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Abstract. The polyhedral product is a space constructed from a simplicial complex and a
collection of pairs of spaces, which is connected with the Stanley Reisner ring of the simplicial
complex via cohomology. Generalizing the previous work [GT], [GW] and [IK], we show a
decomposition of polyhedral products for a large class of simplicial complexes including the
ones whose Alexander duals are shellable or sequentially Cohen-Macaulay. This implies the
property, called Golod, of the corresponding Stanley-Reisner rings [HRW].

1. Introduction

In this paper, we study topological properties of spaces called polyhedral products and their

reduction to algebraic and combinatorial properties of Stanley-Reisner rings.

Let us first introduce the main object to study. Let K be a simplicial complex on the vertex

set [m] = {1, . . . ,m} and let (X,A) = {(Xi, Ai)}mi=1 be a collection of pairs of spaces. The

polyhedral product ZK(X,A) is defined as

ZK(X,A) =
∪
σ∈K

(X,A)σ (⊂ X1 × · · · ×Xm)

for (X,A)σ = Y1 × · · · × Ym where Yi = Xi and Ai according as i ∈ σ and i ̸∈ σ. Since

special polyhedral products first appeared in the work of Porter [P] in the 60’s, they have

been studied in a variety of contexts and directions. Notably, after the seminal work of Davis

and Januszkiewicz [DJ] which introduces quasitoric manifolds, particular polyhedral products

called the Davis-Januszkiewicz space and the moment-angle complex have been energetically

investigated, where one of the most interesting points of them is to yield connections with

combinatorial commutative algebra as below.

Let us next introduce an algebraic and combinatorial object connected with polyhedral prod-

ucts. Let k be a commutative ring with unity. The Stanley-Reisner ring of K is defined as

k[K] = k[v1, . . . , vm]/(vi1 · · · vik | {vi1 · · · vik} ̸∈ K),

where we conventionally put |vi| = 2. The Stanley-Reisner ring is a central object in com-

binatorial commutative algebra and has been producing many results and applications in a
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wide area of mathematics. As is pointed out in [DJ, Theorem 4.8], it immediately follows from

definition that there is an isomorphism

H∗(ZK(CP∞, ∗); k) ∼= k[K],

where the polyhedral product ZK(CP∞, ∗) is called the Davis-Januszkiewicz space for K. Then

several algebras derived from k[K] are known to be realized as the cohomology of spaces related

with the Davis-Januszkiewicz space for K. In particular, Buchstaber and Panov [BP, Theorem

7.6] showed

(1.1) H∗(ZK(D
2, S1);k) ∼= Tork[v1,...,vm](k[K], k),

where the polyhedral product ZK(D
2, S1) is called themoment-angle complex forK. With these

connections, one might expect that some algebraic and combinatorial properties of Stanley-

Reisner rings follow from stronger topological properties of polyhedral products. Indeed, there

are some results confirming this. For example, Hochster’s result [S, Theorem 4.8 in Chapter

II] which computes the Poincaré series of Tork[v1,...,vm](k[K],k) in terms of the cohomology of

induced subcomplexes (or full subcomplexes) of K is an immediate consequence of the decom-

position of the suspension of the polyhedral product ZK(CX,X) due to Bahri, Bendersky,

Cohen and Gitler [BBCG, Theorem 2.21], which is thought as a generalization of the standard

decomposition Σ(X×Y ) ≃ ΣX∨ΣY ∨Σ(X∧Y ). In this paper, we consider the Golod property

of Stanley-Reisner rings for the above expectation on polyhedral products.

Definition 1.1. A simplicial complex K on the vertex set [m] is called Golod over k if all

products in Tork[v1,...,vm](k[K], k) vanish.

The Golod property was originally introduced by the equality involving Poincaré series of

algebras derived from k[K], for which coefficient-wise inequality holds in general, and it is

Golod [G] who proved that this equality is equivalent to that all products and (higher) Massey

products in Tork[v1,...,vm](k[K],k) vanish. Recently, Berglund and Jöllenbeck [BJ, Theorem 3]

showed that the condition of (higher) Massey products is unnecessary. So, we employ the above

simple definition for the Golod property. The Golod property has been studied especially in

connection with shellability of simplicial complexes. We here give the definition of shellable

complexes due to Björner and Wachs [BW1].

Definition 1.2. A simplicial complex K is shellable if there is given an ordering of facets

F1, . . . , Ft satisfying that Fk ∩ (
∪

i<k Fi) is pure and (dimFk − 1)-dimensional for k > 1.

There are two handy subclasses of shellable complexes introduced in [BW2]; shifted and

vertex-decomposable complexes. As in [BW2, Theorem 11.3], we have implications:

shifted ⇒ vertex-decomposable ⇒ shellable

There is also a homological generalization of shellable complexes as follows. For σ ∈ K, let

lkK(σ) denote the link of σ in K, i.e. lkK(σ) = {τ ∈ K |σ ∩ τ = ∅, σ ∪ τ ∈ K}, and let K⟨i⟩

be the subcomplex of K generated by facets of dimension ≥ i.
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Definition 1.3. A simplicial complexK is sequentially Cohen-Macaulay over k if for any σ ∈ K

and i ≥ 0,

H̃k(lkK(σ)
⟨i⟩;k) = 0 whenever k < i,

where σ can be ∅, that is, K itself satisfies this condition.

As in [BWW], we, of course, have an implication:

shellable ⇒ sequentially Cohen-Macaulay over Z

The Golod property of the Alexander duals of the above complexes are proved as follows. Let

K∨ denote the Alexander dual of K.

Theorem 1.4 (Herzog, Reiner and Welker [HRW, Theorem 4 and 9]). If k is a field and K∨

is sequentially Cohen-Macaulay over k, then K is Golod over k.

We want to prove that this result is a consequence of much stronger topological property of the

polyhedral product ZK(CX,X). There are some results confirming this. Grbić and Theriault

[GT] showed that the moment-angle complex for a shifted complex has the homotopy type of a

wedge of spheres. This is generalized by the authors [IK] to ZK(CX,X), which was conjectured

in [BBCG, Conjecture 2.29]. We notice that the Alexander dual of a shifted complex is shifted,

so these results guarantee Theorem 1.4 for shifted complexes. Recently, by a noble use of

discrete Morse theory, Grujić and Welker [GW] showed if the Alexander dual of K is vertex-

decomposable, ZK(D
k, Sk−1) for k > 1 has the homotopy type of a wedge of spheres, implying

Theorem 1.4 in the vertex-decomposable case. We now state our main results. Let |K| stand for

the geometric realization of K and let KI be the induced subcomplex (or the full subcomplex)

on I for a subset I ⊂ [m], i.e. KI = {σ ∈ K |σ ⊂ I}. Let ΣK denote the suspension of K, that

is, ΣK = {(∅, σ), ({1}, σ), ({2}, σ) |σ ∈ K}, and we choose ({1}, ∅) as the basepoint of |ΣK|,
where |ΣK| is equal to the unreduced suspension of |K|. For a collection of spaces {Xi}mi=1 and

a subset I ⊂ [m], we put X̂I =
∧

i∈I Xi.

Theorem 1.5. Let K be a simplicial complex on the vertex set [m] and let X = {Xi}mi=1 be a

collection of connected CW-complexes. If K∨ is sequentially Cohen-Macaulay over Z and each

Xi is finite, there is a homotopy equivalence

ZK(CX,X) ≃
∨

I⊂[m]

|ΣKI | ∧ X̂I .

Remark 1.6. As we will see in Theorem 4.4 below, if K∨ is shellable, the finiteness assumption

on Xi in Theorem 1.5 is unnecessary.

We will see that |ΣK| has the homotopy type of a wedge of spheres if K∨ is sequentially

Cohen-Macaulay over Z ((5.2) and Proposition 5.7). Then we obtain:

Corollary 1.7. If K∨ is sequentially Cohen-Macaulay over Z, the moment-angle complex for

K has the homotopy type of a wedge of spheres of dimension > 1.
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Corollary 1.8. If K∨ is sequentially Cohen-Macaulay over Z, K is Golod over any ring.

Theorem 1.5 is actually deduced from the following p-local result.

Theorem 1.9. Let K be a simplicial complex on the vertex set [m] and let X = {Xi}mi=1 be a

collection of connected CW-complexes. If K∨ is sequentially Cohen-Macaulay over Z/p, there
is a p-local homotopy equivalence

ZK(CX,X) ≃(p)

∨
I⊂[m]

|ΣKI | ∧ X̂I .

We will also see below that if K∨ is sequentially Cohen-Macaulay over Z/p, Σ|ΣK| has the
p-local homotopy type of a wedge of spheres of dimension > 1. See (5.2). Then we have:

Corollary 1.10. If K∨ is sequentially Cohen-Macaulay over Z/p, the moment-angle complex

for K has the p-local homotopy type of a wedge of spheres of dimension > 1.

From this, we can recover (a slightly generalized version of) the result of Herzog, Reiner and

Welker [HRW, Theorem 4 and 9] (Theorem 1.4 above).

Corollary 1.11. If K∨ is sequentially Cohen-Macaulay over Z/p, K is Golod over any field of

characteristic p.

The paper is structured as follows. Section 2 reviews the construction of the decomposition

of polyhedral products after a suspension given by Bahri, Bendersky, Cohen and Gitler [BBCG,

Theorem 2.21] and elucidates its naturality which will be used later. Section 3 introduces new

simplicial complexes called extractible complexes over k by a recursive condition on deletions

of vertices, which summarizes the inductive structure of the Alexander duals of shellable and

sequentially Cohen-Macaulay complexes, and proves the decomposition of polyhedral products

for extractible complexes. Section 4 shows the extractibility over Z of simplicial complexes

whose Alexander duals are shellable complexes by a mixture of combinatorial and homotopy

theoretical arguments, which implies the decomposition of the corresponding polyhedral prod-

ucts. Section 5 deals with the extractibility over Z(p) of the Alexander duals of sequentially

Cohen-Macaulay complexes over Z/p by a homologically generalized method of Section 4, which

implies the p-local decomposition. Section 5 also deals with the integral decomposition of poly-

hedral products from the p-local ones.

Throughout the paper, we assume that spaces have basepoints and maps between spaces

preserve basepoints. We also assume that every nonempty simplicial complex has the empty

subset of the index set as its simplex.

2. Review of the result of Bahri, Bendersky, Cohen and Gitler

In this section, we review the decomposition of polyhedral products after a suspension due

to Bahri, Bendersky, Cohen and Gitler [BBCG, Theorem 2.21] and show its naturality which

will be used below.
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Let K be a simplicial complex on the index set [m], possibly with ghost vertices, i.e. elements

of [m] which are not vertices of K. For the possibility of existence of ghost vertices, we use the

terminology “index set” instead of “vertex set”. The definition of polyhedral products in the

previous section also applies, without any change, to simplicial complexes with ghost vertices.

For a subcomplex L ⊂ K on the same index set [m] and a collection of maps between pairs of

spaces f = {fi : (Xi, Ai) → (Yi, Bi)}mi=1 with (Y ,B) = {(Yi, Bi)}mi=1, there are induced maps

ZL(X,A) → ZK(X,A) and f : ZK(X,A) → ZK(Y ,B).

For a subset I ⊂ [m], let (XI , AI) be a subcollection {(Xi, Ai)}i∈I of (X,A). By definition, the

projection
∏m

i=1 Xi →
∏

i∈I Xi restricts to a map

πI : ZK(X,A) → ZKI
(XI , AI).

Replacing the direct product in the definition of polyhedral products with the smash product,

we can also define the smash product analogue of ZK(X,A) which we denote by ẐK(X,A).

For a subcomplex L ⊂ K on the same index set [m] and a map f : (X,A) → (Y ,B), there are

also induced maps

ẐL(X,A) → ẐK(X,A) and f : ẐK(X,A) → ẐK(Y ,B).

For any subset I ⊂ [m], the pinch map
∏

i∈I Xi →
∧

i∈I Xi restricts to a map

ρI : ZKI
(XI , AI) → ẐKI

(XI , AI).

Let ∇ : ΣX → ΣX ∨ ΣX be the suspension comultiplication and let ∇n be the composite

ΣX
∇−→ ΣX ∨ ΣX

1∨∇−−→ · · · 1∨···∨1∨∇−−−−−−→ ΣX ∨ · · · ∨ ΣX︸ ︷︷ ︸
n

for n ≥ 2. Let ∅ = I1 < · · · < I2m = [m] be the lexicographic order on the power set of [m].

We now define the map

ϵ̂K = (Σ(ρI1 ◦ πI1) ∨ · · · ∨ Σ(ρI2m ◦ πI2m )) ◦ ∇2m : ΣZK(X,A) → Σ
∨

I⊂[m]

ẐKI
(XI , AI).

Generalizing the standard decomposition Σ(X×Y ) ≃ ΣX ∨ΣY ∨Σ(X ∧Y ), i.e. the composite

(2.1) Σ(X × Y )
∇3−→

3∨
Σ(X × Y )

proj−−→ ΣX ∨ ΣY ∨ Σ(X ∧ Y ),

Bahri, Bendersky, Cohen and Gitler [BBCG, Theorem 2.10] proved:

Theorem 2.1. The map ϵ̂K is a homotopy equivalence if each (Xi, Ai) is a connected CW-pair.

Remark 2.2. Notice that ϵ̂K is defined by using the lexicographic order on the power set of

[m]. If we choose another order on the power set of [m], we get another homotopy equivalence.

However we easily see that these homotopy equivalences become homotopic after a suspension

by the cocommutativity of a double suspension.



6 KOUYEMON IRIYE AND DAISUKE KISHIMOTO

From now on, we fix a collection of spaces X = {Xi}mi=1 and specialize polyhedral products

and related spaces to the collection (CX,X). Then it is useful to put for I ⊂ [m],

ZI
K = ZKI

(CXI , XI), ẐI
K = ẐKI

(CXI , XI) and WI
K =

∨
J⊂I

|ΣKJ | ∧ X̂J .

Using (pointed) homotopy colimits, it is proved in [ZZ, Lemma 1.8] that there is a homotopy

equivalence

ϖI : ẐI
K

≃−→ |ΣKI | ∧ X̂I .

Then by putting

(2.2) ϵ̄K = ((
∨

I⊂[m]

ΣϖI) ◦ ϵ̂K)−1 : ΣW [m]
K → ΣZ [m]

K ,

we obtain the result of Bahri, Bendersky, Cohen and Gitler [BBCG, Theorem 2.21] which is

mentioned in the previous section.

Theorem 2.3. Let K be a simplicial complex on the index set [m], possibly with ghost vertices.

If each Xi is a connected CW-complex, the map ϵ̄K is a homotopy equivalence.

Let us consider a simple case that ϵ̄K desuspends. If ZK(X,A) is a co-H-space, the map ∇2m

in the definition of ϵ̂K desuspends, i.e. there is a map ZK(X,A) →
∨2m ZK(X,A), defined by

using the comultiplication of ZK(X,A), whose suspension is homotopic to ∇2m .

Proposition 2.4. If Z [m]
K is a co-H-space, ϵ̄K desuspends.

Let us consider the naturality of ϵ̄K . We start with the map ϵ̂K . By definition, ϵ̂K has

the naturality such that for a subcomplex L ⊂ K on the same index set [m] and a map

f : (X,A) → (Y ,B), there are homotopy commutative squares

(2.3)

ΣZL(X,A)
ϵ̂L

//

incl

��

Σ
∨

I⊂[m] ẐLI
(XI , AI)

incl
��

ΣZK(X,A)
ϵ̂K

// Σ
∨

I⊂[m] ẐKI
(XI , AI)

and ΣZL(X,A)
ϵ̂L

//

Σf

��

Σ
∨

I⊂[m] ẐLI
(XI , AI)

Σ
∨

I⊂[m] fI
��

ΣZK(Y ,B)
ϵ̂K

// Σ
∨

I⊂[m] ẐKI
(Y I , BI)

where f
I
is a subcollection of f corresponding to I. If v is a ghost vertex of K, by the same

reason as Remark 2.2, the following square becomes homotopy commutative after a suspension.

(2.4) ΣZK(X,A)

ϵ̂K

��

Σ(ZK(X [m]\v, A[m]\v)× Av)

δ̂
��

ΣZK(X [m]\v, A[m]\v) ∨ ΣAv ∨ Σ(ZK(X [m]\v, A[m]\v) ∧ Av)

ϵ̂K∨1∨(ϵ̂K∧1)
��

Σ
∨

I⊂[m] ẐKI
(XI , AI) ΣẐK(X [m]\v, A[m]\v) ∨ ΣAv ∨ Σ(ẐK(X [m]\v, A[m]\v) ∧ Av),



TOPOLOGY OF POLYHEDRAL PRODUCTS 7

where δ̂ is the composite (2.1). We next consider the naturality of ϖI . By definition, ϖI has the

naturality analogous to (2.3). Moreover, if v ∈ [m] is a ghost vertex of K, there is a homotopy

commutative diagram

(2.5) Ẑ [m]\v
K ∧Xv

ϖ[m]\v∧1
��

Ẑ [m]
K

ϖ[m]

��

(|ΣK| ∧ X̂ [m]\v) ∧Xv |ΣK| ∧ X̂ [m].

We here record the naturality of ϵ̄K which will be used below. LetX ⋊ Y = X × Y/ ∗ ×Y and

let δ : ΣX ⋊ Y → ΣX ∨ (ΣX ∧ Y ) be a homotopy equivalence defined as the composite

(2.6) ΣX ⋊ Y
∇−→ (ΣX ⋊ Y ) ∨ (ΣX ⋊ Y )

proj−−→ ΣX ∨ (ΣX ∧ Y ),

where ∇ is the suspension comultiplication.

Proposition 2.5. For a subcomplex L ⊂ K on the same index set [m] and a subset I ⊂ [m],

there are homotopy commutative diagrams

ΣW [m]
L

incl
//

ϵ̄L
��

ΣW [m]
K

ϵ̄K
��

ΣZ [m]
L

incl
// ΣZ [m]

K

and ΣWI
KI

incl
//

ϵ̄KI

��

ΣW [m]
K

ϵ̄K
��

ΣZI
kI

incl
// ΣZ [m]

K .

Moreover, if v ∈ [m] is a ghost vertex of K, the following diagram becomes homotopy commu-

tative after a suspension.

ΣW [m]
K

proj
//

ϵ̄K
��

ΣW [m]\v
K ∨ Σ(W [m]\v

K ∧Xv)
δ−1

// ΣW [m]\v
K ⋊Xv

ϵ̄K⋊1
��

ΣZ [m]
K Σ(Z [m]\v

K ×Xv)
proj

// ΣZ [m]\v
K ⋊Xv

Proof. The first two squares follow from the combination of (2.3) and its analogue for ϖK .

Consider the following diagram.

ΣW [m]
K

proj
//

∨
I⊂[m] ϖ

−1
I

��

ΣW [m]\v
K ∨ Σ(W [m]\v

K ∧Xv)
δ−1

// ΣW [m]\v
K ⋊Xv

(
∨

I⊂[m]\v ϖ−1
I )⋊1

��

Σ
∨

I⊂[m] ẐI
K

proj
//

ϵ̂−1
K

��

Σ
∨

I⊂[m]
I ̸=v

ẐI
K

δ−1
// Σ

∨
I⊂[m]\v ẐI

K ⋊Xv

ϵ̂−1
K ⋊1

��

ΣZ [m]
K Σ(Z [m]\v

K ×Xv)
proj

// ΣZ [m]\v
K ⋊Xv
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The upper diagram is homotopy commutative by (2.5) and the lower diagram becomes homo-

topy commutative after a suspension by (2.4). Therefore by the definition of ϵ̄K , we obtain the

third commutativity. □

We close this section by evaluating the connectivity of Z [m]
K .

Proposition 2.6. If K has no ghost vertex and each Xi is path-connected, Z [m]
K is simply

connected.

Proof. For a simplex σ ∈ K, we put

D(σ) = Z [m]
∆ ∪ (CX,X)σ,

where ∆ is the discrete simplicial complex on the vertex set [m], i.e. ∆ = {∅, {1}, . . . , {m}}.
As in [P] (cf. [IK]), Z [m]

∆ is simply connected, hence so is D(σ) by the van Kampen theorem.

By definition, we have Z [m]
K =

∪
F D(F ), where F ranges over all facets of K. We prove the

proposition by induction on the number of facets of K. If K has only one facet, K is a simplex,

implying that Z [m]
K is contractible hence simply connected. If K = ∆, Z [m]

K is simply connected

as above. Then we may assume there is a facet F with dimF ≥ 1, that is, K \ F has no

ghost vertex. By the induction hypothesis, Z [m]
K\F is simply connected. Thus since Z [m]

K\F ∩D(σ)

is path-connected and D(F ) is simply connected, the result follows from the van Kampen

theorem. □

Corollary 2.7. If Z [m]
K is a co-H-space and each Xi is a connected CW-complex, there is a

homotopy equivalence

Z [m]
K ≃ W [m]

K .

Proof. By Proposition 2.3, the map of Proposition 2.4 induces an isomorphism in homology.

Note that W [m]
K is simply connected since each Xi is path-connected. Thus the proof is com-

pleted by Proposition 2.6 and the J.H.C. Whitehead theorem. □

3. Extractible complexes

In this section, we introduce new simplicial complexes called extractible complexes by a recur-

sive homotopical condition on deletions of vertices and prove the decomposition of polyhedral

products for extractible complexes.

We first set notation for simplicial complexes. Let K be a simplicial complex on the index

set [m], possibly with ghost vertices. The link, the star and the deletion of a simplex σ ∈ K is

defined respectively as

lkK(σ) = {τ ∈ K |σ ∪ τ ∈ K, σ ∩ τ = ∅},
stK(σ) = {τ ∈ K |σ ∪ τ ∈ K},
dlK(σ) = {τ ∈ K |σ ̸⊂ τ}.
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The Alexander dual of K is defined as

K∨ = {σ ⊂ [m]| [m] \ σ ̸∈ K}.

Since Alexander duals depend on index sets, we must be careful for them.

We now introduce extractible complexes over a commutative ring k.

Definition 3.1. A simplicial complex K with no ghost vertex is called extractible over k if

(1) dlK(v) is a simplex for some vertex v, or

(2) dlK(v) is extractible over k for any vertex v and there is a map |ΣK| →
∨

v∈[m] |ΣdlK(v)|
satisfying that the composite with the wedge of inclusions

|ΣK| →
∨

v∈[m]

|ΣdlK(v)| → |ΣK|

induces the identity map in homology with k coefficient.

We prove a wedge decomposition of polyhedral products for extractible complexes.

Theorem 3.2. If K is extractible over k, there is a map

ϵK : W [m]
K → Z [m]

K

inducing the same map as ϵ̄K of (2.2) in homology with k coefficient.

Proof. Induct on m. If m = 1, both W [m]
K and Z [m]

K are contractible, hence the constant map is

the desired ϵK . Suppose we have proved the case m− 1 and then consider the case m. Suppose

dlK(v) is a simplex for some vertex v. Consider the pushout

(3.1) Z [m]
lkK(v)

//

��

Z [m]
stK(v)

��

Z [m]
dlK(v)

// Z [m]
K

induced from the corresponding pushout of simplicial complexes, where arrows are inclusions.

Note that

Z [m]
lkK(v) = Z [m]\v

lkK(v) ×Xv, Z [m]
stK(v) = Z [m]\v

lkK(v) × CXv and Z [m]
dlK(v) = Z [m]\v

dlK(v) ×Xv.

Include the pushout

Xv
// CXv

Xv
// CXv
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into (3.1) and take the cofiber of each corner. Then we get a pushout

(3.2) Z [m]\v
lkK(v) ⋊Xv

//

��

Z [m]\v
lkK(v) ⋊ CXv

��

Z [m]\v
dlK(v) ⋊Xv

// Z [m]
K /CXv.

Since dlK(v) is a simplex by assumption, Z [m]\v
dlK(v) =

∏
i∈[m]\v CXv which is contractible, hence

so is Z [m]\v
dlK(v)⋊Xv. Then it follows from (3.2) that there is a homotopy equivalence Z [m]

K /CXv ≃
Σ(Z [m]\v

lkK(v) ∧ Xv), so Z [m]
K has the homotopy type of a suspension. Thus by Corollary 2.7, we

obtain the desired result.

Suppose next that dlK(v) is extractible over k for any vertex v and there is a map s : |ΣK| →∨
v∈[m] |ΣdlK(v)| satisfying that the composite with the wedge of inclusions

|ΣK| s−→
∨

v∈[m]

|ΣdlK(v)| → |ΣK|

induces the identity map in homology with k coefficient. By the induction hypothesis, there is a

map ϵdlK(v) : W [m]\v
dlK(v) → Z [m]\v

dlK(v) with the desired property for any v ∈ [m]. Then by Proposition

2.5, the composite∨
I⊊[m]

|ΣKI | ∧ X̂I incl−−→
∨

v∈[m]

W [m]\v
dlK(v)

∨
v∈[m] ϵdlK (v)−−−−−−−−→

∨
v∈[m]

Z [m]\v
dlK(v) → Z [m]

K

induces the same map as ϵ̄K in homology with k coefficient on the wedge summand
∨

I⊊[m] |ΣKI |∧
X̂I of W [m]

K , where the last arrow is the wedge of inclusions. We here notice that there are

many choices for the first arrow but any choice will do. Now our remaining task is to construct

a map |ΣK| ∧ X̂ [m] → Z [m]
K which induces the same map as the restriction of ϵ̄K in homology

with k coefficient. Define a map θv as the composite

|ΣdlK(v)| ∧ X̂ [m] incl−−→ W [m]\v
dlK(v) ∨ (W [m]\v

dlK(v) ∧Xv)
δ−1

−−→ W [m]\v
dlK(v) ⋊Xv

ϵdlK (v)⋊1
−−−−−→ Z [m]\v

dlK(v) ⋊Xv
incl−−→ Z [m]

K /CXm
≃−→ Z [m]

K ,

where δ is as in (2.6) and the last arrow is the homotopy inverse of the projection Z [m]
K →

Z [m]
K /CXv. By Proposition 2.5, we see that Σθv is homotopic to

Σ|ΣdlK(v)| ∧ X̂ [m] incl−−→ Σ|ΣK| ∧ X̂ [m] incl−−→ ΣW [m]
K

ϵ̄K−→ ΣZ [m]
K .

Thus the composite

|ΣK| ∧ X̂ [m] s∧1−−→
∨

v∈[m]

|ΣdlK(v)| ∧ X̂ [m]

∨
v∈[m] θv−−−−−→ Z [m]

K

is the desired map, and therefore the proof is completed. □
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Corollary 3.3. If K is extractible over Z (resp. Z(p)) and each Xi is a connected CW-complex,

there is a homotopy equivalence

Z [m]
K ≃ W [m]

K (resp. Z [m]
K ≃(p) W [m]

K ).

Proof. Combine Proposition 2.6, Theorem 3.2 and the J.H.C. Whitehead theorem. □

4. Shellable complexes

In this section, we prove the extractibility over Z of a simplicial complex whose Alexander

dual is shellable, which implies the decomposition of the corresponding polyhedral product.

The proof includes the core idea to show the extractibility in the case of sequentially Cohen-

Macaulay complexes, so we set up this section.

We prepare two simple lemmas.

Lemma 4.1. If a simplicial complex K is collapsible, |K∨| is contractible.

Proof. If σ ∈ K is a free face of K and τ ∈ K satisfies σ ⊂ τ and dim τ = dim σ + 1, then it is

straightforward to see that τ∨ = [m] \ τ is a free face of (K \ {σ, τ})∨ and σ∨ = [m] \ σ ∈ (K \
{σ, τ})∨ satisfies τ∨ ⊂ σ∨ and dim σ∨ = dim τ∨+1. Then since (K \ {σ, τ})∨ = K∨ ∪{σ∨, τ∨},
if K is collapsible, |K∨| has the homotopy type of a simplex which is contractible. □

Lemma 4.2. Let K be a simplicial complex on the index set [m] and choose the index set of

lkK(v) to be [m] \ v. Then

lkK(v)
∨ = dlK∨(v).

Proof. By definition, we have

lkK(v)
∨ = {σ ⊂ [m] \ v | (([m] \ v) \ σ) ∪ v ̸∈ K} = {σ ⊂ [m] \ v | [m] \ σ ̸∈ K} = dlK∨(v).

□

Given a shelling F1, . . . , Ft of K, Fk with k > 1 is called a spanning facet if the boundary

of Fk is contained in
∪k−1

i=1 Fi. It is easy to see that if Fi1 , . . . , Fik are all spanning facets,

K \ {Fi1 , . . . , Fik} is collapsible.

Proposition 4.3. If K has no ghost vertex and K∨ is shellable, K is extractible over Z.

Proof. The proof is done by induction on m, where we put the index set of K to be [m]. The

case m = 1 is trivial. Assuming the case m − 1, we prove the case m. If K is ∆m−1 or

∂∆m−1, the first condition for extractible complexes is satisfied. Then we assume that K is

neither ∆m−1 nor ∂∆m−1, or equivalently, K∨ has at least one vertex. By Lemma 4.2, we have

dlK(v) = lkK∨(v)∨. In [BW2, Proposition 10.14], it is shown that lkK∨(v) is shellable, so dlK(v)

is extractible over Z by the induction hypothesis. Let F1, . . . , Ft be a shelling of K∨ and let
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ΓK∨ be the set of all spanning facets of K∨ for this shelling. Put ∆K∨ = K∨ \
∪

F∈ΓK∨ F . Since

each F ∈ ΓK∨ is a minimal non-face of ∆K∨ , we have

(4.1) (∆K∨)∨ = K ∪
∪

F∈ΓK∨

F∨,

where F∨ = [m]\F . Since ∆K∨ is collapsible, |(∆K∨)∨| is contractible by Lemma 4.1, and then

|ΣK| ≃ |(∆K∨)∨|/|K| =
∨

F∈ΓK∨

S|F∨|−1 =
∨

F∈ΓK∨

Sm−|F |−1.

Let Fj1 , . . . , Fjl be all facets of K
∨ such that v ∈ Fji and j1 < · · · < jl. Then Fj1 \ v, . . . , Fjl \ v

is a shelling of lkK∨(v), and with this shelling, ΓlkK∨ (v) = {F \ v |F ∈ ΓK∨ , v ∈ F}. Choose

the index set of lkK∨(v) to be [m] \ v and identify lkK∨(v)∨ with dlK(v) by Lemma 4.2. Then

by (4.1), we have the inclusion ∆lkK∨ (v) → ∆K∨ whose Alexander dual (∆lkK∨ (v))
∨ → (∆K∨)∨

is the union of the inclusion ι : dlK(v) → K and the identity map ([m] \ v) \ (F \ v) → [m] \ F
for F ∈ ΓK∨ with v ∈ F . Then it induces a map

(4.2) |(∆lkK∨ (v))
∨|/|dlK(v)| → |(∆K∨)∨|/|K|

which is identified with the inclusion

(4.3)
∨

v∈F∈ΓK∨

Sm−|F |−1 →
∨

F∈ΓK∨

Sm−|F |−1.

Consider the homotopy commutative diagram of homotopy cofiber sequences

|dlK(v)| //

|ι|
��

|(∆lkK∨ (v))
∨| //

��

|(∆lkK∨ (v))
∨|/|dlK(v)| //

��

|ΣdlK(v)|

|Σι|
��

|K| // |(∆K∨)∨| // |(∆K∨)∨|/|K| // |ΣK|.

Since |(∆lkK∨ (v))
∨| and |(∆K∨)∨| are contractible, the right horizontal arrows are homotopy

equivalences, so |Σι| is identified with the inclusion (4.2) hence with(4.3). Now it is easy to

construct the desired map s and therefore the proof is completed. □

By Corollary 3.3, we obtain:

Theorem 4.4. Let K be a simplicial complex on the index set [m] with no ghost vertex. If K∨

is shellable and each Xi is a connected CW-complex, there is a homotopy equivalence

ZK(CX,X) ≃
∨

I⊂[m]

|ΣKi| ∧ X̂I .

Remark 4.5. In the proof of Theorem 4.3, we have actually proved that |ΣKI | has the homotopy

type of a wedge of spheres for any I ⊂ [m]. Then Corollary 1.7 in the shellable case follows

from Theorem 4.4.
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5. Sequentially Cohen-Macaulay complexes

In this section, we prove the extractibility over Z(p) of a simplicial complex whose Alexander

dual is sequentially Cohen-Macaulay over Z/p by a homologically generalized technique in the

proof of Proposition 4.3, which implies the p-local decomposition of polyhedral products. From

this, we deduce the integral decomposition by using the result of McGibbon [M, Corollary 5.1]

on the Mislin genus of a co-H-space.

By definition, if a simplicial complex K is sequentially Cohen-Macaulay over k, so is lkK(v)

for any vertex v. We record an immediate consequence from this together with Lemma 4.2.

Lemma 5.1. Let K be a simplicial complex on the index set [m] and choose the index set of

dlK(v) to be [m] \ v. If K∨ is sequentially Cohen-Macaulay over k, so is dlK(v)
∨.

The following simple lemma will be useful.

Lemma 5.2. Let K be a simplicial complex with H̃i(K
⟨i+1⟩; k) = 0. Then any i-cycle of K

over k which is not a boundary involves a facet of dimension i.

Proof. Let x be an i-cycle of K over k. If x involves no facet, it is a cycle of K⟨i+1⟩ over k.
Then since H̃i(K

⟨i+1⟩;k) = 0, x is a boundary, completing the proof. □

We consider a connection between K and lkK(v) in homology. For a chain x =
∑

ajσj of K

(aj ∈ k, σj ∈ K) and a vertex v, let xv =
∑

v∈σj
ajσj.

Proposition 5.3. If a cycle x of K over k involves a facet F with v ∈ F , ∂xv is a cycle of

lkK(v) over k which involves a facet F \ v of lkK(v) and is not a boundary.

Proof. Consider the Mayer-Vietoris exact sequence

· · · → H∗(lkK(v);k) → H∗(dlK(v);k)
⊕

H∗(stK(v);k) → H∗(K; k) ∂∗−→ H∗−1(lkK(v);k) → · · · .

By a straightforward calculation, ∂∗[x] is represented by ∂xv. Notice that if a cycle involves

a facet, it is not a boundary. By definition, ∂xv involves a facet F \ v, therefore it is not a

boundary, completing the proof. □

Since sequentially Cohen-Macaulay complexes are characterized by homology, not by facets,

we do not have the notion of spanning facets as in the case of shellable complexes above, which

play the central role in the proof of Proposition 4.3. We then generalize the notion of spanning

facets in a homological setting. Facets F1, . . . , Fr of a simplicial complex K are called spanning

facets over k if

(1) ∆K = K \ {F1, . . . , Fr} is k-acyclic, i.e. H̃∗(∆K ;k) = 0.

(2) The boundary of Fi is in ∆K for all i.

Let us recall the (almost) localization of a suspension. For a space X, we choose one point

from each path-component of X in such a way that the basepoint of X is involved in this choice.
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Let V be the set of these points. Then the homotopy cofiber sequence ΣV → ΣX → Σ(X/V )

splits as

ΣX ≃ ΣV ∨ Σ(X/V ),

which is natural with respect to X. Using this splitting, the (almost) p-localization of ΣX is

defined as

ΣX(p) = ΣV ∨ Σ(X/V )(p).

Proposition 5.4. If K has no ghost vertex and K∨ is sequentially Cohen-Macaulay over Z/p,
K is extractible over Z(p).

Proof. Choose a basis x1
i , . . . , x

ni
i of Hi(K

∨;Z/p). By Lemma 5.2, x1
i involves a facet F 1

i and,

by subtracting x1
i from x2

i , . . . , x
ni
i , we may assume that x2

i , . . . , x
ni
i do not involve F 1

i . Then

by induction, we see that for j = 1, . . . , ni, x
j
i involves a facet F j

i which is not involved in xk
i

for k ̸= j and the coefficient of F j
i in xj

i is nontrivial.

Claim 5.5. F 1
1 , . . . , F

n1
1 , . . . , F 1

d , . . . , F
nd
d are spanning facets of K∨ over Z/p, where d = dimK.

Proof. The second condition for spanning facets is satisfied by the choice of F i
j and xi

j. Put

ΓK∨ to be the set of all F i
j and ∆K∨ = K∨ \

∪
F∈ΓK∨ F . Then it remains to show that ∆K∨

is acyclic over Z/p. Since each F ∈ ΓK∨ satisfies the second condition for spanning facets, we

have

|K∨|/|∆K∨ | =
∨

F∈ΓK∨

S|F |−1

and by the choice of xi
j, the pinch map |K∨| → |K∨|/|∆K∨ | sends xi

j to a generator of

Hi(S
i;Z/p) in homology. Then the Puppe exact sequence

· · · → H∗(|∆K∨|;Z/p) → H∗(|K∨|;Z/p) → H∗(|K∨|/|∆K∨|;Z/p) → · · ·

shows that ∆K∨ is acyclic over Z/p. □

As in the proof of Proposition 4.3, we have

(∆K∨)∨ = K ∪
∪

F∈ΓK∨

F∨, hence |(∆K∨)∨|/|K| =
∨

F∈ΓK∨

Sm−|F |−1,

where F∨ = [m]\F . Consider the edges F∨ = [m]\F of (∆K∨)∨ for F ∈ ΓK∨ with |F | = m−2

where facets of K∨ are of dimension ≤ m − 2 since K has no ghost vertex. If two such edges

have end points in the same connected component of K, we connect these ends by an edge

path in K having no self-intersection and take one vertex from this path, where the connecting

path is a single point if two ends coincide. Let VK be the set of all these vertices and remaining

ends of such edges. Then there is a one-to-one correspondence between VK and the connected

components of K, and we have constructed a tree TK in |(∆K∨)∨| whose vertex set is VK ,
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where we put the edge path between two vertices in VK as the edge of TK . There is a homotopy

commutative diagram of homotopy cofiber sequences

(5.1) |VK | //

|ι|
��

TK
//

��

TK/|VK |
α̃

//

��

|ΣVK |

|Σι|
��

|K| //

��

|(∆K∨)∨| //

��

|(∆K∨)∨|/|K| α
//

��

|ΣK|

��

|K|/|VK | // |(∆K∨)∨|/TK
// |(∆K∨)∨|/(|K| ∪ TK)

ᾱ
// Σ(|K|/|VK |).

Since TK is contractible, α̃ is a homotopy equivalence. Since |(∆K∨)∨| is acyclic over Z/p, α and

then ᾱ induces an isomorphism in the mod p homology. Then since both |(∆K∨)∨|/(|K| ∪ TK)

and Σ(|K|/|VK |) are simply connected and finite complexes, it follows from [HMR, Theorem

1.14 in Chapter II] that there is a homotopy equivalence

(5.2) |ΣK|(p) ≃
∨

F∈ΓK∨
|F |=m−2

Sm−|F |−1 ∨
∨

F∈ΓK∨
|F |<m−2

S
m−|F |−1
(p) .

We induct on m to prove Proposition 5.4. The case m = 1 is trivial. Suppose the case

m − 1 holds. By Lemma 5.1 and the induction hypothesis, dlK(v) is extractible over Z(p) for

any vertex v. By Lemma 5.3, if F1, . . . , Fr ∈ ΓK∨ involve a vertex v, ∂(x1)v, . . . , ∂(xr)v form

a part of a basis of H∗(lkK∨(v);Z/p), where xi is a cycle corresponding to Fi. Then in the

above way, we can choose spanning facets of lkK∨(v) over Z/p which include F \ v for all

F ∈ ΓK∨ with v ∈ F . Hence with these spanning facets over Z/p, we have the homotopy

commutative diagram (5.1) for lkK∨(v)∨ = dlK(v) which is compatible with that for K, so

through the homotopy equivalence (5.2), the inclusion |ΣdlK(v)|(p) → |ΣK|(p) is identified with

the wedge of the identity map of
∨

v∈F∈ΓK∨ Sm−|F |−1 and the constant map on the remaining

wedge summand. It is now easy to construct the desired map, completing the proof. □

Proof of Theorem 1.9. Combine Corollary 3.3 and Proposition 5.4. □

We want to integrate the p-local homotopy equivalence of Theorem 1.9 for each prime p to

obtain Theorem 1.5. To this end, let us recall the result of McGibbon [M, Corollary 5.1] on

the Mislin genus of a co-H-space.

Proposition 5.6 (McGibbon [M, Corollary 5.1]). Let X, Y be simply connected finite com-

plexes. If X ≃(p) Y for any prime p and Y is a co-H-space, X is also a co-H-space.

Proof of Theorem 1.5. By Theorem 1.9, Z [m]
K ≃(p) W [m]

K for any prime p and W [m]
K is a suspen-

sion. Since each Xi is a finite complex, so are Z [m]
K and W [m]

K . Then by Proposition 5.6, Z [m]
K is

a co-H-space. Therefore Theorem 1.5 follows from Corollary 2.7. □

In order to prove Corollary 1.7, we prepare the following simple lemma.



16 KOUYEMON IRIYE AND DAISUKE KISHIMOTO

Lemma 5.7. Let X be a connected finite type CW-complex. If ΣX(p) has the homotopy type

of a wedge of p-local spheres for any prime p, ΣX itself has the homotopy type of a wedge of

spheres.

Proof. By assumption, Hi(ΣX;Z) is a free abelian group of finite rank. Choose a basis

xi
1, . . . , x

i
ni

of Hi(X;Z). Using a p-local homotopy equivalence between ΣX and a wedge of

spheres, we can easily construct a map pθ
i
j : S

i → ΣX(p) satisfying (pθ
i
j)∗(ui) = xi

j in homology

with Z(p) coefficient for any i, j, where ui is a generator of Hi(S
i;Z) ∼= Z. Let {p1, p2, . . .} be

the set of all primes with pi ̸= p. It is well known that ΣX(p) is given as the homotopy colimit

of the sequence

ΣX
l1−→ ΣX

l2−→ ΣX
l3−→ ΣX

l4−→ · · ·
where lk = p1 · · · pk and q : ΣX → ΣX is the degree q map. By the compactness of Si, pθ

i
j

factors through the finite step of the above sequence. Then there is a map pθ̄
i
j : Si → ΣX

satisfying (pθ̄
i
j)∗(ui) = pa

i
jx

i
j with p ∤ pa

i
j in the integral homology. Now we can choose primes

q1, . . . , qn such that q1a
i
j, . . . , qna

i
j are relatively prime. There are integers d1, . . . , dn such that

d1(q1a
i
j) + . . .+ dn(qna

i
j) = 1 hence the map

λi
j = d1 ◦ q1 θ̄

i
j + · · ·+ dn ◦ qn θ̄

i
j

satisfies (λi
j)∗(ui) = xi

j in the integral homology, where the sum is defined by using the sus-

pension comultiplication of ΣX. Thus the map
∨

i≥1

∨ni

j=1 λ
i
j induces an isomorphism in the

integral homology, and therefore the proof is completed by the J.H.C. Whitehead theorem. □

Proof of Corollary 1.7. By Theorem 1.5, there is a homotopy equivalence

ZK(D
2, S1) ≃

∨
∅≠I⊂[m]

|ΣKI | ∧ S|I|,

where we exclude the case I = ∅ since the corresponding wedge summand is a single point.

By Lemma 5.1 and (5.2), Σ|ΣKI |(p) has the homotopy type of a wedge of p-local spheres of

dimension > 1 for any prime p and I ⊂ [m]. Then it follows from Lemma 5.7 that Σ|ΣKI | has
the homotopy type of a wedge of spheres of dimension > 1 for any I ⊂ [m] hence the result. □
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Inc., Boston, MA, 1996.
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