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DISCRETE-TIME GRADIENT FLOWS AND LAW OF LARGE
NUMBERS IN ALEXANDROV SPACES

SHIN-ICHI OHTA AND MIKLÓS PÁLFIA

Abstract. We develop the theory of discrete-time gradient flows for convex func-
tions on Alexandrov spaces with arbitrary upper or lower curvature bounds. We
employ different resolvent maps in the upper and lower curvature bound cases to
construct such a flow, and show its convergence to a minimizer of the potential
function. We also prove a stochastic version, a generalized law of large numbers
for convex function valued random variables, this version seems new even in the
Euclidean setting. These results generalize those in nonpositively curved spaces
(partly for squared distance functions) due to Bačák, Sturm and others, and the
lower curvature bound case seems entirely new.

1. Introduction

In this paper, we consider discrete-time gradient flows for convex functions on

Alexandrov spaces (X, d) with arbitrary upper or lower curvature bounds. An Alexan-

drov space is a metric space whose sectional curvature is bounded above or below by

some constant in the sense of triangle comparison theorem (see Section 2). The

discrete-time gradient flow is introduced with an appropriate notion of resolvent op-

erator Jf
λ : X → X defined for a fixed geodesically convex function f and a positive

number λ > 0. The operator Jf
λ provides a gradient descent step towards the set of

minimizers of f . Under upper and lower curvature bounds, we define our Jf
λ differ-

ently. In the case of upper curvature bounds, we employ the standard Moreau–Yosida
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large numbers.
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resolvent :

(1.1) Jf
λ (x) := arg min

y∈G

{
f(y) +

1

2λ
d(x, y)2

}

for a closed geodesically convex set G containing a nonempty sublevel set of f . In

the case of lower curvature bounds, we define

(1.2) Jf
λ (x) := g-exp(λ∇(−f)(x)),

where g-exp is the gradient exponential map and ∇(−f)(x) denotes the gradient

vector of −f (see [33, 34] and Sections 3, 4 for these notions). Before discussing the

reason why we use these different resolvents, we present our results in this paper.

With these mappings at hand, we define the sequence

xk+1 := Jf
λk

(xk)

for k ≥ 0 with an arbitrary starting point x0 and for an a priori given positive sequence

λk > 0. We prove the convergence of xk to a minimizer of f under various, plausible

conditions on f and the sequence λk. In particular, we generalize the classical results

in [12] to arbitrary Alexandrov spaces. Furthermore, our results generalize the ones

recently given in [5] for NPC spaces (Alexandrov spaces with upper curvature bound

by 0) to arbitrary Alexandrov spaces. In the upper curvature bound case, we allow X

to be infinite dimensional, while in the lower curvature bound case we formulate our

results for finite dimensions for technical reasons, although our techniques would work

in infinite dimensions equally well. The most general known results in the literature,

according to our knowledge, consider NPC spaces and Riemannian manifolds with

nonpositive sectional curvature, see for example [7, 15, 23] just to mention a few

among the numerous results.

We also consider the case of f(x) =
∑n

i=1 fi(x), where fi are also gedoesically

convex functions. Then, under the assumption of
∑∞

k=0 λ2
k < +∞ and the Lipschitz

continuity of fi, we prove that the sequence generated by

(1.3) xk+1 := Jf1
λk

◦ · · · ◦ Jfn

λk
(xk)

converges to a minimizer of f in any Alexandrov space. On the one hand, this result

generalizes the ones given for Euclidean spaces in [9, 8, 28, 29] and for NPC spaces in

[6]. On the other hand, this is also a generalization of the “no dice” approximation
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result given in NPC spaces for the Karcher mean, which is the minimizer of f(x) =
∑n

i=1 wid(x, ai)2 with fixed points ai ∈ X, in [24, 16]. The Karcher mean [18], or more

generally the p-mean obtained as the unique minimizer of f(x) =
∑n

i=1 wid(x, ai)p

for p ∈ [1, +∞), is of great interest, see for example [3, 4, 10, 11, 22, 19, 20]. Our

general approximation results applied for p-means carry over to positively curved

Riemannian setting, for example, compact Lie groups with bi-invariant Riemannian

metrics [3, 4, 27, 19, 20].

We also prove a stochastic version of the convergence of the discrete-time flow given

in (1.3). In this setting, we assume that

f(x) :=

∫

FK(G)

h(x)dµ(h),

where µ is a probability measure supported over the vector lattice of lower semi-

continuous, K-convex functions FK(G) over G, with K > 0. Then we prove a law of

large numbers result for the stochastic sequence

xk+1 := Jfk
λk

(xk),

where fk is a sequence of independent, identically distributed FK(G)-valued random

variables with distribution µ. That is to say, we prove that xk → Eµ almost surely,

where Eµ is the (unique) minimizer of f(x) =
∫

FK(G) h(x)dµ(h). This result provides

the Euclidean case of law of large numbers as a special case, and generalizes a result

of Sturm [38, 39], given again for the Karcher mean on NPC spaces, to arbitrary

Alexandrov spaces and arbitrary convex functions. Sturm [36, 37, 38, 40] used his

result in his stochastic approach to the theory of harmonic maps between metric

spaces. Also the result of Sturm became useful for the Karcher mean in the case of

the NPC space of positive definite matrices [22, 24, 16].

The definitions and properties of Jf
λ distinguish two different kinds of approaches

in the lower and upper curvature bound cases. In [2] among many others, for setting

up the minimizing movements, the original resolvent (1.1) given in [12] is being used

that we also adopt in the upper curvature bound case. Besides technical reasons, the

usefulness of (1.1) in discrete-time gradient flows is due to the fact that Alexandrov

spaces with upper curvature bounds are simply connected and have unique minimal

geodesics in balls with designated radii. We cannot expect these properties in the
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lower curvature bound case, the injectivity radius can be 0 even locally. Then it is

difficult to control the behavior of discrete-time flows and there are no investigation

in this direction as far as the authors know, while continuous-time gradient flows are

intensively studied in [33, 34, 25, 31].

To overcome this difficulty, we introduce the other (but natural) construction (1.2)

relying on gradient vectors directly. This makes an interesting contrast with (1.1):

logxk+1
xk = λ∇f(xk+1),(1.4)

logxk
xk+1 = λ∇(−f)(xk),(1.5)

in the upper and lower curvature bounds, respectively, where logx y is the direction

from x to y. In other words, these two flows provided in the opposite curvature

bounds are in reverse relation. In the upper curvature bound case, we take the

backward flow for the convex function f , while we take the forward flow for the

concave function −f in the lower curvature bound case. In Euclidean spaces, both

methods work equivalently well [9, 8, 28, 29]. In general, it seems that the curvature

bound determines whether a proximal step (1.1) or a gradient step (1.2) is more

suitable from the analytic point of view of discrete flows. For instance, the convexity

of squared distance functions, which is the very definition of upper curvature bounds,

can give a contraction estimate of discrete-time gradient flows together with (1.4)

(estimate d(xk+1, yk+1) from above by using d(xk, yk) and the convexity of f along

a geodesic between xk+1 and yk+1). Similarly, the concavity of squared distance

functions is useful only with (1.5) (via the convexity of f along a geodesic between

xk and yk).

2. Alexandrov spaces

We refer to [13] for the basics of metric geometry and Alexandrov spaces. Let

(X, d) be a metric space. A continuous curve γ : [0, 1] → X is called a minimal

geodesic if it satisfies d(γ(s), γ(t)) = |s − t|d(γ(0), γ(1)) for all s, t ∈ [0, 1]. We say

that (X, d) is geodesic if any two points x, y ∈ X admit a minimal geodesic between

them. Though minimal geodesics are not necessarily unique, we abuse the notation

x#ty, t ∈ [0, 1], for denoting a minimal geodesic from x to y. A subset G ⊂ X is said
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to be geodesically convex if, for any x, y ∈ G, all minimal geodesics x#ty between

them are contained in G.

For κ ∈ R, we denote by M2(κ) a complete, simply connected, 2-dimensional

Riemannian manifold of constant sectional curvature κ. For three points x, y, z ∈ X

with d(x, y) + d(y, z) + d(z, x) < 2π/
√

κ if κ > 0, we can take corresponding points

x̃, ỹ, z̃ ∈ M2(κ) uniquely up to rigid motions such that

dM2(κ)(x̃, ỹ) = d(x, y), dM2(κ)(ỹ, z̃) = d(y, z), dM2(κ)(z̃, x̃) = d(z, x).

We call #x̃ỹz̃ a comparison triangle of #xyz in M2(κ).

Definition 2.1. [Alexandrov spaces] A geodesic metric space (X, d) is called an

Alexandrov space of curvature bounded above by κ if, for any x, y, z ∈ X with d(x, y)+

d(y, z) + d(z, x) < 2π/
√

κ if κ > 0, we have

(2.1) d(y#tz, x) ≤ dM2(κ)(ỹ#tz̃, x̃)

for any minimal geodesic y#tz joining y and z.

Similarly, (X, d) is called an Alexandrov space of curvature bounded below by κ if

we have

(2.2) d(y#tz, x) ≥ dM2(κ)(ỹ#tz̃, x̃)

for any minimal geodesic y#tz.

For instance, if κ = 0, then (2.1) is calculated as

d(x, y#tz)2 ≤ (1 − t)d(x, y)2 + td(x, z)2 − t(1 − t)d(y, z)2,

and (2.2) is

d(x, y#tz)2 ≥ (1 − t)d(x, y)2 + td(x, z)2 − t(1 − t)d(y, z)2.

By the parallelogram identity, Hilbert spaces have curvature bounded both above and

below by 0. Here are some further examples.

Example 2.2. (1) A complete, simply connected Riemannian manifold with the

Riemannian distance is an Alexandrov space with curvature bounded above by κ

if and only if its sectional curvature is not greater than κ. Typical examples of
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nonpositively curved spaces admitting singularities include trees, Euclidean buildings

and gluing of nonpositively curved spaces. See [13, §9.1] for further examples.

(2) A complete Riemannian manifold is an Alexandrov space of curvature bounded

below by κ if and only if its sectional curvature is not less than κ. Typical examples of

nonnegatively curved spaces admitting singularities include the boundaries of convex

domains in Euclidean spaces, quotients of nonnegatively curved spaces by isometries

(e.g., orbifolds), and the L2-Wasserstein spaces over nonnegatively curved spaces (see

[41, 31]). We refer to [13, §10.2] for further examples.

An important feature of Alexandrov spaces is that angles are well defined between

two geodesics γ and η emanating from the same point γ(0) = η(0) = x:

∠x(γ, η) := lim
s,t→0+

∠γ̃(t)x̃η̃(s),

where γ̃(t)x̃η̃(s) is a comparison triangle in M2(κ). For fixed x ∈ X, we define Σ′
xX

as the set of unit speed minimal geodesics γ : [0, δ] → X, δ > 0, emanating from

x. The angle ∠x(γ, η) defines a pseudo-distance on the set Σ′
xX. The completion of

(Σ′
xX/{∠x = 0},∠x) with respect to ∠x is denoted by (ΣxX, ∠x), and is called the

space of directions at x ∈ X.

The tangent cone (CxX, σx) at x ∈ X is defined as the Euclidean cone over

(ΣxX, ∠x):

CxX := (ΣxX × [0,∞))/ ∼,

where (γ, 0) ∼ (η, 0) and

σx((γ, s), (η, t)) :=
√

s2 + t2 − 2st cos ∠x(γ, η)

for (γ, s), (η, t) ∈ CxX. We denote by ox the origin (∗, 0) ∈ CxX. For any u =

(γ, s), v = (η, t) ∈ CxX, we can define their inner product as

〈u, v〉 := st cos ∠x(γ, η).

If X is complete, finite Hausdorff dimensional and has curvature bounded above

in the sense of Definition 2.1, then (ΣxX, ∠x) is an Alexandrov space of curvature

bounded above by 1 and (CxX, σx) is an Alexandrov space of curvature bounded

above by 0. In the case of curvature bounded below, we have the same curvature
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bounds for (ΣxX, ∠x) and (CxX, σx), but from below. In the infinite dimensional

case, however, this is not the case in general.

By the definition of the angle, we readily have the following (see [13, Corol-

lary 4.5.7]).

Theorem 2.3 (First variation formula). Let γ : [0, δ] → X be a geodesic in an

Alexandrov space (X, d) with curvature bounded above or below by κ, and assume that

X is locally compact in the lower curvature bound case. Put x := γ(0) and take y ∈ X

with d(x, y) < π/
√

κ if κ > 0. Then the function d(t) := d(γ(t), y) satisfies

(2.3) lim
ε→0+

d(ε) − d(0)

ε
= − 1

d(x, y)
max

η
〈γ′(0), η′(0)〉 ,

where η : [0, 1] → X runs over all minimal geodesics from x to y.

We remark that η is unique under the upper curvature bound. The inequality ‘≤’

holds in (2.3) for any η in a more general situation without any compactness assump-

tion ([13, Proposition 4.5.2]), and such an inequality is enough in our discussion in

the lower curvature bound case. Equality in (2.3) is necessary only in the proof of

Lemma 4.6(I).

3. Convex functions on Alexandrov spaces

Let (X, d) be an Alexandrov space with curvature bounded above or below by

κ ∈ R. We say that a function f : X → (−∞,∞] is K-(geodesically) convex for

K ∈ R if

(3.1) f(x#ty) ≤ (1 − t)f(x) + tf(y) − K

2
t(1 − t)d(x, y)2

holds for any x, y ∈ X, t ∈ [0, 1] and any minimal geodesic x#ty. The 0-convexity

will be simply called the convexity.

Definition 3.1. [Absolute gradients] Let f : X → (−∞,∞] be lower semi-continuous

and K-convex. Then the (descending) absolute gradient of f at x ∈ X with f(x) )= ∞
is defined by

|∇−f |(x) := max

{
0, lim sup

y→x

f(x) − f(y)

d(x, y)

}
.

Note that |∇−f |(x) ∈ [0,∞] and also |∇−f |(x) = 0 if f(x) = infy∈X f(y).
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Definition 3.2. [Directional derivatives] For f : X → (−∞,∞], the directional

derivative of f at x with f(x) $= ∞ in the direction v ∈ CxX is defined as

Dxf(v) := lim inf
(γ,s)→v

{
lim

t→0+

f(γ(st)) − f(x)

t

}
,

where (γ, s) ∈ Σ′
xX × [0,∞) ⊂ CxX.

The above limit along γ indeed exists for lower semi-continuous, K-convex func-

tions. Note that Dxf(v) ≥ −|∇−f |(x)·|v| clearly holds. Typical examples of K-convex

(or K-concave) functions are squared distance functions. We set da(x) := d(a, x) for

a, x ∈ X, and denote closed metric balls by

B̄a(r) := {x ∈ X : d(a, x) ≤ r}, a ∈ X, r > 0.

Proposition 3.3 (Proposition 3.1 in [30]). Let (X, d) be an Alexandrov space with

curvature bounded above by κ > 0. Then, for any a ∈ X, the function d2
a is K-

convex on the (geodesically convex) metric ball B̄a(r) with 2r = (π/2 − ε)/
√

κ and

K = (π − 2ε) tan ε for arbitrary ε ∈ (0, π/2).

Proposition 3.4 (Lemma 3.3 in [31]). Let (X, d) be an Alexandrov space with cur-

vature bounded below by κ < 0. Then, for any a ∈ X, the function −d2
a is K-convex

on the metric ball B̄a(r) with K = −2(1 − κ(2r)2) for all r > 0.

Slightly more generally, we can take a geodesically convex set G ⊂ X with diam G ≤
2r in Propositions 3.3, 3.4.

In the lower curvature bound case, by comparing the convexity of f and the con-

cavity of the squared distance function, one can find the useful notion of gradient

vectors as follows (see [33, 34, 25, 31] for details). Let (X, d) be an Alexandrov space

of curvature bounded below and f : X → (−∞,∞] be a lower semi-continuous, K-

convex function. Then, at every x ∈ X with 0 < |∇−f |(x) < ∞, we can find the

unique direction γ ∈ ΣxX such that Dxf(γ) = −|∇−f |(x) and

(3.2) Dxf(η) ≥ −|∇−f |(x)〈γ, η〉

for all η ∈ ΣxX. Thus ∇(−f)(x) := (γ, |∇−f |(x)) ∈ CxX can be regarded as the

gradient vector of −f at x. Set also ∇(−f)(x) := ox if |∇−f |(x) = 0. The gradient

vector will be used to define an appropriate resolvent map for f .
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4. Resolvent maps

In this section, we introduce our key tool, the resolvent map Jf
λ , to construct

discrete-time gradient flows for convex functions. We will adopt different definitions

of Jf
λ in the upper and lower curvature bound cases. Throughout the section, let

f : X → (−∞,∞] be a convex, lower semi-continuous function not identically +∞,

and fix the size λ > 0 of the discrete-time step and a closed, geodesically convex set

G ⊂ X containing a nonempty sublevel set of f .

First, let (X, d) be a complete Alexandrov space with curvature bounded above by

κ. If κ > 0, then we assume diam G < π/(2
√

κ). In this case, we employ the standard

resolvent map used in, e.g., [17, 26, 2].

Definition 4.1. [Resolvent map, upper curvature bound case] For each x ∈ X, we

define

(4.1) Jf
λ (x) := arg min

y∈G

{
f(y) +

1

2λ
d(x, y)2

}
.

Lemma 4.2. Let (X, d), G and f be as above. Then there exists a unique point y ∈ G

attaining the minimum (4.1).

Proof. By Proposition 3.3 and diam G < π/(2
√

κ), the function y '→ f(y)+ 1
2λd(x, y)2

is K-convex on G for some K > 0. The rest of the argument can be obtained by a

straightforward optimization argument, see for example [39, Proposition 1.7]. !

For any minimal geodesic γ : [0, δ] → G with γ(0) = Jf
λ (x), we deduce from the

first variation formula (Theorem 2.3) that

(4.2) DJf
λ (x)f(γ̇(0)) − 1

λ
〈η̇(0), γ̇(0)〉 ≥ 0,

where η : [0, 1] → X is any minimal geodesic from Jf
λ (x) to x.

Next we consider the lower curvature bound case. In this setting, the definition

provided by (4.1) for Jf
λ (x) is not convenient, because the squared distance function

is no longer convex, but is concave instead. This concavity leads to, however, the

advantage of well defined gradient vectors of −f . Then we shall define the resolvent

map by using an “exponential map” from CxX to X. Although we can not simply use

geodesics since there may be no geodesic with a given initial direction, the gradient

curves of the convex function −d2
x will do the job.
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Let (X, d) be a complete, finite dimensional Alexandrov space of curvature bounded

below by κ with ∂X = ∅. Note that, even for κ < 0, the function −d2
x is K-convex

on balls B̄x(r) for some K = K(κ, r) < 0 by Proposition 3.4. Hence we can construct

the gradient flow Φ : [0,∞) × X → X of −d2
x, i.e., each curve ξ(t) = Φ(t, y) satisfies

ξ̇(t) = ∇(d2
x)(ξ(t)) at almost all t > 0. The convexity of −d2

x ensures the uniqueness

and contraction of Φ, see [33, 34]. The gradient exponential map g-expx : CxX → X

is obtained by a re-parametrized scaling of Φ: Define g-expx as the limit of the map

Φ(s, ·) ◦ idX : (X, esd) → (X, d)

as s → ∞, where esd is the scaled distance and idX : (X, esd) → (X, d) is the identity

map. The gradient exponential map enjoys many nice properties, for instance, the

curve ξ(t) = g-expx(tv) satisfies

(4.3) ξ̇(0) = v, ξ̇(t) =
d(x, ξ(t))

t
∇dx(ξ(t)), d(x, ξ(t)) ≤ t|v|.

Moreover, the following useful comparison estimate holds.

Lemma 4.3 (Lemma 3.1.2 in [34]). Put ξ(t) = g-expx(tv) with v ∈ CxX. Then, for

any (−K)-convex function h : X → R with K ≥ 0 and all t > 0, we have

h(ξ(t)) ≥ h(x) + tDxh(v) − K

2
(t|v|)2.

Remark 4.4. The gradient flow Φ of −d2
x can be constructed also in proper, infinite

dimensional Alexandrov spaces (see [33, Appendix] and [25, 31]). However, the proof

of Lemma 4.3 above in [34] essentially requires both dim X < ∞ and ∂X = ∅.
One may consult the argument in [33, Appendix] proving an estimate comparable to

Lemma 4.3 (called the monotonicity there) along gradient curves parametrized in a

different way. However, these curves may be defined only on small intervals.

We are ready to define the resolvent map under lower curvature bound. We abuse

the same notation Jf
λ (x) as the upper curvature bound case.

Definition 4.5. [Resolvent map, lower curvature bound case] For x ∈ X with

|∇−f |(x) < ∞, we define

(4.4) Jf
λ (x) := g-exp(λ∇(−f)(x)),

where ∇(−f) ∈ CxX is the gradient vector of −f at x given in Section 3.
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The following estimates will play crucial roles in the next section.

Lemma 4.6. Let (X, d) be a complete Alexandrov space either with curvature bounded

above or below by κ.

(I) If (X, d) has curvature bounded above by κ > 0, then also assume diam G <

π/(2
√

κ). Then we have

(4.5) d(y, Jf
λ (x))2 ≤ d(y, x)2 − 2λ[f(Jf

λ (x)) − f(y)]

for all x, y ∈ G.

(II) In the lower curvature bound case, we assume that X is finite dimensional,

∂X = ∅, and that diam G < ∞ if κ < 0. Then we have

(4.6) d(y, Jf
λ (x))2 ≤ d(y, x)2 − 2λ[f(x) − f(y)] +

K

2
(λ|∇−f |(x))2

for all x, y ∈ G satisfying Jf
λ (x) ∈ G, where K = K(κ, diam G) ≥ 0.

Proof. (I) By assumption, the squared distance function is convex (Proposition 3.3).

Hence, by Theorem 2.3,

d(y, x)2 ≥ d(y, Jf
λ (x))2 − 2 〈γ̇(0), η̇(0)〉

for γ(t) = Jf
λ (x)#ty and η(t) = Jf

λ (x)#tx (they are unique since diam G < π/(2
√

κ)).

Combine this with (4.2) to get

(4.7) d(y, Jf
λ (x))2 ≤ d(y, x)2 + 2λDJf

λ (x)f(γ̇(0)).

Now the convexity of f along γ yields that DJf
λ (x)f(γ̇(0)) ≤ f(y) − f(Jf

λ (x)), so we

get from (4.7) that

d(y, Jf
λ (x))2 ≤ d(y, x)2 − 2λ[f(Jf

λ (x)) − f(y)].

(II) Put ξ(λ) := g-exp(λ∇(−f)(x)). By Proposition 3.4, the function −d2
y is (−K)-

convex on G for some K = K(κ, diam G) ≥ 0. Thus Lemma 4.3 shows that

d(y, ξ(λ))2 ≤ d(y, x)2 + λDx(d
2
y)(∇(−f)(x)) +

K

2
(λ|∇−f |(x))2.

Fixing arbitrary minimal geodesic γ(t) = x#ty, we deduce from the first variation

formula (Theorem 2.3) and (3.2) that

Dx(d
2
y)(∇−f(x)) ≤ −2〈γ̇(0),∇−f(x)〉 ≤ 2Dxf(γ̇(0)).
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Finally the convexity of f shows that f(y) ≥ f(x) + Dxf(γ̇(0)). Therefore we obtain

d(y, Jf
λ (x))2 ≤ d(y, x)2 − 2λ[f(x) − f(y)] +

K

2
(λ|∇−f |(x))2.

!

5. Proximal and sub-gradient methods

The resolvent map Jf
λ can be used to consider proximal point algorithms or, in

other words, discrete-time gradient flows for general convex functions in the upper

curvature bound case. We start with a basic result that generalizes the one in [5]

given in NPC spaces. The algorithm has been used at many places, one of the first

occasions was in [12]. The situation is the same as Lemma 4.6(I).

Theorem 5.1. Let (X, d) be a complete Alexandrov space with curvature bounded

above by κ. Let f : X → (−∞,∞] be a convex, lower semi-continuous function and

G ⊂ X be a closed, geodesically convex set containing a sublevel set of f such that

diam G < π/(2
√

κ) if κ > 0. Take a positive sequence {λk}k≥1 with
∑∞

k=1 λk = +∞.

Fix an arbitrary starting point x0 ∈ G and put

xk := Jf
λk

(xk−1), k ≥ 1.

Then we have limk→∞ f(xk) = infy∈G f(y).

Proof. By the definition (4.1) of Jf
λ , the sequence f(xk) is monotone non-increasing.

Indeed, we have

f(Jf
λk+1

(xk)) +
1

2λk+1
d(xk, J

f
λk+1

(xk))
2 ≤ f(xk).

Furthermore, by (4.5) in Lemma 4.6, we have for any y ∈ G

d(y, xk+1)
2 ≤ d(y, xk)

2 − 2λk+1[f(xk+1) − f(y)].

This combined with the monotonicity of f(xk) yields

2[f(xk) − f(y)]
k∑

i=1

λi ≤ 2
k∑

i=1

λi[f(xi) − f(y)] ≤ d(y, x0)
2 − d(y, xk)

2,

which gives

f(xk) − f(y) ≤ d(y, x0)2

2
∑k

i=1 λi

.
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By the choice of λk, this implies that limk→∞ f(xk) ≤ f(y) for any y ∈ G. Therefore

we obtain limk→∞ f(xk) = infy∈G f(y). !

Remark 5.2. Weak convergence in Alexandrov spaces with upper curvature bounds

has been introduced in [14]. The same results for weak convergence as in NPC

spaces hold if we restrict the analysis to closed metric balls of diameter at most

π/(2
√

κ). Hence actually one can prove weak convergence to a minimizer (if it exists)

in Theorem 5.1 in the same way as in [5] for NPC spaces. Furthermore, if f is

K-convex with K > 0, then we have (strong) convergence to the unique minimizer y.

In the rest of this section, we set up a discrete-time gradient flow converging to a

minimizer of a convex function that is the sum of finitely many convex functions. We

adjust the setting of Lemma 4.6 to admit such sum of functions.

Definition 5.3. [Proximal Point Algorithm] Let (X, d) be a complete Alexandrov

space either with curvature bounded above or below by κ, and G ⊂ X be a closed,

geodesically convex set satisfying the following:

(I) In the upper curvature bound case, diam G < π/(2
√

κ) if κ > 0;

(II) In the lower curvature bound case, dim X < ∞, ∂X = ∅, and diam G < ∞ if

κ < 0.

Let fi : G → (−∞,∞] be a convex, lower semi-continuous function for i = 1, . . . , n.

Set f(x) :=
∑n

i=1 fi(x) and suppose that it is not identically +∞. Take a positive

sequence λk > 0 such that
∑∞

k=0 λk = +∞ and also
∑∞

k=0 λ2
k < +∞. Given x0 ∈ G

and for each k ≥ 0 and 1 ≤ i ≤ n, we set

xkn+i := Jfi
λk

(xkn+i−1),

where the resolvent map is defined by (4.1) or (4.4), assuming that xm ∈ G for all

m ≥ 0 in the lower curvature bound case.

Before turning to our result on the convergence of the sequences generated in

Definition 5.3, we state an elementary lemma from [9, Lemma 3.4] for later use.

Lemma 5.4. Let ak, bk, ck ≥ 0 be sequences such that ak+1 ≤ ak−bk+ck for any k ≥ 1,

and assume
∑∞

k=1 ck < +∞. Then the sequence ak converges and also
∑∞

k=1 bk < +∞.
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Theorem 5.5. Let (X, d), G ⊂ X, f =
∑n

i=1 fi and {λk}k≥0 be as in Definition 5.3.

Assume further that X is locally compact, fi is L-Lipschitz for some L ≥ 1 and all i,

and that infG f is attained at some point. Then xm converges to some minimizer of

f in G as m → ∞.

Proof. Fix a minimizer y ∈ G of f .

Upper curvature bound case (I): By (4.5) in Lemma 4.6, we have

d(y, xkn+i)
2 ≤ d(y, xkn+i−1)

2 − 2λk[fi(xkn+i) − fi(y)].

Summing the above for 1 ≤ i ≤ n implies

d(y, xkn+n)2 ≤ d(y, xkn)2 − 2λk

n∑

i=1

[fi(xkn+i) − fi(y)],

which is equivalent to

(5.1) d(y, xkn+n)2 ≤ d(y, xkn)2−2λk

n∑

i=1

[fi(xkn)−fi(y)]+2λk

n∑

i=1

[fi(xkn)−fi(xkn+i)].

The next step is to estimate
∑n

i=1[fi(xkn) − fi(xkn+i)] from above. By (4.1), for any

1 ≤ j ≤ n, we have

fj(xkn+j) +
1

2λk
d(xkn+j, xkn+j−1)

2 ≤ fj(xkn+j−1),

which yields by using the L-Lipschitz continuity that

d(xkn+j, xkn+j−1) ≤ 2λk
fj(xkn+j−1) − fj(xkn+j)

d(xkn+j, xkn+j−1)
≤ 2λkL.

Since d(xkn, xkn+i) ≤
∑i

j=1 d(xkn+j−1, xkn+j), this gives also that

(5.2) d(xkn, xkn+i) ≤ 2λkLi.
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Furthermore, we have

n∑

i=1

[fi(xkn) − fi(xkn+i)] =
n∑

i=1

i∑

j=1

[fi(xkn+j−1) − fi(xkn+j)]

≤
n∑

i=1

i∑

j=1

Ld(xkn+j, xkn+j−1)

≤
n∑

i=1

2λkL
2i = λkL

2n(n + 1).

This combined with (5.1) yields

(5.3) d(y, xkn+n)2 ≤ d(y, xkn)2 − 2λk

n∑

i=1

[fi(xkn) − fi(y)] + 2λ2
kL

2n(n + 1).

Since f(xkn) − f(y) ≥ 0, Lemma 5.4 implies that the sequence ak := d(y, xkn)2

converges and
∞∑

k=0

λk[f(xkn) − f(y)] < +∞.

Hence, by the assumption
∑∞

k=0 λk = +∞, there exists a subsequence xkln such

that liml→∞ f(xkln) = f(y). Since xkln is bounded, by local compactness it has a

subsequence converging to a point z ∈ G, which by lower semicontinuity of f must be

a minimizer of f . Then, by replacing y with z in the above discussion, the sequence

ak = d(z, xkn)2 is convergent and has a subsequence converging to 0. Hence the whole

sequence ak converges to 0, i.e., xkn → z as k → ∞. Moreover, (5.2) gives

d(z, xkn+i) ≤ d(z, xkn) + d(xkn, xkn+i) ≤ d(z, xkn) + 2λkLi

for all 1 ≤ i ≤ n. Since we have λk → 0 by
∑∞

k=0 λ2
k < +∞, we conclude that

xkn+i → z as k → ∞ for all i. Therefore xm → z as m → ∞.

Lower curvature bound case (II): The proof is similar to Case (I). From (4.6) in

Lemma 4.6, we get

d(y, xkn+i)
2 ≤ d(y, xkn+i−1)

2 − 2λk[fi(xkn+i−1) − fi(y)] +
K

2
λ2

kL
2.

Summing the above for 1 ≤ i ≤ n yields

d(y, xkn+n)2 ≤ d(y, xkn)2 − 2λk

n∑

i=1

[fi(xkn+i−1) − fi(y)] +
K

2
λ2

kL
2n,
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which is equivalent to

d(y, xkn+n)2 ≤d(y, xkn)2 − 2λk

n∑

i=1

[fi(xkn) − fi(y)]

+ 2λk

n∑

i=1

[fi(xkn) − fi(xkn+i−1)] +
K

2
λ2

kL
2n.

(5.4)

We find by (4.3) and assumption that d(xkn+i−1, xkn+i) ≤ λkL, and hence

fi(xkn) − fi(xkn+i−1) ≤ Ld(xkn, xkn+i−1) ≤ L
i−1∑

j=1

d(xkn+j−1, xkn+j) ≤ λkL
2(i − 1).

Then these bounds combined with (5.4) give

d(y, xkn+n)2 ≤ d(y, xkn)2 − 2λk

n∑

i=1

[fi(xkn) − fi(y)] + λ2
kL

2n

(
K

2
+ n − 1

)
.

The rest of the argument is identical to Case (I). !

Remark 5.6. In the lower curvature bound case (II), the assumption that xm ∈ G

can be met, since d(y, xm) is bounded as we saw in the proof. Thus, choosing the

sequence λk appropriately, we can assure that xm stays inside G.

The above theorem relies on local compactness. In fact, it is known that in the

infinite dimensional case we cannot always have convergence under these assumptions

[6]. However, if we assume that f is K-convex for positive K, then the assumption

of local compactness can be dropped.

Proposition 5.7. Let (X, d), G ⊂ X, f =
∑n

i=1 fi be as in Definition 5.3 and further

assume that fi is L-Lipschitz for some L ≥ 1 and all i, and that f is K-convex for

some K > 0. Take λk > 0 with λkK < 1, λk → 0 and
∑∞

k=0 λk = +∞, and consider

a sequence {xm}m≥0 generated by Definition 5.3. Then xm converges to the unique

minimizer y ∈ G of f as m → ∞.

More concretely, in the upper curvature bound case, d(xkn, y)2 ≤ ak holds with

a0 := d(x0, y)2 and ak+1 := (1 − λkK)ak + 2λ2
kL

2n(n + 1) inductively, that is,

ak+1 =
k∏

i=0

(1 − λiK)a0 + 2L2n(n + 1)
k∑

j=1

(λ2
j−1

k∏

i=j

(1 − λiK) + λ2
k).
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In the lower curvature bound case, d(xkn, y)2 ≤ ak similarly holds for a0 := d(x0, y)2

and ak+1 := (1 − λkK)ak + λ2
kL

2n(K
2 + n − 1) with K ≥ 0 given in Lemma 4.6(II).

Also

ak+1 =
k∏

i=0

(1 − λiK)a0 + L2n

(
K

2
+ n − 1

) k∑

j=1

(λ2
j−1

k∏

i=j

(1 − λiK) + λ2
k)

in this case.

Proof. Thanks to the K-convexity with K > 0 and the completeness of (X, d), there

is a unique minimizer y ∈ G of f (see, e.g., [39, Proposition 1.7]). For any x ∈ G, by

dividing (3.1) with 1 − t and letting t → 1, we have

(5.5)
K

2
d(x, y)2 ≤ f(x) − f(y).

Let us consider Case (I), the proof of Case (II) will be similar. By (5.3), we have

d(y, xkn+n)2 ≤ d(y, xkn)2 − 2λk[f(xkn) − f(y)] + 2λ2
kL

2n(n + 1).

Using (5.5), we get

(5.6) d(y, xkn+n)2 ≤ (1 − λkK)d(y, xkn)2 + 2λ2
kL

2n(n + 1).

Then by induction it is easy to see that d(xkn, y)2 ≤ ak. The explicit formula for ak+1

is proved also by induction.

Now we prove lim infk→∞ ak = 0 by contradiction. Assume that there are N ≥ 0

and c > 0 such that, for every k > N , we have ak > c and 2L2n(n + 1)λk < cK/2.

Then

ak+1 = ak + λk(2L
2n(n + 1)λk − akK) ≤ ak −

λkcK

2
,

which is a contradiction, since
∑∞

k=0 λk = +∞. We finally show limk→∞ ak = 0. If

ak > 2L2n(n + 1)λk/K, then clearly ak+1 < ak. If ak ≤ 2L2n(n + 1)λk/K, then

ak+1 ≤ (1 − λkK)(2L2n(n + 1)λk/K) + 2λ2
kL

2n(n + 1) = 2L2n(n + 1)λk/K.

Thus we have

ak+1 ≤ max{ak, 2L
2n(n + 1)λk/K},

from which we get, for any l ≥ k,

al+1 ≤ max
{
ak, (2L

2n(n + 1)/K) · max{λk, λk+1, . . . , λl}
}

.
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Take lim supl→∞ and then lim infk→∞ of the above to see that ak → 0. The con-

vergence of the rest of the sequence d(xm, y)2 to 0 follows from setting up a similar

inequality of the form (5.2). !

For the explicit convergence rate analysis, let us quote a lemma from [28]:

Lemma 5.8. Let ak ≥ 0 be a sequence such that

ak+1 ≤
(

1 − α

k + 1

)
ak +

β

(k + 1)2
,

where α, β > 0. Then

ak ≤






1
(k+2)α

(
a0 + 2αβ(2−α)

1−α

)
if 0 < α < 1;

β(1+log(k+1))
k+1 if α = 1;

1
(α−1)(k+2)

(
β + (α−1)a0−β

(k+2)α−1

)
if α > 1.

From this we obtain that the convergence is sublinear in Proposition 5.7.

6. Law of large numbers and Jensen’s inequality

In this section, we give a stochastic discrete-time gradient flow for arbitrary convex

(infinite) combinations of convex functions. We will restrict ourselves to K-convex

functions with K > 0, however, our proofs can be adapted to the case K = 0 in

the same manner as we have seen in Theorem 5.5, which is a generalized form of

Proposition 5.7 in this sense.

Let G ⊂ X be a closed, geodesically convex set. For K > 0, consider the set

of all lower semi-continuous, K-convex functions f : G → (−∞,∞] not identically

+∞, denoted by FK(G). We equip FK(G) with the norm ‖f‖ := supx∈G |f(x)|.
Let P(FK(G)) denote the set of all real-valued probability measures (with separable

support) in FK(G). Notice that the function g(x) =
∫

FK(G) f(x)dµ(f) is also in FK(G)

for any µ ∈ P(FK(G)). In particular, the set FK(G) is a convex cone.

Definition 6.1. [Variance] We define the variance of µ ∈ P(FK(G)) by

var(µ) := inf
x∈G

∫

FK(G)

f(x)dµ(f).
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Fixed µ ∈ FK(G) can be viewed as the distribution of an FK(G)-valued random

variable. In this sense, integration with respect to µ can be viewed as taking expec-

tations:

Eϕ :=

∫

FK(G)

ϕ(f)dµ(f),

where ϕ : FK(G) → R is assumed to be measurable and integrable.

Definition 6.2. [Expectation] Let µ ∈ P(FK(G)). We define the expectation of µ as

Eµ := arg min
x∈G

∫

FK(G)

f(x)dµ(f),

which is indeed uniquely determined by the K-convexity of g(x) =
∫

FK(G) f(x)dµ(f).

Note that g(Eµ) = var(µ). Using our new notation, we have a generalization of the

variance inequality in [39, Proposition 4.4] (see also [40, 32] for the reverse variance

inequality for squared distance functions under lower curvature bounds). Let Lx

denote the evaluation operator at x ∈ G defined as Lxf := f(x). Clearly Lx is a

linear functional on the cone FK(G).

Proposition 6.3 (Variance inequality). Let µ ∈ P(FK(G)). Then, for all x ∈ G, we

have

(6.1) d(x, Eµ)2 ≤ 2

K
E (Lx − LEµ) =

2

K

∫

FK(G)

[f(x) − f(Eµ)]dµ(f).

Proof. Put g(x) =
∫

FK(G) f(x)dµ(f) and note that g(Eµ) = infG g. Then the claim

follows from (5.5). !

Before proceeding to the law of large numbers result, we need the following lemma.

Lemma 6.4. Let (X, d) be a complete Alexandrov space with curvature bounded above

by κ, and assume diam G < π/(2
√

κ) if κ > 0. Then f &→ Jf
λ (x) for fixed x ∈ G, as

a map FK(G) → X, is Hölder continuous.

Proof. Let f, g ∈ FK(G) and suppose ‖f − g‖ < ε. Set f̄(y) := f(y) + 1
2λd(y, x)2

and ḡ(y) := g(y) + 1
2λd(y, x)2 for fixed x ∈ G, and notice that f̄ , ḡ ∈ FK(G) and

‖f̄ − ḡ‖ < ε. Assume without loss of generality that f̄(Jf
λ (x)) ≥ ḡ(Jg

λ(x)). Then the

K-convexity of f̄ yields (recall (5.5))

f(Jg
λ(x)) +

1

2λ
d(Jg

λ(x), x)2 ≥ f̄(Jf
λ (x)) +

K

2
d(Jg

λ(x), Jf
λ (x))2,
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which is equivalent to

f(Jg
λ(x)) − g(Jg

λ(x)) ≥ f̄(Jf
λ (x)) − ḡ(Jg

λ(x)) +
K

2
d(Jg

λ(x), Jf
λ (x))2.

This shows that

d(Jg
λ(x), Jf

λ (x))2 ≤ 2

K
ε.

!

Remark 6.5. Lemma 6.4 ensures us that, in the case of upper curvature bound, the

map f $→ d(y, Jf
λ (x))2 is measurable and integrable for any x, y ∈ G, i.e.,

(6.2)

∫

FK(G)

d(y, Jf
λ (x))2dµ(f)

exists. In the case of lower curvature bound, the measurability of f $→ d(y, Jf
λ (x))2 is

nontrivial and verified only in special cases. If µ is finitely supported, then integra-

bility is clear. Also if X is a Euclidean space and µ is supported over differentiable

functions, then the measurability follows from the continuity of the gradient vectors

of convex functions, see Theorem 25.7 in [35].

In the following, we prove a stochastic variant of Proposition 5.7, which extends

the law of large numbers proved in [39, Theorem 4.7] to the case of Alexandrov spaces

with arbitrary upper or lower curvature bounds, and arbitrary functions on FK(G).

Theorem 6.6 (Law of large numbers). Let (X, d) and G ⊂ X be as in Defini-

tion 5.3. Fix µ ∈ P(FK(G)) supported on L-Lipschitz functions and let {fk}k≥0

denote a sequence of independent, identically distributed random variables taking val-

ues in FK(G) with distribution µ. Take a positive sequence {λk}k≥0 with λkK < 1,

λk → 0 and
∑∞

k=0 λk = +∞. Define the sequence Sk ∈ G recursively as

Sk+1 := Jfk
λk

(Sk), k ≥ 0,

with an arbitrary starting point S0 ∈ G, assuming that Sk ∈ G for all k ≥ 0 and

the integral in (6.2) exists in the lower curvature bound case. Then Sk → Eµ almost

surely.
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Proof. We prove only the upper curvature bound case, the lower curvature bound

case is similar. By (4.5) in Lemma 4.6, we have

d(y, Jfk
λk

(x))2 ≤ d(y, x)2 − 2λk[fk(J
fk
λk

(x)) − fk(y)]

for all x, y ∈ G. Therefore we have

(6.3) d(Eµ, Sk+1)
2 ≤ d(Eµ, Sk)

2 − 2λk[fk(Sk) − fk(Eµ)] + 2λk[fk(Sk) − fk(Sk+1)].

By (4.1), we have

fk(Sk+1) +
1

2λk
d(Sk+1, Sk)

2 ≤ fk(Sk),

which yields by using the L-Lipschitz continuity that

d(Sk+1, Sk) ≤ 2λk
fk(Sk) − fk(Sk+1)

d(Sk+1, Sk)
≤ 2λkL.

Thus we obtain

fk(Sk) − fk(Sk+1) ≤ Ld(Sk+1, Sk) ≤ 2λkL
2.

This combined with (6.3) yields

d(Eµ, Sk+1)
2 ≤ d(Eµ, Sk)

2 − 2λk[fk(Sk) − fk(Eµ)] + 4λ2
kL

2.

Taking expectations in fk conditioned on Fk−1 := {f1, . . . , fk−1} and using the vari-

ance inequality (6.1), we get

E
(
d(Eµ, Sk+1)

2|Fk−1

)
≤ d(Eµ, Sk)

2 − 2λkE[fk(Sk) − fk(Eµ)] + 4λ2
kL

2

≤ d(Eµ, Sk)
2 − λkKd(Eµ, Sk)

2 + 4λ2
kL

2,

and hence

E
(
d(Eµ, Sk+1)

2|Fk−1

)
≤ (1 − λkK)d(Eµ, Sk)

2 + 4λ2
kL

2.

Taking expectations again yields

Ed(Eµ, Sk+1)
2 ≤ (1 − λkK)Ed(Eµ, Sk)

2 + 4λ2
kL

2.

From here proving the convergence Ed(Eµ, Sk+1)2 → 0 can be done in the same way

as in the proof of Proposition 5.7 after (5.6). To get a convergence rate estimate one

can refer to Lemma 5.8. !
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Remark 6.7. Suppose that (X, d) has curvature bounded above by κ > 0. Fix

arbitrary o ∈ X and let G := B̄o(r) with 2r = (π/2 − ε)/
√

κ for ε ∈ (0, π/2).

Then, by Proposition 3.3, the function fa(x) := d(a, x)2 with a ∈ G is K-convex and

Lipschitz continuous on G with K = (π − 2ε) tan ε > 0. Take µ ∈ P(FK(G)) such

that supp µ ⊂ {fa : a ∈ G}. Then Theorem 6.6 generalizes Sturm’s law of large

numbers in [38, 39]. In particular, if λk := 1
2k , then we have

Sk+1 = Jfk
λk

(Sk) = arg min
z∈G

{
d(ak, z)2 +

d(z, Sk)2

2λk

}

= arg min
z∈G

{
2λk

1 + 2λk
d(ak, z)2 +

1

1 + 2λk
d(z, Sk)

2

}

= Sk# 1
k+1

ak,

where ak is a G-valued random variable with distribution provided by the push-

forward measure of µ under the bijective map fa %→ a. In this case, one can reproduce

the same sublinear order of convergence O(1/k) as in [39]. More generally, one can

consider fa(x) := d(x, a)p for any p ∈ [2,∞), still fa(x) being K-convex and Lipschitz

continuous on the same G, hence Theorem 6.6 can be applied.

It seems reasonable to expect that, in the upper curvature bound case in Re-

mark 6.7, one can take any 2r < π/
√

κ even though the functions fa are then not

convex on whole G. This is motivated by the results in [1] on the existence and

uniqueness of the center of mass in Riemannian manifolds.

Remark 6.8. Theorem 6.6 generalizes the law of large numbers from Euclidean

spaces to Alexandrov spaces, moreover, to the case of measures supported over the

vector lattice of K-convex Lipschitz functions. We recover the original law of large

numbers in Hilbert spaces by choosing X to be a Hilbert space in Remark 6.7. Also

the setting in Remark 6.7 is of interest if we choose X to be a sphere, or any compact

Lie group with a bi-invariant Riemannian metric.

Using our law of large numbers, we have an alternative proof for Jensen’s inequality

of Kuwae [21], along the line of the second proof of [39, Theorem 6.2].

Proposition 6.9 (Jensen’s inequality). Let X be a complete Alexandrov space with

curvature bound above by κ > 0, and G ⊂ X be a closed, geodesically convex set
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with diam G < π/(2
√

κ). Take a probability measure µ on G and a convex, lower

semi-continuous function f : G → R. Then we have

f(Eµ) ≤ Ef,

where Eµ := arg miny∈G

∫
G d(a, y)2dµ(a) and Ef :=

∫
G f(a)dµ(a).

Proof. Choose a sequence of independent, identically distributed random variables Yk

with values in G, and with distribution µ. Let Sk ∈ G be defined as in Remark 6.7,

i.e., S1 := Y1 and Sk+1 := Sk# 1
k+1

Yk+1. Similarly, let Zk ∈ R be defined as Z1 := f(Y1)

and Zk+1 := Zk# 1
k+1

f(Yk+1). We can explicitly write as

Zk+1 = Zk# 1
k+1

f(Yk+1) =
k

k + 1
Zk +

1

k + 1
f(Yk+1).

By Theorem 6.6, we have Sk → Eµ and Zk → E(f∗µ) = Ef , where f∗µ denoted the

push-forward of µ. We proceed by induction showing

(6.4) f(Sk) ≤ Zk.

For k = 1, this clearly holds. For general k ≥ 1, we have by induction

f(Sk+1) = f(Sk# 1
k+1

Yk+1)

≤ k

k + 1
f(Sk) +

1

k + 1
f(Yk+1)

≤ k

k + 1
Zk +

1

k + 1
f(Yk+1) = Zk+1

showing (6.4). Hence, by the lower semi-continuity of f , we obtain

f(Eµ) ≤ lim inf
k→∞

f(Sk) ≤ lim inf
k→∞

Zk = Ef

and complete the proof. !
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[6] M. Bačák, Computing means and medians in Hadamard spaces, Preprint (2012). Available at

arXiv:1210.2145

[7] G. C. Bento and J. X. Cruz Neto, Finite termination of the proximal point method for convex
functions on Hadamard manifolds, Optimization (2012), DOI:10.1080/02331934.2012.730050.

[8] D. P. Bertsekas, Incremental proximal methods for large scale convex optimization, Math.
Program., Ser. B 129 (2011), 163–195.

[9] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scientific, 1996.
[10] R. Bhatia, Positive definite matrices, Princeton Series in Applied Mathematics, Princeton Uni-

versity Press, Princeton, NJ, 2007.
[11] R. Bhatia and J. Holbrook, Riemannian geometry and matrix geometric means, Linear Algebra

Appl. 413 (2006), 594–618.
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