令和7年度 京都大学大学院理学研究科 数学・数理解析専攻

数学系·数理解析系 入学試験問題

2025 Entrance Examination (Mathematics Course/Mathematical Sciences Course)

Master's Program, Division of Mathematics and Mathematical Sciences, Kyoto University

基礎科目 Basic Mathematics

◎ 問題は7問ある. 数学系志望者は1 ~ 6 の 6 題を解答せよ. 数理解析系志望者は, 1 ~ 5 の 5 題を解答し, さらに, 6, 7 のうちの 1 題を選択して解答せよ. (数学系と数理解析系の一方のみを志望している者の解答問題数は 6 題であり, 両系をともに志望している者の解答問題数は, 選択によって 6 題または 7 題となる.) 選択した問題番号を選択票に記入すること.

There are 7 problems. Applicants to the Mathematics Course (数学系) should answer the 6 problems $1 \sim 6$. Applicants to the Mathematical Sciences Course (数理解析系) should answer the 5 problems $1 \sim 5$, and also one problem from 6, 7. (Applicants to either the Mathematics Course or the Mathematical Sciences Course should only answer 6 problems in total, and applicants to both courses should answer 6 or 7 problems in total, depending on their choices.) Write the problem numbers you choose on the selection sheet.

◎ 解答時間は 3 時間 30 分 である.

The duration of the examination is 3 hours and 30 minutes.

⊗ 問題は日本語および英語で書かれている.解答は日本語または英語どちらかで書くこと.

The problems are given both in Japanese and in English. The answers should be written either in Japanese or in English.

◎ 参考書・ノート類・電卓・携帯電話・情報機器・<u>時計</u>等の持ち込みは <u>禁止</u> する.指定された荷物置場に置くこと.

It is <u>not allowed</u> to refer to any textbooks, notebooks, calculators, cell phones, information devices or <u>personal watches/clocks</u> during the examination. Such materials and devices must be kept in the designated area.

「注意」 Instructions

- 1. 指示のあるまで問題文を見ないこと.
 Do not look at the problems until it is permitted by the proctor.
- 2. 答案用紙・下書用紙のすべてに、受験番号・氏名を記入せよ. Write your name and the applicant number on each answer sheet and each draft/calculation sheet.
- 3. 解答は問題ごとに別の答案用紙を用い, 問題番号を各答案用紙の枠内に記入せよ.

Use a separate answer sheet for each problem and, on each sheet, write the number of the problem being attempted within the box.

4. 1 問を 2 枚以上にわたって解答するときは、つづきのあることを用紙下端に明示して次の用紙に移ること.

If you need more than one answer sheet for a problem, you may continue to an additional answer sheet (or more). If you do so, indicate clearly at the bottom of the page that there is a continuation.

5. 提出の際は、上から選択票、答案用紙 (問題番号順)、下書用紙の順に重ね、記入した面を外にして一括して二つ折りにして提出すること.

When handing in your exam to the proctor, stack your selection sheet and answer sheets (ordered by problem number), followed by the draft/calculation sheets. Fold the stack in half, with the filled-in side facing outward.

6. この問題冊子は持ち帰ってよい.

You may keep this problem sheet.

[記号] Notation

以下の問題で \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} はそれぞれ, 整数の全体の集合, 有理数の全体の集合, 実数の全体の集合, 複素数の全体の集合を表す.

In the problems, we denote the set of all integers by \mathbb{Z} , the set of all rational numbers by \mathbb{Q} , the set of all real numbers by \mathbb{R} and the set of all complex numbers by \mathbb{C} .

The English translation follows.

 $\boxed{1}$ $\mathbb{R}^2 \setminus \{\mathbf{0}\}$ 上の関数 f(x) を

$$f(x) = \int_{B} \frac{1}{|x \cdot y| + ||x|| ||y||} dy, \qquad B = \{y \in \mathbb{R}^{2} | ||y|| < 1\}$$

と定める.ただし, $x\cdot y$ は $x,y\in\mathbb{R}^2$ に対する \mathbb{R}^2 における標準内積とし, $\|y\|=\sqrt{y\cdot y}$ とする.以下の問に答えよ.

- (1) f(x) は ||x|| のみに依存することを示せ.
- (2) f(x) を求めよ.

 $\boxed{2}$ α を複素数とし、 $A(\alpha)$ を次のような 3 次正方行列とする.

$$A(\alpha) = \begin{pmatrix} 1 & \alpha & 0 \\ \alpha & \alpha & \alpha \\ -\alpha - 1 & -2\alpha & -\alpha \end{pmatrix}$$

このとき, $A(\alpha)$ の固有値を全て求めよ.さらに各固有値に対応する固有空間の次元を求めよ.

- 3 A, B を n 次複素正方行列とし,A は対角化可能であるとする.X = AB BA とおくと,AX = XA が成り立つとする.このとき,X が零行列に等しいことを示せ.
- 4 広義積分

$$\int_0^\infty \frac{\sin^5 x}{x^\alpha} \, dx$$

が収束するような実数 α の範囲を求めよ.

[5] a, b を正の実数 (a > b > 0) とする. 次の広義積分の値を求めよ.

$$\int_0^\infty \frac{\log x}{(x^2 + a^2)(x^2 + b^2)} dx$$

[6] [0,1] を単位区間 $\{x \in \mathbb{R} \mid 0 \le x \le 1\}$ とし,K を $[0,1] \times [0,1]$ の閉部分集合とする.各 $x \in [0,1]$ に対して

$$K_x = \{ y \in [0,1] \mid (x,y) \in K \}$$

とおく. 任意の $x \in [0,1]$ に対して, K_x は [0,1] の空ではない連結部分集合であると仮定する. 以下の問に答えよ.

- (1) K は $[0,1] \times [0,1]$ の連結部分集合であることを示せ.
- (2) $x \in K_x$ を満たす $x \in [0,1]$ が存在することを示せ.

$$f(x,y) = x^2 + xy^2 - 2x + \frac{1}{3}y^3$$

と定義する. このとき、fの最大値と最小値を求めよ.

The English translation starts here.

Let f(x) be the function on $\mathbb{R}^2 \setminus \{0\}$ defined by

$$f(x) = \int_{B} \frac{1}{|x \cdot y| + ||x|| ||y||} dy, \qquad B = \{y \in \mathbb{R}^{2} \mid ||y|| < 1\}.$$

Here $\boldsymbol{x} \cdot \boldsymbol{y}$ is the standard inner product of $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^2$ in \mathbb{R}^2 , and $\|\boldsymbol{y}\| = \sqrt{\boldsymbol{y} \cdot \boldsymbol{y}}$. Answer the following questions.

- (1) Show that f(x) is a function depending only on ||x||.
- (2) Find $f(\boldsymbol{x})$.
- 2 Let α be a complex number. Define a 3×3 matrix $A(\alpha)$ by

$$A(\alpha) = \begin{pmatrix} 1 & \alpha & 0 \\ \alpha & \alpha & \alpha \\ -\alpha - 1 & -2\alpha & -\alpha \end{pmatrix}.$$

Find all the eigenvalues of $A(\alpha)$. Moreover, for each eigenvalue, find the dimension of its eigenspace.

- 1 Let A, B be complex $n \times n$ matrices. Put X = AB BA. Assume that A is diagonalizable and AX = XA. Prove that X equals the zero matrix.
- [4] Find all real numbers α , for which the improper integral

$$\int_0^\infty \frac{\sin^5 x}{x^\alpha} \, dx$$

converges.

Let a, b be positive real numbers with a > b > 0. Find the value of the improper integral $\int_0^\infty \frac{\log x}{(x^2 + a^2)(x^2 + b^2)} dx.$

Let [0,1] be the unit interval $\{x \in \mathbb{R} \mid 0 \le x \le 1\}$, and let K be a closed subset of $[0,1] \times [0,1]$. For each $x \in [0,1]$, we set

$$K_x = \{ y \in [0,1] \mid (x,y) \in K \}.$$

We suppose that K_x is a non-empty connected subset of [0,1] for every $x \in [0,1]$. Answer the following questions.

- (1) Prove that K is a connected subset of $[0,1] \times [0,1]$.
- (2) Prove that there exists $x \in [0,1]$ satisfying $x \in K_x$.
- Define a subset D of \mathbb{R}^2 by $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 2\}$. Define a function f on D by

$$f(x,y) = x^2 + xy^2 - 2x + \frac{1}{3}y^3.$$

Find the maximum and minimum values of the function f.