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Abstract

Loewner equation is a differential equation for conformal mappings
that can be used to describe evolution of a family of simply connected
planar domains. It was introduced by C. Loewner in 1923 in his work
on the Bieberbach conjecture. Oded Schramm observed and conjec-
tured in 2000 that scaling limit of many two-dimensional lattice mod-
els in statistical physics can be described by Loewner evolutions with
Brownian motions as the driving function. Many of these conjectures
are latter confirmed in a series of joint work by G. Lawler, O. Schramm
and W. Werner and by S. Smirnov. On the other hand, Y. Komatu
extended Loewner equation to circularly slit annuli in 1950 but in the
left derivative sense. The aim of this series of lectures is to survey
some recent progress in the study of Komatu-Loewner evolutions and
its stochastic counterpart in the canonical slit domains, with emphasis
on probabilistic methods.
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1 Introduction

1.1 Loewner equation and SLE

We begin with a short review on the classical results originating from Loewner
[22] of 1923. We use a symbol H to denote the upper half-plane { z ∈
C ; =z > 0 } in the complex plane C. Let γ(t) be a simple curve such
that γ(0) ∈ ∂H and γ(0, t] ⊂ H. Then the domain H \ γ(0, t] is simply
connected. By the Riemann mapping theorem, there exists a conformal
mapping gt : H \ γ(0, t]→ H, which is unique up to some normalization. We
adopt the hydrodynamic normalization at infinity : limz→∞(gt(z) − z) = 0.
By this normalization, the point at infinity is mapped to itself by gt, and the
other part of “boundary” of H\γ(0, t] is mapped to ∂H. Here, we regard the
Jordan arc γ(0, t) to be split into its “left” and “right” sides as in Figure 1. In
this figure, gt is extended to a homeomorphism between the red “boundary
curves” of H \ γ(0, t] and of H. (See e.g. Chapter 14, Section 3 of [13] for the
boundary correspondence induced from conformal mappings.) In particular,
the limit ξ(t) := gt(γ(t)) = limz→γ(t) gt(z), the image of the tip of the curve γ,
always exists. Viewed as a function of t, it will be called the driving function
below.

In the previous paragraph, limz→ξ =gt(z) = 0 if ξ ∈ ∂H \ {γ(0)}, where
=gt(z) is the imaginary part of gt(z). Hence gt is extended to an analytic
function on C\ (γ[0, t]∪{ z ; z ∈ γ[0, t] }) by the Schwarz reflection principle.
On account of the hydrodynamic normalization at∞, the Laurent expansion

gt(z) = z +
c(t)

z
+ o

(
1

z

)
near ∞
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Figure 1: A version of the Riemann mapping theorem.

holds. The coefficient c(t) of the z−1 term is positive and measures the “size”
of the trace γ(0, t]. In fact, most of the above-mentioned statements on gt
and c(t) hold if we replace the simple curve γ by a general family of increasing
compact H-hulls Kt. Here, a bounded set Kt ⊂ H is called a compact H-
hull if H \ Kt is a simply connected domain. See Figure 1. The associated
coefficient c(t) is called the half-plane capacity of Kt.

For a simple curve γ, the half-plane capacity c(t) is known to be a strictly
increasing continuous function of t. If γ is reparametrized so that c(t) = 2t,
then gt(z) satisfies the (chordal) Loewner equation

∂gt(z)

∂t
=

2

gt(z)− ξ(t)
, g0(z) = z. (1.1)

Here, again ξ(t) = gt(γ(t)). Note that, for each fixed initial point z ∈
H, this is an ordinary differential equation with “unknown variable” gt(z).
Conversely, given an arbitrary continuous function ξ(t) taking values in ∂H =
R, we can solve the initial value problem (1.1) for any z ∈ H up to the
maximal time tz ∈ (0,∞]. Since the right hand side of (1.1) is Lipschitz
in gt(z), such a solution is unique. Let Dt = { z ∈ H ; tz > t }. Then
Dt is a simply connected domain, gt : Dt → H, z 7→ gt(z) is a conformal
mapping, and Kt = H \Dt is a compact H-hull that is increasing in t. As
a conclusion, we can say that the time-evolution of an increasing family of
two-dimensional compact sets Kt is fully described by the one-dimensional
real-valued function ξ(t) via (1.1), which will be of great use in the analysis
of Kt.

O. Schramm [27] in 2000 investigated the case ξ(t) =
√
κBt

d
= Bκt, κ > 0
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in (1.1). Here, Bt is the one-dimensional standard Brownian motion. The
resulting maps gt (and hulls Kt) are called the stochastic Loewner evolution
or Schramm–Loewner evolution with parameter κ. We abbreviate it to SLEκ.
SLEκ on any simply connected domain D is further defined by pulling the
above hulls Kt back to D by an appropriate conformal mapping. SLEκ so
defined is a powerful tool to study two-dimensional critical systems in statis-
tical physics. Indeed, by Schramm [27], Lawler, Schramm and Werner [21],
Smirnov [28] and many other authors, it has been proved to be the scaling
limit of various lattice models in two dimension. Here is part of the list of
the corresponding lattice models:

SLE2 loop-erased random walk [27, 21]
SLE8 uniform spanning tree [27, 21]
SLE6 critical percolation exploration process [28]
SLE3 critical Ising model [6]

SLE8/3 self-avoiding random walk (conjecture)

1.2 Extension to multiply connected domains

We consider the case in which the domain is multiply connected. In Figure 2,
a simple curve γ now lies in an upper half-plane D with two holes removed.
Although the domain D \ γ(0, t] is triply connected, not simply connected, a
generalization of Riemann’s mapping theorem is still available. There exists
a unique conformal mapping gt : D \ γ(0, t] → Dt with the hydrodynamic
normalization at ∞, and Dt is an upper half-plane with two horizontal slits
removed. We call such an upper half-plane with finitely many slits removed
a standard slit domain. Note that, although standard slit domains are ade-
quate for our theory, there are other choices of “canonical domains” such as
circularly slit disks and circularly slit annuli (Figure 3).

𝜉 𝑡

𝐶1 𝑡

𝜕ℍ

𝑔𝑡

𝐷 𝐷𝑡

𝛾 𝑡

𝐶2 𝑡

Figure 2: A simple curve γ in a triply connected domain.
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Figure 3: A circularly slit disk and circularly slit annulus.

Different from the simply-connected case, canonical domains are not nec-
essarily conformally equivalent to each other even if they are of the same
“type”. For example, every doubly connected domain is conformally equiv-
alent to an annulus, and two annuli are conformally equivalent if and only if
the ratios between their outer and inner radii are equal. For this reason, in
the multiply-connected case above, the characterization of the target domain
Dt enters into the picture. As γ(0, t] grows in D, the standard slit domain
Dt, which is a representative of the conformal equivalence class of D \γ(0, t],
evolves.

In 1950, Y. Komatu [17] studied the Loewner equation on multiply con-
nected domains. He derived the Loewner-type equation for gt(z) on circular
slit annuli. On the basis of Komatu’s idea, Bauer and Friedrich [3] studied
the chordal case in which D is a standard slit domain as well as Dt and
derived the (chordal) Komatu–Loewner equation

∂tgt(z) = −2πΨDt(gt(z), ξ(t)). (1.2)

They defined the vector field ΨDt(z, ξ) on the right-hand side of (1.2) purely
in terms of complex analysis. On the other hand, G. Lawler [19] gave a prob-
abilistic description of ΨDt . He introduced the excursion reflected Brownian
motion (ERBM) and identified ΨDt(z, ξ) with the complex Poisson kernel of
ERBM. In these lectures, we shall use the Brownian motion with darning
(BMD) instead of ERBM. In fact, if the underlying domain is doubly con-
nected, then BMD coincides with ERBM in law (see the paragraph just after
Theorem 2.7).

Let us give a close look at (1.2). Its right-hand side depends not only
on the driving function ξ(t) but also the target domain Dt via the kernel
ΨDt . It turns out that given the driving function and an initial standard slit
domain D0, Dt together with gt(z) is a part of the solution to (1.2). Since Dt

is a standard slit domain, it is completely determined by specifying the slits
Cj(t), j = 1, . . . , N (N = 2 in Figure 2), and Cj(t)’s are determined by the
coordinates of their endpoints. Thus, our problem is to find the differential
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equation for the endpoints of Cj(t). In addition, we have another problem
on the t-differentiablity of gt(z). In the above mentioned works, the equation
(1.2) is established only in the sense of left t-derivate of gt(z). Equations in
this sense do not have unique solutions. In order to uniquely characterize
the solution, we need to establish (1.2) in a genuine derivative sense.

These lectures are based on the following three recent papers: Chen,
Fukushima and Rohde [11], Chen and Fukushima [10], and Chen, Fukushima
and Suzuki [12]. We shall see how probabilistic methods, such as BMD, mar-
tingale theory and so on, help us to settle the problems in the previous
paragraph. Moreover, as an analogue to SLEκ, we shall define the stochastic
Komatu–Loewner evolution (SKLE for brevity) and study its property. Fi-
nally, note that we do not discuss the convergence of discrete random models
to SKLEs. On multiply connected domains, there are only a few results on
loop-erased random walks. Other discrete models are yet to be investigated.

2 Conformal mapping and Brownian motion

with darning

2.1 Conformal mappings

Let D ⊂ C be an open set. A function f : D → C is analytic if the limit

f ′(z) = lim
∆z→0

f(z + ∆z)− f(z)

∆z

exists for every z ∈ D. Here are famous properties of analytic functions:

Fact. (1) An analytic function is C∞.

(2) Let u and v be the real and imaginary parts, respectively, of an analytic
function f , that is, f(z) = u(z) + iv(z). By the definition of the
derivative f ′, we have

f ′(z) = ux + ivx =
1

i
uy + i · 1

i
vy

= vy − iuy.

Hence the Cauchy–Riemann equation holds:{
ux = vy

uy = −vx
in D,

which implies ∆u = ∆v = 0 in D. In other words, u and v are harmonic
in D.
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Question. What kind of harmonic functions are the real (or imaginary) part
of analytic functions in a domain D?

Answer. Those functions which enjoy the zero period condition in D.

𝑧0

𝑧

𝑛 𝑡

𝐷

Figure 4: A curve γ, tangent (x′, y′) and normal ~n.

Let us recall how this condition is deduced. Fix a base point z0 ∈ D.
For any z ∈ D, we take a smooth curve γ connecting z0 to z with γ(t) =
(x(t), y(t)), 0 ≤ t ≤ T . Here, we identify a complex number x+ iy ∈ C with
the two-dimensional vector (x, y) ∈ R2. For an analytic function f = u+ iv
in D, we have

u(z)− u(z0) =

∫ T

0

d

dt
u(x(t), y(t)) dt =

∫ T

0

(uxx
′(t) + uyy

′(t)) dt

=

∫ T

0

(ux, uy) · (x′(t), y′(t)) dt =

∫ T

0

(vy,−vx) · (x′(t), y′(t)) dt

= −
∫ T

0

(vx, vy) · (y′(t),−x′(t)) dt

= −
∫ T

0

∇v ·

=~n(t)︷ ︸︸ ︷(
y′(t)√

(x′(t))2 + (y′(t))2
− x′(t)√

(x′(t))2 + (y′(t))2

)
dσ

= −
∫
γ

∂v

∂n
dσ. (2.1)

Here, dσ =
√

(x′(t))2 + (y′(t))2 dt is the arc length measure, and ~n(t) is the
unit normal vector of γ. Hence, if γ is a closed smooth curve in D, then∫

γ

∂v

∂n
dσ = 0.
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This integral is called the period of v (around the hole surrounded by γ).
Thus, v has zero period.

Conversely, if v is a harmonic function in D satisfying the zero period
condition, we can use (2.1) to define a function u(z). By letting γ approach to
z horizontally and vertically as in Figure 4, we obtain ux = vy and uy = −vx.
Hence f = u+ iv is analytic and unique up to an additive real constant.

If D is simply connected, then the zero period condition always holds by
the Green–Gauss formula∫

D

∇v · ∇ϕ+

∫
D

∆v · ϕ =

∫
∂D

∂v

∂n
ϕ dσ.

Question. Find an infinitesimal generator L or a diffusion Xt in D so that
its harmonic functions on D are harmonic functions in the classcal sense
and have the zero period condition.

Answer. Brownian motion with darning (abbreviated as BMD).

Reflected Brownian motion (RBM for short) has the same property owing
to the Neumann boundary condition, but we rule it out here. Indeed, the
Neumann condition is too strong to capture the property of analytic functions
in D. Moreover, we should note the following observation as well: Let gt be
the conformal mapping onto a standard slit domain in Figure 2. Then, the
imaginary part v = =gt takes a constant value on each Ki. We shall see
below that such a boundary value property is reflected in (the domain of) L
or Xt.

2.2 Brownian motion with darning

What is Brownian motion with darning ( 补丁布朗运动 )? “Darning” (补
丁) means “mending holes”. In what follows, we “darn” the holes of a space
and define a “Brownian motion” on this space.

Let E be a domain in Rd. Until the end of the next subsection, we work
with a general dimension d. Let K1, K2, . . . , KN be N disjoint non-polar
compact subsets of E. In two-dimension, the condition for a connected com-
pact set to be non-polar is that it contains more than one point. We set
D = E \

⋃N
j=1Kj. Note that D can be disconnected. We identify each Ki

with a single point a∗i and consider the new state space D∗ = D∪{a∗1, . . . , a∗N}
equipped with the quotient topology1. Let m be the Lebesgue measure

1In other words, a fundamental neighborhoods system of each point a∗i is given by
{(U \ Ki) ∪ {a∗i } ; U is an open subset of E containing Ki}. In particular, D∗ is a lo-
cally compact, Hausdorff, and second countable space and thus is metrizable. (However,

8



in D, and we define a measure m∗ on D∗ by m∗(A) = m(A ∩ D), i.e.,
m∗({a∗1, . . . , a∗N}) = 0.

𝐸
𝐾1

𝐾2

𝐾3 𝑎2
∗

𝐷∗

Figure 5: The quotient space D∗ of E and the BMD on it.

Definition 2.1. A Brownian motion with darning (BMD) X∗t is an m∗-
symmetric diffusion on D∗ such that

1) Its part process in D is the killed Brownian motion in D;

2) It admits no killings on {a∗1, . . . , a∗N}.

Remark 2.2. 1) “m∗-symmetric” means the transition semigroup of X∗t
is symmetric in L2(D∗,m∗).

2) “No killings on {a∗1, . . . , a∗N}” means P
(
X∗ζ− = a∗i , ζ <∞

)
= 0 for all

i. Here, ζ is the lifetime of X∗t .

3) Since K∗ = {a∗1, . . . , a∗N} satisfies m∗(K∗) = 0, X∗t spends zero time on
K∗.

We list some examples:

Example 2.3. Let E = R2, N = 1 and K1 be a compact set with connected
boundary. Then D∗ = (R2 \K1) ∪ {a∗1} is still homeomorphic to the plane.

Example 2.4. Let E = R2, N = 1 and K1 be an annulus. Then D∗ =
(R2 \K1) ∪ {a∗1} is homeomorphic to the plane with a sphere sitting on top
of it. See Figure 6.

Example 2.5. Let E = R, N = 1 and K1 = [0, 1/3] ∪ [2/3, 1]. Then
D∗ = (R \K1) ∪ {a∗1} is homeomorphic to a knotted curve. See Figure 7.

The following two theorems tell us that BMD is an answer to the question
at the end of Section 2.1:

(D∗,m∗) does not have some of the nice geometric properties which often appear in the
study of metric measure spaces. For example, it does not enjoy the volume doubling
property with respect to the intrinsic metric.)
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Figure 6: A sphere touches the plane at the origin.

0 1
3

2
3

1

Figure 7: A knotted curve.

Theorem 2.6 (Chen and Fukushima [8, Theorem 7.7.3]). BMD exists and
is unique in law.

Theorem 2.7. A continuous (d = 2) or quasi-continuous (d ≥ 3) function
on D∗ is X∗-harmonic if and only if it is a harmonic function in the classical
sense in D and has zero period condition.2

Concerning the uniqueness in Theorem 2.6, we note that, if E = C
and K = D, then BMD coincides with excursion reflected Brownian motion
(ERBM for short) introduced by Lawler [19]. Since its generator as a strong
Feller process is specified by Drenning [14], we can prove that BMD and
ERBM has the same law. This case corresponds to the one-point extension
of Brownian motion. See [8, Chapter 7] and [9].

To prove Theorem 2.6, we shall take a Dirichlet form approach. Imagine
that there is an electronic network with some potential. Then collapsing Ki

into a∗i corresponds to shorting the network. In the Dirichlet form approach,
this intuition is realized as follows: We start at standard Brownian motion
on Rd. As is well known, its generator is (1/2)∆, and its Dirichlet form
(D,FRd

) is given by

D(u, v)

(
=

(
−1

2
∆u, v

)
L2(Rd)

)
=

1

2

∫
Rd

∇u · ∇v dx,

FRd

= W 1,2(Rd) = { f ∈ L2 ; ∇f ∈ L2 }.

The same Dirichlet integral corresponds to absorbing Brownian motion XE

2We revisit this theorem in Theorem 2.9.
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on E, but its domain of definition is replaced by

FE
(
= { f ∈ W 1,2(Rd) ; f = 0 on Ec }

)
= C∞c (E)

D1
.

Here, D1 = D + (·, ·)L2 . Now, the bilinear form (E ,F∗) defined in the follow-
ing way represents the “short circuit”:

F∗ = { f ∈ FE ; f = const. on Ki, 1 ≤ i ≤ N } ⊂ L2(D∗,m∗)

and

E(f, f) = D(f, f) =
1

2

∫
D

|∇f |2 dx+
1

2

∫
⋃

iKi

|∇f |2 dx︸ ︷︷ ︸
=0

=
1

2

∫
D

|∇f |2 dx.

The bilinear form (E ,F∗) is actually a regular (and strongly local) Dirich-
let form on L2(D∗,m∗), and so there is a unique diffusion X∗t associated
with it. This process is exactly BMD. For the law uniqueness, see e.g. [11,
Theorem 2.2].
F∗ is also written as follows:

F∗ = {u ∈ W 1,2
0 (E) ; u = const. on Ki q.e. }

= W 1,2
0 (D) + span{u1, . . . , uN}, (2.2)

where ui(x) = Ex
[
e−σK ; XE

σK
∈ Ki

]
and K =

⋃
iKi. (Throughout these lec-

tures, the symbol σB stands for the first hitting time of a stochastic process,
specified by the context, to a set B.) Each ui is a continuous function on D
with boundary values

ui(x) =


1 on Ki

0 on Kj with j 6= i

0 on ∂E

and satisfies (1 − ∆)ui = 0. In addition, if we set ϕi(x) = Px
(
XE
σK
∈ Ki

)
,

then ui−ϕi = 0 on K ∪∂E. We have used ui rather than ϕi in (2.2) because
ui belongs to L2(D∗,m∗) while ϕi does not.

Let (A∗, D(A∗)) be the L2-generator of X∗ (or (E ,F∗)). The condition
for u to be an element of D(A∗) is that there exists f ∈ L2(D∗,m∗) such that
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E(u, v) = −(f, v)L2 for all v ∈ F∗. (In this case A∗u = f .) Hence we have

u ∈ D(A∗)

⇐⇒ 1

2

∫
D

∇u · ∇v dx = −
∫
D

fv dx, ∀v ∈ C∞c (D) ∪ {u1, . . . , uN}

⇐⇒


1

2
∆u = f in D as a distribution

1

2

∫
D

∇u · ∇ui dx = −
∫
D

fui dx, i = 1, . . . , N.
(2.3)

Now, we define the flux at a∗i by

N (u)(a∗i ) =̂

∫
D

(∇u · ∇ui + ui∆u) dx.

Then the second identity in (2.3) is equivalent to

N (u)(a∗i ) = 0.

We note that, when ∂Ki is smooth,

N (u)(a∗i ) =

∫
∂Ki

∂u

∂n
dσ

by the Green–Gauss formula. (Compare this condition with RBM. The Neu-
mann boundary condition is given by ∂u/∂n = 0 on the boundary.)

2.3 Harmonic functions of X∗

Let O ⊂ D∗ be an open set. We say that a function u is X∗-harmonic in O
if, for any relatively compact connected open subset O1 of O,

Ex
[
|u(X∗τO1

)|
]
<∞3 and u(x) = Ex

[
u(X∗τO1

)
]

hold for all x ∈ O1. (The equivalent condition is that u ∈ F∗loc(O) and that
E(u, ϕ) = 0 for all ϕ ∈ F∗O.)

Fact. Suppose that u is X∗-harmonic in O ⊂ D∗ and a∗j ∈ O. Then

lim
x∈O∩D,x→z

u(x) = u(a∗j)

holds for q.e. z ∈ Kj ∩ ∂(O ∩D).

3Here, the symbol τB stands for the first exit time from a set B.
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“Proof”.
u(x) =

(
u(x)− u(a∗j)ϕj(x)

)︸ ︷︷ ︸
“= 0 on Kj”

+u(a∗j)ϕj(x).

Lemma 2.8. Suppose that v is X∗-harmonic in O1 ⊂ D∗. Then for any
relatively compact connected open subset O2 of O1, there exists f ∈ L∞(O1)
with supp[f ] ∩O2 = ∅ such that v = G∗O1

f holds in O2.

This lemma is a concrete form of the classical fact that every harmonic
function in an open set is represented as the potential of some function whose
support is outside this open set.

Proof of Lemma 2.8. Let ϕ ∈ C∞c (O1) be such that ϕ = 1 on O2. Since
ϕv = v on O2, we have

f = −1

2
∆(ϕv) ∈ L∞, supp[f ] ⊂ O1 \O2.

Here, without loss of generality, we may and do assume that (O1 \ O2) ∩
{a∗1, . . . , a∗N} = ∅. G∗O1

f belongs to F∗ and is X∗-harmonic in O2, and
w = ϕv − G∗O1

f is harmonic in O1 \ O2. Hence w is X∗-harmonic in O1.
Now, as w = 0 on ∂O1, we have w = 0 in O1 by the maximal principle. In
particular, v = ϕv = G∗O1

f in O2.

We now look at Theorem 2.7 again.

Theorem 2.9. An E-q.c. function v is X∗-harmonic in an open set O ⊂ D∗

if and only if v is (classically) harmonic in O∩D and has zero period property
at any a∗i ∈ O.

If all the points of K =
⋃
iKi are regular to itself, i.e., K ⊂ Kr, then

“E-q.c.” can be replaced by “continuous”. In two-dimension, this is always
true (see Theorem 7.2 in Chapter 2 of [24]).

Proof of Theorem 2.9. Without loss of generality, we may and do suppose
that O contains exactly one a∗1. For convenience, let us assume K1 ⊂ Kr

1 .
Under this assumption, u1(x) = Ex

[
e−σK ; XE

σK
∈ K1

]
is continuous at a∗1

and thus on O.

“Only if” part. We set ηε = ∂{u1 > 1−ε}. Note that {u1 > 1−ε} ↘ K1

as ε↘ 0.
We fix an ε0 > 0 small enough. By Lemma 2.8, we can find a function f

with supp[f ]∩{u1 > 1− ε0} = ∅ such that v = G∗Of holds. We can also find
a decreasing sequence (εn)n=1,2,... with ε0 > εn ↘ 0 such that every ηεn is a

13



smooth closed curve by Sard’s theorem. Thus, the period of v at a∗1 is given
by

lim
n→∞

∫
ηεn

∂v

∂n
dσ = lim

n→∞

1

1− εn

∫
ηεn

∂v

∂n
u1 dσ

= lim
n→∞

1

1− εn

∫
O\int(ηεn )

(∇G∗Of · ∇u1 + ∆G∗Of · u1) dx

=

∫
O\K1

(∇G∗Of · ∇u1 + ∆G∗Of · u1) dx

= N (G∗Of)(a∗1) = 0.

Here, we have used the Green–Gauss formula.

“If” part. Since this can be proved by a similar reasoning, we omit the
proof here. See [7] for the detail.

2.4 Probabilistic representation of conformal mappings

We return to the case d = 2 and identify R2 with C. Recall from Section 2.1
that, if v has zero period around each Kj, then a harmonic conjugate u can
be defined by

u(z)− u(z0) =

∫
γ

∂v

∂n
dσ, z ∈ D.

Here, z0 ∈ D is fixed, and γ is a curve connecting z0 to z in D. f(z) =
u(z)+iv(z) is an analytic function in D. Conversely, if f = u+ iv is analytic,
then v enjoys the zero period property. Let us apply this relationship to
the following situation: Let F be a compact H-hull (i.e., H \ F is simply
connected) in a triply connected domain D = H \ (K1 ∪K2) (see Figure 8).
There exists a (unique) conformal mapping f from D onto a standard slit
domain (with the hydrodynamic normalization at∞). Then v∗(z) = =f(z) is
harmonic in D and has zero period around K1 and K2. Moreover, v∗ ≡ const.
on each ∂Ki (by the boundary correspondence). Thus, v∗ can be regarded
as a continuous function on D∗ \ F and is X∗-harmonic for the BMD X∗

on D∗. This observation suggests that v∗ should have some probabilistic
representation in terms of BMD.

When the domain has no holes, the above-mentioned idea is known to be
viable. Let X be the BM in H. The hitting probability to Γr = { z = x+ ir ;
x ∈ R } with r > 0 is obtained from the gambler’s ruin estimate

hr(z) = Pz (σΓr <∞) =
y

r
.

14



𝜕ℍ

𝑓

𝐷

𝐾1

𝐾2

𝐹

Figure 8: A conformal mapping f that “flatten” a compact H-hull F .

We put vr(z) = Pz (σΓr < σF ) as well. See Figure 9. To obtain a harmonic
function with boundary value 0 on F , we amplify vr by multiplying r, as
suggested by the expression of hr, and take the limit:

Claim. limr→∞ rvr(z) = v(z) exists and is harmonic in H \ F .

Indeed, since the strong Markov property implies

rhr(z) = rvr(z) + Ez [rhr(XσF ) ; σF < σΓr ] ,

v is expressed as

v(z) = lim
r→∞

rvr(z) = y − Ez [=XσF ; σF <∞] . (2.4)

Now, let u be a harmonic conjugate of v in the simply connected domain
H \ F . f(z) = u(z) + iv(z) is analytic in H \ F . Thus, if f is one-to-one,
then f : H \ F → H is conformal.4 Indeed, since v(z) ∼ y near ∞, it is
one-to-one near ∞. Then so is it on H \ F by the degree theorem, which is
later described.

𝜕ℍ

𝑓 = 𝑢 + 𝑖𝑣

Γ𝑟

𝐹 𝐹

𝑧 𝑟

ℍ

Figure 9: The set Γr and Brownian motion X.

The same procedure goes well even in the case of multiple connectivity.
We denote by P∗ the law of BMD in D = H \

⋃N
j=1Kj or, more precisely, in

D∗ = D ∪ {a∗1, . . . , a∗N}.
4In this case, we can easily show the surjectivity of f , noting that ∂f(H \ F ) must be

obtained by ∂H ∪ {∞} on account of (2.4).
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Theorem 2.10. Define v∗(z) = limr→∞ rP∗z (σr < σF ).

1) v∗ is well-defined on D∗ \ F and Z∗-harmonic.5 It follows that

v∗(z) = v(z) +
N∑
j=1

PH
z

(
σK < σF , Z

H
σK
∈ Kj

)
v∗(a∗j), z ∈ D \ F.

Here, v(z) = =z − EH
z [=ZH

σF∪K
; σF∪K <∞].

2) v∗ has a unique harmonic conjugate u∗ such that f(z) = u∗(z) + iv∗(z)
is analytic in D and enjoys

f(z) = z +
a

z
+ o

(
1

z

)
near ∞

for some a ≥ 0.

We sketch out the proof of Theorem 2.10. Put

v∗r(z) =̂ P∗z(σΓr < σF )

= PH
z (σΓr < σF∪K) +

N∑
j=1

P∗z(σK∗ < σΓr∪F , Z
∗
σK∗

= a∗j)v
∗
r(a
∗
j). (2.5)

By the same proof as that of the previous claim, rPH
z (σΓr < σF∪K) converges

to v(z) in Theorem 2.10 as r → ∞. We can also show the convergence of
rv∗r(a

∗
j) as follows: Let ηi be a smooth simple closed curve surrounding Ki

and νi be the harmonic measure on ηi of Z∗ starting from a∗i (see Figure 10).
Taking the integral in (2.5) on ηi with respect to νi, we have

v∗r(a
∗
i ) =

∫
ηi

PH
z (σΓr < σF∪K) νi(dz)

+
N∑
j=1

∫
ηi

P∗z(σK∗ < σΓr∪F , Z
∗
σK∗

= a∗j) νi(dz) · v∗r(a∗j).

Using this system of linear equations of v∗r(a
∗
i ), i = 1, . . . , N , we can prove

that rv∗r(a
∗
i ) converges as r →∞. See [11, Lemma 10.2] for the detail.

Next, we show that the analytic function f(z) in Theorem 2.10 is one-to-
one and onto.

5Only here and in Section 6.1, we change the notation according to [11, 12]. ZH =
((PH

z )z∈H, (Z
H
t )t≥0) is the absorbing BM in H, and Z∗ = ((P∗z)z∈D∗ , (Z∗t )t≥0) is the BMD

in D∗.
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𝜕ℍ

𝐷

𝐾1

𝐾2

𝐹

quotient

𝐷∗

𝑎1
∗

𝑎2
∗𝜂1

𝜂2

Figure 10: A simple closed curve ηi around a∗i .

Definition 2.11. Let X, Y be topological spaces. A continuous mapping
f : X → Y is said to be proper if the pre-images of compact sets are compact.

Lemma 2.12. Let D1, D2 be connected open subsets of C = C ∪ {∞} and
f be an analytic function in D1. If f is a proper map from D1 to D2, then
there is a finite number d such that each w ∈ D2 has precisely d pre-images
in D1, counting multiplicities.

Theorem 2.13. Let D1, D2 be connected open subsets of C and f be an
analytic function in D1. Assume that Dc

2 has empty interior, that f(∂D1) =
∂D2 and that there is a point w0 ∈ D2 such that f−1(w0) = {z0}, counting
multiplicities. Then f is a conformal map from D1 onto D2. Here,

f(∂D1) =
⋂

KbD1

f(D1 \K)

(the set of the limit points of f(z) as z → ∂D1).

Roughly speaking, this theorem is proved as follows: Using the assump-
tion that Dc

2 has empty interior, we can show that f−1(D2) is a connected
open subset of D1 and that f : f−1(D2)→ D2 is proper. Then it is one-to-one
and onto by Lemma 2.12. Finally, it follows that f−1(D2) = D1. Here, the
last claim is not true if the degree is more than one. For example, consider
f(z) = z2 with D1 = D2 = C \ [0, 1]. In this case, f−1(D2) = C \ [−1, 1].

Theorem 2.14. The analytic function f in Theorem 2.10 is a conformal
mapping from D \ F onto a standard slit domain.

Theorem 2.14 itself is quite classical, but the contribution of our argument
lies in the fact that it gives a useful probabilistic representation of conformal
mappings.

Remark 2.15. Such a conformal mapping as in Theorem 2.14 is unique,
which can be seen as follows: Let ϕ : H \ F → H be a unique6 conformal

6The unique existence of ϕ is commonly known. See [18, Proposition 3.36] for instance.
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mapping with the hydrodynamic normalization at ∞. Then ϕ(D) = H \⋃
i ϕ(Ki). We can show that a conformal mapping f0 from H \

⋃
i ϕ(Ki)

onto a standard slit domain with the hydrodynamic normalization at ∞
exists uniquely by combining [29, Theorem IX.23] with the Schwarz reflection
principle. Since f ◦ ϕ−1 enjoys exactly the same property as f0, we have
f0 = f ◦ ϕ−1, i.e., f = f0 ◦ ϕ. See Figure 11. This reasoning, in particular,
reveals that [23, Remark 2.4] is not very essential to the uniqueness argument.

𝜑

𝐷

𝐾1

𝐾2

𝐹

𝜑 𝐾1

𝜑 𝐾2

𝑓
𝑓0 = 𝑓 ∘ 𝜑−1

ℍ ∖∪𝑖 𝜑 𝐾𝑖

Figure 11: Conformal mappings f , ϕ and f0 = f ◦ ϕ−1.

2.5 Green function and Poisson kernel of BMD

Let D = E \
⋃N
j=1, D∗ = D ∪

⋃N
j=1{a∗j} and X∗ be the BMD in D∗. Here,

E ( C is a sufficiently nice domain (e.g. E = H).
The Green operator G∗ of BMD satisfies, for all f ∈ Cc(D),

G∗f(z) = Ez
∫ ∞

0

f(X∗t ) dt = GDf(z) + Ez[G∗f(X∗σK∗ ) ; σK∗ <∞]

= GDf(z) +
N∑
j=1

G∗f(a∗j)Pz(X∗σK∗ = a∗j , σK∗ <∞)︸ ︷︷ ︸
ϕj(z)

. (2.6)

Here, ϕj(z) is defined as the harmonic measure of the BM XE in E on Kj:
ϕj(z) = Pz(XE

σK
∈ Kj, σK <∞), z ∈ D. Let aij be the period of ϕj around

Ki and A = (aij)ij. Integrate along a smooth simple closed curve ηi around
Ki, we have ∫

ηi

∂GDf

∂n
dσ +

N∑
j=1

G∗f(a∗j)aij = 0.
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Here, n stands for the unit normal on ηi pointing toward Ki. HenceG∗f(a∗1)
...

G∗f(a∗N)

 = −A−1


∫
η1

∂GDf
∂n

dσ
...∫

ηN

∂GDf
∂n

dσ


= −A−1


∫
∂K1

∂GDf
∂n

ϕ1 dσ
...∫

ηN

∂GDf
∂n

ϕN dσ

 = 2A−1

 〈ϕ1, f〉L2(D)
...

〈ϕN , f〉L2(D)

 (2.7)

From (2.6) and (2.7), we obtain the Green function of BMD

G∗(z, w) = GD(z, w) + 2Φ(z)A−1Φ(w)tr

with Φ(z) = (ϕ1(z), . . . , ϕN(z)). In other words, G∗(z, w) is a kernel which
satisfies

G∗f(z) =

∫
D

G∗(z, w)f(w)m(dw)

for any f ∈ Cc(D).

Fact. The period of two functions y 7→ GD(x, y) and y 7→ G∗(a∗i , y) around
Kj are −2ϕj(x) and 2δij, respectively.

From now on, we assume E = H. We define the Poisson kernel K∗(z, w)
of BMD by

K∗(z, ξ) = −1

2

∂

∂n
G∗(z, ξ) z ∈ D, ξ ∈ ∂H.

Here , n stands for the unit normal on ∂H pointing downward.

Lemma 2.16. 1) For any compact interval I ⊂ ∂H, K∗(z, ξ) is jointly
continuous on (H\I)×I, and limz→∞K

∗(z, ξ) = 0 uniformly in ξ ∈ I.

2) For g ∈ Cb(∂H), ∫
∂H
K∗(z, ξ)g(ξ) dξ = Ez[g(X∗ζ−)].

Proof. (1) See [11, Lemma 5.2].
(2) Let h(z) = Ez[g(X∗ζ−)]. h is harmonic with respect to X∗, and h = g on
∂H. For any f ∈ Cc(D), we have

0 = E(h,G∗f) =

∫
D

∇h · ∇G∗f dx

= −
∫
D

h∆G∗f dx−
∫
∂D

h
∂G∗f

∂n
dσ (2.8)
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Here, ∆G∗f = −2f by [11, Lemma 3.3]. In addition, ∂D = ∂H ∪
⋃
i ∂Ki.

Since h is a constant on each ∂Ki, we have∫
∂Ki

h
∂G∗f

∂n
dx = h(a∗i )N (G∗f)(a∗i ) = 0.

Thus, it follows from (2.8) that

0 = 2

∫
D

hf dx−
∫
∂H
h
∂G∗f

∂n
dx.

Noting that h = g on ∂H, we have∫
D

hf dx =
1

2

∫
∂H
g(x)

∂G∗f

∂n
dx =

1

2

∫
∂H
g(x)

∂

∂n

∫
G∗(x, ξ)f(ξ) dξ dx

=

∫
∂H
g(x)

(∫
K∗(ξ, x)f(ξ) dξ

)
dx.

Let fn ∈ Cc(D) be a sequence such that fn dx→ δz(dx). Then

h(z) =

∫
∂H
g(x)K∗(z, x) dx.

We now define the complex Poisson kernel Ψ of BMD. Fix ξ ∈ ∂H. The
function z 7→ K∗(z, ξ) isX∗-harmonic. Hence, there exists a unique harmonic
conjugate u(z, ξ) such that

• Ψ(z, ξ) := u(z, ξ) + iK∗(z, ξ) is analytic;

• limz→∞Ψ(z, ξ) = 0.

Here, we recall the conformal mapping f constructed in Theorems 2.10 and
2.14. Since =f is X∗-harmonic as mentioned at the beginning of Section 2.4,
we can express =f by its boundary value and the Poisson kernel K∗ as in
Lemma 2.16. Then we can also express the original f by Ψ. This observation
is crucial in the next section.

3 Komatu–Loewner differential equations for

multiply connected domains

Let D be a standard slit domain and γ : [0, tγ] → D be a simple curve such
that γ(0) ∈ ∂H and γ(0, tγ] ⊂ D. For each t ∈ [0, tγ], let gt be a unique
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conformal map from D \ γ(0, t] onto a standard slit domain Dt satisfying

gt(z) = z +
at
z

+ o

(
1

|z|

)
at ∞.

For 0 ≤ s < t ≤ tγ, we define

gt,s(z) := gs ◦ g−1
t (z) = z +

as − at
z

+ o

(
1

|z|

)
at ∞.

By the boundary correspondence, the driving function

ξ(t) = gt(γ(t)) = lim
z→γ(t)

gt(z) ∈ ∂H

is well-defined for t ∈ [0, tγ]. Moreover, for 0 ≤ s < t ≤ tγ, there are unique
points β0 = β0(t, s) and β1 = β1(t, s) such that

β0 < ξ(t) < β1, and gt,s(β0) = gt,s(β1) = ξ(s).

Let `t,s = [β0, β1]. Then =gt,s > 0 on `t,s
◦. See Figure 12 for the connection

among the objects so defined.

𝐶1

𝐶2 𝐶1,𝑠
𝐶2,𝑠

𝐶1,𝑡

𝐶2,𝑡

𝑔𝑠

𝑔𝑡

𝑔𝑡,𝑠 = 𝑔𝑠 ∘ 𝑔𝑡
−1

𝜉 𝑠 = 𝑔𝑠 𝛾 𝑠 ∈ 𝜕ℍ

𝑔𝑠 𝛾 𝑠, 𝑡

𝜉 𝑡

𝐷 𝐷𝑠

𝐷𝑡

𝛽0 𝛽1

Figure 12: The conformal mappings gs, gt and gt,s for s < t.

By Schwarz’s reflection, we can extend gt,s to an analytic function on

C \ Γt. Here, Γt =
⋃N
k=1Ck,t ∪ π

(⋃N
k=1 Ck,t

)
∪ `t,s, and π is the mirror

reflection relative to ∂H. Using Cauchy’s integral theorem, we have

at − as =
1

π

∫ β1

β0

=gt,s(x+ i0+) dx (3.1)
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From this equality, we see that at − as > 0 and lims↗t as = at. Note that, in
a similar way, we can prove that at is right continuous as well.

Let

F (z) = gt,s(z)− z =
as − at
z

+ o

(
1

|z|

)
at ∞

and f(z) = =F (z), which is bounded. Then owing to BMD harmonicity,

f(z) =

∫
∂H
K∗(z, ξ)f(ξ) dξ.

Since its harmonic conjugate is unique up to additive real constants,

F (z) =

∫
∂H

Ψ(z, ξ)f(ξ) dξ + C.

In fact, C = 0 because F (z) and Ψ(z, ξ) both converge to zero as z → ∞.
We now obtain

gs ◦ g−1
t (z)− z =

∫
∂H

Ψ(z, ξ)=gt,s(ξ) dξ,

gs(z)− gt(z) =

∫
∂H

Ψ(gt(z), ξ)=gt,s(ξ) dξ.

As s↗ t,

∂−gt(z)

∂at
= lim

s↗t

gt(z)− gs(z)

at − as
= −πΨDt(gt(z), ξ(t)). (3.2)

Thus, gt(z) is left differentiable. Here, the subscript Dt of ΨDt is put in order
to emphasize that it is the complex Poisson kernel for Dt.

To prove the right differentiability, it suffices to show that the right-hand
side of (3.2) is continuous in t because, then by [18, Lemma 4.3], the left
derivative in (3.2) is indeed a genuine derivative. The continuity is proved
through the following steps: First, we show that Dt is “continuous” in t in
some sense. For example, since gt,s(z)→ z locally uniformly as s↗ t by the
above-mentioned reasoning, Dt is “left continuous” in t. Second, we show
that Ψ is “Lipschitz continuous” with respect to the variation of standard
slit domains. In conclusion, we obtain the continuity of ΨDt(gt(z), ξ(t)) in t.
As the second step is very lengthy, we omit the detail here. See [11] for the
complete proof of

∂gt(z)

∂at
= −πΨDt(gt(z), ξ(t)). (3.3)
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4 Induced slit motions and Komatu–Loewner

evolution

Suppose that at = 2t in Section 3. Then (3.3) takes the form

∂gt(z)

∂t
= −2πΨDt(gt(z), ξ(t)) (4.1)

The right-hand side of this equation, the complex Poisson kernel of BMD,
depends on Dt. We consider the time-evolution of the slits of this variable
domain Dt. The standard slit domain

Dt = H \
N⋃
j=1

Cj(t)

is determined by the 2N endpoints of the slits

{ (zj(t), z
r
j (t)) ; 1 ≤ j ≤ N }

(see Figure 13), which can also be regarded as the 3N -tuple

{ (yj(t), xj(t), x
r
j(t)) ; 1 ≤ j ≤ N } ∈ R3N .

We use a symbol S to denote the set of all the 3N -tuples

s = (y,x,xr) ∈ RN
+ × RN × RN ⊂ R3N

that are associated to non-overlapping N -tuples of slits. In other words,

S := { s = (y,x,xr) ; y,x,xr ∈ RN , y > 0, x < xr,

either xrj < xk or xrk < xj whenever yj = yk, j 6= k }.

Although any permutation of the indexes {1, . . . , N} results in the same N -
tuple slits, we regard S as the space of labelled slits or “labelled” standard slit
domains. A distance between such labelled slit domains (or slits themselves)
is defined by

d(D, D̃) := max
1≤j≤N

(
|zj − z̃j|+ |zrj − z̃rj |

)
.

As partly mentioned in the final paragraph of Section 3, we can show that

Theorem 4.1 ([11, Theorem 9.1]). Ψs(z, ξ) is Lipschitz in s.

The time-evolution of the slits in (4.1) is given by
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𝜉 𝑡 = 𝑔𝑡 𝛾 𝑡

𝐶1 𝑡

𝜕ℍ

𝑔𝑡

𝐷 𝐷𝑡

𝛾 𝑡

𝐶2 𝑡

𝐶1

𝐶2

𝑧1 𝑡 𝑧1
𝑟 𝑡

𝑧2 𝑡 𝑧2
𝑟 𝑡

𝑧1
0 𝑡

Figure 13: The endpoints zj(t) and zrj (t) of the slit Cj(t) and the pre-image

z0
1(t) = g−1

t (z1(t)).

Theorem 4.2.
d

dt
zj(t) = −2πΨs(t)(zj(t), ξ(t)),

d

dt
zrj (t) = −2πΨs(t)(z

r
j (t), ξ(t)).

(4.2)

“Proof”. Let z0
j (t) = g−1

t (zj(t)). Differentiating the both side of the identity
zj(t) = gt(z

0
j (t)) yields

d

dt
zj(t) =

∂

∂t
gt(z

0
j (t)) + g′t(z

0
j (t))︸ ︷︷ ︸

=0

d

dt
z0
j (t)

= −2πΨs(t)(gt(z
0
j (t)), ξ(t))

= −2πΨs(t)(zj(t), ξ(t)).

Here, we have used g′t(z
0
j (t)) = 0, which is because z0

j (t) is the “double root”
of the equation gt(z)− zj(t) = 0. See [10, Lemma 2.2].

We rewrite (4.2) in the real form

d

dt
yj(t) = −2π=Ψs(t)(zj(t), ξ(t)),

d

dt
xj(t) = −2π<Ψs(t)(zj(t), ξ(t)),

d

dt
xrj(t) = −2π<Ψs(t)(z

r
j (t), ξ(t)).

(4.3)

Since the Ψs(z, ξ) is Lipschitz by Theorem 4.1, we can go along a reversed
way solving the ODE (4.3) and then (4.1). Before doing this actually, we
collect some elementary properties of Ψs(z, ξ):

1) Ψλs(λz, λξ) =
1

λ
Ψs(z, ξ);
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2) Ψs−â(z − a, ξ − a) = Ψs(z, ξ), a ∈ R.

Here,
â = (a, a, . . . , a︸ ︷︷ ︸

N

, 0, 0, . . . , 0︸ ︷︷ ︸
2N

) ∈ R3N

corresponds to the horizontal translation by a.7 In particular, we have
Ψs(z, ξ) = Ψs−ξ̂(z − ξ, 0). Taking this identity into account, let

b̃j(s) :=

{
Ψs(zj, 0) 1 ≤ j ≤ N

Ψs(z
r
j−N , 0) N + 1 ≤ j ≤ 2N.

Then b̃j(s) is a homogeneous function of s with degree −1. We further define

bj(s) :=


−2π=Ψs(zj, 0) 1 ≤ j ≤ N

−2π<Ψs(zj−N , 0) N + 1 ≤ j ≤ 2N

−2π<Ψs(z
r
j−2N , 0) 2N + 1 ≤ j ≤ 3N.

With these symbols, (4.3) is simply written as

d

dt
sj(t) = bj(s(t)− ξ(t)). (4.4)

Now, given a continuous function ξ(t) ∈ R = ∂H, we can solve (4.4) to get
sj(t) on maximal interval [0, ζ). These two properties are easily shown:

1) sj(t) is continuous in t;

2) yj(t) is decreasing in t.

Let r ∈ [0, ζ) and z0 ∈ Dr = H \ s(t). Here and in what follows, we use
the symbol s(t) to denote not only the coordinate of the endpoints of Cj(t)’s

but also the set
⋃N
j=1Cj(t) itself by abuse of notation. We consider the initial

value problem 
dz(t)

dt
= −2πΨs(t)(z(t), ξ(t))

z(r) = z0.
(4.5)

The uniqueness of a local solution to (4.5) holds. We also consider the case
z0 ∈ ∂ps(r). Here, ∂p stands for the “boundary”8 with respect to the path
distance topology of Dr. Even in this case, we can “solve” (4.5) by taking
the Schwarz reflection. If z0 ∈ ∂ps(r), the solution still stays on Cj(t).

7We sometimes drop the hat symbol and write such an expression as s−a(∈ S) if there
is no fear of confusion.

8In other words, the “upper” and “lower” sides of Cj(t) are distinguished.
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Proposition 4.3 (Proposition 5.4 of [10]). For any r ∈ [0, ζ) and z0 ∈ Dr,
the maximal interval of the existence of the unique solution to (4.5) is [0, β)
for some r < β ≤ ζ. Moreover, if β < ζ, then

lim
t↗β
=z(t) = 0 and lim

t↗β
|z(t)− ξ(β)| = 0.

Why one can extend the solution back to time 0? Suppose that the max-
imal interval of the solution ϕ(t) is (α, β). =ϕ(t) increases as t ↘ α. Since
Ψs(z, ξ) is bounded when z is apart from the boundary ∂H, limt↘α ϕ(t) = w
exists. Moreover, we claim that w ∈ Dα = H \ s(α). Indeed, this claim
follows from the above-mentioned fact that a solution starting on the slits
still stay on the same slit. Hence the solution ϕ can be extended to (α−ε, α)
as long as α > 0. Therefore, α = 0.

Theorem 4.4 (Theorem 5.5 of [10]). (i) For any z ∈ D, there exists a
unique solution gt(z), t ∈ [0, tz) of

∂

∂t
gt(z) = −2πΨs(t)(gt(z), ξ(t)) with g0(z) = 0,

and gt(z) ∈ H \ s(t) =: D(s(t)).

(ii) Define Ft := { z ∈ D ; tz ≤ t }. Then D \ Ft is open, gt is a conformal
mapping from D \ Ft onto D(s(t)), and Ft is an H-hull (i.e., H \ Ft is
simply connected).

Proof. (i) follows immediately from the argument above.
(ii) As Ψs(t)(z, ξ) is analytic in z and jointly continuous in (t, z, ξ), gt(z) is
continuous in (t, z) and analytic in z by the general theory of ODE. We put
D \ Ft = g−1

t (D(s(t))). By the above proposition, gt : D \ Ft → D(s(t))
is one-to-one and onto. Indeed, the “one-to-one” property follows from the
uniqueness of solutions; If there are two points z1 and z2 such that gt(z1) =
gt(z2) = z0 ∈ Dt, then it contradicts the uniqueness. The “onto” property
can be shown by applying Proposition 4.3 to the backward version of (4.5).

Theorem 4.5 (Theorem 5.8 of [10]). (i) The conformal map gt(z) satis-
fies the hydrodynamic normalization at ∞:

gt(z) = z +
at
z

+ o

(
1

|z|

)
,

and at = 2t.

(ii) {Ft}t∈[0,ζ) is strictly increasing, and⋂
δ>0

gt(Ft+δ \ Ft) = {ξ(t)}.
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5 Stochastic Komatu–Loewner differential equa-

tion

In this section, we take the driving function ξ(t) in Section 3 to be a stochastic
process. At this time, ξ(t) can be intertwined with s(t).

5.1 SDE for randomized driving functions and BMD
domain constant

What are the natural candidates for random ξ(t)?

Motivation. Let PD,z be the probability measure on the space of simple
curves γ (or compact H-hulls) induced from SLEκ on a simply con-
nected domain D starting at z.9 Then it enjoys

• domain Markov property and

• conformal transport (invariance).

Analogously, in this subsection, we consider randomized curves with these
two properties on standard slit domains and study the law of the associated
driving functions.

𝜉 𝑡𝜕ℍ

𝑔𝑡

𝐷 𝐷𝑡

𝛾 𝑡

𝛾 𝑡 + 𝑠

𝑧

𝜂 𝑠 = 𝑔𝑡 𝛾 𝑡 + 𝑠

Figure 14: The domain Markov property (combined with the conformal
transport) implies that the curve η(s) = gt(γ(t+ s)) has the law PDt,ξ(t).

LetD be a standard slit domain. Recall that, for a simple curve γ : [0, tγ)→
D with γ(0) ∈ ∂H and γ(0, tγ) ⊂ D, there exists a unique conformal map-
ping gt : D \ γ(0, t] → Dt with the hydrodynamic normalization gt(z) =

9We omit the precise definition of the measurable space on which PD,z is defined.
We have also dropped the one more subscript that should be in the symbol PD,z, which
represents the endpoint of the SLE.
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𝜕ℍ

𝜑

Figure 15: The expected conformal transport is the identity Pϕ(D),ϕ(z) =
PD,z ◦ ϕ−1 for a general conformal mapping ϕ.

z+at/z+o(z−1) at∞. We call at(D, γ) = limz→∞ z(gt(z)−z) the half-plane
capacity. Put

Ω(D) =

{
γ : [0, tγ)→ D ;

γ is simple, γ(0) ∈ ∂H, γ(0, tγ) ⊂ D,

0 < tγ ≤ ∞, at(D, γ) = 2t

}
,

Gt(D) = σ ({ γ(s) ; 0 ≤ s ≤ t }) ,
G(D) = σ ({ γ(t) ; t ≥ 0 }) .

Let PD,z be a probability measure on (Ω(D),G(D)) which enjoys PD,z(γ(0) =
z) = 1, z ∈ ∂H, and the following conditions:

(DMP) Domain Markov property

For any slit domain D = H \
⋃N
j=1Cj and z ∈ ∂H,

PD,z(θ−1
t A | Gt(D)) = Pgt(D\γ[0,t]),gt(γ(t))(gt(A))

(
= PDt,ξ(t)(gt(A))

)
.

Here, A ∈ G(D \ γ(0, t]), and θt : γ 7→ γ(t+ ·) is the shift operator.10

(IL) Invariance under linear (conformal) map

If f : D → f(D) is a conformal map onto a standard slit domain (such
a f is automatically a linear transformation11), then

Pf(D),f(z) = PD,z ◦ f−1.

Put
Wt = (ξ(t), s(t)) ∈ ∂H× S ⊂ R× R3N .

Since the pair (D, z = γ(0)) can be specified by another pair (ξ = γ(0), s),
which is equal to W0 by definition, we denote PD,z by P(ξ,s) as well.

10We have abused the notation a lot. The reader is referred to [10, Section 3] for the
precise one. Note that symbols Ω̇ and Ġ are used instead of Ω and G in that paper.

11This formulation avoids the technical issue that may occur if we consider a general
conformal mapping ϕ as in Figure 15. See [10, Remark 3.1].
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Theorem 5.1.

P(ξ,s)(W0 = (ξ, s)) = 1,

P(ξ,s)(Wt+s ∈ B | Gt(D(s))) = PWt(Ws ∈ B), B ∈ B(∂H× S).

Here, D(s) = H \ s.

𝐶1

𝐶2 𝐶1,𝑡
𝐶2,𝑡

𝑔𝑡

𝑔𝑡+𝑠

𝜉 𝑡

𝜂 𝑠 = 𝑔𝑡 𝛾 𝑡 + 𝑠

𝜉 𝑡 + 𝑠

𝐷
𝐷𝑡

𝐷𝑡+𝑠

𝑧

𝛾 𝑡

𝛾 𝑡 + 𝑠

Figure 16: The proof of Theorem 5.1.

Proof. The former identity is trivial. The latter one follows from (DMP). (In
Figure 16, the curve η(s) = gt(γ(s)) has the law PWt .)

By Theorem 5.1, Ptf(w) =̂ Ew[f(W(t))] is a semigroup. Hence, (IL)
implies that

{λ−1γ(λ2t)} under PλD,λz
d
= {γ(t)} under PD,z. (5.1)

Since the half-plane capacity behaves as at(cD, cγ) = c2at(D, γ), (5.1) yields

{λ−1Wλ2t} under P(λξ,λs)
d
= {Wt} under P(ξ,s). (5.2)

Let L be the generator of {Pt, t ≥ 0}. Assume the conditions Pt(C∞) ⊂ C∞
and C∞c ⊂ D(L). Then L is expressed as

L =
1

2

∑
aij(w)

∂2

∂wi∂wj
+
∑

b̃j(w)
∂

∂wi
+ c(w).

We suppose that c(w) = 0, i.e., Wt admits no killing inside ∂H × S. The
ODE (4.4) implies that

aij(w) = 0 for i+ j ≥ 1.

29



Thus, Wt enjoys the SDE

dξt =
√
a00(Wt) dBt + b0(Wt) dt, (5.3)

dsj(t) = bj(s− ξ(t)) dt, 1 ≤ j ≤ 3N.

Moreover, by (IL), there are functions a0 and b0 on S such that√
a00(Wt) = a0(s(t)− ξ̂(t)), b0(Wt) = b0(s(t)− ξ̂(t)).

Owing to the Brownian scaling (5.2), the function a0 is homogeneous of
degree 0, and b0 is homogeneous of degree −1.

In comparison with SLEκ, it is natural to choose the constant
√
κ as the

diffusion coefficient a0 =
√
a00 in (5.3). What are natural candidates for the

drift coefficient b0? One of them is given as follows: Recall that ΨD(z, ξ) is
the complex Poisson kernel for BMD in D = H \

⋃N
j=1Cj. We treat the case

D = H as well by abuse of notation:

ΨH(z, ξ) = − 1

π

1

z − ξ
.

Actually, its imaginary part coincides with the usual Poisson kernel for (the
absorbing BM in) H:

=ΨH(z, ξ) =
1

π

y

(x− ξ)2 + y2
= − 1

π
= 1

z − ξ
.

For the difference

ΨD(z, ξ)−ΨH(z, ξ) = ΨD(z, ξ) +
1

π

1

z − ξ
,

the limit

bBMD(D, ξ) =̂ 2π lim
z→ξ

(
ΨD(z, ξ) +

1

π

1

z − ξ

)
exists.

Fact. bBMD(s)
def.
= bBMD(D(s), 0), where D(s) = H \ s, is a homogeneous

function of degree −1 and is Lipschitz continuous in S.

We call bBMD(s) the BMD domain constant. As seen from its definition,
it indicates the discrepancy between D and H. We shall see the reason why
the BMD domain constant is a natural candidate for the drift coefficient b0

in (5.3) in the next subsection through the study of the locality property of
SKLE.
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5.2 Locality property of SKLE

On the basis of Sections 4 and 5.1, we now introduce SKLE. Let α(s) and
b(s) be homogeneous functions12 of s ∈ S of degree 0 and −1, respectively.
In other words, there are functions α′(θ) and b′(θ) of θ ∈ S3N−1 such that
α(s) = α′(s/|s|) and b(s) = |s|−1b(s/|s|) hold. We determine the driving
function ξ(t) and the slits s(t) by the SDE13{

dξt = α(s(t)− ξ(t)) dBt + b(s(t)− ξ(t)) dt
dsj(t) = bj(s− ξ(t)) dt, 1 ≤ j ≤ 3N

(5.4)

with initial value (ξ(0), s(0)) = (ξ, s) ∈ ∂H× S. For the solution (ξ(t), s(t))
to (5.4), we solve

∂gt(z)

∂t
= −2πΨs(t)(gt(z), ξ(t)), g0(z) = z,

to obtain the H-hull Ft = { z ∈ D(s) ; tz ≤ t } with gt : D(s) \ Ft → D(s(t))
conformal. We call {Ft} the stochastic Komatu–Loewner evolution driven
by (5.4) with coefficients α and b, which is designated by SKLEξ,s,α,b. Here,
note that it depends on the initial data (ξ, s) as well. However, we drop the
subscripts ξ and s when they do not matter.

For an H-hull A in a standard slit domain D, we denote by φA a unique
conformal mapping from D \ A onto another standard slit domain with the
hydrodynamic normalization at ∞.

Definition 5.2. SKLEα,b is said to have the locality property, if for SKLEξ,s,α,b

{Ft} with initial (ξ, s) ∈ ∂H× S and for any H-hull A ⊂ D(s),

{φA(Ft) ; t < σA }
d
= SKLEφA(ξ),φA(s),α,b

up to a time-change.

For each t, we put ht = φgt(A) and U(t) = ht(ξ(t)). We can examine
the locality property of SKLEα,b if the SDE of U(t) can be written down
explicitly. Therefore, our goal in this subsection is to study U(t). The key
steps are as follows:

(1) Derive the Komatu–Loewner equation for F̃t = φA(Ft) in terms of U(t)
(in the right derivative sense):

∂+g̃t
∂ãt

= −πΨD̃t
(g̃t(z), U(t)). (5.5)

12We further assume the local Lipschitz continuity of α and b in s. See Eq. (4.1) and
Lemma 4.1 of [10].

13We change the symbols for the coefficients in (5.3) for notational simplicity.
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𝜙𝐴

ℎ𝑡 𝜔,∙

𝜉 𝑡

𝐹𝑡
෨𝐹𝑡 = 𝜙𝐴 𝐹𝑡

𝑈 𝑡

𝑔𝑡 𝜔,∙ ෤𝑔𝑡 𝜔, 𝑧 = 𝑧 +
෤𝑎𝑡
𝑧
+ 𝑜

1

𝑧

𝐴

𝑔𝑡 𝐴

Figure 17: Only is φA deterministic, and the other gt, g̃t and ht = φgt(A) are
random mappings having the randomness ω.

(2) Show that ht(z), h′t(z), h′′t are jointly continuous in (t, z).14

(3) Show that (t, z) 7→ g̃t(z) is jointly continuous. Then D̃t is continuous,
and ãt is continuous.

Through these steps, we have

∂g̃t
∂ãt

= −πΨD̃t
(g̃t(z), U(t)), (5.6)

and the generalized Itô’s formula [26, Exercise IV.3.12] applies to U(t):

dU(t) = dt (ht(ξ(t))) (5.7)

= h′t(ξ(t))((b+ bBMD)(s(t)− ξ(t)) dt+
1

2
h′′t (ξ(t))(α(s(t)− ξ(t))2 − 6) dt

− |h′t(ξ(t))|2bBMD(ht(s(t))− U(t)) dt+ h′t(ξ(t))α(s(t)− ξ(t)) dBt

In fact, we can prove dãt
dt

= 2|h′t(ξ(t))|2. (If φA and hence ht are linear, then

this equality is obvious.) Thus, reparametrizing {F̃t} so that its half-plane
capacity is equal to 2t at time t and writing the time-changed version of
(5.7), we are led to the following:

Theorem 5.3. Suppose α is a positive constant. SKLEα,−bBMD
has locality

iff α =
√

6.

Note that κ = α2 in comparison with SLEκ. This theorem is the SKLE
version of the celebrated locality property of SLE6.

14Steps (2) and (3) are crucial not just to convert the right derivative in (5.5) into the
genuine one but also to apply the generalized Itô’s formula. See [12, Remark 2.9].
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6 SKLE and SLE

6.1 SKLE v.s. SLE

In this subsection, we study the property of SKLEα,b {Ft} v.s. SLEκ, where
κ = α2. To this end, we derive the Loewner, not “Komatu–Loewner”, equa-
tion for {Ft} below. Let Φ = id, Φt = g0

t ◦ Φ ◦ g−1
t and U(t) = Φt(ξ(t)). g

0
t

enjoys the hydrodynamic normalization

g0
t (z) = z +

a(t)

z
+ o

(
1

|z|

)
at ∞.

Let
a(t) = lim

z→∞
z(g0

t (z)− z)
(
= CapH(Ft)

)
.

Φ = id

Φ𝑡

= 𝑔𝑡
0 ∘ Φ ∘ 𝑔𝑡

−1

𝜉 𝑡

𝐹𝑡 𝐹𝑡

𝑈 𝑡

𝑔𝑡 𝑔𝑡
0

𝐷

𝐷𝑡

ℍ

ℍ

Figure 18: We think of Ft to lie in H by acting Φ = id|D : D ↪→ H.

Lemma 6.1.
d+a(t)

dt
= 2Φ′t(ξ(t))

2

Theorem 6.2 ([12, Proposition 2.4]). g0
t (z) is jointly continuous in (t, z).

Assume that Theorem 6.2 holds true. If we further show that

Lemma 6.3. Φt(z), Φ′t(z), Φ′′t are jointly continuous in (t, z),

then we obtain
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Theorem 6.4 ([12, Theorem 2.6]).

dg0
t (z)

dt
=

2Φ′t(ξ(t))
2

g0
t (z)− U(t)

,

or by time-change
dg0

t (z)

da(t)
=

1

g0
t (z)− U(t)

.

By Itô’s formula, U(t) enjoys

dU(t) = d(Φt(ξ(t))

= Φ′t(ξ(t))α(s(t)− ξ(t)) dBt + Φ′t(ξ(t))(b+ bBMD)(s(t)− ξ(t)) dt

+ Φ′′t (−3 +
1

2
α(s(t)− ξ(t))2) dt.

In particular, for SKLE√6,−bBMD
(i.e., when α =

√
6 and b = −bBMD) we have

dU(t) = Φ′t(ξ(t))
√

6 dBt.

In this way, we get the following two theorems:

Theorem 6.5. SKLE√6,−bBMD
after reparametrization has the same distri-

bution as SLE6 up to a random time.

Theorem 6.6. For SKLE√κ,b after reparametrization, its Girsanov trans-
form has the same distribution as SLEκ on [0, σn), where σn is an increasing
sequence of random times with σn ↗ ζ. Here, ζ is the lifetime of the process
(ξ(t), s(t)).

By Theorem 6.6, SKLE√κ,b inherits some geometric properties from SLEκ.
For example, the following is shown in Rohde and Schramm [25, Lemma 7.3]:
Let κ ∈ (4, 8) (in fact, κ = 8 as well) and t > 0. Then with probability one,
there exists ε > 0 such that Ft ⊃ { z ∈ H ; |z| < ε }.

We sketch the proof of Theorem 6.2 (the joint continuity of g0
t (z)), which

we have skipped above. Firstly, we recall the probabilistic representation

=gt(z) = v∗t (z)

= vt(z) +
N∑
j=1

PH
z

(
σK < σFt ; ZH

σK
∈ Cj

)
v∗t (c

∗
j),

vt(z) = =z − Ez
[
=ZH

σK∪Ft
; σK∪Ft <∞

]
,

from Section 2.4.
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Fact.

sup
0≤t≤a

v∗t (c
∗
j) <∞ for each a > 0.

v∗t (c
∗
j) > 0 for every t > 0.

By this fact, there exists a sequence tn ↗ t such that v∗tn(c∗j) → aj ≥ 0.
We claim that aj = v∗t (c

∗
j). Indeed,

v∗t (z) = lim
n→∞

v∗t (z)

= =z − Ez
[
=ZH

σK∪Ft−
; σK∪Ft− <∞

]
(6.1)

+
N∑
j=1

PH
z

(
σK < σFt− , Z

H
σK
∈ Cj

)
aj.

Here, we have used the convergence σFtn
↘ σFt− , which follows from Ftn ↗

Ft− and (I.10.4) of Blumenthal–Getoor [4]. Taking z → Cj in (6.1), actually
we get aj = v∗t (c

∗
j).

Now, we have

0 ≥ EH
z

[
=ZH

σFt−∪K
; σFt−∪K <∞

]
− EH

z

[
=ZH

σFt∪K
; σFt∪K <∞

]
=

N∑
j=1

v∗t (c
∗
j)︸ ︷︷ ︸

>0

(
PH
z

(
σK < σFt− , Z

H
σK
∈ Cj

)
− PH

z

(
σK < σFt , Z

H
σK
∈ Cj

))︸ ︷︷ ︸
=0

≥ 0.

Hence

PH
z (σK < σFt−) = PH

z (σK < σFt),

EH
z

[
=ZH

σFt−
; σFt−∪K <∞

]
= EH

z

[
=ZH

σFt
; σFt∪K <∞

]
.

(6.2)

Using the identity =g0
t (z) = =z − EH

z [=ZH
σFt

; σFt < ∞], one can show that

t 7→ =g0
t (z) is continuous for every z by decomposing EH

z [=ZH
σFt

; σFt < ∞]

with an appropriate sequence of stopping times and applying (6.2). (See
the last two paragraphs in the proof of [12, Lemma 3.1].) Since =g0

t (z) is
harmonic, it is jointly continuous in (t, z). Hence the joint continuity of g0

t (z)
follows from the Cauchy–Riemann relation.

In fact, it is an important problem to replace the right derivative by the
genuine derivative. For example, the right derivative version of the Loewner
equation in H 

∂+gt(z)

∂t
=

2

gt(z)− ξ(t)
g0(z) = z

(6.3)

does NOT uniquely characterize gt(z).

35



Why? For z ∈ H, let tz be the lifetime of the unique solution ḡt(z) in the
true Loewner equation. Let ε < tz, and define gt(z) = ḡt(z) for t < ε. Take
any zε ∈ H, and define gt(z) = ḡt−ε(zε) for t ∈ [ε, ε + δ). Then gt(z) also
solves (6.3).

6.2 Komatu–Loewner equation and SKLE in other canon-
ical domains

Up to Section 6.1, we have discussed the Komatu–Loewner equation and
SKLE in standard slit domains H \ s. In this subsection, we give a brief
overview of these equations in other canonical domains.

(1) Annulus. Let Ar = B(0, 1) \ B(0, r). Komatu (1943) [16] derived the
Komatu–Loewner equation in Ar in the left derivative sense using Weierstrass
functions and Jacobi elliptic functions. Fukushima–Kaneko (2014) [15], the
follow up of Chen–Fukushima–Rohde [11], then established the same equa-
tion in the true derivative sense in terms of the Villat kernel. Moreover, they
show that the Villat kernel is indeed the BMD Schwarz kernel.

Komatu and Fukushima–Kaneko treated the conformal mappings on an-
nuli directly, but we can reduce it to the problem on the infinite strip by
Cayley transform

D→ H, z 7→ i
1 + z

1− z
.

In fact, Zhan (2004) [30] considered the annulus SLE by combining such
a reduction with the modified Villat kernel, which is the same as the Villat
kernel in [15] up to rotation. Also, in a similar way, Lawler (2011) [20] defined
SLE in multiply connected domains using Brownian loop measure.

(2) Circularly slit annulus. In a similar way to the annulus case, Ko-
matu (1950) [17], Bauer–Friedrich (2008) [3] and Fukushima–Kaneko (2014) [15]
worked with the Komatu–Loewner equation on circularly slit annuli, but all
of them only obtain the left derivative.

(3) Circularly slit disk. In this case, Bauer–Friedrich (2006) [2] derived
the form of the radial Komatu–Loewner equation and discussed the locality.
They conjectured the drift coefficient corresponding to the ansatz having
locality for κ = 6 is given by −bBMD as in these lectures. Moreover, Böhm–
Lauf (2014) [5] established the true Komatu–Loewner equation not only for a
single simple curve but also for multiple non-intersecting simple curves. See
their paper for the detail.
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