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LOCAL MEAN DIMENSION OF ASD MODULI SPACES OVER THE
CYLINDER

SHINICHIROH MATSUO AND MASAKI TSUKAMOTO

Abstract. We study an infinite dimensional ASD moduli space over the cylinder. Our

main result is the formula of its local mean dimension. A key ingredient of the argument

is the notion of non-degenerate ASD connections. We develop its deformation theory

and show that there exist sufficiently many non-degenerate ASD connections by using

the method of gluing infinitely many instantons.

1. Introduction

1.1. Main result. This paper is a continuation of [17]. (But readers don’t need a knowl-

edge of [17].) We study a certain infinite dimensional ASD moduli space over the cylinder

R × S3. The main motivation is to develop an infinite dimensional analogue of the pi-

oneering work of Atiyah–Hitchin–Singer [2]. The paper [2] is a starting point of the

mathematical study of Yang–Mills gauge theory. One of their main results [2, Theorem

6.1] is a calculation of the dimension of an ASD moduli space by using the Atiyah–Singer

index theorem. Their result can be stated as follows: Let A be an irreducible SU(2) ASD

connection over a compact anti-self-dual 4-manifold of positive scalar curvature. Then

the number of the parameters of its deformation is

8(instanton number of A)− 3(1− b1).

Here b1 is the first Betti number of the underlying 4-manifold. The “instanton number”

means the second Chern number of the bundle which the connection A belongs to, and

it is equal to the Yang–Mills functional

1

8π2

∫
|FA|2dvol.

This dimension formula is the target of our work. Our main result (Theorem 1.2) is an

infinite dimensional analogue of the above formula. Although there is still much work to

be done, probably our theorem is the first satisfactory result in this direction.

Let S3 := {x2
1 +x2

2 +x2
3 +x2

4 = 1} ⊂ R4 be the unit 3-sphere with the Riemannian metric

induced by the Euclidean metric on R4. Let X := R×S3 be the cylinder with the product
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metric. The reason why we consider R×S3 is as follows: In [2, Theorem 6.1] they needed

the assumption that the underling 4-manifold is anti-self-dual and has positive scalar

curvature. These metrical conditions were used via a certain Weitzenböck formula. In the

present paper we also need to use the Weitzenböck formula several times. The cylinder

R × S3 is one of the simplest non-compact 4-manifolds which are anti-self-dual and has

uniformly positive scalar curvature. We need these metrical conditions.

Let E := X × SU(2) be the product principal SU(2) bundle. (Every principal SU(2)

bundle on X is isomorphic to the product bundle E.) Let A be a connection on E. Its

curvature FA is a 2-form valued in the adjoint bundle adE = X × su(2). So it gives a

linear map:

FA(p) : Λ2(TpX)→ su(2) (∀p ∈ X).

Let |FA(p)|op be the operator norm of this linear map, and let ||FA||op be the supremum of

|FA(p)|op over p ∈ X. The explicit formula is as follows: Let p ∈ X, and let (x1, x2, x3, x4)

be the normal coordinate system of X centered at p. We suppose that the curvature FA
is expressed by FA =

∑
1≤i<j≤4 Fijdxi ∧ dxj around the point p. Then the norm |FA(p)|op

is equal to

sup

{∣∣∣∣∣ ∑
1≤i<j≤4

aijFij(p)

∣∣∣∣∣ | aij ∈ R,
∑

1≤i<j≤4

a2
ij = 1

}
.

Here the Lie algebra su(2) = {X ∈M2(C)|X +X∗ = 0, tr(X) = 0} is endowed with the

inner product 〈X, Y 〉 = −tr(XY ). In this paper we also use the Euclidean norm |FA(p)|
defined by

(1) |FA(p)|2 :=
∑

1≤i<j≤4

|Fij(p)|2.

For a subset U ⊂ X we denote by ||FA||L∞(U) the essential supremum of |FA(p)| over

p ∈ U .

For a non-negative number d we defineMd as the space of the gauge equivalence classes

of ASD connections A on E satisfying

||FA||op ≤ d.

This space is endowed with the topology of C∞-convergence over compact subsets: A

sequence [An] converges to [A] in Md if and only if there exists a sequence of gauge

transformations gn : E → E such that gn(An) converges to A in C∞ over every compact

subset. From the Uhlenbeck compactness ([24, 25]), the spaceMd is compact and metriz-

able. The above condition ||FA||op ≤ d is motivated by the notion of Brody curves (Brody

[4]) in Nevanlinna theory. Note that the norm ||FA||op does not dominate the L2-norm of

FA. So the L2-norm of the curvature of [A] ∈Md can be infinite.

The space Md becomes a dynamical system with respect to the following natural R-

action: R acts on X = R × S3 by s(t, θ) := (t + s, θ). This action is lifted to the action



LOCAL MEAN DIMENSION OF ASD MODULI SPACES OVER THE CYLINDER 3

on E = X × SU(2) by s(t, θ, u) := (t+ s, θ, u). The group R continuously acts onMd by

s[A] := [s∗(A)] where s∗(A) is the pull-back of A by s : E → E. The main subject of this

paper is the study of the dynamical system Md. Let’s start with the following example:

Example 1.1. If d < 1 thenMd is equal to the one-point space. The only one element is

the gauge equivalence class of the trivial flat connection. This fact is proved in [23]. (The

threshold value d = 1 is different from the value given in [23]. This is because the norm

on su(2) in the present paper is different from the norm in [23] by the multiple factor√
2.)

If d = 1 then the space M1 contains a non-trivial element: We define an SU(2) ASD

connection A over the Euclidean space R4 by (BPST instanton [3])

A(x) :=
1

1 + |x|2

{(√
−1 0

0 −
√
−1

)
(x1dx2 − x2dx1 − x3dx4 + x4dx3)

+

(
0 1

−1 0

)
(x1dx3 − x3dx1 + x2dx4 − x4dx2)

+

(
0

√
−1√

−1 0

)
(x1dx4 − x4dx1 − x2dx3 + x3dx2)

}
.

Let I be the pull-back of A by the conformal map

R× S3 → R4 \ {0}, (t, θ) 7→ etθ.

Then I is an ASD connection on E = X × SU(2) with

|FI(t, θ)|op =
4

(et + e−t)2
, ||FI ||op = 1.

Hence [I] is contained in M1. Therefore M1 contains a flat connection and the R-orbit

of [I]. The authors don’t know whether it contains other elements or not.

Therefore Md is trivial for d < 1, and possibly a simple space for d = 1. On the other

hand we will see later that the spaceMd is infinite dimensional for d > 1 (Remark 1.12).

Moreover its topological entropy (as a topological dynamical system) is also infinite. So

Md (d > 1) is a very large dynamical system. A good invariant for the study of this

kind of huge dynamical systems is mean dimension introduced by Gromov [13]. But

our present technology is a little inadequate for the study of the mean dimension ofMd.

So we study the local mean dimension ofMd instead of mean dimension. Local mean

dimension is a variant of mean dimension introduced by [17]. For each point [A] ∈ Md

we have the non-negative number dim[A](Md : R) called the local mean dimension ofMd

at [A]. We define dimloc(Md : R) as the supremum of dim[A](Md : R) over [A] ∈ Md.

Mean dimension and local mean dimension are topological invariants of dynamical systems

which count “dimension averaged by a group action” in certain ways. We review their

definitions in Section 2.
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Let A be a connection on E. We define the energy density ρ(A) by

ρ(A) := lim
T→+∞

(
1

8π2T
sup
t∈R

∫
(t,t+T )×S3

|FA|2dvol

)
.

Here |FA| is the Euclidean norm defined in (1). This limit always exists because we have

the natural sub-additivity:

sup
t∈R

∫
(t,t+T1+T2)×S3

|FA|2dvol ≤ sup
t∈R

∫
(t,t+T1)×S3

|FA|2dvol + sup
t∈R

∫
(t,t+T2)×S3

|FA|2dvol.

The energy density ρ(A) was first introduced in [17]. ρ(A) is zero for finite energy ASD

connections. So it becomes meaningful only for infinite energy ones. ρ(A) can be seen as

an “averaged” instanton number of A. We define ρ(d) as the supremum of ρ(A) over all

[A] ∈Md. ρ(d) is a non-decreasing function in d. It is zero for d < 1 (Example 1.1). We

will see later that ρ(d) is positive for d > 1 (Remark 1.12) and that it goes to infinity as

d→∞ (Example 1.6).

Let D ⊂ [0,+∞) be the set of left-discontinuous points of ρ(d):

D = {d ∈ [0,+∞)| lim
ε→+0

ρ(d− ε) 6= ρ(d)}.

Since ρ is monotone, the set D is at most countable. (Indeed we don’t know whether it

is empty or not.) Our main result is the following theorem.

Theorem 1.2. For any d ∈ [0,+∞) \ D

dimloc(Md : R) = 8ρ(d).

Since D is at most countable, we get the formula of the local mean dimension of Md

for almost every d ≥ 0.

Remark 1.3. Some readers might feel that the operator norm ||FA||op used in the defini-

tion of Md seems strange. Indeed this choice leads us to a very satisfactory result. But

we will briefly discuss another possibility in Appendix.

1.2. Non-degenerate ASD connections. The following notion is very important in

the argument of the paper:

Definition 1.4. Let [A] ∈Md (d ≥ 0). A is said to be non-degenerate if the closure of

the R-orbit of [A] in Md does not contain a gauge equivalence class of a flat connection.

This definition is motivated by the classical work of Yosida [26] in complex analysis.

Yosida studied a similar non-degeneracy condition for meromorphic functions f : C →
CP 1. (He used the terminology “meromorphic functions of first category”.) Eremenko

[7, Section 4] discussed it for holomorphic curves f : C→ CPN , and Gromov [13, p. 399]

studied a similar condition for more general holomorphic maps.
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Example 1.5. Let A be an instanton, i.e. an ASD connection on E with finite energy∫
X

|FA|2dvol < +∞.

Then s[A] converges to a gauge equivalence class of a flat connection when s → ±∞
(Donaldson [5, Chapter 4, Proposition 4.3]). So A is a degenerate (i.e. not non-degenerate)

ASD connection.

Example 1.6. An ASD connection A on E is said to be periodic ([17]) if there exist

T > 0, a principal SU(2) bundle F over (R/TZ)×S3 and an ASD connection B on F such

that (E,A) is isomorphic to the pull-back (π∗(F ), π∗(B)). Here π : R×S3 → (R/TZ)×S3

is the natural projection. If A is periodic, then the energy density ρ(A) is given by

ρ(A) = c2(F )/T.

If A is periodic and non-flat, then A is non-degenerate. By Taubes [19], every principal

SU(2) bundle F on (R/TZ)× S3 with c2(F ) ≥ 0 admits an ASD connection. Therefore

we have a lot of periodic ASD connections. From this fact we can easily see that the

function ρ(d) introduced in the previous subsection goes to infinity as d→∞.

Lemma 1.7. Let [A] ∈ Md. A is non-degenerate if and only if there exist δ > 0 and

T > 0 such that for any interval (α, β) ⊂ R of length T we have

(2) ||FA||L∞((α,β)×S3) ≥ δ.

Proof. This is a Yang–Mills analogue of the result of Yosida [26, Theorem 4]. Sup-

pose that A does not satisfy (2) for T = 1. Then there exist {αn}n≥1 ⊂ R such that

||FA||L∞((αn,αn+1)×S3) < 1/n. By choosing a subsequence we can assume that αn[A] con-

verges to [B] in Md. Then FB = 0 over (0, 1)× S3. By the unique continuation, FB = 0

all over X. Hence B is flat and A is degenerate.

Suppose the above condition (2) holds for some δ > 0 and T > 0. Then any element

[B] in the closure of the R-orbit of [A] satisfies ||FB||L∞((α,β)×S3) ≥ δ for every interval

(α, β) ⊂ R of length T . Hence B is not flat.

Note that the above argument also proves the following: [A] is non-degenerate if and

only if for any T > 0 there exists δ > 0 such that for any interval (α, β) ⊂ R of length T

we have ||FA||L∞((α,β)×S3) ≥ δ. �

Remark 1.8. By the same argument we can prove the following: [A] ∈ Md is non-

degenerate if and only if there exist δ > 0 and T > 0 such that for any interval (α, β) ⊂ R
of length T we have

||FA||L2((α,β)×S3) ≥ δ.

In particular if [A] ∈Md is non-degenerate then its energy density ρ(A) is positive.

The following Theorem 1.9 is proved in [17, Theorem 1.2]. (The paper [17] adopts a

little different setting. So we explain how to deduce this result from [17] in Appendix.)
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Theorem 1.9. For any [A] ∈Md,

dim[A](Md : R) ≤ 8ρ(A).

Hence

dimloc(Md : R) = sup
[A]∈Md

dim[A](Md : R) ≤ 8ρ(d).

The lower bound on the local mean dimension is given by using the next two theorems.

Theorem 1.10. Let A be a non-degenerate ASD connection on E with ||FA||op < d. Then

dim[A](Md : R) = 8ρ(A).

In this theorem the strict inequality condition ||FA||op < d is purely technical. The point

is the non-degeneracy assumption. This makes the situation simpler. It is more difficult

to study the local structure of Md around degenerate ASD connections. We postpone it

to a future paper. In the present paper we bypass it by using the following theorem.

Theorem 1.11. Suppose d > 1, and let A be an ASD connection on E with ||FA||op < d.

For any ε > 0 there exists a non-degenerate ASD connection Ã on E satisfying∣∣∣∣∣∣F (Ã)
∣∣∣∣∣∣

op
< d, ρ(Ã) > ρ(A)− ε.

Roughly speaking, this theorem means that we can replace a degenerate ASD connec-

tion by a non-degenerate one without losing energy. In the above statement we supposed

d > 1 because there does not exist a non-flat ASD connection A on E satisfying ||FA||op < 1

(Example 1.1).

The main task of the paper is to prove Theorems 1.10 and 1.11. Here we prove the

main theorem by assuming them:

Proof of Theorem 1.2 (assuming Theorems 1.10 and 1.11). We always have the upper bound

dimloc(Md : R) ≤ 8ρ(d) by Theorem 1.9. So the problem is the lower bound.

Let ρ0(d) be the supremum of ρ(A) over [A] ∈ Md satisfying ||FA||op < d. Obviously

ρ0(d) ≤ ρ(d). Then

(3) dimloc(Md : R) ≥ 8ρ0(d).

This is proved as follows:

(Case 1) Suppose d ≤ 1. Then the condition ||FA||op < d implies FA ≡ 0. (See Example

1.1.) Hence ρ0(d) = 0 and the above (3) trivially holds.

(Case 2) Suppose d > 1. Take [A] ∈ Md with ||FA||op < d. For any ε > 0 there exists

a non-degenerate ASD connection Ã on E satisfying
∣∣∣∣∣∣F (Ã)

∣∣∣∣∣∣
op
< d and ρ(Ã) > ρ(A)− ε

(Theorem 1.11). By applying Theorem 1.10 to Ã

dimloc(Md : R) ≥ dim[Ã](Md : R) = 8ρ(Ã) > 8(ρ(A)− ε).
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Since ε > 0 is arbitrary, dimloc(Md : R) ≥ 8ρ(A). Taking the supremum over A, we get

the above (3).

For any ε > 0, we have ρ(d− ε) ≤ ρ0(d) ≤ ρ(d). Hence if ρ is left-continuous at d (i.e.

d 6∈ D), then we have ρ0(d) = ρ(d). Therefore

dimloc(Md : R) ≥ 8ρ(d) (d ∈ [0,+∞) \ D).

�

Remark 1.12. Let d > 1. By applying Theorem 1.11 to a flat connection, we can

conclude thatMd always contains a non-degenerate ASD connection. (IndeedMd always

contains a non-flat periodic ASD connection. See Remark 6.3.) Since the energy density

of a non-degenerate ASD connection is positive (Remark 1.8), the function ρ(d) is positive

for d > 1. Moreover by Theorem 1.10, the local mean dimension of Md is also positive

for d > 1. In particular Md is infinite dimensional for d > 1.

1.3. Ideas of the proofs. We explain the ideas of the proofs of Theorems 1.10 and 1.11.

The basic idea of the proof of Theorem 1.10 is a deformation theory. Let A be a non-

degenerate ASD connection on E satisfying ||FA||op < d. Let H1
A be the Banach space of

a ∈ Ω1(adE) satisfying

d∗Aa = d+
Aa = 0, ||a||L∞(X) <∞.

Here d∗A is the formal adjoint of dA : Ω0(adE) → Ω1(adE), and d+
A is the self-adjoint

part of dA : Ω1(adE) → Ω2(adE). For each a ∈ H1
A the connection A + a is almost

ASD: F+(A + a) = O(a2). Therefore there exists a small R > 0 such that for each

a ∈ BR(H1
A) (the R-ball with respect to ||·||L∞(X)) we can construct a small perturbation

a′ of a satisfying F+(A+ a′) = 0. So we get a deformation map:

(4) BR(H1
A)→Md, a 7→ [A+ a′].

We study the local mean dimension of Md through this map.

A construction of the map (4) does not require the non-degeneracy condition of A. But

a further study of (4) requires it. We need to compare the distances of the both sides of

(4). Md is a quotient space by gauge transformations. Hence its metric structure is more

complicated than that of BR(H1
A). For example, even if a, b ∈ BR(H1

A) are not close to

each other, the points [A+ a′] and [A+ b′] might be very close to each other in Md. We

need the non-degeneracy condition for addressing this problem. This is a technical issue.

So here we don’t go into the detail but just point out that the above map (4) becomes

injective if R � 1 and A is non-degenerate. (This injectivity is not enough for our main

purpose. The result we need is stated in Lemma 5.5, and it is based on the study of the

Coulomb gauge condition in Section 3.)

Assume that we have a good understanding of the deformation map (4). A next prob-

lem is the study of the Banach space H1
A. We investigate a structure of finite dimensional
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linear subspaces of H1
A. (H1

A itself is infinite dimensional.) We need the following re-

sult (Proposition 4.1): For any interval (α, β) ⊂ R of length > 2 there exists a finite

dimensional linear subspace V ⊂ H1
A such that

dimV ≥ 1

π2

∫
(α,β)×S3

|FA|2dvol− constA,

∀a ∈ H1
A : ||a||L∞(X) ≤ 2 ||a||L∞((α,β)×S3) .

The energy density ρ(A) comes into our argument through the first condition of V . The

second condition means that essentially all the information of a ∈ V is contained in the

region (α, β)×S3. A main ingredient of the proof of this result is the Atiyah–Singer index

theorem. Combining this knowledge on H1
A with the study of the deformation map (4),

we can prove Theorem 1.10. The proof is finished in Section 5.2.

Next we explain the idea of the proof of Theorem 1.11. Suppose d > 1 and that A

is a degenerate ASD connection on E with ||FA||op < d. We want to replace A with a

non-degenerate one. The idea is gluing instantons. Lemma 1.7 implies that A has a region

where the curvature FA is very small. We glue an instanton I (described in Example 1.1)

to A over such a “degenerate region”. A has infinitely many degenerate regions. So we

need to glue infinitely many instantons to A.

More precisely the argument goes as follows: Let 0 < δ � 1 and T � 1. We define

J ⊂ Z as the set of n ∈ Z such that |FA| < δ over [nT, (n + 1)T ] × S3. Since A is

degenerate, the set J is infinite. For each n ∈ J we glue (an appropriate translation

of) the instanton I to A over the region [nT, (n + 1)T ] × S3. If we choose δ sufficiently

small and T sufficiently large, then the resulting new ASD connection Ã becomes non-

degenerate and satisfies
∣∣∣∣∣∣F (Ã)

∣∣∣∣∣∣
op
< d. Moreover, roughly speaking, gluing instantons

increases the energy of connections. So we have ρ(Ã) > ρ(A)− ε.
The paper [18] is the origin of our idea to use the deformation theory of non-degenerate

objects and gluing infinitely many instantons. In [18] we study the mean dimension of

the system of Brody curves (holomorphic 1-Lipschitz maps) f : C→ CPN by developing

the deformation theory of non-degenerate Brody curves and gluing technique of infinitely

many rational curves. After the authors wrote the paper [18], they felt that the ideas

of [18] have a wide applicability beyond the holomorphic curve theory. The second main

purpose of the present paper is to show that a basic structure of the argument in [18] is

certainly flexible and can be also applied to Yang–Mills theory. The authors are satisfied

with the result.

The main difference between the case of Brody curves and Yang–Mills theory is the

presence of gauge transformations. A substantial part of the present paper is devoted to

the study of the method to deal with gauge transformations. (The technique of perturbing

Hermitian metrics described in [18, Section 4.2] might have a flavor of gauge fixing. But

it is much simpler.) At least for our present technology, the Yang–Mills case is more
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involved than Brody curves. Another, relatively minor, difference is the techniques of

gluing. The gluing construction in [18] is more elementary than that of the present paper.

The reason is that for meromorphic functions f and g in C we have a natural definition of

their sum f + g. But we don’t have such a definition for the “sum” of ASD connections.

1.4. Organization of the paper. Section 2 is a review of mean dimension and local

mean dimension. Section 3 is devoted to the study of the Coulomb gauge condition. In

Section 4 we study the Banach space H1
A. In Section 5 we develop the deformation theory

of non-degenerate ASD connections and prove Theorem 1.10. In Section 6 we study the

gluing method and prove Theorem 1.11. In Appendix we investigate another definition

of the ASD moduli space.

1.5. Notations. • In most of the argument the variable t means the natural projection

t : R× S3 → R.

• The value of d (which is used to define Md) is fixed in the rest of this paper (except

for Appendix). So we usually omit to write the dependence on d. We adopt the following

notation:

Notation 1.13. For two quantities x and y we write

x . y

if there exists a positive constant C(d) which depends only on d such that x ≤ C(d)y.

Let A be a connection on E. We also use the following notation:

x .A y.

This means that there exists a positive constant C(d,A) which depends only on d and A

such that x ≤ C(d,A)y. The notation x .A y is used in Sections 3, 4 and 5 where we fix

a connection A in most of the argument.

• Let A be a connection on E. Let k ≥ 0 be an integer, and let p ≥ 1. For ξ ∈ Ωi(adE)

(0 ≤ i ≤ 4) and a subset U ⊂ X, we define a norm ||ξ||Lp
k,A(U) by

||ξ||Lp
k,A(U) :=

(
k∑
j=0

∣∣∣∣∇j
Aξ
∣∣∣∣p
Lp(U)

)1/p

.

For α < β we often denote the norm ||ξ||Lp
k,A((α,β)×S3) by ||ξ||Lp

k,A(α<t<β).

2. Review of mean dimension and local mean dimension

In this section we review mean dimension and local mean dimension. Mean dimension

was introduced by Gromov [13]. Lindenstrauss–Weiss [15] and Lindenstrauss [14] also

gave fundamental contributions to the basics of this invariant. Local mean dimension was

introduced in [17].
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Let (M, dist) be a compact metric space (dist is a distance function on M). Let N be

a topological space, and let f : M → N be a continuous map. For ε > 0, f is called

an ε-embedding if Diamf−1(y) ≤ ε for all y ∈ N . Here Diamf−1(y) is the supremum of

dist(x1, x2) over all x1 and x2 in the fiber f−1(y). Let Widimε(M, dist) be the minimum

integer n ≥ 0 such that there exist an n-dimensional polyhedron P and an ε-embedding

f : M → P . The topological dimension dimM is equal to the limit of Widimε(M, dist)

as ε→ 0.

The following important example was given in [13, p. 333]. This will be used in

Section 5. The detailed proofs are given in Gournay [12, Lemma 2.5] and Tsukamoto [22,

Appendix].

Example 2.1. Let (V, ||·||) be a finite dimensional Banach space. Let Br(V ) be the closed

ball of radius r > 0 centered at the origin. Then

Widimε(Br(V ), ||·||) = dimV, (0 < ε < r).

Suppose that the Lie group R continuously acts on a compact metric space (M, dist).

For a subset Ω ⊂ R, we define a new distance distΩ onM by distΩ(x, y) := supa∈Ω dist(a.x, a.y)

(x, y ∈M). We define the mean dimension dim(M : R) by

dim(M : R) := lim
ε→0

(
lim

T→+∞

Widimε(M, dist(0,T ))

T

)
.

This limit always exists because we have the following sub-additivity:

Widimε(M, dist(0,T1+T2)) ≤Widimε(M, dist(0,T1)) + Widimε(M, dist(0,T2)).

The mean dimension dim(M : R) is a topological invariant. (This means that its value is

independent of the choice of a distance function compatible with the topology.) If M is

finite dimensional, then the mean dimension dim(M : R) is equal to 0.

Let N ⊂M be a closed subset. The function

T 7→ sup
a∈R

Widimε(N, dist(a,a+T ))

is also sub-additive. So we can define the following quantity:

dim(N : R) := lim
ε→0

(
lim

T→+∞

supa∈R Widimε(N, dist(a,a+T ))

T

)
.

For r > 0 and p ∈M we define Br(p)R as the set of points x ∈M satisfying distR(p, x) ≤
r. (Note that distR(p, x) ≤ r means dist(a.p, a.x) ≤ r for all a ∈ R.) We define the local

mean dimension dimp(M : R) at p by

dimp(M : R) := lim
r→0

dim(Br(p)R : R).

We define the local mean dimension dimloc(M : R) by

dimloc(M : R) := sup
p∈M

dimp(M : R).
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dimp(M : R) and dimloc(M : R) are topological invariants of the dynamical system M .

We always have

dimp(M : R) ≤ dimloc(M : R) ≤ dim(M : R).

In this paper we define mean dimension only for R-actions. But we can define it for

more general group actions. Gromov [13] defined mean dimension for actions of amenable

groups. The most basic example is the natural Z-action (shift action) on the infinite

dimensional cube

[0, 1]Z := · · · × [0, 1]× [0, 1]× [0, 1]× · · · .

Its mean dimension and local mean dimension are given by

dim0([0, 1]Z : Z) = dimloc([0, 1]Z : Z) = dim([0, 1]Z : Z) = 1.

Here 0 = (. . . , 0, 0, 0, . . . ) ∈ [0, 1]Z. We don’t need this result in this paper. So we omit the

detail. The detailed explanations can be found in Lindenstrauss–Weiss [15, Proposition

3.3] and [17, Example 2.9].

3. Coulomb gauge

In this section we study a gauge fixing condition. This is a technical step toward the

proof of Theorem 1.10. The ASD equation is not elliptic and admits a large symmetry of

gauge transformations. So in the standard Yang–Mills theory we introduce the Coulomb

gauge condition in order to break the gauge symmetry and get the ellipticity of the

equation. In our situation the gauge fixing seems more involved than in the standard

argument. A difficulty lies in the point that we need to consider all gauge transformations

g : E → E (without any asymptotic condition at the end) and that they don’t form a

Banach Lie group. The main result of this section is Proposition 3.6. But its statement

is not simple. Probably Corollary 3.7 is easier to understand. So it might be helpful for

some readers to look at Corollary 3.7 before reading the proof of Proposition 3.6.

The next lemma is proved in [17, Corollary 6.3]. This is crucial for our argument.

Lemma 3.1. If A is a non-flat ASD connection on E satisfying ||FA||op < ∞, then A is

irreducible. (Recall that A is said to be reducible if there is a gauge transformation g 6= ±1

satisfying g(A) = A. A is said to be irreducible if A is not reducible.)

In the rest of this section we always suppose that A is a non-degenerate ASD connection

on E satisfying ||FA||op ≤ d. The next lemma shows crucial properties of non-degenerate

ASD connections.

Lemma 3.2. (i) For any s ∈ R and any u ∈ Ω0(adE),∫
s<t<s+1

|u|2dvol ≤ C1(A)

∫
s<t<s+1

|dAu|2dvol.
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(ii) For any s ∈ R and any gauge transformation g : E → E,

min
(
||g − 1||L∞(s<t<s+1) , ||g + 1||L∞(s<t<s+1)

)
≤ C2(A) ||dAg||L∞(s<t<s+1) .

We will abbreviate the left-hand-side to min± ||g ± 1||L∞(s<t<s+1).

Proof. (i) Suppose that the statement is false. Then there exist sn ∈ R and un ∈ Ω0(adE)

satisfying

1 =

∫
sn<t<sn+1

|un|2dvol > n

∫
sn<t<sn+1

|dAun|2dvol.

Set vn := s∗n(un) and An := s∗n(A) (the pull-backs by sn : E → E). Then

1 =

∫
0<t<1

|vn|2dvol > n

∫
0<t<1

|dAnvn|2dvol.

Since Md is compact, there exist a sequence of natural numbers n1 < n2 < n3 < · · · and

gauge transformations gk : E → E (k ≥ 1) such that Bk := gk(Ank
) converges to some

B in C∞ over every compact subset of X. Since A is non-degenerate, B is not flat and

hence irreducible by Lemma 3.1. Set wk := gk(vnk
). Then

1 =

∫
0<t<1

|wk|2dvol > nk

∫
0<t<1

|dBk
wk|2dvol.

Since dBwk = dBk
wk + [B − Bk, wk], the sequence {wk} is bounded in L2

1,B((0, 1) × S3).

Hence, by choosing a subsequence, we can assume that wk weakly converges to some w

in L2
1,B((0, 1)× S3). We have ||w||L2(0<t<1) = 1 and dBw = 0 over (0, 1)× S3. This means

that the connection B is reducible over (0, 1)× S3. By the unique continuation theorem

[6, p. 150], B is reducible over X. This is a contradiction.

(ii) Fix 4 < p < ∞. (Note that the Sobolev embedding Lp1 ↪→ C0 is compact.) By an

argument similar to the above (i), we can prove the following statement: For any s ∈ R
and any u ∈ Ω0(adE)

(5) ||u||L∞(s<t<s+1) .A C(p) ||dAu||Lp(s<t<s+1) .

We prove (ii) by using this statement. Suppose (ii) is false. Then, as in the proof of

(i), there exist connections An (which are translations of A) and gauge transformations

gn : E → E satisfying

min
±
||gn ± 1||L∞(0<t<1) > n ||dAngn||L∞(0<t<1) .

We can choose a sequence of natural numbers n1 < n2 < n3 < · · · and gauge transforma-

tions hk : E → E (k ≥ 1) such that Bk := hk(Ank
) converges to some B in C∞ over every

compact subset. B is irreducible. Set g′k := hkgnk
h−1
k . Then

(6) min
±
||g′k ± 1||L∞(0<t<1) > nk ||dBk

g′k||L∞(0<t<1) .

{g′k} is bounded in Lp1,B((0, 1) × S3). By choosing a subsequence, g′k converges to some

g′ weakly in Lp1,B((0, 1) × S3) and strongly in L∞((0, 1) × S3). We have dBg
′ = 0. Since
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B is irreducible, g′ = ±1. We can assume g′ = 1 without loss of generality. Then there

are uk ∈ Lp1,B((0, 1) × S3,Λ0(adE)) (k � 1) satisfying g′k = euk and |uk| . |g′k − 1| over

0 < t < 1. Then by (5)

||g′k − 1||L∞(0<t<1) . ||uk||L∞(0<t<1) .A C(p) ||dBk
uk||Lp(0<t<1) .

We have ||dBk
uk||Lp(0<t<1) ≤ 2 ||dBk

g′k||Lp(0<t<1) for k � 1. Hence, for k � 1,

||g′k − 1||L∞(0<t<1) .A ||dBk
g′k||L∞(0<t<1) .

This contradicts (6). �

Lemma 3.3. There exists a positive number ε1 = ε1(A) such that, for any integers m < n

and any gauge transformation g : E → E, if ||dAg||L∞(m<t<n) ≤ ε1 then

min
±
||g ± 1||L∞(m<t<n) ≤ C2(A) ||dAg||L∞(m<t<n) .

This is also true for the case (m,n) = (−∞,∞).

Proof. For simplicity we suppose m = 0. By Lemma 3.2 (ii), for every k ∈ Z,

(7) min
±
||g ± 1||L∞(k<t<k+1) ≤ C2 ||dAg||L∞(k<t<k+1) .

Take a positive number ε1 = ε1(A) satisfying (C2+1)ε1 < 1. Suppose ||dAg||L∞(0<t<n) ≤ ε1.

We can also suppose

||g − 1||L∞(0<t<1) ≤ ||g + 1||L∞(0<t<1)

without loss of generality. Then ||g − 1||L∞(0<t<1) ≤ C2ε1. Since |dAg| ≤ ε1 over 0 ≤ t ≤ 2,

we have

||g − 1||L∞(1<t<2) ≤ (C2 + 1)ε1 < 1.

Then ||g + 1||L∞(1<t<2) ≥ 2− (C2 + 1)ε1 > 1. Hence

||g − 1||L∞(1<t<2) < ||g + 1||L∞(1<t<2) .

In the same way, we can prove that for every 0 ≤ k < n

||g − 1||L∞(k<t<k+1) < ||g + 1||L∞(k<t<k+1) .

By (7),

||g − 1||L∞(k<t<k+1) ≤ C2 ||dAg||L∞(k<t<k+1) .

Thus ||g − 1||L∞(0<t<n) ≤ C2 ||dAg||L∞(0<t<n). �

Fix a positive integer T = T (A) satisfying

(8)
10C1 + 20

√
C1

T
<

1

4
.

Here C1 = C1(A) is the positive constant introduced in Lemma 3.2 (i). For the later

convenience (Lemma 5.5) we assume T > 3. For ξ ∈ Ωi(adE) and integers m ≤ n, we set

||ξ||nm := max
m≤k≤n

||ξ||L2(kT<t<(k+1)T ) .
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Let d∗A : Ω1(adE) → Ω0(adE) be the formal adjoint of dA : Ω0(adE) → Ω1(adE). We

set ∆Au := d∗AdAu for u ∈ Ω0(adE).

Lemma 3.4. Let n ∈ Z and K ∈ Z>0, and let u ∈ Ω0(adE). Then∫
nT<t<(n+1)T

|dAu|2dvol . 2−K
(
||dAu||n+K

n−K

)2

+ ||∆Au||n+K
n−K ||u||

n+K
n−K .

Proof. For simplicity, we suppose n = 0. Take any m ∈ Z. Let ϕ : R→ [0, 1] be a cut-off

such that supp(ϕ) ⊂ [(m−1)T, (m+2)T ], ϕ = 1 on [mT, (m+1)T ] and |ϕ′|, |ϕ′′| < 10/T .

Then ∫
mT<t<(m+1)T

|dAu|2 ≤
∫
X

|dA(ϕu)|2 =

∫
X

〈∆A(ϕu), ϕu〉.

We have ∆A(ϕu) = ϕ∆Au+ ∆ϕ · u+ ∗(∗dϕ ∧ dAu− dϕ ∧ ∗dAu).

|∆A(ϕu)| ≤ (10/T )|u|+ (20/T )|dAu|+ |∆Au|.

Since ∆A(ϕu) = ∆Au over mT ≤ t ≤ (m+ 1)T ,∫
mT<t<(m+1)T

|dAu|2 ≤
∫
{(m−1)T<t<mT or (m+1)T<t<(m+2)T}

(10/T )|u|2 + (20/T )|dAu||u|

+

∫
(m−1)T<t<(m+2)T

|∆Au||u|.

Using Lemma 3.2 (i), the right-hand-side is bounded by

10C1 + 20
√
C1

T

∫
{(m−1)T<t<mT or (m+1)T<t<(m+2)T}

|dAu|2 +

∫
(m−1)T<t<(m+2)T

|∆Au||u|.

From (8), this is bounded by

1

4

∫
{(m−1)T<t<mT or (m+1)T<t<(m+2)T}

|dAu|2dvol + 3 ||∆Au||m+1
m−1 ||u||

m+1
m−1 .

We define a sequence am (−K ≤ m ≤ K) by

am :=

∫
mT<t<(m+1)T

|dAu|2dvol.

Then the above implies

am ≤
am−1 + am+1

4
+ 3 ||∆Au||K−K ||u||

K
−K (−K + 1 ≤ m ≤ K − 1).

By applying Sublemma 3.5 below to this relation, we get

a0 ≤
max(aK , a−K)

2K−1
+ 18 ||∆Au||K−K ||u||

K
−K ≤

1

2K−1

(
||dAu||K−K

)2

+ 18 ||∆Au||K−K ||u||
K
−K .

Sublemma 3.5. Let K be a positive integer, and let b ≥ 0 be a real number. Let

{am}−K≤m≤K be a sequence of non-negative real numbers satisfying

am ≤
am−1 + am+1

4
+ b (−K + 1 ≤ m ≤ K − 1).
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Then we have

a0 ≤
max(aK , a−K)

2K−1
+ 6b.

Proof. Set bm := max(a−m, am) (0 ≤ m ≤ K). We have b0 ≤ b1/2 + b. For m ≥ 1, we

have bm ≤ (bm−1 + bm+1)/4 + b, i.e. 4bm ≤ bm−1 + bm+1 + 4b. Hence, for m ≥ 1,

2(bm − bm−1) ≤ 2bm − bm−1 ≤ −2bm + bm+1 + 4b ≤ bm+1 − bm + 4b.

Thus bm − bm−1 ≤ (bm+1 − bm)/2 + 2b (m ≥ 1). Using this inequality recursively, we get

b1 − b0 ≤
bK − bK−1

2K−1
+ 2b

(
1 +

1

2
+ · · ·+ 1

2K−2

)
≤ bK − bK−1

2K−1
+ 4b.

On the other hand, 2b0 − b1 ≤ 2b. Hence

a0 = b0 ≤
bK − bK−1

2K−1
+ 6b ≤ bK

2K−1
+ 6b =

max(aK , a−K)

2K−1
+ 6b.

�

We have finished the proof of Lemma 3.4. �

The next proposition is the main result of this section. Recall that we have supposed

that A is a non-degenerate ASD connection on E with ||FA||op ≤ d.

Proposition 3.6. For any τ > 0, there exist ε2 = ε2(A, τ) > 0 and K = K(A, τ) ∈ Z>0

satisfying the following statement.

Let n ∈ Z. Let a, b ∈ Ω1(adE) with d∗Aa = d∗Ab = 0, and let g : E → E be a gauge

transformation. Set α := g(A + a) − (A + b). If the L∞-norms of a, b and α over

(n−K)T < t < (n+K + 1)T are all less than ε2, then

(9) ||a− b||L2(nT<t<(n+1)T ) ≤ τ ||a− b||n+K
n−K +

√
||α||n+K

n−K + ||d∗Aα||
n+K
n−K ,

(10) min
±
||g ± 1||L2(nT<t<(n+1)T ) .A ||α||L2(nT<t<(n+1)T ) + ||a− b||L2(nT<t<(n+1)T ) .

Proof. For simplicity of the notations, we assume n = 0. Set U := S3 × (−KT,KT + T ).

We have dAg = −αg + ga − bg. Then |dAg| < 3ε2 over U . We choose ε2 so that

3ε2 ≤ ε1 (the constant introduced in Lemma 3.3). Then by Lemma 3.3, we can suppose

||g − 1||L∞(U) .A ε2 � 1. So there is a section u of Λ0(adE) over U satisfying g = eu and

||u||L∞(U) .A ε2 � 1. Then 2−1|dAu| ≤ |dAg| ≤ 2|dAu| and |g − 1| ≤ 2|u| over U . By

Lemma 3.2 (i),

(11) ||g − 1||K−K ≤ 2 ||u||K−K ≤ 2
√
C1 ||dAu||K−K ≤ 4

√
C1 ||dAg||K−K .

We have

(12) dAg = −αg + (g − 1)a− b(g − 1) + (a− b).
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Then

||dAg||K−K ≤ ||α||
K
−K + ||g − 1||K−K

(
||a||L∞(U) + ||b||L∞(U)

)
+ ||a− b||K−K

≤ ||α||K−K + ||a− b||K−K + 8ε2

√
C1 ||dAg||K−K .

We choose ε2 > 0 so small that 8ε2

√
C1 ≤ 1/2. Then

(13) ||dAg||K−K ≤ 2
(
||α||K−K + ||a− b||K−K

)
.

This and (11) shows

(14) ||g − 1||K−K ≤ 8
√
C1

(
||α||K−K + ||a− b||K−K

)
.

In the same way we get (10):

||g − 1||L2(0<t<T ) ≤ 8
√
C1(||α||L2(0<t<T ) + ||a− b||L2(0<t<T )).

From (12),

||a− b||L2(0<t<T ) ≤ ||dAg||L2(0<t<T ) + ||α||L2(0<t<T ) + ||g − 1||L2(0<t<T )

(
||a||L∞(U) + ||b||L∞(U)

)
≤ ||dAg||L2(0<t<T ) + ||α||L2(0<t<T ) + 2ε2 ||g − 1||L2(0<t<T )

≤ ||dAg||L2(0<t<T ) + (1 + 16ε2

√
C1) ||α||L2(0<t<T ) + 16ε2

√
C1 ||a− b||L2(0<t<T ) .

Since |dAg| ≤ 2|dAu| and ε2 � 1,

(15) ||a− b||L2(0<t<T ) .A ||dAu||L2(0<t<T ) + ||α||L2(0<t<T ) .

We have the Coulomb gauge condition d∗Aa = d∗Ab = 0. Therefore ∆Ag = −∗dA∗dAg =

− ∗ dA(− ∗ αg + g ∗ a− ∗bg) = −(d∗Aα)g − ∗(∗α ∧ dAg)− ∗(dAg ∧ ∗a)− ∗(∗b ∧ dAg). By

(13),

||∆Ag||K−K ≤ ||d
∗
Aα||

K
−K +

(
||α||L∞(U) + ||a||L∞(U) + ||b||L∞(U)

)
||dAg||K−K

≤ ||d∗Aα||
K
−K + 6ε2

(
||α||K−K + ||a− b||K−K

)
.

(16)

∆Ag =
∑∞

n=0 ∆A(un/n!) and |∆A(un)| ≤ n(n− 1)|u|n−2|dAu|2 + n|u|n−1|∆Au|. Hence

|∆Ag −∆Au| ≤ e|u||dAu|2 + (e|u| − 1)|∆Au| . ε2 (|dAg|+ |∆Au|)

over U . Here we have used |u| .A ε2 � 1 and |dAu| ≤ 2|dAg| < 6ε2 over U . We choose

ε2 so small that |∆Au| . |∆Ag|+ ε2|dAg| over U . By (13) and (16),

(17) ||∆Au||K−K . ε2 ||α||K−K + ||d∗Aα||
K
−K + ε2 ||a− b||K−K .

From (15), Lemma 3.4 and ||α||L∞(U) < ε2,

||a− b||2L2(0<t<T ) .A
(
||dAu||L2(0<t<T )

)2

+
(
||α||L2(0<t<T )

)2

.A 2−K
(
||dAu||K−K

)2

+ ||∆Au||K−K ||u||
K
−K + ε2 ||α||K−K .
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From (13), |dAu| ≤ 2|dAg| on U and ||α||L∞(U) ≤ ε2,(
||dAu||K−K

)2

.
(
||α||K−K

)2

+
(
||a− b||K−K

)2

.A ε2 ||α||K−K +
(
||a− b||K−K

)2

.

From (14), ||u||K−K .A ||α||
K
−K + ||a− b||K−K . From (17) and ||a||L∞(U) , ||b||L∞(U) , ||α||L∞(U) <

ε2,

||∆Au||K−K ||u||
K
−K .A

(
ε2 ||α||K−K + ||d∗Aα||

K
−K + ε2 ||a− b||K−K

)(
||α||K−K + ||a− b||K−K

)
.A ε2

(
||α||K−K + ||d∗Aα||

K
−K

)
+ ε2

(
||a− b||K−K

)2

.

(The strange square root in (9) comes from the term ||d∗Aα||
K
−K ||a− b||

K
−K in this estimate.)

Thus

||a− b||2L2(0<t<T ) .A (ε2 + 2−K)
(
||a− b||K−K

)2

+ ε2

(
||α||K−K + ||d∗Aα||

K
−K

)
.

We choose K > 0 sufficiently large and ε2 > 0 sufficiently small. Then we get

||a− b||2L2(0<t<T ) ≤ τ 2
(
||a− b||K−K

)2

+ ||α||K−K + ||d∗Aα||
K
−K .

�

Corollary 3.7. Suppose that a, b ∈ Ω1(adE) satisfy d∗Aa = d∗Ab = 0 and ||a||L∞(X) , ||b||L∞(X) ≤
ε2(A, 1/2) (the constant introduced in Proposition 3.6 for τ = 1/2). If a gauge transfor-

mation g : E → E satisfies g(A+ a) = A+ b, then a = b and g = ±1.

Proof. For any n ∈ Z, from Proposition 3.6 (9),

||a− b||L2(nT<t<(n+1)T ) ≤
1

2
||a− b||n+K

n−K ≤
1

2
sup
m∈Z
||a− b||L2(mT<t<(m+1)T ) .

Hence

sup
m∈Z
||a− b||L2(mT<t<(m+1)T ) ≤

1

2
sup
m∈Z
||a− b||L2(mT<t<(m+1)T ) .

This implies a = b. Then Proposition 3.6 (10) shows g = ±1. �

4. Parameter space of the deformation

For a connection A on E, we set DA := d∗A + d+
A : Ω1(adE) → Ω0(adE) ⊕ Ω+(adE).

Here d∗A is the formal adjoint of dA : Ω0(adE)→ Ω1(adE), and d+
A is the self-dual part of

dA : Ω1(adE)→ Ω2(adE). We define a linear space H1
A by

(18) H1
A := {a ∈ Ω1(adE)|DAa = 0, ||a||L∞(X) <∞}.

(H1
A, ||·||L∞(X)) is a (possibly infinite dimensional) Banach space. This space will be the

parameter space of the deformation theory developed in the next section. The main

purpose of this section is to prove the following proposition:
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Proposition 4.1. Let A be a non-degenerate ASD connection on E satisfying ||FA||op ≤ d.

Then for any interval (α, β) ⊂ R of length > 2 there exists a finite dimensional linear

subspace V ⊂ H1
A satisfying the following two conditions.

(i)

dimV ≥ 1

π2

∫
α<t<β

|FA|2dvol− C3(A).

Here C3(A) is a positive constant depending only on A. The important point is that it is

independent of the interval (α, β).

(ii) All a ∈ V satisfy ||a||L∞(X) ≤ 2 ||a||L∞(α<t<β).

The following is a preliminary version of Proposition 4.1:

Proposition 4.2. Let A be an ASD connection on E satisfying ||FA||op ≤ d. For any

ε > 0 and any interval (α, β) ⊂ R of length > 2, there exists a finite dimensional linear

subspace W ⊂ Ω1(adE) such that

(i)

dimW ≥ 1

π2

∫
α<t<β

|FA|2dvol− C(ε).

(ii) All a ∈ W satisfy supp(a) ⊂ (α, β)× S3.

(iii) All a ∈ W satisfy supp(DAa) ⊂ (α, α+ 1)× S3 ∪ (β − 1, β)× S3 and ||DAa||L∞(X) ≤
ε ||a||L∞(X).

Proof. From the compactness of Md, there is a bundle trivialization g of E over U :=

{α − 1 < t < α + 1} ∪ {β − 1 < t < β + 1} ⊂ X such that the connection matrix g(A)

satisfies

||g(A)||Ck(U) . C(k) (∀k ≥ 0).

Let ψ : R → [0, 1] be a cut-off function such that ψ = 1 over a small neighborhood of

[α + 1, β − 1], supp(ψ) ⊂ (α + 1/2, β − 1/2) and |dψ| ≤ 4. Define a connection A′ over

(α− 1, β + 1)× S3 by A′ := ψA. (The precise definition is as follows: A′ is equal to A on

a small neighborhood of [α + 1, β − 1] × S3, and it is equal to g−1(ψg(A)) over U .) We

have F (A′) = ψF (A) + dψ ∧ A+ (ψ2 − ψ)A2.

|F (A′)| ≤ d+ 4|A|+ |A2| . 1.

Set X ′ := (R/(β−α)Z)×S3, and let π : X → X ′ be the natural projection. We define

a principal SU(2) bundle E ′ on X ′ as follows: We identify the region {α < t < β} ⊂ X

with its projection π{α < t < β} and set

E ′ := E|α<t<β ∪ (π(U)× SU(2)),

where we glue the two terms of the right-hand-side by using the trivialization g. We can

naturally identify the connection A′ with a connection on E ′ (also denoted by A′).

c2(E ′) =
1

8π2

∫
X′

tr(F 2
A′) ≥

1

8π2

∫
α<t<β

|FA|2dvol− const.
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Let H1
A′ be the linear space of a ∈ Ω1

X′(adE ′) satisfying DA′a = d∗A′a + d+
A′a = 0. From

the Atiyah–Singer index theorem,

dimH1
A′ ≥ 8c2(E ′) ≥ 1

π2

∫
α<t<β

|FA|2dvol− const.

Lemma 4.3. All a ∈ H1
A′ satisfy

||∇A′a||L∞(X′) . ||a||L∞(X′) .

Proof. Take any γ ∈ R. From the construction, we can choose a connection matrix of A′

over π{γ < t < γ + 1} so that

||A′||Ck(π{γ<t<γ+1}) . C(k) (∀k ≥ 0).

Then the standard elliptic regularity theory (Gilbarg–Trudinger [9, Theorem 9.11]) shows

||∇A′a||L∞(π{γ+1/4<t<γ+3/4}) . ||a||L∞(π{γ<t<γ+1}) .

A similar argument will be also used in the proof of Lemma 6.2. �

Set Ω := π(U) ⊂ X ′. Let τ = τ(ε) > 0 be a small number which will be fixed later.

Take points x1, x2, . . . , xN (N . 1/τ 4) in Ω such that for any x ∈ Ω there is some xi
satisfying d(x, xi) ≤ τ . Let V be the kernel of the following linear map:

H1
A′ →

N⊕
i=1

(Λ1(adE ′))xi , a 7→ (a(xi))
N
i=1.

We have

dimV ≥ dimH1
A′ − 12N ≥ 1

π2

∫
α<t<β

|FA|2dvol− const− 12N.

Take any a ∈ V and x ∈ Ω. Choose xi satisfying d(x, xi) ≤ τ . From Lemma 4.3 and

a(xi) = 0,

|a(x)| ≤ τ ||∇A′a||L∞(X′) . τ ||a||L∞(X′) .

We can choose τ > 0 so that the maximum of |a| is attained at a point in X ′ \ Ω. For

a ∈ V , we define ã ∈ Ω1(adE) over X by ã := ψa. (The precise definition is as follows:

We identify the region {α < t < β} with its projection in X ′. ã is equal to ψa over

α < t < β, and it is equal to 0 outside of supp(ψ).) Set W := {ã| a ∈ V } ⊂ Ω1(adE). W

satisfies the condition (ii) in the statement. We have ||ã||L∞(X) = ||a||L∞(X′) because the

maximum of |a| is attained at a point in X ′ \ Ω. Hence

dimW = dimV ≥ 1

π2

∫
α<t<β

|FA|2dvol− const− 12N.

We have

DAã = (A− A′) ∗ ã+DA′(ψa) = (A− A′) ∗ ã+ (dψ) ∗ a.
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Here ∗ are algebraic multiplications. DAã is supported in {α < t < α+1}∪{β−1 < t < β}
and

||DAã||L∞(X) . ||a||L∞((α,α+1)×S3∪(β−1,β)×S3) . τ ||ã||L∞(X) .

We can choose τ = τ(ε) > 0 so that ||DAã||L∞(X) ≤ ε ||ã||L∞(X). Then W satisfies the

conditions (i), (ii), (iii) in the statement. �

Lemma 4.4. Let α < β. Let A be an ASD connection on E satisfying ||FA||op ≤ d.

(i) If A is non-degenerate, then there is a linear map

{u ∈ Ω0(adE)| supp(u) ⊂ (α, α + 1)× S3 ∪ (β − 1, β)× S3} → Ω0(adE), u 7→ v,

satisfying

d∗AdAv = u, ||v||L∞(X) + ||dAv||L∞(X) .A ||u||L∞(X) .

(ii) There is a linear map

{ξ ∈ Ω+(adE)| supp(ξ) ⊂ (α, α + 1)× S3 ∪ (β − 1, β)× S3} → Ω+(adE), ξ 7→ η,

satisfying

d+
Ad
∗
Aη = ξ, ||η||L∞(X) + ||∇Aη||L∞(X) . ||ξ||L∞(X) .

The statement (ii) does not require the non-degeneracy of A.

Proof. (i) Set L2
1,A(adE) := {w ∈ L2(adE)| dAw ∈ L2(X)} with the inner product

(w1, w2)′ := (dAw1, dAw2)L2(X). From Lemma 3.2 (i), every compactly supported w ∈
Ω0(adE) satisfies ||w||L2(X) ≤

√
C1 ||dAw||L2(X) =

√
C1 ||w||′. Hence the norm ||·||′ is equiva-

lent to ||·||L2
1,A(X). In particular (L2

1,A(adE), (·, ·)′) becomes a Hilbert space.

The rest of the argument is the standard L2-method: Take u ∈ Ω0(adE) with supp(u) ⊂
(α, α+1)×S3∪(β−1, β)×S3. We apply the Riesz representation theorem to the following

bounded linear functional:

(·, u)L2(X) : L2
1,A(adE)→ R, w 7→ (w, u)L2(X).

(From Lemma 3.2 (i), |(w, u)L2(X)| ≤
√
C1 ||w||′ ||u||L2(X).) Then there uniquely exists

v ∈ L2
1,A(adE) satisfying (dAw, dAv) = (w, v)′ = (w, u)L2(X). This means that d∗AdAv = u

as a distribution. Moreover ||dAv||L2(X) = ||v||′ ≤
√
C1 ||u||L2(X) .A ||u||L∞(X). From Lemma

3.2 (i), ||v||L2(X) .A ||u||L∞(X). As in the proof of Lemma 4.3, the elliptic regularity theory

gives

||v||L∞(X) + ||dAv||L∞(X) . ||v||L2(X) + ||d∗AdAv||L∞(X) .A ||u||L∞(X) .

(ii) We have the Weitzenböck formula [8, Chapter 6]: d+
Ad
∗
Aη = 1

2
(∇∗A∇A + S/3) η for

η ∈ Ω+(adE). Here S is the scalar curvature of X, and it is a positive constant. Then the

L2-method shows the above statement. (Indeed a stronger result will be given in Lemma

6.1 in Section 6.2.) �
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Proof of Proposition 4.1. Let ε = ε(A) > 0 be a small number which will be fixed later.

For this ε and the interval (α, β) ⊂ R there is a finite dimensional subspace W ⊂ Ω1(adE)

satisfying the conditions (i), (ii), (iii) in Proposition 4.2.

From Lemma 4.4, there is a linear map W → Ω0(adE)⊕Ω+(adE), a 7→ (v, η), satisfying

d∗AdAv = d∗Aa, d+
Ad
∗
Aη = d+

Aa and

||dAv||L∞(X) + ||d∗Aη||L∞(X) ≤ C ||DAa||L∞(X) ≤ εC ||a||L∞(X) (= εC ||a||L∞(α<t<β))

where C = C(A) is a positive constant depending only on A. Here we have used the

conditions (ii) and (iii) in Proposition 4.2. Set a′ := a − dAv − d∗Aη. This satisfies

DAa
′ = 0. Set V := {a′| a ∈ W} ⊂ H1

A. We have ||a′||L∞(X) ≥ (1 − εC) ||a||L∞(X) for

a ∈ W . We choose ε > 0 sufficiently small so that (1− εC) > 0. Then dimV = dimW .

From the condition (i) of Proposition 4.2,

dimV ≥ 1

π2

∫
α<t<β

|FA|2dvol− constε.

We have ||a′||L∞(X) ≤ (1+εC) ||a||L∞(X) for a ∈ W . On the other hand, from the conditions

(ii) and (iii) of Proposition 4.2,

||a′||L∞(α<t<β) ≥ ||a||L∞(α<t<β) − εC ||a||L∞(X) = (1− εC) ||a||L∞(X) .

Hence

||a′||L∞(X) ≤
1 + εC

1− εC
||a′||L∞(α<t<β) .

We choose ε > 0 so that (1 + εC)/(1− εC) ≤ 2. Then ||a′||L∞(X) ≤ 2 ||a′||L∞(α<t<β) for all

a′ ∈ V . �

5. Deformation theory and the proof of Theorem 1.10

In this section we develop a deformation theory of non-degenerate ASD connections

and prove Theorem 1.10. (The paper [17] studied a deformation theory of periodic ASD

connections.) Let A be a non-degenerate ASD connection on E satisfying ||FA||op < d.

Note that this is a strict inequality. We fix this A throughout this section.

5.1. Deformation theory. Let H1
A ⊂ Ω1(adE) be the Banach space defined by (18).

Let k ≥ 0 and 0 ≤ i ≤ 4 be integers. For ξ ∈ L2
k,loc(Λ

i(adE)) (a locally L2
k-section of

Λi(adE)), we set

||ξ||`∞L2
k

:=
k∑
j=0

sup
n∈Z

∣∣∣∣∇j
Aξ
∣∣∣∣
L2(n<t<n+1)

.

From the elliptic regularity, we have ||a||L∞(X) . ||a||`∞L2
k
. constk ||a||L∞(X) for a ∈ H1

A

(cf. the proof of Lemma 4.3).
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Let `∞L2
k(Λ

+(adE)) be the Banach space of ξ ∈ L2
k,loc(Λ

+(adE)) satisfying ||ξ||`∞L2
k
<

∞. From the Sobolev embedding theorem, ||ξ||L∞(X) . ||ξ||`∞L2
3

for ξ ∈ `∞L2
3(Λ+(adE)).

Consider

Φ : H1
A × `∞L2

5(Λ+(adE))→ `∞L2
3(Λ+(adE)),

(a, φ) 7→ F+(A+ a+ d∗Aφ) = (a ∧ a)+ + d+
Ad
∗
Aφ+ [a ∧ d∗Aφ]+ + (d∗Aφ ∧ d∗Aφ)+.

This is a smooth map between the Banach spaces with Φ(0, 0) = 0. We want to describe

the fiber Φ−1(0) around the origin by using the implicit function theorem. Let (∂2Φ)0 :

`∞L2
5(Λ+(adE)) → `∞L2

3(Λ+(adE)) be the derivative of Φ at the origin with respect

to the second variable φ. We have (∂2Φ)0(φ) = d+
Ad
∗
Aφ = 1

2
(∇∗A∇A + S/3)φ for φ ∈

`∞L2
5(Λ+(adE)) by the Weitzenböck formula. (S is the scalar curvature of X, and it is a

positive constant.) The following L∞-estimate is proved in [17, Proposition A.5]:

Lemma 5.1. Let ξ be a C2-section of Λ+(adE) over X. We set η := (∇∗A∇A + S/3)ξ,

and suppose ||ξ||L∞(X) <∞ and ||η||L∞(X) <∞. Then

||ξ||L∞(X) ≤ (24/S) ||η||L∞(X) .

Lemma 5.2. The operator (∂2Φ)0 : `∞L2
5(Λ+(adE)) → `∞L2

3(Λ+(adE)) is an isomor-

phism. This means that a local deformation of A is “unobstructed”.

Proof. This can be proved by using Lemma 6.1 in Section 6.2. But here we give a direct

proof. From the L∞-estimate in Lemma 5.1, the above operator is injective. Hence the

problem is its surjectivity. Take η ∈ `∞L2
3(Λ+(adE)). Let ϕn : R → [0, 1] be a cut-off

function such that ϕn = 1 over [−n, n] and supp(ϕn) ⊂ (−n−1, n+1). Set ηn := ϕnη. By

the L2-method (see the proof of Lemma 4.4), there exists ξn ∈ L2
1,A(Λ+(adE)) satisfying

(∇∗A∇A + S/3)ξn = ηn as a distribution and ||ξn||L2(X) . ||ηn||L2(X) <∞. From the elliptic

regularity, ξn is in L2
5,loc and hence of class C2. Moreover ||ξn||L∞(X) . ||ξn||L2(X) +||ηn||L∞ <

∞. Hence by the L∞-estimate (Lemma 5.1)

||ξn||L∞(X) ≤ (24/S) ||ηn||L∞(X) ≤ (24/S) ||η||L∞(X) . ||η||`∞L2
3
.

For any integer m,

||ξn||L2
5(m<t<m+1) . ||ξn||L∞(X) + ||ηn||`∞L2

3
. ||η||`∞L2

3
.

By choosing a subsequence {ξnk
}k≥1, there exists ξ ∈ L2

5,loc(Λ
+(adE)) such that ξnk

con-

verges to ξ weakly in L2
5((m,m + 1) × S3) for every m ∈ Z. Then (∇∗A∇A + S/3)ξ = η

and ||ξ||`∞L2
5
. ||η||`∞L2

3
<∞. �

By the implicit function theorem, we can choose R > 0 and R′ > 0 such that for

any a ∈ H1
A with ||a||L∞(X) ≤ R there uniquely exists φa ∈ `∞L2

5(Λ+(adE)) satisfying

F+(A + a + d∗Aφa) = 0 and ||φa||`∞L2
5
≤ R′. We have φ0 = 0. For a ∈ BR(H1

A) := {a ∈
H1
A| ||a||L∞ ≤ R} we set a′ := a+d∗Aφa. This satisfies the ASD equation F+(A+a′) = 0 and
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the Coulomb gauge condition d∗Aa
′ = 0. Since ||FA||op < d, we can choose R > 0 sufficiently

small so that ||F (A+ a′)||op ≤ d for all a ∈ BR(H1
A). Thus we get a deformation map:

(19) BR(H1
A)→Md, a 7→ [A+ a′].

The derivative (∂1Φ)0 : H1
A → `∞L2

3(Λ+(adE)) of Φ at the origin with respect to the

first variable is equal to zero. Hence the derivative of the following map at the origin is

also zero:

BR(H1
A)→ `∞L2

5(Λ+(adE)), a 7→ φa.

Then we get

(20) ||φa − φb||`∞L2
5
.A

(
||a||L∞(X) + ||b||L∞(X)

)
||a− b||L∞(X)

for a, b ∈ BR(H1
A). In particular the map (BR(H1

A), ||·||L∞(X))→Md is continuous.

Remark 5.3. Note that the construction of the deformation map (19) does not use the

non-degeneracy condition of A. It will be used for the further study of the deformation

map. Indeed, since A is non-degenerate, we can apply Corollary 3.7 to this situation.

Then we can show that the above map (19) is injective if R is sufficiently small. Moreover

if BR(H1
A) is endowed with the topology of uniform convergence over compact subsets

(this is not equal to the norm topology), then BR(H1
A) is compact and the map (19)

becomes a topological embedding. We don’t need these facts for the proof of Theorem

1.10. So we omit the detail. But it is not difficult.

Remark 5.4. In the above argument we have solved the equation F+(A+a+d∗Aφ) = 0 by

using the implicit function theorem. But indeed we can solve it more directly by using the

method of Section 6.2. So there exists a little redundancy in our way of the explanation.

We can prepare a unified method for both Sections 5.1 and 6.2. But we don’t take this

way here because this redundancy is not so heavy and the above implicit function theorem

argument seems conceptually easier (at least for the authors) to understand.

5.2. Proof of Theorem 1.10. We need a distance on Md. Any choice will do. One

choice is: For [A1], [A2] ∈Md, we define the distance dist([A1], [A2]) as the infimum of
∞∑
n=1

2−n
||g(A1)− A2||L∞(−n<t<n)

1 + ||g(A1)− A2||L∞(−n<t<n)

over all gauge transformations g : E → E. We don’t need this explicit formula. But

probably it will be helpful for the understanding.

Recall the following notation: For Ω ⊂ R we define distΩ([A1], [A2]) as the supremum

of dist([s∗(A1)], [s∗(A2)]) over s ∈ Ω. s∗(·) is the pull-back by s : E → E. In particular,

for s ∈ R, the distance dist{s}([A1], [A2]) is the infimum of

∞∑
n=1

2−n
||g(A1)− A2||L∞(s−n<t<s+n)

1 + ||g(A1)− A2||L∞(s−n<t<s+n)
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over all gauge transformations g : E → E. We will abbreviate dist{s}([A1], [A2]) to

dists([A1], [A2]).

For the proof of Theorem 1.10, we need to compare the distances dist(α,β) on Md and

||·||L∞(α<t<β) on BR(H1
A) for intervals (α, β) ⊂ R. The next lemma gives us a solution. It

is a consequence of Proposition 3.6.

Lemma 5.5. We can choose 0 < R1 < R so that the following statement holds. For any

δ > 0 there exists ε > 0 such that if a, b ∈ H1
A with ||a||L∞(X) , ||b||L∞(X) < R1 satisfy

dists([A+ a′], [A+ b′]) ≤ ε

for some s ∈ R, then

||a− b||L∞(s<t<s+1) ≤
1

4
||a− b||L∞(X) + δ.

Proof. Let T = T (A) > 3 be the positive constant introduced in Section 3. See the

discussion around (8). We choose n ∈ Z so that

nT ≤ s− 1 < s+ 2 ≤ (n+ 2)T.

Then from the elliptic regularity

||a− b||L∞(s<t<s+1) . ||a− b||L2(s−1<t<s+2) ≤ ||a− b||L2(nT<t<(n+2)T ) .

Let 0 < τ < 1 be a small number which will be fixed later. Let ε2 = ε2(A, τ) > 0 and

K = K(A, τ) ∈ Z>0 be the positive constants introduced in Proposition 3.6. From (20),

if R1 � 1,

||a− b||L2(nT<t<(n+2)T ) ≤ ||a
′ − b′||L2(nT<t<(n+2)T ) + τ ||a− b||L∞(X) .

Hence

(21) ||a− b||L∞(s<t<s+1) . ||a
′ − b′||L2(nT<t<(n+2)T ) + τ ||a− b||L∞(X) .

We estimate the term ||a′ − b′||L2(nT<t<(n+2)T ) by using Proposition 3.6.

We can assume δ2 < ε2. From the Uhlenbeck compactness we can choose ε > 0 so that

if two connections [A1], [A2] ∈ Md satisfy dist([A1], [A2]) ≤ ε then there exists a gauge

transformation g : E → E satisfying

||g(A1)− A2||L∞(−KT−2T<t<KT+2T ) +
∣∣∣∣d∗A2

(g(A1)− A2)
∣∣∣∣
L∞(−KT−2T<t<KT+2T )

< τ 2δ2.

Then the assumption dists([A + a′], [A + b′]) ≤ ε implies that there exists a gauge trans-

formation g : E → E satisfying (set α := g(A+ a′)− (A+ b′))

||α||L∞((n−K)T<t<(n+K+2)T ) +
∣∣∣∣d∗A+b′α

∣∣∣∣
L∞((n−K)T<t<(n+K+2)T )

< τ 2δ2 < ε2.
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In particular ||α||L∞((n−K)T<t<(n+K+2)T ) < ε2. Hence if R1 � ε2 then we can apply Propo-

sition 3.6 to the present situation:

||a′ − b′||L2(nT<t<(n+2)T ) .A τ ||a
′ − b′||`∞L2 + τδ

.A τ ||a− b||L∞(X) + τδ (by (20)).

By applying this estimate to the above (21), we get

||a− b||L∞(s<t<s+1) .A τ ||a− b||L∞(X) + τδ.

We choose τ > 0 sufficiently small. Then

||a− b||L∞(s<t<s+1) ≤
1

4
||a− b||L∞(X) + δ.

�

Recall that Br([A])R ⊂ Md is the closed ball of radius r centered at [A] with respect

to the distance distR.

Proposition 5.6. For any r > 0 there exists ε(r) > 0 such that for any 0 < ε ≤ ε(r) and

any interval (α, β) ⊂ R of length > 2 we have

Widimε(Br([A])R, dist(α,β)) ≥
1

π2

∫
α<t<β

|FA|2dvol− C3.

Here C3 = C3(A) is the positive constant introduced in Proposition 4.1.

Proof. We can choose 0 < r′ < R1 such that every a ∈ Br′(H
1
A) satisfies [A + a′] ∈

Br([A])R. (R1 is the constant introduced in the previous lemma.) From Lemma 5.5 we

can choose ε(r) > 0 so that if a, b ∈ Br′(H
1
A) satisfy

dist(α,β)([A+ a′], [A+ b′]) ≤ ε(r)

then

(22) ||a− b||L∞(α<t<β) ≤
1

4
||a− b||L∞(X) +

r′

8
.

By Proposition 4.1, there exists a linear subspace V ⊂ H1
A such that

dimV ≥ 1

π2

∫
α<t<β

|FA|2dvol− C3

and that all a ∈ V satisfy ||a||L∞(X) ≤ 2 ||a||L∞(α<t<β). We investigate the restriction of the

deformation map (19) to Br′(V ) := {a ∈ V | ||a||L∞(X) ≤ r′}.
By applying the above (22) to Br′(V ), we get the following: If a, b ∈ Br′(V ) satisfy

dist(α,β)([A+ a′], [A+ b′]) ≤ ε(r), then

||a− b||L∞(X) ≤ 2 ||a− b||L∞(α<t<β) ≤
1

2
||a− b||L∞(X) +

r′

4
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and hence ||a− b||L∞(X) ≤ r′/2. Therefore we get: For 0 < ε ≤ ε(r)

Widimε(Br([A])R, dist(α,β)) ≥Widimr′/2(Br′(V ), ||·||L∞(X)) = dimV (by Example 2.1)

≥ 1

π2

∫
α<t<β

|FA|2dvol− C3.

�

Proof of Theorem 1.10. The upper bound dim[A](Md : R) ≤ 8ρ(A) is given by Theorem

1.9. So the problem is the lower bound.

dim[A](Md : R) = limr→0 dim(Br([A])R : R), and dim(Br([A])R : R) is given by

lim
ε→0

(
lim

n→+∞

supx∈R Widimε(Br([A])R, dist(x,x+n))

n

)
.

By Proposition 5.6, for 0 < ε ≤ ε(r) and n > 2

sup
x∈R

Widimε(Br([A])R, dist(x,x+n)) ≥
1

π2
sup
x∈R

∫
x<t<x+n

|FA|2dvol− C3.

Since

ρ(A) = lim
n→∞

1

8π2n
sup
x∈R

∫
x<t<x+n

|FA|2dvol,

we have

dim(Br([A])R : R) ≥ 8ρ(A).

Thus dim[A](Md : R) ≥ 8ρ(A). �

6. Gluing infinitely many instantons

In this section we prove Theorem 1.11: Suppose d > 1. Let ε > 0, and let A be an ASD

connection on E with ||FA||op < d. We want to find a non-degenerate ASD connection Ã

on E satisfying

(23)
∣∣∣∣∣∣F (Ã)

∣∣∣∣∣∣
op
< d, ρ(Ã) > ρ(A)− ε.

If A itself is non-degenerate, then Ã := A satisfies the condition. So we assume that A is

degenerate.

As we described in Section 1.3, the idea of the proof is gluing instantons. We glue

infinitely many copies of the instanton I (given in Example 1.1) to A over the regions where

the curvature FA has very small norm. Then we get a non-degenerate ASD connection Ã.

The technique of gluing infinitely many instantons in the context of Yang–Mills theory

was first developed in [20]. It was further expanded in [21]. Infinite gluing techniques

(in other words, shadowing lemmas) for other equations can be found in Angenent [1],

Eremenko [7], Macr̀ı–Nolasco–Ricciardi [16] and Gournay [10, 11].

Throughout this section, we fix a positive number τ such that

||FA||op < d− τ, d− τ > 1.
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Let δ = δ(ε, τ) > 0 be a sufficiently small number, and T = T (ε, τ, δ) > 0 be a sufficiently

large number. We choose δ and T so that the following argument works well.

The variable t means the natural projection t : X → R.

6.1. Cut and paste. Let I be an ASD connection on E defined in Example 1.1. For

s ∈ R let Is := (−s)∗(I) be the pull-back of I by (−s) : E → E. Is is an ASD connection

on E with

|F (Is)|op =
4

(et−s + e−t+s)2
, ||F (Is)||op = 1.

Most of its energy is contained in a neighborhood of t = s.

We define J ⊂ Z as the set of n ∈ Z satisfying ||FA||L∞(nT<t<(n+1)T ) < δ. Since A is

degenerate, J is an infinite set. In this subsection we describe a “cut and paste” procedure:

We cut and paste the instanton InT+T
2

to A over [nT, (n+ 1)T ]× S3 for each n ∈ J . The

resulting new connection will be denoted by B. (B is not ASD in general.)

For simplicity of the notation, we suppose 0 ∈ J , and we explain the cut and paste

procedure over the region [0, T ]× S3. Let ϕ : X → [0, 1] be a cut-off function such that

ϕ = 0 on {t ≤ T/3} ∪ {t ≥ 2T/3}, ϕ = 1 on {T/3 + 1 ≤ t ≤ 2T/3− 1}.

Set U := {T/3− 1 < t < T/3 + 2} ∪ {2T/3− 2 < t < 2T/3 + 1} ⊂ X. Since T � 1 and

||FA||L∞(0<t<T ) < δ � 1, we can choose connection matrices of A and IT/2 over U such

that

||A||Ck(U) < C(k)δ,
∣∣∣∣IT/2∣∣∣∣Ck(U)

< C(k)δ (∀k ≥ 0).

Then we define a connection B on [0, T ]× S3 by

B :=


A on {0 ≤ t ≤ T/3} ∪ {2T/3 ≤ t ≤ T}
(1− ϕ)A+ ϕIT/2 on U

IT/2 on {T/3 + 1 ≤ t ≤ 2T/3− 1}.

In the same way we construct a connection B by cutting and pasting the instanton InT+T
2

to A over [nT, (n+ 1)T ]× S3 for every n ∈ J .

Since δ � 1 and ||FI ||op = 1 < d− τ , the connection B satisfies

(24) ||FB||op < d− τ.

For n 6∈ J , we have B = A over nT ≤ t ≤ (n+ 1)T . For n ∈ J , we have

1

8π2T

∫
nT<t<(n+1)T

|FA|2dvol <
δ2vol(S3)

8π2
<
ε

2
, (δ � ε).

From this estimate we get

(25) ρ(B) > ρ(A)− ε

2
.
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Moreover B satisfies the following non-degeneracy condition (cf. Lemma 1.7):

||FB||L∞(nT<t<(n+1)T ) ≥ δ for n 6∈ J,

||FB||L∞(nT<t<(n+1)T ) ≥ ||FI ||L∞(−1<t<1) ≥ 1 for n ∈ J.
(26)

Therefore B satisfies almost all the desired conditions. The only one problem is that B

is not ASD. But B is an approximately ASD connection: F+
B is supported in⋃

n∈J

({
nT +

T

3
≤ t ≤ nT +

T

3
+ 1

}
∪
{
nT +

2T

3
− 1 ≤ t ≤ nT +

2T

3

})
.

Since δ � 1,

(27)
∣∣∣∣F+

B

∣∣∣∣
L∞(X)

. δ,
∣∣∣∣∇BF

+
B

∣∣∣∣
L∞(X)

. δ.

6.2. Perturbation. In this subsection we construct an ASD connection Ã by slightly

perturbing the connection B constructed in the previous subsection. We want to solve

the equation F+(B + d∗Bφ) = 0 for φ ∈ Ω+(adE). By using the Weitzenböck formula [8,

Chapter 6],

F+(B + d∗Bφ) = F+
B + d+

Bd
∗
Bφ+ (d∗Bφ ∧ d∗Bφ)+

= F+
B +

1

2

(
∇∗B∇B +

S

3

)
φ+ F+

B · φ+ (d∗Bφ ∧ d∗Bφ)+

where S is the scalar curvature of X = R × S3. S is a positive constant. The following

fact on the operator (∇∗B∇B +S/3) is proved in [17, Appendix, Proposition A.7, Lemmas

A.1, A.2].

Lemma 6.1. For any smooth ξ ∈ Ω+(adE) with ||ξ||L∞ < ∞, there uniquely exists a

smooth φ ∈ Ω+(adE) satisfying

||φ||L∞ <∞,
(
∇∗B∇B +

S

3

)
φ = ξ.

We will denote this φ by (∇∗B∇B + S/3)−1ξ. It satisfies

|φ(x)| ≤
∫
X

g(x, y)|ξ(y)|dvol(y), ||φ||L∞ . ||ξ||L∞ .

Here g(x, y) > 0 is the Green kernel of the operator ∇∗∇+S/3 (this is the operator acting

on functions). It is positive and uniformly integrable:∫
X

g(x, y)dvol(y) . 1 (independent of x).

Moreover it decays exponentially: For d(x, y) > 1

0 < g(x, y) . e−
√
S/3 d(x,y) (d(x, y): distance between x and y).
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Lemma 6.2. Suppose ξ ∈ Ω+(adE) is smooth and ||ξ||L∞ < ∞. Then φ := (∇∗B∇B +

S/3)−1ξ satisfies

||φ||L∞ + ||∇Bφ||L∞ . ||ξ||L∞ .

Proof. ||φ||L∞ . ||ξ||L∞ was already given in Lemma 6.1. So we want to prove ||∇Bφ||L∞ .

||ξ||L∞ . From the compactness ofMd (or the Uhlenbeck compactness) and the construction

of B, for any s ∈ R we can choose a connection matrix of B over (s, s+ 1)×S3 satisfying

||B||Ck(s<t<s+1) . C(k) (∀k ≥ 0).

Then from the Lp-estimate (Gilbarg–Trudinger [9, Theorem 9.11]) and ||φ||L∞ . ||ξ||L∞ ,

for 1 < p <∞

(28) ||φ||Lp
2,B(s+1/4<t<s+3/4) . C(p) ||ξ||L∞(X) .

Then the desired estimate ||∇Bφ||L∞ . ||ξ||L∞ follows from the Sobolev embedding Lp1 ↪→
C0 (p > 4). �

Set φ := 2(∇∗B∇B + S/3)−1ξ where ξ ∈ Ω+(adE) is smooth and ||ξ||L∞ <∞. We want

to solve the equation F+(B + d∗Bφ) = 0, i.e.

ξ = −F+
B − F

+
B · φ− (d∗Bφ ∧ d∗Bφ)+.

Set Q(ξ) := −F+
B − F

+
B · φ− (d∗Bφ ∧ d∗Bφ)+. From

∣∣∣∣F+
B

∣∣∣∣
L∞ . δ and Lemma 6.2,

||Q(ξ)−Q(η)||L∞ . (δ + ||ξ||L∞ + ||η||L∞) ||ξ − η||L∞ .

Then we can easily check that (when δ � 1) the sequence {ξn} ⊂ Ω+(adE) defined by

ξ0 := 0, ξn+1 := Q(ξn)

satisfies ||ξn||L∞ . δ (the implicit constant is independent of n) and becomes a Cauchy

sequence in L∞(X). Let ξn → ξ∞ in L∞(X). We have ||ξ∞||L∞ . δ. We will show that

ξ∞ is smooth and satisfies Q(ξ∞) = ξ∞.

Set φn := 2(∇∗B∇B + S/3)−1ξn. Then

(29) ξn+1 = Q(ξn) = −F+
B − F

+
B · φn − (d∗Bφn ∧ d∗Bφn)+.

From the above (28) and ||ξn||L∞ . δ, the sequence {φn} is bounded in Lp2,B(K) for every

1 < p <∞ and compact subset K ⊂ X. Then from the equation (29) the sequence {ξn}
is bounded in Lp1,B(K). In the same way (the standard bootstrapping argument) we can

show that the sequence {ξn} is bounded in Lpk,B(K) for every k ≥ 0, 1 < p < ∞ and

compact subset K ⊂ X. Therefore ξ∞ is smooth, and ξn converges to ξ∞ in C∞ over

every compact subset. Then

(30) ξ∞ = −F+
B − F

+
B · φ∞ − (d∗Bφ∞ ∧ d∗Bφ∞)+, (φ∞ := 2(∇∗B∇B + S/3)−1ξ∞).

Set Ã := B + d∗Bφ∞. The connection Ã is ASD. The rest of the work is to show that Ã is

non-degenerate and satisfies the condition (23).
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From Lemma 6.2, ||φ∞||L∞ + ||∇Bφ∞||L∞ . ||ξ∞||L∞ . δ. Moreover the equation

d+
Bd
∗
Bφ∞ + (d∗Bφ∞ ∧ d∗Bφ∞)+ = −F+

B

and
∣∣∣∣F+

B

∣∣∣∣
L∞ +

∣∣∣∣∇BF
+
B

∣∣∣∣
L∞ . δ (see (27)) implies ||∇B∇Bφ∞||L∞ . δ. (See the proof of

Lemma 6.2.) Hence the curvature

F (Ã) = FB + dBd
∗
Bφ∞ + d∗Bφ∞ ∧ d∗Bφ∞

satisfies
∣∣∣∣∣∣F (Ã)− FB

∣∣∣∣∣∣
L∞
. δ. Since B satisfies ||FB||op < d − τ and ρ(B) > ρ(A) − ε/2

(see (24) and (25)), if δ = δ(ε, τ)� 1, we get∣∣∣∣∣∣F (Ã)
∣∣∣∣∣∣

op
< d, ρ(Ã) > ρ(A)− ε.

Therefore Ã satisfies the condition (23).

Finally we show that Ã is non-degenerate. It is enough to prove that for all n ∈ Z the

connection Ã satisfies (see Lemma 1.7)

(31)
∣∣∣∣∣∣F (Ã)

∣∣∣∣∣∣
L∞(nT<t<(n+1)T )

> δ/2.

When n ∈ J , we have ||FB||L∞(nT<t<(n+1)T ) ≥ 1 (see (26)) and
∣∣∣∣∣∣F (Ã)− FB

∣∣∣∣∣∣
L∞
. δ � 1.

So the above (31) holds for n ∈ J .

Choose n 6∈ J . For simplicity, we suppose n = 0. From the Green kernel estimate in

Lemma 6.1,

|φ∞(x)| ≤ 2

∫
X

g(x, y)|ξ∞(y)|dvol(y).

From (30) and |F+
B |, |φ∞|, |∇Bφ∞| . δ,

|ξ∞| . |F+
B |+ δ2.

Since 0 6∈ J , the distance between (−1, T + 1) × S3 and supp(F+
B ) is & T . The Green

kernel g(x, y) decays exponentially. So if we choose T = T (ε, τ, δ) sufficiently large, then

||φ∞||L∞(−1<t<T+1) . δ2.

φ∞ satisfies the following equation over (−1, T + 1)× S3:

d+
Bd
∗
Bφ∞ = −(d∗Bφ∞ ∧ d∗Bφ∞)+.

Since ||d∗Bφ∞ ∧ d∗Bφ∞||L∞ . ||∇Bφ∞||2L∞ . δ2, the bootstrapping argument shows

||∇B∇Bφ∞||L∞(0<t<T ) . δ2.

Therefore |F (Ã) − FB| . δ2 over (0, T ) × S3. Since ||FB||L∞(0<t<T ) ≥ δ (see (26)) and

δ � 1, we get (31) for n = 0. We have finished the proof of Theorem 1.11.
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Remark 6.3. If we start with the trivial flat connection A in this gluing argument, then

we can make the argument invariant under the action of the subgroup TZ ⊂ R. Then the

resulting non-degenerate ASD connection Ã becomes periodic (Example 1.6). So we can

conclude that the spaceMd (d > 1) always contains a non-flat periodic ASD connection.

Appendix A. Another ASD moduli space

Here we briefly discuss another possibility of the definition of the ASD moduli space.

Let X = R × S3 and E = X × SU(2) as in the main body of the paper. For d ≥ 0

we define Nd as the space of the gauge equivalence classes of ASD connections A on E

satisfying

||FA||L∞(X) ≤ d.

Note that here we use the L∞-norm, which is different from the operator norm used in

the definition ofMd. The space Nd is endowed with the topology of C∞-convergence over

compact subsets. Nd is compact and metrizable, and it admits a natural R-action. The

paper [17] studies the mean dimension and local mean dimension of this Nd. In particular

[17, Theorem 1.2] shows the following upper bound on the local mean dimension:

Theorem A.1. For any [A] ∈ Nd,

dim[A](Nd : R) ≤ 8ρ(A).

If A is an ASD connection on E, then the operator norm |FA|op and the Euclidean

norm |FA| bound each other by

1√
3
|FA| ≤ |FA|op ≤ |FA|.

(This uses the ASD condition.) Hence

Nd ⊂Md ⊂ N√3 d.

Then for any [A] ∈Md

dim[A](Md : R) ≤ dim[A](N√3 d : R) ≤ 8ρ(A).

This is Theorem 1.9 in Section 1.2. From the knowledge onMd we can prove the results

on Nd:

Theorem A.2. Let A be a non-degenerate ASD connection on E with ||FA||L∞ < d. Then

dim[A](Nd : R) = 8ρ(A).

Proof. We assume that Md is endowed with a distance and that Nd is endowed with

its restriction. Then we have Br([A];Nd)R = Br([A];Md)R for sufficiently small r > 0.

Hence by Theorem 1.10

dim[A](Nd : R) = dim[A](Md : R) = 8ρ(A).
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�

Theorem A.3. Suppose d >
√

3, and let A be an ASD connection on E with ||FA||L∞ < d.

For any ε > 0 there exists a non-degenerate ASD connection Ã on E satisfying∣∣∣∣∣∣F (Ã)
∣∣∣∣∣∣
L∞

< d, ρ(Ã) > ρ(A)− ε.

Proof. The point is that the instanton I defined in Example 1.1 satisfies

|FI(t, θ)| =
4
√

3

(et + e−t)2
, ||FI ||L∞ =

√
3.

Then the gluing construction in Section 6 gives the result. �

Let ρN (d) be the supremum of ρ(A) over [A] ∈ Nd. Let DN ⊂ [0,+∞) be the set of

left-discontinuous points of ρN (d). This is at most countable. From the above theorems,

we can prove the following theorem. (The proof is the same as the proof of Theorem 1.2.)

Theorem A.4. For any d ∈ (
√

3,+∞) \ DN ,

dimloc(Nd : R) = 8ρN (d).

So if d >
√

3 we have a good understanding of the local mean dimension of Nd. For

d < 1, Nd = Md = {[flat connection]} is the one-point space (Example 1.1). The

remaining problem is the case of 1 ≤ d ≤
√

3. We don’t have any good information of

this range.

The main good property of the operator norm ||FA||op is our knowledge of the sharp

threshold value described in Example 1.1.
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