令和 6 年度 京都大学大学院理学研究科 数学・数理解析専攻

数学系·数理解析系 入学試験問題

2024 Entrance Examination (Mathematics Course/Mathematical Sciences Course)

Master's Program, Division of Mathematics and Mathematical Sciences, Kyoto University

専門科目 Advanced Mathematics

◎ 問題は 13 題ある.数学系志望者は 1~11 のうちの 2 題を選択して解答せよ.ただし,数学系志望者は 9と10 の 2 題を同時に選択してはならない.数理解析系志望者は,1~13 のうちの 2 題を選択して解答せよ.(数学系と数理解析系の一方のみを志望している者の解答問題数は 2 題であり,両系をともに志望している者の解答問題数は,選択によって 2~4 題となる.) 選択した問題番号を選択票に記入すること.

There are 13 problems. Applicants to the Mathematics Course (数学系) should select and answer 2 problems out of the 11 problems 1—11, but are not allowed to select 9 and 10 at the same time. Applicants to the Mathematical Sciences Course (数理解析系) should select and answer 2 problems out of the 13 problems 1—13. (Applicants to either the Mathematics Course or the Mathematical Sciences Course should only answer 2 problems, and applicants to both courses should answer 2-4 problems in total, depending on their choices.) Write the problem numbers you choose on the selection sheet.

◎ 解答時間は 2 時間 30 分 である.

The duration of the examination is 2 hours and 30 minutes.

◎ 問題は日本語および英語で書かれている. 解答は日本語または英語どちらかで書くこと.

The problems are given both in Japanese and in English. The answers should be written either in Japanese or in English.

◎ 参考書・ノート類・電卓・携帯電話・情報機器・<u>時計</u>等の持ち込みは <u>禁止</u> する. 指定された荷物置場に置くこと.

It is <u>not allowed</u> to refer to any textbooks, notebooks, calculators, cell phones, information devices or <u>personal clocks and watches</u> during the examination. Such materials and devices must be kept in the designated area.

「注意」 Instructions

- 1. 指示のあるまで問題文を見ないこと.
 Do not look at the problems until it is permitted by the proctor.
- 2. 答案用紙・下書用紙のすべてに、受験番号・氏名を記入せよ. Write your name and applicant number on each answer sheet and each draft/calculation sheet.
- 3. 解答は問題ごとに別の答案用紙を用い、問題番号を各答案用紙の枠内に記入せよ.

Use a separate answer sheet for each problem and, on each sheet, write the number of the problem being attempted within the box.

- 4. 1 問を 2 枚以上にわたって解答するときは、つづきのあることを用紙下端に明示して次の用紙に移ること.
 - If you need more than one answer sheet for a problem, you may continue to an additional answer sheet (or more). If you do so, indicate clearly at the bottom of the page that there is a continuation.
- 5. 提出の際は、上から選択票、答案用紙 (問題番号順)、下書用紙の順に重ね、記入した面を外にして一括して二つ折りにして提出すること.
 When handing in your exam to the proctor, stack your selection sheet and answer sheets (ordered by problem number), followed by the draft/calculation sheets. Fold the stack in half, with the filled-in side facing outward.
- 6. この問題冊子は持ち帰ってよい. You may keep this problem sheet.

「記号」 Notation

以下の問題で \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} はそれぞれ,整数の全体,有理数の全体,実数の全体,複素数の全体を表す.In the problems, we denote the set of all integers by \mathbb{Z} , the set of all rational numbers by \mathbb{Q} , the set of all real numbers by \mathbb{R} and the set of all complex numbers by \mathbb{C} .

The English translation follows.

- 有限群 Γ に対して, $|\Gamma|$ は Γ の位数,Aut (Γ) は Γ の自己同型群を表すとする. また有限群 Γ に対して,次の条件
 - $(*_{\Gamma})$ $|H_1| = |H_2|$ をみたす任意の二つの部分群 $H_1, H_2 \subseteq \Gamma$ に対して, $\alpha(H_1) = H_2$ をみたす $\alpha \in \text{Aut}(\Gamma)$ が存在する.

を考える. p は素数とし、有限群 G は $(*_G)$ をみたす p 群とする. このとき、以下の問に答えよ.

- (i) G は巡回群でないアーベル群であると仮定する. このとき, G の単位元でない元の位数は p であることを示せ.
- (ii) G の中心 Z(G) は条件 $(*_{Z(G)})$ をみたすことを示せ.
- (iii) G はアーベル群でないと仮定する. このとき, G の位数 p の部分群が唯一つ存在することを示せ.
- 2 n を正の整数とする.複素数体上の 1 変数形式的べき級数環 $\mathbb{C}[t]$ の部分環 A と A の極大イデアル \mathfrak{m} の組 (A,\mathfrak{m}) であって,以下のすべての条件をみたすものを一つ構成せよ.
 - (a) A は \mathbb{C} を含み, $\dim_{\mathbb{C}}(\mathbb{C}[t]/A) < \infty$.
 - (b) A の商体における A の整閉包は $\mathbb{C}[t]$ に一致する.
 - (c) $\dim_{\mathbb{C}}(\mathfrak{m}/\mathfrak{m}^2) = n$.
- 3 k は正の整数とし, $f(X) = X^6 + kX^3 + 27$ は変数 X に関する有理数係数の 1 変数多項式とする.このとき,次の条件
 - (*) $f(\alpha) = 0$ をみたす任意の複素数 α に対して、 $\mathbb{Q}(\alpha)/\mathbb{Q}$ は 6 次ガロア拡大である.

をみたす正の整数 k をすべて求めよ.

- - (A) X の各点 p において、接ベクトル $V_{1,p}, V_{2,p}, V_{3,p}$ は一次独立である.
 - (B) X 上の C^{∞} 級関数 f, g, h が存在して

$$[V_1, V_2] = fV_3, \quad [V_1, V_3] = gV_3, \quad [V_2, V_3] = hV_3$$

を満たす.

以下の問に答えよ.

(1) X 上の C^{∞} 級 1 次微分形式 θ が

$$\theta(V_1) = 1, \quad \theta(V_2) = \theta(V_3) = 0$$

を満たすならば、 θ は閉形式であることを示せ.

- (2) X の 1 次 de Rham コホモロジー群を $H^1(X)$ とする. $\dim H^1(X) \geq 2$ を示せ.
- (3) h(p) = 0 となる点 $p \in X$ が存在することを示せ.
- [5] $S^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 = 1\}$ とする.写像 $f \colon S^2 \times S^2 \to \mathbb{R}$ を $f((x_1, x_2, x_3), (y_1, y_2, y_3)) = x_3 + y_3$

と定める. 以下の問に答えよ.

- (1) $f^{-1}(0)$ の整数係数ホモロジー群を求めよ.
- (2) $f^{-1}(1)$ の整数係数ホモロジー群を求めよ.

 $\boxed{6}$ Φ は区間 $[0,\infty)$ 上の単調増加で下に凸な連続関数であり、さらに $\Phi(0)=0$ および $\Phi(t)\geq t$ $(t\in[0,\infty))$ を満たすとする.

$$\mathcal{L} = \left\{ f \middle| \begin{array}{c} f \& \mathbb{R} \bot \mathcal{O}$$
実数値ルベーグ可測関数で、ある $\lambda > 0$ に対して
$$\int_{\mathbb{R}} \Phi \left(\frac{|f(x)|}{\lambda} \right) dx \leq 1 \end{array} \right\}$$

と定める. また, $f \in \mathcal{L}$ に対して,

$$||f|| = \inf \left\{ \lambda > 0 \mid \int_{\mathbb{R}} \Phi\left(\frac{|f(x)|}{\lambda}\right) dx \le 1 \right\}$$

とする. 以下の問に答えよ.

- (1) $f \in \mathcal{L}$ のとき, $\int_{\mathbb{R}} |f(x)| dx \le ||f||$ であることを示せ.
- (2) $f,g \in \mathcal{L}$ とする. $f-g \in \mathcal{L}$ であることと, $\|f-g\| \leq \|f\| + \|g\|$ が成り立つことを示せ.
- (3) \mathcal{L} の元からなる列 $\{f_m\}_{m=1}^{\infty}$ が次の性質を持つとする.

任意の $\varepsilon > 0$ に対して,ある正の整数 N が存在して, $m \ge N$, $n \ge N$ のとき $||f_m - f_n|| < \varepsilon$ を満たす.

このとき, $\lim_{m\to\infty} ||f_m - f|| = 0$ を満たす \mathcal{L} の元fが存在することを示せ.

[7] H をヒルベルト空間とし, H_1, H_2, \dots を互いに直交する H の有限次元部分空間で,

$$\left(\bigcup_{n=1}^{\infty} H_n\right)^{\perp} = \{0\}$$

を満たすものとする. 正の整数 n に対して P_n を H から H_n への直交射影とし、整数 $n \leq 0$ に対しては $P_n = 0$ とする.

有界線型作用素 $T: H \to H$ が次の 2 条件を満たすとする.

- (i) $\lim_{n \to \infty} ||TP_n|| = 0.$
- (ii) $a_n = \sup_{k \ge 1} \|P_{n+k} T P_k\|$ とするとき,

$$\sum_{n\in\mathbb{Z}}a_n<\infty.$$

ここで作用素 A に対して ||A|| は A の作用素 J ルムとする.

 $n \in \mathbb{Z}$ に対して作用素 $S_n: H \to H$ を

$$S_n x = \sum_{k=1}^{\infty} P_{n+k} T P_k x, \quad x \in H$$

と定める.

- $(1) ||S_n|| < a_n$ を示せ.
- (2) S_n はコンパクト作用素であることを示せ.
- (3) T はコンパクト作用素であることを示せ.

|8| C^4 級関数 $u:[0,\infty)\times\mathbb{R}\to\mathbb{R}$ は $(0,\infty)\times\mathbb{R}$ 上で方程式

$$\frac{\partial u}{\partial t}(t,x) + \frac{\partial^4 u}{\partial x^4}(t,x) = 0$$

を満たすとし、さらに次の(i),(ii)を仮定する.

(i) $t \ge 0$ k

$$\sup_{x \in \mathbb{R}} (1 + x^2) |u(t, x)|, \quad \sup_{x \in \mathbb{R}} (1 + x^2) \left| \frac{\partial^j u}{\partial x^j}(t, x) \right| \quad (j = 1, 2, 3, 4),$$

$$\sup_{x \in \mathbb{R}} (1 + x^2) \left| \frac{\partial u}{\partial t}(t, x) \right|$$

はすべて有限値であり、 t について連続.

(ii)
$$\int_{\mathbb{R}} u(0, x) \, dx \neq 0.$$

このとき,正の実数 C_1, C_2 があって,すべての $t \ge 1$ で

$$C_1 t^{-1/4} \le \sup_{x \in \mathbb{R}} |u(t, x)| \le C_2 t^{-1/4}$$

が成り立つことを示せ.

9 $\varepsilon \geq 0$ とし,関数 $H: \mathbb{R}^2 \to \mathbb{R}$ を次で定義する.

$$H(x,y) = (x+y+1)(x+y-1)(x-y+1)(x-y-1).$$

また集合 $D \subset \mathbb{R}^2$ を 4 点 (1,0),(0,1),(-1,0),(0,-1) を頂点とする正方形の内部領域とする. このとき,次の \mathbb{R}^2 上の常微分方程式を考える.

$$\begin{cases} \frac{dx}{dt} = \frac{\partial H}{\partial y}(x,y) - \varepsilon \frac{\partial H}{\partial x}(x,y)H(x,y), \\ \frac{dy}{dt} = -\frac{\partial H}{\partial x}(x,y) - \varepsilon \frac{\partial H}{\partial y}(x,y)H(x,y). \end{cases}$$
 (*)

このとき、以下の問に答えよ.

- (1) $\varepsilon=0$ とする. (x(t),y(t)) が (*) の解ならば,(-x(-t),y(-t)) および (x(-t),-y(-t)) も (*) の解となることを示せ.
- (2) $\varepsilon = 0$ とし、任意に $0 < x_0 < 1$ をとる. このとき、初期値 $(x_0, 0)$ に対する (*) の解は周期軌道になることを示せ.
- (3) $\varepsilon > 0$ とし、任意に $(x_0, y_0) \in D$ をとる.このとき、初期値 (x_0, y_0) に対する (*) の解の $t \to \infty$ での漸近挙動を記述せよ.

上半平面 $\mathbb{H} = \{(x,y)|y>0\}$ を流れる非圧縮性流体が,境界面 y=0 の x 方向の振動により駆動される状況を考える.初期時刻 t=0 において (x,y)=(a,0) にある境界面上の点が時刻 t>0 で (X(a,t),0) にあるとする.時刻 t における流体の速度場を $\mathbf{u}=(u(x,y,t),v(x,y,t))$,圧力場を p(x,y,t),粘性係数 μ を正の定数とすると,これらはストークス方程式

$$\mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = \frac{\partial p}{\partial x},$$

$$\mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) = \frac{\partial p}{\partial y},$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0,$$

に従い、y=0での境界条件

$$u(x,0,t) = \left. \frac{\partial X(a,t)}{\partial t} \right|_{a=a(x,t)}, \quad v(x,0,t) = 0,$$

を満たす. ただし a(x,t) は x=X(a,t) の逆関数として与えられる. 以下の問 (1)~(4) に答えよ.

(1) 流れ関数 $\psi(x,y,t)$ を

$$u = -\frac{\partial \psi}{\partial u}$$
, $v = \frac{\partial \psi}{\partial x}$

となる実数値関数として導入する. 流れ関数が方程式

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)^2 \psi = 0$$

を満たすことを示せ.

(2) 境界面 y=0 上の点の運動が

$$X(a,t) = a + \epsilon \sin(ka - \omega t)$$

で与えられるとする.ここで ϵ は振幅,k は波数, ω は振動数であり,いずれも定数である. $|\epsilon|$ が十分小さいとして $\left.\frac{\partial X(a,t)}{\partial t}\right|_{a=a(x,t)}$ を x と t で表し $O(\epsilon^2)$ まで求めよ.

(3) 流れ関数 ψ を ϵ のべき関数として展開し、

$$\psi = \epsilon \psi_1 + \epsilon^2 \psi_2 + \cdots$$

と書く. このとき

$$\psi_1 = \Psi(y)\cos(kx - \omega t)$$

の形の解を仮定して ψ_1 を求めよ.

(4) ψ_2 を求め、流速の時間平均量

$$\langle u \rangle = \frac{1}{T} \int_0^T u \, dt$$

を $O(\epsilon^2)$ まで求めよ. ただし $T = \frac{2\pi}{\omega}$ は振動の 1 周期を表す.

 $egin{aligned} egin{aligned} 11 & a_0 & c_1 & \epsilon & \delta_{ij} &$

このとき、以下に示すプログラムを考える.ただしプログラム中、 $X \leftarrow \langle \vec{\mathbf{x}} \rangle$ は、プログラム変数 X への $\langle \vec{\mathbf{x}} \rangle$ の値の代入を表す.

$$\begin{split} Z \leftarrow 1; \ M \leftarrow 0; \\ \mathbf{while} \ M < 2 \ \mathbf{do} \\ \mathbf{if} \ M = 0 \ \mathbf{then} \\ \mathbf{if} \ c_{Z+M} = a_0 \ \mathbf{then} \ M \leftarrow M + 1 \ \mathbf{else} \ Z \leftarrow Z + 1 \ \mathbf{endif} \\ \mathbf{else} \ \mathbf{if} \ c_{Z+M} = a_1 \ \mathbf{then} \\ M \leftarrow M + 1 \\ \mathbf{else} \\ Z \leftarrow Z + 1 + \delta_{a_0 a_1}; \ M \leftarrow 0 \\ \mathbf{endif} \end{split}$$

done

このプログラムについて,以下の性質 (A) と (B) をともに満たす論理式 I を与えよ.

- (A) I はプログラム中の while ループの不変条件である.
- (B) $I \land \neg (M < 2)$ ならば, $(c_Z = a_0) \land (c_{Z+1} = a_1) \land \forall i. (1 < i < Z \Rightarrow (c_i \neq a_0 \lor c_{i+1} \neq a_1)).$
- [12] G = (V, E) を有限無向グラフとし,r を V の要素,k を正整数とする.また,E が k 個の辺集合 E_1, \ldots, E_k に分割でき,各 E_i は G 中の全域木であるとする.D = (V, A) を,G における各無向辺 $\{u, v\} \in E$ を有向辺 $\{u, v\}$ もしくは $\{v, u\}$ で置き換えることで得られる有向グラフとする.以下が同値であることを示せ.
 - (1) 任意の空でない $X \subseteq V \setminus \{r\}$ に対して,D は $V \setminus X$ から X への有向辺を k 本以上含む.
 - (2) D において,r の入次数は0であり,任意の $v \in V \setminus \{r\}$ の入次数はk である.

13 以下の問に答えよ.

(i) 時間 $t \in \mathbb{R}$ に依存する角振動数 $\omega(t) > 0$ を持つ単位質量の一次元調和振動子を考える. 古典論におけるハミルトニアンは $\mathcal{H}(t) = \frac{1}{2} \left(p^2 + \omega(t)^2 q^2 \right)$, $(p,q) \in \mathbb{R}^2$ である. ただし,p は運動量,q は位置を表す. ハミルトン正準方程式の古典解 (p(t),q(t)) および補助微分方程式

$$\ddot{\xi}(t) + \omega(t)^2 \xi(t) = \frac{1}{\xi(t)^3}$$

の実解 $\xi(t)$ が与えられたとき,

$$\mathcal{I}(t) = \frac{1}{2} \left\{ \left(\xi(t) p(t) - \dot{\xi}(t) q(t) \right)^2 + \left(\frac{q(t)}{\xi(t)} \right)^2 \right\}$$

は保存量, 即ち $\dot{\mathcal{I}}(t) = 0$ であることを示せ.

(ii) これより前問の量子力学版を考えることにする. $\hbar=1,\ i=\sqrt{-1}$ とすれば,運動量演算子 P および位置演算子 Q は正準交換関係 [Q,P]=i を満たす. ハミルトニアンは $H(t)=\frac{1}{2}\,(P^2+\omega(t)^2Q^2)$ と表せる. 時間発展を記述するユニタリー演算子 U(t) は

$$\dot{U}(t) = -iH(t)U(t), \quad U(0) = 1$$

を満たす. そこで $P(t)=U(t)^\dagger P(0)U(t),\ Q(t)=U(t)^\dagger Q(0)U(t),\ P(0)=P,\ Q(0)=Q$ とし、前問の $\mathcal{I}(t)$ において p(t) および q(t) を各々 P(t) および Q(t) で置き換えて得られる演算子を I(t) とする. 今

$$A_{\pm}(t) = \frac{1}{\sqrt{2}} \left\{ \frac{Q(t)}{\xi(t)} \mp i \left(\xi(t) P(t) - \dot{\xi}(t) Q(t) \right) \right\}$$

とすれば、交換関係 $[A_-(t),A_+(t)]=1$ が成り立ち、 $I(t)=A_+(t)A_-(t)+\frac{1}{2}$ と表せることを示せ.

(iii) $A_{\pm}(t)$ が

$$\dot{A}_{\pm}(t) = \frac{\pm i}{\xi(t)^2} A_{\pm}(t)$$

を満たすことを示すことにより、 $\dot{I}(t)=0$ を確かめよ.

The English translation starts here.

- If Γ is a finite group, then we denote the order of Γ by $|\Gamma|$ and the automorphism group of Γ by Aut (Γ) . Given a finite group Γ , we consider the following condition:
 - $(*_{\Gamma})$ For any two subgroups $H_1, H_2 \subseteq \Gamma$ such that $|H_1| = |H_2|$, there exists $\alpha \in \operatorname{Aut}(\Gamma)$ such that $\alpha(H_1) = H_2$.

Let p be a prime number, G a finite p-group that satisfies the condition $(*_G)$. Answer the following questions.

- (i) Suppose that G is an abelian group which is not a cyclic group. Then show that the order of every non-identity element of G is p.
- (ii) Show that the center Z(G) of G satisfies the condition $(*_{Z(G)})$.
- (iii) Suppose that G is not an abelian group. Then show that there exists a unique subgroup of G of order p.
- Let n be a positive integer. Find a pair (A, \mathfrak{m}) of a subring A of the ring $\mathbb{C}[\![t]\!]$ of formal power series in t over the field of complex numbers and a maximal ideal \mathfrak{m} of A such that the following conditions hold.
 - (a) A contains \mathbb{C} and $\dim_{\mathbb{C}}(\mathbb{C}[\![t]\!]/A) < \infty$.
 - (b) The integral closure of A in its quotient field is equal to $\mathbb{C}[t]$.
 - (c) $\dim_{\mathbb{C}}(\mathfrak{m}/\mathfrak{m}^2) = n$.
- Let k be a positive integer, $f(X) = X^6 + kX^3 + 27$ a polynomial with rational coefficients in a single variable X. Find all positive integers k that satisfy the following condition:
 - (*) For every complex number α that satisfies $f(\alpha) = 0$, $\mathbb{Q}(\alpha)/\mathbb{Q}$ is a Galois extension of degree 6.

- Let X be a 3-dimensional, compact and connected C^{∞} manifold. Suppose that there exist C^{∞} vector fields V_1, V_2, V_3 on X satisfying the following two conditions (A) and (B).
 - (A) The tangent vectors $V_{1,p}, V_{2,p}, V_{3,p}$ are linearly independent at every point $p \in X$.
 - (B) There exist C^{∞} functions f, g, h on X satisfying

$$[V_1, V_2] = fV_3, \quad [V_1, V_3] = gV_3, \quad [V_2, V_3] = hV_3.$$

Answer the following questions.

(1) Suppose that a C^{∞} 1-form θ on X satisfies

$$\theta(V_1) = 1, \quad \theta(V_2) = \theta(V_3) = 0.$$

Prove that θ is a closed form.

- (2) Let $H^1(X)$ be the first de Rham cohomology group of X. Prove that $\dim H^1(X) \geq 2$.
- (3) Prove that there exists a point $p \in X$ satisfying h(p) = 0.
- 5 Let $S^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 = 1\}$. Define a map $f: S^2 \times S^2 \to \mathbb{R}$ by

$$f((x_1, x_2, x_3), (y_1, y_2, y_3)) = x_3 + y_3.$$

Answer the following questions.

- (1) Compute the homology groups of $f^{-1}(0)$ with integer coefficients.
- (2) Compute the homology groups of $f^{-1}(1)$ with integer coefficients.

Let Φ be a continuous and non-decreasing convex function on the interval $[0,\infty)$. Suppose further that $\Phi(0)=0$ and $\Phi(t)\geq t$ for every $t\in[0,\infty)$. Let \mathcal{L} be defined as

$$\mathcal{L} = \left\{ f \middle| \begin{array}{l} f \text{ is a real-valued Lebesgue measurable function on } \mathbb{R} \text{ and} \\ \text{there exists } \lambda > 0 \text{ such that } \int_{\mathbb{R}} \Phi \left(\frac{|f(x)|}{\lambda} \right) dx \leq 1 \end{array} \right\}.$$

For $f \in \mathcal{L}$, let ||f|| be defined as

$$||f|| = \inf \left\{ \lambda > 0 \mid \int_{\mathbb{R}} \Phi\left(\frac{|f(x)|}{\lambda}\right) dx \le 1 \right\}.$$

Answer the following questions.

- (1) Show that $\int_{\mathbb{R}} |f(x)| dx \le ||f||$ for any $f \in \mathcal{L}$.
- (2) Let $f, g \in \mathcal{L}$. Show that $f g \in \mathcal{L}$ and $||f g|| \le ||f|| + ||g||$.
- (3) Suppose that a sequence $\{f_m\}_{m=1}^{\infty}$ in \mathcal{L} satisfies the following property: For every $\varepsilon > 0$, there exists a positive integer N such that, for any $m \geq N$ and $n \geq N$, $||f_m - f_n|| < \varepsilon$ holds.

Show that there exists an element f of \mathcal{L} such that $\lim_{m\to\infty} ||f_m - f|| = 0$.

[7] Let H be a Hilbert space, and let H_1, H_2, \ldots be mutually orthogonal finite dimensional subspaces of H satisfying

$$\left(\bigcup_{n=1}^{\infty} H_n\right)^{\perp} = \{0\}.$$

For a positive integer n, we denote by P_n the orthogonal projection from H onto H_n . For an integer $n \leq 0$, we set $P_n = 0$.

Let $T \colon H \to H$ be a bounded linear operator satisfying the following conditions:

- (i) $\lim_{n\to\infty} ||TP_n|| = 0.$
- (ii) Letting $a_n = \sup_{k \ge 1} ||P_{n+k}TP_k||$, we have

$$\sum_{n\in\mathbb{Z}}a_n<\infty.$$

Here for an operator A, we denote by ||A|| the operator norm of A.

For $n \in \mathbb{Z}$, we define $S_n : H \to H$ by

$$S_n x = \sum_{k=1}^{\infty} P_{n+k} T P_k x, \quad x \in H.$$

- (1) Show that $||S_n|| \le a_n$ holds.
- (2) Show that S_n is a compact operator.
- (3) Show that T is a compact operator.

8 Let $u: [0, \infty) \times \mathbb{R} \to \mathbb{R}$ be a C^4 function satisfying the equation

$$\frac{\partial u}{\partial t}(t,x) + \frac{\partial^4 u}{\partial x^4}(t,x) = 0$$

on $(0, \infty) \times \mathbb{R}$. In addition, assume the following (i), (ii).

(i) For $t \geq 0$,

$$\sup_{x \in \mathbb{R}} (1+x^2)|u(t,x)|, \quad \sup_{x \in \mathbb{R}} (1+x^2) \left| \frac{\partial^j u}{\partial x^j}(t,x) \right| \quad (j=1,2,3,4), \text{ and}$$

$$\sup_{x \in \mathbb{R}} (1+x^2) \left| \frac{\partial u}{\partial t}(t,x) \right|$$

are finite and continuous with respect to t.

(ii)
$$\int_{\mathbb{R}} u(0,x) \, dx \neq 0.$$

Prove that there exist positive real numbers C_1, C_2 such that for all $t \geq 1$ we have

$$C_1 t^{-1/4} \le \sup_{x \in \mathbb{R}} |u(t, x)| \le C_2 t^{-1/4}.$$

 $\boxed{9}$ Let $\varepsilon \geq 0$, and let the function $H \colon \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$H(x,y) = (x+y+1)(x+y-1)(x-y+1)(x-y-1).$$

Let $D \subset \mathbb{R}^2$ denote the domain enclosed by the square with vertices (1,0), (0,1), (-1,0) and (0,-1). We consider the following differential equations on \mathbb{R}^2 .

$$\begin{cases} \frac{dx}{dt} = \frac{\partial H}{\partial y}(x, y) - \varepsilon \frac{\partial H}{\partial x}(x, y) H(x, y), \\ \frac{dy}{dt} = -\frac{\partial H}{\partial x}(x, y) - \varepsilon \frac{\partial H}{\partial y}(x, y) H(x, y). \end{cases}$$
(*)

Answer the following questions:

- (1) Let $\varepsilon = 0$. Show that if (x(t), y(t)) is a solution of (*) then (-x(-t), y(-t)) and (x(-t), -y(-t)) are also solutions of (*).
- (2) Let $\varepsilon = 0$, and choose $0 < x_0 < 1$. Show that the solution of (*) is periodic for $(x(0), y(0)) = (x_0, 0)$.
- (3) Let $\varepsilon > 0$, and choose $(x_0, y_0) \in D$. Describe the asymptotic behavior of the solution of (*) as $t \to \infty$ for $(x(0), y(0)) = (x_0, y_0)$.

Let us consider an incompressible fluid in the upper plane $\mathbb{H} = \{(x,y)|y>0\}$. Fluid motion is driven by oscillation of the boundary at y=0 in the x direction. Let a point on the boundary located at (x,y)=(a,0) at the initial time t=0 be located at (X(a,t),0) for t>0. Velocity and pressure, $\mathbf{u}=(u(x,y,t),v(x,y,t))$ and p(x,y,t), satisfy the following Stokes equations,

$$\mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = \frac{\partial p}{\partial x},$$

$$\mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) = \frac{\partial p}{\partial y},$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0,$$

and the boundary condition at y = 0,

$$u(x,0,t) = \frac{\partial X(a,t)}{\partial t}\Big|_{a=a(x,t)}, \quad v(x,0,t) = 0,$$

where viscosity μ is a positive constant, and a(x,t) is given as the inverse function of x = X(a,t).

Answer the following questions (1)-(4).

(1) Let us introduce the stream function $\psi(x, y, t)$ as a real-valued function defined by

$$u = -\frac{\partial \psi}{\partial y}$$
, $v = \frac{\partial \psi}{\partial x}$.

Show that the stream function satisfies the following equation

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)^2 \psi = 0.$$

(2) Let the motion of the boundary at y = 0 be given by

$$X(a,t) = a + \epsilon \sin(ka - \omega t),$$

where the constants ϵ , k, and ω are the amplitude, wavenumber and frequency, respectively. Express $\frac{\partial X(a,t)}{\partial t}\Big|_{a=a(x,t)}$ in terms of x and t up to the order of ϵ^2 .

(3) Let us expand the stream function ψ in a power function of ϵ as,

$$\psi = \epsilon \psi_1 + \epsilon^2 \psi_2 + \cdots.$$

Then, obtain ψ_1 by assuming the form of

$$\psi_1 = \Psi(y)\cos(kx - \omega t).$$

(4) Evaluate the time-averaged velocity

$$\langle u \rangle = \frac{1}{T} \int_0^T u \, dt$$

up to the order of ϵ^2 by calculating ψ_2 . Here, $T = \frac{2\pi}{\omega}$ is the period of the oscillation.

Let a_0 , a_1 be integers, and c_1, c_2, \ldots an infinite sequence of integers. For any integers i and j, define $\delta_{ij} = \begin{cases} 1 & (i=j) \\ 0 & (i \neq j) \end{cases}$.

Consider the program shown below. In the program, the expression $X \leftarrow e$ means a substitution that assigns the value of e to X.

```
\begin{split} Z \leftarrow 1; & \ M \leftarrow 0; \\ \mathbf{while} & \ M < 2 \ \mathbf{do} \\ & \ \mathbf{if} & \ M = 0 \ \mathbf{then} \\ & \ \mathbf{if} & \ c_{Z+M} = a_0 \ \mathbf{then} & \ M \leftarrow M + 1 \ \mathbf{else} & \ Z \leftarrow Z + 1 \ \mathbf{endif} \\ & \ \mathbf{else} & \ \mathbf{if} & \ c_{Z+M} = a_1 \ \mathbf{then} \\ & \ M \leftarrow M + 1 \\ & \ \mathbf{else} \\ & \ Z \leftarrow Z + 1 + \delta_{a_0 a_1}; \ M \leftarrow 0 \\ & \ \mathbf{endif} \\ & \ \mathbf{done} \end{split}
```

For this program, give a condition I which satisfies the following properties (A) and (B).

- (A) I is a loop invariant for the while loop in this program.
- (B) Whenever $I \wedge \neg (M < 2)$,

$$(c_Z = a_0) \land (c_{Z+1} = a_1) \land \forall i. (1 \le i \le Z \Rightarrow (c_i \ne a_0 \lor c_{i+1} \ne a_1))$$

holds.

- Let G = (V, E) be a finite undirected graph with $r \in V$ and let k be a positive integer. Suppose that E can be partitioned into k edge sets E_1, \ldots, E_k such that each E_i is the edge set of a spanning tree in G. Let D = (V, A) be a directed graph that is obtained from G by replacing each undirected edge $\{u, v\} \in E$ with a directed edge (u, v) or (v, u). Show that the following are equivalent.
 - (1) For any nonempty $X \subseteq V \setminus \{r\}$, D contains at least k directed edges from $V \setminus X$ to X.
 - (2) In D, the indegree of r is 0 and, for any $v \in V \setminus \{r\}$, the indegree of v is k.
- 13 Answer the following questions.
 - (i) Consider a one-dimensional unit-mass harmonic oscillator with its angular frequency $\omega(t) > 0$ depending on time $t \in \mathbb{R}$. The Hamiltonian in classical mechanics of the oscillator is given by $\mathcal{H}(t) = \frac{1}{2} (p^2 + \omega(t)^2 q^2)$, $(p,q) \in \mathbb{R}^2$, where p and q represent momentum and position respectively. Suppose that a solution (p(t), q(t)) to Hamilton's canonical equations and a real solution $\xi(t)$ to the auxiliary differential equation

$$\ddot{\xi}(t) + \omega(t)^2 \xi(t) = \frac{1}{\xi(t)^3}$$

are given. Then, show that

$$\mathcal{I}(t) = \frac{1}{2} \left\{ \left(\xi(t) p(t) - \dot{\xi}(t) q(t) \right)^2 + \left(\frac{q(t)}{\xi(t)} \right)^2 \right\}$$

is conserved, namely, $\dot{\mathcal{I}}(t) = 0$.

(ii) Now we study the quantum version of the above. The momentum operator P and the position operator Q satisfy the canonical commutation relation [Q, P] = i where we set $\hbar = 1$ and $i = \sqrt{-1}$. The Hamiltonian can be expressed as $H(t) = \frac{1}{2} (P^2 + \omega(t)^2 Q^2)$. The unitary time-evolution operator U(t) satisfies

$$\dot{U}(t) = -iH(t)U(t), \quad U(0) = 1.$$

Put $P(t) = U(t)^{\dagger} P(0)U(t)$, $Q(t) = U(t)^{\dagger} Q(0)U(t)$, P(0) = P, Q(0) = Q and let I(t) be the operator obtained from $\mathcal{I}(t)$ by replacing p(t) by P(t) and q(t) by Q(t). Furthermore, let

$$A_{\pm}(t) = \frac{1}{\sqrt{2}} \left\{ \frac{Q(t)}{\xi(t)} \mp i \left(\xi(t) P(t) - \dot{\xi}(t) Q(t) \right) \right\}.$$

Verify the commutation relation $[A_-(t),A_+(t)]=1$. Prove that I(t) can be expressed as $I(t)=A_+(t)A_-(t)+\frac{1}{2}$.

(iii) Verify that $\dot{I}(t) = 0$ by showing that $A_{\pm}(t)$ satisfy

$$\dot{A}_{\pm}(t) = \frac{\pm i}{\xi(t)^2} A_{\pm}(t).$$