3.4)). Let f : V — W be a pro-
jective surjective morphism between smooth quasi-projective varieties.
Let 'H be an ample invertible sheaf on W and let M be any invertible
sheaf on W. Let k be a positive integer and let k' be any multiple of
k with k' > 2. Assume that we have an inclusion H — (f*wv/w)**

Then

(f*wv/w) ® M=
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18 weakly positive for every large positive integer . In particular,
I« wV/W 1s big.

Proof. By Lemma 5.9, there exist a finite cover 7 : W/ — W and
an ample invertible sheaf H' on W’ such that 7*(f, wV/W) ® H'® 1 is
weakly positive. For every large positive mteger v, T*ME L@ H'®7 has
a nontrivial global section. Thus, S (7* f, wV/W ® H'®~1) is a subsheaf

of 7(S (/. wV/W) ® M®~1). Note that the inclusion
SV, wV/W @ HE) = (S(f. www) ® M®1)

is an isomorphism at the generic point of WW. This implies that S”( fawy, /W)®
M@~ is weakly positive for every large positive integer v by Lemma
3.6 (ii) and (v). O
The following theorem is the main theorem of this section.
Theorem 5.11 ([Vi1, Theorem 3.5]). Let f : V — W be a projective
surjective morphism between smooth quasi-projective varieties. Assume
that f is semistable in codimension one. We further assume that
K (W, det(fwih,)) = dim W
for some positive integer k. Let M be any invertible sheaf on W and
let k' be any multiple of k with k' > 2. Then we obtain that
S’Y(f* gﬁw) @ M& 1
15 weakly positive for every large and divisible positive integer . In

particular, f*wgf;/v 15 big.

Proof. Let 'H be an ample invertible sheaf on W. By Kodaira’s lemma,
we can find @ > 0 such that H is contained in (Tgc(f*wf?fw)@“. Let
U be a Zariski open set of W such that codimy (W \ U) > 2, f is
semistable over U, and f*w{‘?fw is a locally free sheaf on U. We put
r = rank( f*w{‘?fw)w. Then we have an inclusion of det( f*”%fwﬂU into
((f*w{iffw)w)@r. Therefore, H can be seen as a subsheaf of (f*w{?fw)@’s

for s = ra on U. Let f® : V) — W be a desingularization of the
s-fold fiber product V xyw V Xy -+ xyw V. Then

s k s
f*( )Ws(s)/w (f WV/W)
holds on U (see Lemma 3.10 and Corollary 3.12). Thus, we have H —
(FPw (S)/W)**. By Proposition 5.10, we obtain that

SU(FOwR ) © M= SV (((fuwfiy))™) © M
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is weakly positive for every large positive integer v. Thus 5 vs( f*w?}%‘,)@)

M®=1 is also weakly positive for every large positive integer v by
Lemma 3.6 (ii). O

We close this section with an important remark on weakly semistable
morphisms.

Remark 5.12. Theorem 5.11 holds under the assumption that
t
v vt ow

where § is a resolution of singularities and f7 : VI — W is weakly
semistable. Since f*w{?fw = flw®f Jw» We may assume that V' = VT for
the proof of Theorem 5.11. By induction on s, we see that V* has only

Gorenstein singularities by the flat base change theorem [Ve, Theorem
2] (see also [H1], [], and so on).
Vs _& Vs
-
W 7 V

Since f : V. — W is weakly semistable, we can easily see that V*
is normal and is local analytically isomorphic to a toric variety by
induction on s. Anyway, V* has only rational Gorenstein singularities

and is flat over W. Therefore, f,fs)w?;f’:) W= fswvs W is a reflexive
sheaf for every positive integer m. By the flat base change theorem
[Ve, Theorem 2] (see also [I11], [(], and so on), wysy >~ p*wys—1/w.

Therefore, we have

fSwVS/W = fs lp* (p*wgln 1w & q*wgﬁ/{/)

~ fi 1(st 1w ®p*q*wv/W)
3 M Gy (fsfl)*f*w%nw)

= (e @ ()

(@)

by the flat base change theorem (see [[H2, Chapter III, Proposition
9.3]) and the projection formula for every positive integer m and every
positive integer s by induction on s. Therefore, the proof of Theorem
5.11 also works in this situation.
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6. FROM VIEHWEG’S CONJECTURE TO IITAKA’S CONJECTURE

This section is a slight reformulation of [Vi3, §7]. We prove that
Viehweg'’s conjecture (see Conjecture 1.7) implies the generalized litaka
conjecture (see Conjecture 1.6).

First, let us recall the definition of Viehweg’s variation.

Definition 6.1 (Viehweg’s variation). Let f: X — Y be a surjective
morphism between normal projective varieties. Let K(D C) be an

algebraically closed field contained in C(Y') such that there is a smooth

projective variety V' defined over K and that V' xg,ecx SpecC(Y') and

X Xy SpecC(Y) are birational. The minimum of trans.deg:K for all
such K is called the wvariation of f and is denoted by Var(f). We have
0 < Var(f) <dimY.

Next, we recall Viehweg’s conjecture @, ., (see Conjecture 1.7).

Conjecture 6.2 (Viehweg’s conjecture Q). Let f: X — Y be a
surjective morphism between smooth projective varieties with connected
fibers such that dim X = n and dimY = m. Assume that Var(f) =

dimY. Then f*w?gjy 15 big for some positive integer k.

Remark 6.3. Of course, we should assume that K is pseudo-effective
in Conjecture 6.2, where F' is the geometric generic fiber of f : X — Y.
We note that f*w%} = 0 for every positive integer n if Kp is not
pseudo-effective.

We prepare Fujita’s easy but important lemma (see [I't, Proposition
1]).
Lemma 6.4 (Fujita’s lemma). Let f : X — Y be a projective surjective
morphism between normal projective varieties with connected fibers. Let
L be an invertible sheaf on X and let M be an invertible sheaf on Y
such that K(Y,M) = dimY and x(X, L% @ f*M®) > 0 for some
positive integers a and b. then we have

R(X, L) = (X, L]x,) + K(Y, M)

where X5 is the geometric generic fiber of f : X — Y.

Proof. By litaka’s easy addition formula (see Lemma 2.8), we have
K(X, L) <dimY + k(Xq, L]x,)-
Therefore, it is sufficient to prove
K(X, L) > k(Y, M) + k(Xy, L|x,).

By Kodaira’s lemma, we may assume that M is ample. We may fur-
ther assume that M is very ample, the rational map @z : X --» V C
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PdimI£l gives an Titaka fibration, and H°(X, L& f*M®~1) # 0 by replac-
ing £ and M with multiplies. An element o # 0 of H*(X, L& f*M®~1)
defines an injection H°(Y, M) — H°(X, L). Therefore, it gives a pro-
jection

pdim[£] __, pdim |M| )

Hence we obtain the following commutative diagram.

Pc| .

[ |
fJ/ | |
\% \i

Y —= We——s pdim | M|
Pipmi

By taking suitable resolutions of X and V' in the above diagram, we
may assume that we have

P~

X—V
fi E
Y=—=Y

where V is a smooth projective variety which is birationally equivalent
to V. We take a sufficiently general point y of Y and consider the

mapping
Pyt Xy = f71<y> — V= %71(3/)-
A sufficiently general fiber F' of p, is also a sufficiently general fiber of

p. Therefore, we have k(F, L|r) = 0. Note that p is an litaka fibration
with respect to £. Thus, we have

k(X Llx,) < A(F, L]p) + dim ¥,
—dimV — dimY
= KJ(X7 L) - ’Q(Y; M)

by litaka’s easy addition formula (see Lemma 2.8). On the other hand,
we have k(X L|x,) = k(Xg, L]x,). Therefore, we obtain the desired
inequality (X, L) > (Y, M) + r(X7, L]x,)- O

The big commutative diagram constructed in Lemma 6.5 plays im-
portant roles

Lemma 6.5. Let f : X — Y be a surjective morphism between smooth
projective varieties with connected fibers. Then we have the following
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commutative diagram:

X<V ~——V v
N
Y 5 W - W/ = W//

such that

(i) V and W are smooth projective varieties.
(ii) a and B are birational.
(iii) all g-exceptional divisors are a-exceptional.
iv) W" is a smooth projective variety.
] Y
v) V" and W' are normal projective varieties.
¥
(vi) dim W” = Var(g”) = Var(f).
(vii) 7 : W' — W is a generically finite surjective morphism.
(viii) V" is a resolution of W' xyw» V" and is a resolution of the main
component of V- xyw W' at the same time.
(ix) ¢" - V" = W" and 7" : W' — W" have connected fibers and
are weakly semistable.

Proof. We divide the proof into several steps.

Step 1. By the flattening theorem (see, for example, [ , 3.3. The
flattening lemma]), we can find a projective birational morphism g :
W — Y from a smooth projective variety W such that (W Xy X )main —
W induced by g : W — Y is flat, where (W Xy X )main is the main
component of W xy X. Let V. — (W Xy X)main be a projective bi-
rational morphism from a smooth projective variety V. Then we have
the following commutative diagram:

X<—V

1| )

Y'TW

satisfying (i), (ii), and (iii).

Step 2. Note that Var(f) = Var(g) by definition. Therefore, we can
construct the following commutative diagram:

/!

P p

L e

T

W W —= W
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such that V', W', V" and W” are smooth projective varieties, ¢” is
a surjective morphism between smooth projective varieties with con-
nected fibers, dim W” = Var(¢”) = Var(g) = Var(f), 7 : W' — W is
a generically finite surjective morphism, V' is a resolution of the main
component of V' xy W’ and is a resolution of the main component
of V" xyn» W' at the same time. Without loss of generality, we may
assume that 7”7 has connected fibers.

Step 3. By the weak semistable reduction theorem, we may assume
that ¢"” : V" — W" is weakly semistable by taking the base change by
a generically finite surjective morphism W1 — W” from a smooth pro-
jective variety W1. By applying the weak semistable reduction theorem
to 7" : W' — W’ we may further assume that 7 : W' — W” is also
weakly semistable by the base change by a generically finite morphism
WTT — W” from a smooth projective variety Wl (see | , Lemma
6.2]). Then we have a commutative diagram of V, V' V" W, W' and
W" satisfying the properties (iv)—(ix).

Therefore, we have the desired big commutative diagram satisfying
the properties (i)—(ix). O
Lemma 6.6. Let L be an invertible sheaf on Y. Then we have

(X, wxyy @ [T L) > k(V,wyyw @ Oy (B) ® a* f*L)
for any effective g-exceptional divisor B on V.

Proof. We can write Ky = o*Kx+FE and Ky = * Ky + F such that
is an effective a-exceptional divisor and F' is an effective S-exceptional
divisor. Therefore,

KV/W+B = Kv—g*Kw+B = a*Kx/y+E+B—g*F S ()é*Kx/y—FE—FB

Note that £ + B is an effective a-exceptional divisor. Therefore, we
obtain

(X, wx)y @ f7L) > k(V,wyyw @ Oy (B) ® a* f*L)
for any effective g-exceptional divisor B. O

Lemma 6.7 essentially says that Viehweg’s conjecture (see Conjecture
1.7) implies the generalized litaka conjecture (see Conjecture 1.6)

Lemma 6.7. Assume that (Te\tgfk’wffﬁ}w,, 1s a big invertible sheaf for

some positive integer m. Then we obtain
R(X,wxyy © f°L) = k(X7) + max{Var(f), x(Y, L)}

for every invertible sheaf £ on Y with k(Y,L) > 0, where X5 is the
geometric generic fiber of f: X — Y.



38 OSAMU FUJINO

Proof. We need several steps for the proof of Lemma 6.7.

Step 1. By the proof of Theorem 5.11 (see also Remark 5.12), we have
that g;’w{‘?,, Jw is big for some positive integer k. Therefore, there is a

positive integer v such that S”(g;’w{‘?,lf /W,,) contains an ample Cartier

divisor on W”. By the nonzero map

k " k
S (Q*W%//Wu) - g*ng/wln

we may assume that g wv,’f W contains an ample Cartier divisor H on
W" by replacing vk with k.

Step 2. We consider the following commutative diagram:

‘7 ﬁ;vn

|

W= W"

where V = W' Xy V. Then we obtain

* I Qk ®k
( ) g*wv///W” - g* V/W/
by the flat base change theorem [Ve, Theorem 2] (see also [H1], [C],
and so on). Note that V' has only rational Gorenstein singularities (see
Lemma 2.14). This implies that g*wv/ w2 >~ g.Ww V /W, We obtain that
G /W,( gwy, /W,) contains ( "Y*H. So we have that w‘~/ T contains
(1" 0 g)*H. We note that g. g*wv W is a reflexive sheaf on W".

Step 3. In this step, we will check

(V' wyrwr @ p*a” f*L) > k(Vg) + max{Var(g), s(W, 5" L)}
= k(X7) + max{Var(f),x(Y, L)},
where V5 is the geometric generic fiber of g and X5 is the geometric

generic fiber of f.

Since w%';W, contains (7”7 0 ¢g)*H and (Y, L) > 0, we obtain

RV, (w5 e @ G7°6°L) @ (77 0 §)* O (—bH)) = 0
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for some positive integers a and b. Then, by Lemma 6.4, we obtain
(V' wynw @ pra” fTL) = k(V', wywr @ 7778 L)

(‘7 Wiz @ g T B L)
= dim W" + k(Var, (W ®GT *£)|‘7W)
= dim W" + (Ve wv%) + k(Wi 78" L)
= dim W" + k(V5) + /{u(Wﬁ, T*ﬂ*ﬁh/vﬁ). w

Note that V 7= Wi x V2o, where w” is the geometric generic point
of W". Since dim W = Var( ) and

k(W,B3°L) = (W', 7°6°L) < dim W" + H(Wﬁ, T*ﬁ*ﬁ\wfi”)
by Lemma 2.8, we obtain
(V' wy wr @ p*a” f*L) > k(V5) + max{Var(g), «(W, 5°L)}
= k(X5) + max{Var(f),s(Y, L)}.

Step 4. Let U be a Zariski open set of W such that g is flat over U
and that codimy (W \ U) > 2. By restricting

to U, we obtain

Without loss of generality, we may assume that W}, is smooth and
7 : W[, — U is flat by shrinking U. By the base change theorem (see
Lemma 3.10), we obtain

Q*W% swy, T (Q*W%/U) 9*(P*W%/U)

for every positive integer [. Therefore, we have

Ik __x

gulwyy oy, @ g 7B L)% = gl(p" (wyy v @ g° B L)F).
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Thus,
HO (V' (wyrywe @ g7 T3 L))
— H'(V', p*((wyyw ® g"B* L)' © Oy (D)) @ Ov:(E))
~ H(V, (wyw ® g*B°L)* @ Oy (D))

for some effective Cartier divisor D on V such that SuppD C V\Vy and
some effective p-exceptional divisor F on V' such that SuppE C V'\ V.
This implies that

R(V,,wvl/wl & p*a*f*ﬁ) S KV(V, wV/W & Ov(B) & Oé*f*ﬁ)
for some effective Cartier divisor B on V such that SuppB C V' \ V.

Note that B is g-exceptional. Therefore, B is a-exceptional.

Thus, by Lemma 6.6 and the inequalities obtained above, we obtain
(X, wx)y @ f°L) > k(V,wyyw @ Oy (B) @ a* f*L)
> k(V, wyrywr @ p*a® f*L)
> k(X7) + max{Var(f), (Y, L)}.

This is the desired inequality. U

We will apply Lemma 6.7 to algebraic fiber spaces whose geometric
generic fiber is of general type and elliptic fibrations in Section 7 and

Section 8 respectively.
Lemma 6.8. Assume that detg” %f,”/w,, is a big invertible sheaf for

some positive integer m. Then we have
k(Y det(f wX/Y)) > dim W” = Var(f).
Proof. Note that

"x 11 Q@m _ =~ ®@m ®@m
T g*wv///W// — g wV/W/ g*wvl/W/

Therefore, we have
r(W', detg*wv,/w,) = (W, detg*wv,/w,)
=r(W', T "*detg*wv,, ) = dim W,

Let UT be a Zariski open set of Y such that 703 : W’ — Y is flat over
Ut and that codimy (Y \ UT) > 2. By restricting

X<V

ol

!/
Y~ W
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to UT, we obtain
XUT <; V

1

UT BoT W(,JT

Without loss of generality, we may further assume that W7, is smooth.
By the base change theorem (see Lemma 3.10), we obtain a generically
isomorphic inclusion

/L Q@m
g*@U\/{ﬁ/v{/{]T — (ﬁ © T) (f* T/UT)
This implies that there exists an inclusion of invertible sheaves:
detg* V’ W — (BoT)" det(f wX /UT)
Therefore, we obtain an injection

detg*wv,/w, (Bo7) det(f. wiy) @ Ow:(ET)

for some effective (/3 o 7)-exceptional divisor on W’. Thus, we obtain

R(Y, dot(£w)) = KW, (8 o 7)det(f-wly) © Oy (E1)
> k(W/, detg*wv,/W,)
> dim W = Var(f).
This is the desired inequality. 0

For some future references, we write the following lemma. The proof
of Lemma 6.8 says:

Lemma 6.9. Let f : X — Y be a surjective morphism between smooth
projective varieties and let T :Y' — Y be a generically finite surjective
morphism from a smooth projective variety Y'. We take the following
commutative diagram:

X—X
7| |7
Y%Y’

where X' is a resolution of the main component of X xy Y'. Let m be

a positive integer. Then there exists an effective T-exceptional divisor
E onY' such that

det flwhy, — T (det fwy) ® Oyi(E).
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In particular, we have

k(Y det fuwhy) > m(Y', det flwi).

Remark 6.10. As in 3.15, by Lemma 6.9, we may assume that f is
semistable in codimension one or

;
fox oxt Dy

such that fT: X' — Y is weakly semistable and that § is a resolution

of singularities when we want to prove (Y, det( f*w?}’fy)) =dimY.

7. FIBER SPACES WHOSE GENERAL FIBERS ARE OF GENERAL TYPE

In this section, we discuss projective surjective morphisms between
smooth projective varieties whose general fibers are of general type.
The main purpose of this section is to prove:

Theorem 7.1. Let f : X — Y be a surjective morphism between
smooth projective varieties with connected fibers. Assume that the geo-
metric generic fiber X5 of f + X — Y s of general type. Then there
exists a genmerically finite surjective morphism 7 : Y' — Y from a
smooth projective variety Y' with the following property.

Let X' be any resolution of the main component of X Xy Y’ sitting
in the commutative diagram below:

X —X

R

Y’?Yi

Then f;w;e}’f}y, 15 a semipositive locally free sheaf for every nonnegative
integer m. In particular, det fiw%’;w is a nef invertible sheaf for every
nonnegative integer m. We further assume that Var(f) = dimY. Then
det f;w?yf/y, is a nef and big invertible sheaf for some large and divisible
positive integer k.

Theorem 7.1 is slightly better than the well-known results by Kawa-
mata, Kollar, Viehweg, and others (see | ], [Ko2], and [Vi6]).
The following remark is very important for various applications.

Remark 7.2. In Theorem 7.1, it is sufficient to assume that 7 : Y’ — Y
is a generically finite surjective morphism from a smooth projective
variety Y’ such that there exists a weakly semistable morphism fT :
XT — Y’ in the sense of Abramovich-Karu (see 2.13), where XT —
X xy Y'is a projective birational morphism and f: X — Y’ is the
induced morphism.
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Remark 7.3. In Theorem 7.1, the bigness of det f/w% b /Y, implies that

fi wX, v is a big locally free sheaf, where £’ is any multiple of £ with

kK > 2 For the details, see Theorem 5.11 and Remark 5.12 (see also
Remark 7.2). Therefore, Theorem 1.8 follows from Theorem 7.1.

By the results explained in Section 6, we have the following result as
an application of Theorem 7.1. Corollary 7.4 says that the generalized
litaka conjecture (see Conjecture 1.6) holds for projective surjective
morphisms between smooth projective varieties with connected fibers
whose general fibers are of general type.

Corollary 7.4 (see | ], [[K02], and [Vi0]). Let f : X — Y be a
surjective morphism between smooth projective varieties with connected
fibers. Assume that the geometric generic fiber X5 of f: X —Y s of
general type. Then we have the following properties.

(i) There exists a positive integer k such that

k(Y det(f*wX/Y)) > Var(f).

(ii) If k(Y, L) > 0, then we have
(X, wx)y ® f7L) > k(X5) + max{x(Y, L), Var(f)}

=dim X — dimY + max{x(Y, L), Var(f)}.

(iii) We have
KX, wxyy) = £(Xq) + Var(f)
=dim X — dimY + Var(f).
(iv) If k(Y) > 0, then we have
r(X) > k(X5) + max{x(Y), Var(f)}
=dim X — dimY + max{x(Y"), Var(f)}.
Proof. Note that (iii) and (iv) are important special cases of the state-

ment (ii). In the big commutative diagram constructed in Lemma 6.5,
we apply Theorem 7.1 to ¢” : V" — W” (see also Remark 7.2). Then

we obtain that det g7 ng/W,, is nef and big for some positive integer m.

Therefore, we obtain the desired inequality in (ii) by Lemma 6.7. We
also obtain the desired inequality in (i) by Lemma 6.8. O

Before we start the proof of Theorem 7.1, we prepare several lemmas
for the reader’s convenience.

Lemma 7.5. Let X be a normal variety with only canonical singular-
ities. Then Ox(mKx) is Cohen—Macaulay for every integer m.
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Proof. We note that X has only rational singularities when X is canon-
ical. Let r be the smallest positive integer such that rKx is Cartier.
Since the problem is local, we may assume that rKy ~ 0 by shrink-
ing X. If r = 1, then Ox(mKx) ~ Ox for every integer m. In this
case, Ox(mKy) is Cohen—-Macaulay for every integer m since X has
only rational singularities. From now on, we assume that r > 2. Let
7 : X — X be the index one cover. Then we have

T.05%(Kz) ~ P Ox(iKx).
i=1

Since X has only canonical singularities and K is Cartier, Og(K5)
is Cohen-Macaulay. Since 7 is finite, Ox (iKx) is Cohen-Macaulay for
1 <i<r. ByrKx ~ 0, weobtain that Ox(mKy) is Cohen—Macaulay
for every integer m. U

Let us recall the following well-known lemma, which is a special case
of [N1, Corollary 3].

Lemma 7.6 (cf. [N1, Corollary 3]). Let g : V — C be a projective sur-
jective morphism from a normal quasi-projective variety V' to a smooth
quasi-projective curve C'. Assume that V' has only canonical singulari-
ties and that Ky is g-semi-ample. Then R'g.Ovy(mKy) is locally free
for every i and every positive integer m.

Proof. Let h : V' — V be a resolution of singularities such that Exc(h)
is a simple normal crossing divisor on V’. We write

Ky, =hKy+ E,
where F is an effective h-exceptional Q-divisor. Then we have
[mh*Ky + E| — (Ky: + {—(mh*Ky + E)}) = (m — 1) Ky.
We note that the right hand side is semi-ample over C. Therefore,
R'(g o h).Oy/([mh*Ky + E])

is locally free for every ¢ and every positive integer m (see, for example,
['6, Theorem 6.3 (i)]). On the other hand, we have

for every ¢ > 0 by the relative Kawamata—Viehweg vanishing theorem,
and

h*(’)w([mh*Kv + E—‘) >~ Ov(va)
Therefore, we obtain that

Rig*(’)v(va)
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is locally free for every i and every positive integer m. O

We will use the following easy criterion of semipositivity in the proof
of Theorem 7.1.

Lemma 7.7. Let £ be a locally free sheaf of finite rank on a smooth
projective variety V. Assume that there exists an invertible sheaf M
such that £%* @ M is generated by global sections for every positive
integer s. Then & 1s semupositive.

Proof. We put m : W = Py(€) — V and Ow(1) = Op,(¢)(1). Since
E% @ M is generated by global sections, Sym°E ® M is also gener-
ated by global sections for every positive integer s. This implies that
Ow (s) @ m* M is generated by global sections for every positive integer
s. Thus, we obtain that Oy (1) is nef, equivalently, £ is semiposi-
tive. U

Let us start the proof of Theorem 7.1.

Proof of Theorem 7.1. Let us divide the proof into several steps. First,
let us prove the existence of f': X’ — Y’ such that f;w?ﬁy, is locally
free.

Step 1 (Weak semistable reduction). By | , Theorem 0.3], there
exist a generically finite morphism 7 : Y’ — Y from a smooth projective
variety Y’ and fT: X' — Y’ with the following properties.

(i) XT is a normal projective Gorenstein (see | , Lemma 6.1])
variety which is birationally equivalent to X xy Y.
(ii) (Ux+ € XT) and (Uys C Y') are toroidal embeddings without
self-intersection, with Uxt = (fT)~1(Uy).
(iii) fT: (Uxt € XT) — (Uyr C Y') is toroidal and equidimensional.
(iv) all the fibers of the morphism f are reduced.
Note that fT: XT — Y’ is weakly semistable (see 2.13) and is called
a weak semistable reduction of f : X — Y. We also note that X' has
only rational singularities since X is toroidal. Therefore, XT has only
canonical Gorenstein singularities and is Cohen-Macaulay. Thus, we
have

FTOx1 (MK 1 )y1) ~ fiw%}y,
for every positive integer m. Therefore, it is sufficient to prove that
FIOxt (mK x+ /y) is locally free for every positive integer m. Note that
f1 is flat since Y is smooth, X is Cohen-Macaulay, and fT is equidi-
mensional (see [H2, Chapter I1I, Exercise 10.9] and [AlK, Chapter V,
Proposition (3.5)]).
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Step 2 (Relative canonical models). By assumption, the geometric
generic fiber of fT: XT — Y is of general type. Therefore, fi. Xt —
Y’ has the relative canonical model f : X — Y’ by | ]. Note that

f*TOXT(mKXf/Y') = ﬁo)?(mK)Z/y/)

for every positive integer m. Therefore, it is sufficient to prove that
[:O5(mK5 /Y,) is locally free for every positive integer m.

Step 3 (Local freeness via the flat base change theorem). We take an
arbitrary point P € Y'. We take general very ample Cartier divisors
H,Hy,--- H,_ 1, wheren =dimY, such that C' = HiNH>N---NH,,_1
is a smooth projective curve passing through P. By [ , Lemma 6.2],
we see that Xg = X' xy» C — C is weakly semistable. In particular,
X é has only rational Gorenstein singularities (see | , Lemma 6.1]).
By adjunction, we see that )N(c = X xyC is normal and has only canon-
ical singularities. More precisely, (fT)*H, = X' xy, H; = XLI has only
rational Gorenstein singularities since XLI — H, is weakly semistable
by | , Lemma 6.1 and Lemma 6.2]. In particular, (f7)*H; has only
canomcal singularities. Therefore, (XT, (fT)*H,) is plt by the inversion
of adjunction (see | , Theorem 5.50]). So we have that (X, f*H;)
is plt by the negativity lemma (see for example, | , Proposition
3.51]). Thus, XH1 X xy Hy = f Hj is normal (see | , Proposi-
tion 5.51]). By adjunction and the negativity lemma again, we obtain
that X m, has only canonical singularities. By repeating this process
(n—1)-times, we obtain that Xc has only canonical singularities. Note
that )?c — (' is equidimensional. Therefore, we see that ]7: X > Y'is
equidimensional by the choice of C'. Since X is Cohen-Macaulay and
Y’ is smooth, fis flat (see [H2, Chapter III, Exercise 10.9] and [AlL,
Chapter V, Proposition (3.5)]). Moreover, O¢(mK ) is flat over Y for
every integer m since O (mK ) is Cohen-Macaulay (see Lemma 7.5)
and f is equidimensional (see [AlK, Chapter V, Proposition (3.5)]). By
applying Lemma 7.6 and the base change theorem (see [[2, Chapter
111, Theorem 12.11]) to X — C, we obtain that

dlmHO(XyaO (m X/Y’)lX )

is independent of y € Y’ for every positive integer m. By the base
change theorem (see [H2, Chapter III, Corollary 12.9]), we obtain that

fiwh Iy f* s(mKx /Y,) is locally free for every positive integer m.
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We complete the proof of the local freeness of f/w% St /Y/ Next, we will
prove that f/w X /Y, is semipositive. Our proof depends on the effective

freeness due to Popa—Schnell (see Theorem 4.1). We do not need the
difficult semipositivity theorem in [I'8].

Step 4 (Semipositivity). By the proof of the local freeness of flw, /Y,,

we may assume that f': X’ — Y is weakly semistable. For simplicity,
we denote [ : X' — Y’ by f: X — Y in this step. We take the s-fold
fiber product

stXSIXXyXXy"'XyXHY’.

Then we see that X is normal and Gorenstein. Moreover, X® has
only rational singularities because X* is local analytically isomorphic
to a toric variety. Therefore, X* has only canonical singularities (see
Lemma 2.14 and Remark 5.12). By the flat base change theorem [Ve,
Theorem 2] (see also [I11], [(], and so on), we have wxs/x >~ p*wxs-1/y.
Thus we have

wxs )y = Wxs/x @ ¢ wx/y

~prwys-1y @ ¢ wx)y-

We note the following commutative diagram.

Xs—l <L X5

S,

Y X

Therefore, by the flat base change theorem (see [I12, Chapter III,
Proposition 9.3]) and the projection formula, we obtain

fswxs/y = fs 127*(2?* ?T 1y ® q*W?éTY)
* Q@m )

~ f l(st 1y @ DG Wy )y
~ f7 l(wxs 1/y®(fs 1) fwx/y)

= fWX/Y®f8 Wi 1y

= ®f wX/Y

for every positive integer m and every positive integer s by induction
on s. Note that f.w{: 7y is locally free for every positive integer m. By
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Corollary 4.5, we see that

fszS/Y ® w®m ® £®m(dimY+1)

T P —

is generated by global sections for every positive integer s, where £
is an ample invertible sheaf on Y such that |£] is free Therefore, by
Lemma 7.7, we obtain that the locally free sheaf f,w% X /Y is semipositive
for every positive integer m.

Finally, we will prove that det f/w% X /Y, is big for some positive integer

k under the assumption that Var(f) = dimY. We closely follow the
proof of [Vi7, Theorem 4.34] (see also [I<03, 3.13. Lemmal).

Step 5 (Bigness). In this step, we denote f: X—>Ybyf:X—Y
for simplicity. We take a positive integer [ such that [Kx/y is f-very
ample such that the multiplication map

5 S*(f.Ox(IKx/v)) — f.Ox (WK x)y)

is surjective for every positive integer 1. We put € = f.Ox(IKx/y).
Then we obtain the following commutative diagram.

X(\7>P

If Z is the ideal sheaf of +(X) on P(€), then we can find some positive
integer p such that

p*p*(f ® O[p(g)(,u)) —7IT® OP(S) (M)

is surjective. We fix this positive integer p throughout this step. We
consider

IF’:IP’(éBS*) Ty

for r = rank€. We have the universal basis map

S : @Op(—l) — €.

The map s is injective. Let A be the zero divisor of det(s). We put
Q = f.Ox(ulKx/y) and consider the surjective map

5 SHE) — Q.
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Let B C 7*Q be the image of the morphism

SH(s)

SUEPD Op(~1)) = (€D Or) @ Ou(—p) =2 5"(x°) =2 7°Q.

By taking blow-ups of P with centers in A, we can obtain a projective
birational morphism 7 : P’ — P such that B’ = 7*B/torsion is locally
free. We put Op/(1) = 7*Op(1) and 7’ = m o 7. Then we obtain a
surjective morphism

0 : S“(é Op(—1)) — B.
We have the Pliicker embedding
Grass(rank(Q), S*(C")) — PM
and the surjection # corresponds to the morphism
p : P — Grass(rank(Q), S*(C")) — PM
such that
det(B') @ Op/(v) =~ p" Opu (1)

where v = p - rankQ. By assumption, we have Var(f) = dimY. Note
that the general fiber X, of f : X — Y is a canonically polarized variety
with only canonical singularities. Thus, the automorphism group of X,
is finite. Therefore, the morphism p’ : P’ — PM is generically finite over
its image. Thus p*Opum(1) is nef and big on P'. Let H be an ample
Cartier divisor on Y. By Kodaira, we have

HP, p™* Opu (v) @ 7Oy (—=H)) # 0

for some large positive integer v. Note that 7*Q and its subsheaf B’
coincide over a nonempty Zariski open set of P’. Thus

™ (Oy (—H) ® det(Q)") @ Opi(v - )

has a section. We put @ = v - y. Then we obtain a nontrivial map

¢ (MO0w(a)) = S (EDE) — Oy(—H) @ det(Q)".
By taking a birational modification g : Y' — Y, we have
G ©Oyi(F) = g°Oy(=H) ® g"(det(Q)")

where F' is an effective divisor on Y’ and G is a quotient invertible sheaf
of g*(S*(" £)). Note that G is nef since g*(S*(D" £)) is semipositive.
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We put n = dimY = dim Y’. Then we obtain
(det(Q)")" = (g" det(Q)")"

= (9"Oy/(H) ® G @ Oy(F)) - (g” det(Q)")" ™"

> g"Oy:(H) - (¢" det(Q)")" ™

= g"Oyi(H) - (g"Oy1(H) ® G @ Oy(F)) - (¢" det(Q)")"
(9" Oy:(H))? - (g det(Q)")"

(AVARAVARLY,

(9"Oy:(H))"
=H" > 0.

This means that det f,Ox (ulKx/y) is a nef and big invertible sheaf on
Y.

Therefore, we obtain that det fiwﬁ?f“/y, is a nef and big invertible
sheaf on Y’ for some positive integer k. U

We close this section with a remark on adjunction.

Remark 7.8. In general, )~(y may be non-normal. However, we see
that the canonical divisor K %, is well-defined, X, has only semi-log-
canf)r‘lica.l singularities, a‘nd O:;( (MK 5%, ~ Ox, (mK %,) for every
positive integer m, by adjunction. For the details of semi-log-canonical
singularities and pairs, see [I'7].

8. ELLIPTIC FIBRATIONS

Although the results in this section are more or less well known to
the experts, we discuss elliptic fibrations for the reader’s convenience.
We will use Corollary 8.3 in the proof of Theorem 1.1 in Section 9.
First, let us recall:

Theorem 8.1 (---, Kawamata, Nakayama, ---). Let f:V — W be a
surjective morphism between smooth projective varieties whose general
fibers are elliptic curves. Assume that there exists a simple normal
crossing divisor ¥ on W such that f is smooth over Wo =W \ ¥. We
further assume that all the local monodromies on R fy.Cy, around %
are unipotent, where fo = flv, : Vo = f~1(Wy) — Wy. Then we have

(fawvw)®'? = J*Opi (1),

where J : W — P is the natural extension of the period map p : Wy —
C ~h/SL(2,Z). Note that h = {z € C;Im(z) > 0}.
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Proof. We do not prove this theorem here. Note that this theorem is
a special case of | , Theorem 20]. For more detailed description of
the period map py : Wy — b/SL(2,Z), see [N2, Corollary 3.2.1]. For
a higher-dimensional generalization, see [I'3, Theorem 2.11], where we
discuss period maps of polarized variations of Hodge structure of weight
one. Of course, this theorem is also a special case of [I'3, Theorem
2.11]. O

8.2. Let f : X — Y be a projective surjective morphism between
smooth projective varieties whose general fibers are elliptic curves. We
can construct the following commutative diagram:

such that

(i) 7 : Y/ — Y is a generically finite surjective morphism from a
smooth projective variety Y.
(ii) X’ is a smooth projective variety which is a resolution of the
main component of X xy Y.
(iii) There exists a simple normal crossing divisor ¥ on Y such that
f'is smooth over Yj = Y'\ %, fi = f'|x; : Xg = f'(Y)) = Y]
has a section, f{ : X{ — Y| is an elliptic curve with level 3-
structure.
(iv) All the local monodromies on R' f,C; around ¥ are unipotent.

For the details, see, for example, [ , Theorem 2.1.2, Theorem 3.7.1,

and so on]. Let Ml(g) be the fine moduli scheme of elliptic curves with
level 3-structure (see, for example, | , Theorem 13.1]). Note that
Ml(?’) is a finite cover of C = h/SL(2,Z). Let C — Ml(g) be the universal
family. Then there exists a morphism « : Y] — M1(3) such that X =
C X Y,. By Theorem 8.1, we have the period map p : Yy — C =
h/SL(2,Z) and its extension J : Y’ — P! We note the following



52 OSAMU FUJINO

commutative diagram.

M

-

vy -

|

Y’4J>P1

Therefore, we see

Var(f) = dim«a(Yy) = dim J(Y”).
By Theorem 8.1,
(ﬁiWX//Y')®12 ~ J*Op(1).
This implies that

K(Y' det fiwxry) = k(Y', fiwxyr) = K(Y', J*Opi (1)) = Var(f).

By [ , Theorem 0.3 and Lemma 6.3], we can take a generically
finite morphism 7" : Y” — Y’ from a smooth projective variety such
that

(v) Supp7”*¥ is a simple normal crossing divisor on Y.

(vi) There exists a projective birational morphism X7 — X’ xy-
Y” such that the induced morphism ff : X7 — Y” is weakly
semistable.

Let X” — X' be a birational morphism from a smooth projective
variety X” such that f” : X’ — Y” is the induced morphism. In this
case, we see that

T/*fin//Y/ = f:(,wXH/YI/,
This is because fiwx//ys is characterized as the canonical extension

of a suitable Hodge bundle and Supp7”¥ is a simple normal crossing
divisor on Y. Therefore, we have

R(Y" det fluxnyyn) = w(Y", flwxnpyn) = KV, flwxyr) = Var(f).

Moreover, by [F'12, Theorem 1.6] (see also Step 4 in the proof of The-
orem 7.1), we see that f/ w?}’,?/y,, is nef for every positive integer m.

By the above description of elliptic fibrations, we have:

Corollary 8.3. Let f : X — Y be a surjective morphism between
smooth projective varieties with connected fibers whose general fibers
are elliptic curves. Then we have the following properties.
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(i) We have
(Y, (fuwxyy)™) = Var(f).
Note that (f.wx/y)** is an invertible sheaf on'Y .
(i) If (Y, L) > 0, then we have
A(X, wxy @ f7L) 2 K(Xg) + max{x(Y, £), Var(f)}
— mac{w(Y, £), Var(f)}.
(iii) We have
k(X wx)y) > k(X5) + Var(f)
= Var(f).
(iv) If k(Y) > 0, then we have
#(X) > £(Xy) + max{s(Y), Var(f)}
= max{x(Y), Var(f)}.
Proof. The statements (iii) and (iv) are important special cases of (ii).
In the big commutative diagram constructed in Lemma 6.5, we can
choose a weakly semistable morphism ¢” : V" — W” such that we can
apply the result in 8.2 to g" : V" — W, that is, k(W", glwy»jwr) =
Var(f). Note that g;/wy~ wn~ is an invertible sheaf. Therefore, we obtain
the desired inequality in (ii) by Lemma 6.7. We also obtain the desired

inequality in (i) by Lemma 6.8. O
9. 6n,n71
In this final section, we give a proof of the following theorem (see
Theorem 1.1), which is the main theorem of | ]. This section is a
revised version of the author’s unpublished short note [F'1] written in
2003 in Princeton.
Theorem 9.1 (] , Theorem 1]). Let f : V — W be a dominant

morphism of algebraic varieties defined over the complex number field
C. We assume that the general fiber V,, = f~Y(w) is an irreducible
curve. Then we have the following inequality for logarithmic Kodaira
dimensions:

R(V) > REW) +FE(Vy).

It is easy to see that this statement is equivalent to Theorem 9.2 by
the basic properties of the logarithmic Kodaira dimension.

Theorem 9.2 (C,,,—1). Let f : V. — W be a surjective morphism
between smooth projective varieties with connected fibers. Let C' and D
be simple normal crossing divisors on V. and W respectively. We put
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Vo .=V \C and Wy := W \ D. Assume that f(Vo) C Wy. Then the
inequality
£(Vo) =2 K(Wo) + E(Fo)
holds, where Fy is a general fiber of fo = flv, : Vo — Wh.
Precisely speaking, we will prove the following theorem in this sec-

tion.

—/

Theorem 9.3 (C,, ;). Let f : X — Y be a surjective morphism
between smooth projective varieties with connected fibers. Let C' and D
be simple normal crossing divisors on X and Y respectively. We put

Xo:=X\C and Yy :=Y \ D. Assume that f(Xo) C Yy. Then the
inequality
K(X,Kx +C — f"(Ky + D)) > R(Fp)
holds, where Fy is a general fiber of fo = f|x, : Xo — Yo.
We note:
Proposition 9.4. Theorem 9.3 implies Theorem 9.2.

By this proposition, we see that Theorem 9.3 is sufficient for Theorem
9.1.

Proof of Proposition 9.4. Without loss of generality, we may assume
that (W, Kw + D) > 0 and ®(Fp) > 0 in Theorem 9.2. Therefore, we
have

#(V, Ky + C — f*(Kw + D)) > &(Fp) >0

by Theorem 9.3. We take a sufficiently large and divisible positive
integer m such that

HV, Oy (m(Ky + C) — f*(m(Kw + D)))) #0,

and a = (I)|m(KV+C)\ e PN and ﬁ = (I)|m(KW+D)| Y --» PM are
litaka fibrations of Ky + C and Ky + D respectively. Since

0#ac HY(V,Ov(m(Ky + C) — f*(m(Kw + D))))
gives an injection
L2 HYW, Ow (m(Kw + D))) — H°(V,Oy(m(Ky + C))),
we have k(V, Ky + C) > k(W, Ky + D). Therefore, we obtain
r(Vo) > R(Wy) + R(Fp)
when ®(Fy) = 0. This is the desired inequality when &(Fp) = 0.
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From now on, we assume that £(Fy) = 1. We consider the following
commutative diagram:

V-2V, —spN
| \

f 1 q | p
Y \

W**ﬁ>WmCHPM,

where V,,, and W,, are the images of o and (3 respectively. Note that
the projection p : PV --» P is induced by the inclusion . We assume
that k(V, Ky + C) = (W, Ky + D). Then ¢ is birational. By taking
suitable birational modifications, we may assume that o« and 3 are
morphisms.

|
fl 4
v
We take a sufficiently general point P € W,, and consider
Vv % P

fl f/l

W =W —= P
where V' = f~171(P) and W’ = g~'(P). We put ¢’ = C|y» and
D" = D|w-. Then we have x(V', Ky +C") = (W', Ky + D) = 0. By

Theorem 9.3, we obtain
0=r(V, Ky +C") > r(V' Ky +C' — f*(Ky + D))

This is a contradiction. Therefore, we obtain
K(V,Ky +C) > (W, Ky + D)+ 1=r(W,Kw + D) + E(Fp).
This is the desired inequality when &(Fp) = 1. O

Before we start the proof of Theorem 9.3, let us recall the following
trivial lemma. We will frequently use it in the proof of Theorem 9.3
without mentioning it.

Lemma 9.5. Let X be a normal projective variety. Let Dy and Do
be Q-Cartier Q-divisors on X. Assume that D1 > Dy. Then we have
IQ(X, Dl) Z IQ(X, DQ)

Proof of Theorem 9.5. We divide the proof into several steps.
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Step 1. By Theorem 2.1 in | | (see also [KKar, Chapter 2, Remark
4.5 and Section 9]), we have the following commutative diagram:

X <L X/ <_)UX/

o

Y ~—— Y ~—Uy

such that p: X’ — X and ¢ : Y/ — Y are projective birational mor-
phisms, X’ has only quotient singularities, Y’ is smooth, the inclusion
on the right are toroidal embeddings without self-intersection, and such
that
(i) f': (Ux C X') — (Uy: CY") is toroidal and equidimensional.
(ii) We put C" := (p*C)yea and D’ := (¢*D)yeq. Then C" C X'\ Ux:
and D' C Y\ Uy.

Note that

’(Xo) = k(X,Kx +C) = (X', Kx +C")
and

7(Yy) = (Y, Ky + D) = k(Y', Ky: + D).
Since

KJ(X, KX + C - f*(Ky -+ D)) Z /{(X/, le + C, - f/*(Ky/ + D,))7

we may replace f: X — Y with f/: X’ — Y’. From now on, we omit
the superscript ’ for simplicity of the notation. So, we may assume that
f X — Y is toroidal with the above extra assumptions.

Step 2. By taking a Kawamata cover ¢ : Y/ — Y we obtain the
following commutative diagram:

X <X

17

Y <T Y’
such that f': X’ — Y’ is weakly semistable, where X’ is the normal-
ization of X Xy Y’ (see | , Section 5]). Note that X’ is Gorenstein
by [ , Lemma 6.1]. We put G := X \ Ux and H :=Y \ Uy. Then
we have

KX+C_f*(KY+D) ZKX+Chor+Gver_f*(KY+H)-
Therefore, we can check that

p(Kx+C— f*(Ky + D)) > Kxy + (" C)hor.
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We note that (p*C)por = p*(Chor). So, it is sufficient to prove that
K(X/7 KX’/Y’ + (p*C>hor) 2 E(FO)

Step 3. Let F be a general fiber of f: X — Y. We put g := g(F): the
genus of F'.

Case (g > 2). In this case,
k(X' Kxrjyr + (p°Chor) > K(X', Kxrjyr) > 1 =R(Fp)
by Corollary 7.4 (iii).
Case (g = 1). By the description in 8.2 and Corollary 8.3, we have
k(X' Kxryyr) > Var(f') = Var(f) > 0.
So, if C' is vertical or Var(f) > 1, then we obtain
(X', Kxi)yr + (0"Chor) > R(F).

Therefore, we may assume that Var(f) = 0 and C is not vertical. Since
Var(f) = 0, there is a finite surjective morphism 7 : Y — Y’ from a
normal projective variety Y such that X” = X’ xy+ Y is birationally
equivalent to Y x E, where F is an elliptic curve.

Lemma 9.6. Let T : Y — Y be a birational morphism from a smooth
projective variety Y such that 771 (Y \ Uy+), where (Uy: C Y') is the

toroidal structure of Y', is a simple normal crossing divisor on Y. We
have the following commutative diagram.:

X’LY

d ]
Y’ ~ Y
where X = X' xy' Y. Then f: X — Y is weakly semistable and
K(Xla KX’/Y’ + (p*c)hor) Z /{(77 KY/7 + (f*p*o)hor)-

Proof of Lemma 9.6. Note that f : X — Y is weakly semistable by
[ , Lemma 6.2]. We also note that

K7 = T*Ky/ + FE
and

K+ =7T"Kx/ + F,
where F' is an effective T-exceptional divisor on Y and F is an effective
T-exceptional divisor on X. Therefore, we obtain

KY/? + (ﬁ*p*c)hor < %*KX//Y’ +F+7 (p*c)hor-
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This implies the desired inequality
K<X/7 KX’/Y’ + (p*C)hor) Z ’1(77 KY/? + (ﬁ*p*c>hor)
holds. U
By modifying Y’ birationally, we may assume that there exists a
simple normal crossing divisor ¥ on Y’ such that 7 : Y” — Y’ is étale
over Y\ ¥ (see Lemma 9.6). By Lemma 2.15, we may further assume

that Y is a smooth projective variety. Anyway, we obtain the following
commutative diagram:

X/ < T X
f/l if//
Y/ < Y//
where 7 : Y” — Y” is a finite cover from a smooth projective variety Y,
f" X" = X%y Y — Y is weakly semistable, and f” is birationally
equivalent to Y” x ' — Y. Since
T (Kx vt + (0" Chor) = Kxpyr + 7 (0°C)hor )

it is sufficient to prove k(X" Kx»/y» +7*((p*C)por)) > 1. Let v : X —

Y” x E and §: X — X" be a common resolution. Since X” has only
rational Gorenstein singularities, X" has at worst canonical Gorenstein
singularities. Thus, we obtain

Ii(X//, KX///YN —+ 7T*((p*0)hor)) = li(jz, K)?/Y” + 6*7*((]9*C)h0r)).
On the other hand,
K)?/Y" =Bz T Kynxpyyr =t A

is an effective a-exceptional divisor such that SuppA = Exc(«). Let B
be an irreducible component of 8*7*((p*C)por) such that B is dominant
onto Y. Then

m(A+ " (p*Chher)) > @ B,

for a sufficiently large integer m. Therefore, if is sufficient to prove
k(Y" x E,a,B) > 1. This holds true by Corollary 2.19. Thus, we
finish the proof when g = 1.

Case (g = 0). As in the above case, we can take a finite cover and
obtain the following commutative diagram:

X/ < il X

|

Y/ < Y//
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where f” is birationally equivalent to Y” x P! — Y”. We can further
assume that all the horizontal components of 7*((p*C)nor) are mapped
onto Y birationally.

Lemma 9.7 (cf. [I'3, Section 7]). Let f : V — W be a surjective mor-
phism between smooth projective varieties with connected fibers. As-
sume that f is birationally equivalent to W x P! — W. Let {Cy} be a
set of distinct irreducible divisors such that f : Cy — W is birational
for every k with 1 < k < 3. Then

/i(‘/, KV/W + Cl + 02) > 0
and

Ii(‘/, KV/W + Cl + CQ + 03) Z 1.

Proof of Lemma 9.7. By modifying V' and W birationally and replac-
ing C} with its strict transform, we may assume that there exists a
simple normal crossing divisor > on W such that

QO,LJ : ‘/0 = f71<W0> ~ WO X ]Pl

with ¢;;(Cilv,) = Wo x {0} and ¢;;(Cjly,) = Wo x {oo} for i # j,
where Wy := W\ ¥. We may further assume that there exists 1;; :
V — P! such that Yijlve = p2 0 @i, where po is the second projection
Wy x P! — P!, We may also assume that J, Ci USuppf*3 is a simple
normal crossing divisor on V. Then we obtain

. [dz
e
€ Homo,, (f*Ow (Kw + %), Oy (Ky + C; + C; + (f*E)req))
~ H'(V,Ov(Kyvyw + Ci + Cj + (f*L)rea — [*5))
C H(V,Oy(Kv)w + C; + Cy))

for i # j, where z denotes a suitable inhomogeneous coordinate of P!,
Therefore, we have

dim(c HO(‘/, OV(KV/W + Cl + CQ)) Z 1

and
dim(c HO(‘/, O\/(Kv/w + Ol + 02 + 03)) Z 2.
Thus, we obtain the required result. 0

Apply Lemma 9.7 to X — Y, where 3: X — X" is a resolution of
X". Then we obtain

KX Ky + B (0" Chir)) > R(FD).

Thus, we complete the proof of Theorem 9.3. O
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