
KTGU Special Lectures
Blow-up, compactness and (partial) regularity in Partial

Differential Equations

Lecturer: Christophe Prange (CNRS Researcher)

Note: Mitsuo Higaki (Kyoto University)

Abstract. The question of whether solutions of Partial Differential Equations (PDEs) are
regular or not is central in the field. One of the most famous problems is the existence of
smooth solutions to the Navier-Stokes equations in fluid mechanics, or the finite time break
down of regularity (millennium problem of the Clay Institute).
The scope of this lecture series is much more modest. Methods based on blow-up and com-
pactness are powerful tools to establish regularity for linear PDEs or partial regularity for
nonlinear PDEs. These methods, which originated in the study of the regularity of minimal
surfaces in the 60’s, have been successfully applied to other subjects: regularity in homog-
enization, in the calculus of variations or in fluid mechanics. More specifically, the lectures
will focus on two topics: (i) uniform estimates in the homogenization of linear elliptic
divergence form equations, (ii) epsilon-regularity results for the Navier-Stokes equations.
The material presented in the course is well-known to the PDE community since the late
90’s. However, the results have been celebrated as breakthroughs and are still inspiring new
mathematical developments today, some of which will be outlined.

Summary of the content:
1. Improved regularity in homogenization: compactness methods for uniform Lipschitz reg-
ularity, Liouville type theorems for equations with periodic coefficients

2. Epsilon-regularity for Navier-Stokes equations

The lectures are based on works by Avellaneda and Lin (1987, 1989, 1991), Caffarelli,
Kohn and Nirenberg (1982), Lin (1998), Ladyzhenskaya and Seregin (1999), and Kukavica
(2009).

1 Lectures 1 – 2: Compactness methods in homogenization

1.1 Introduction

This lecture is based on a d-dimensional linear elliptic equation, d ≥ 2,

−∇ · a(x)∇u = 0 , x ∈ B(0, R) ⊂ Rd . (1)

Here u = u(x) ∈ R is the unknown function and a(x) ∈ Rd×d is a given matrix function.
We denote by B(x,R) the ball centered at a point x0 ∈ Rd with radius R ∈ (0,∞):

B(x0, R) = {x ∈ Rd | |x− x0| < R} .
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We are interested in the regularity theory for the equation (1), namely, the local behavior of
solutions. Especially, we emphasize the following aspects:

Global vs Local

Global approach: The PDE is considered as an evolution equation with the initial condition.
We will obtain the solutions in some Sobolev space, and study the growth of the norms. The
regularity will also be studied in terms of, for example, Fourier series of the solutions.

Local approach (this is the approach we will take in this lecture): The PDE is considered
completely locally. The goal is to obtain the estimates for the solutions in high regularity
norm on a ball in physical space, by assuming that the solutions are controlled in lower
regularity norm but on some bigger ball. A typical estimate can be written as

∥∇u∥L∞(B(0, 1
2
)) ≤ C∥u∥L2(B(0,1)) . (2)

Polynomials
We determine the building blocks of the regularity theory. In the Taylor expansion formula,
the blocks are just the polynomials. We will establish expansion results at the PDE level,
which is called the Liouville-type theorems.

Next we underline a few recurrent themes in this lecture.

Localization
We always localize the problem by using test functions, etc.

Multiscale
As can be seen from (2), large scales will control small scales. We prove, for example, a
characterization of the Hölder continuity of the solutions to (1) in terms of decay of

−
∫
B(0,ρ)

|∇u|2 , (3)

where we have set for an open set Ω ⊂ Rd,

−
∫
Ω

=
1

|Ω|

∫
Ω
. (4)

Comparison to polynomials
We compare the solutions to (1) with the building blocks (polynomials) in the regularity
theory. For example, we will study the following quantity for a ∈ R,

−
∫
B(0,ρ)

|u− a|2 . (5)

Compactness (improvement of flatness)
The basic idea is that if we take some limit of the equation, we will have a new equation for
which the regularity properties are better. Examples are the followings:

• Zooming in: Let a in the equation (1) satisfy a ∈ C0,µ for µ ∈ (0, 1). Then if we
zoom the equation around 0 ∈ Rd, we obtain an equation with a constant coefficient
a(0). The regularity properties are better for the new equation.
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• Zooming out: Let a(x) in the equation (1) be replaced by a(xϵ ) for ϵ ∈ (0, 1). Then
if we take the limit ϵ → 0 under the structure assumption on a (periodicity, for
example), we wil have an equation with some constant coefficient. Then the regularity
of solutions is better for the limit equation.

• Convergence to linear equation: If we consider a nonlinear problem and if the nonlin-
earity is weak for some reason, we can obtain the linear equation in a suitable limit.
This is indeed the ϵ-regularity result case, which we will discuss in Lectures 3 – 4.

The idea of the improvement of flatness is originated in the works by Almgren [1] for the
regularity of minimal surfaces, and of Evans and Gariepy [6], and Giaquinta [7] for the
calculus of variations. Lecture 1 – 2 are based on the papers by Avellaneda and Lin [2, 3].

1.2 Caccioppoli’s inequality

We consider an elliptic problem

−∇ · a(x)∇u = 0 , x ∈ B(0, 1) ⊂ Rd . (6)

Here a(x) = (aαβ(x))α,β∈{1,...,d} ∈ Rd×d and aαβ(x) is measurable for α, β ∈ {1, . . . , d}.
We assume that we have for Λ ∈ (0,∞) and L ∈ (0,∞),

a is elliptic with a constant Λ , namely ,

a(x)ξ · ξ ≥ Λ|ξ|2 , x , ξ ∈ Rd ,

and ∥a∥L∞ ≤ L .

We can also consider a system of (6); we can replace the solution u(x) and the component
aαβ(x) by u(x) ∈ RN and (aijαβ(x))i,j∈{1,··· ,N} ∈ RN×N , N > 1, respectively. Then the
equation is

−∂α
(
aαβ(x)∂βu

)
= 0 , x ∈ B(0, 1) . (7)

Now we derive the Caccioppoli inequality. Let 0 < ρ < r ≤ 1 and let φ ∈ C∞
c (B(0, 1))

be a cut-off function such that

suppφ ⊂ B(0, r) , φ(x) ≡ 1 , x ∈ B(0, ρ) , ∥φ∥L∞ ≤ 2(r − ρ)−1 .

Then by testing φ2u against the equation (6) we see that

0 =

∫
B(0,1)

(
a(x)∇u

)
· ∇(uφ2)

=

∫
B(0,1)

(
a(x)∇u

)
· ∇uφ2 +

∫
B(0,1)

2
(
a(x)∇u

)
· ∇φuφ .

(8)

Since Λ|∇u|2 ≤
(
a(x)∇u

)
· ∇u, we have from (8) and the Hölder inequality,

Λ

∫
B(0,1)

|φ∇u|2 ≤
∫
B(0,1)

|2
(
a(x)∇u

)
· ∇φuφ|

≤ 2∥a∥L∞∥∇φ∥L∞

(∫
B(0,1)

|φ∇u|2
) 1

2
(∫

B(0,r)\B(0,ρ)
|u|2

) 1
2

.
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Then we have ∫
B(0,r)

|φ∇u|2 ≤ C

(r − ρ)2

∫
B(0,r)\B(0,ρ)

|u|2 , (9)

where C = C(Λ, L). The inequality (9) is called the Caccioppoli inequality. By the same
computation, we can also prove a generalization of (9) for any ξ ∈ R,∫

B(0,r)
|φ∇u|2 ≤ C

(r − ρ)2

∫
B(0,r)\B(0,ρ)

|u− ξ|2 . (10)

Here the constant C = C(Λ, L) does not depend on ξ ∈ R .

Widman’s hole filling trick
We show an application of the Caccioppoli inequality. Let r = 1 and ρ = 1

2 and set
ξ =

∫
B(0,1)\B(0, 1

2
) u. Then we have from (10) and the Poincaré inequality,∫
B(0, 1

2
)
|φ∇u|2 ≤ C

∫
B(0,1)\B(0, 1

2
)
|∇u|2

= C

(∫
B(0,1)

|∇u|2 −
∫
B(0, 1

2
)
|∇u|2

)
,

which implies ∫
B(0, 1

2
)
|∇u|2 ≤ C

C + 1

∫
B(0,1)

|∇u|2 .

By iterating this procedure k ∈ N times, we see that∫
B(0, 1

2k
)
|∇u|2 ≤ (

C

C + 1
)k

∫
B(0,1)

|∇u|2 .

Finally, by setting α =
log(C+1

C
)

2 log 2 , we can prove for any ρ ∈ (0, 12),∫
B(0,ρ)

|∇u|2 ≤ Cρ2α
∫
B(0,1)

|∇u|2 . (11)

From the inequality (11), in the d = 2 case, we can prove that u ∈ C0,α(B(0, 12)) by
the Morrey theorem. On the other hand, in the higher dimension d ≥ 3 case, we need
the theory of De Giorgi, Nash, and Moser in order to prove u ∈ C0,α. We also mention
counter-examples for system as in (7) for the d ≥ 3 case in Giaquinta [7].

1.3 C1,α improved regularity

We consider the following problem with ϵ ∈ (0, 1):

−∇ · a(x
ϵ
)∇uϵ = 0 , x ∈ B(0, 1) , (∗)

where a matrix function a = a(y) ∈ Rd×d belongs to the class Aper(Λ, L), Λ ∈ (0,∞),
L ∈ (0,∞), which is defined as

Aper(Λ, L) =

{
a = {aαβ}α,β∈{1,...,d}

∣∣∣∣ aαβ(y) is measurable for α, β ∈ {1, . . . , d} ,
a is elliptic with a constant Λ ,
∥a∥L∞ ≤ L , and a(y) is Zd-periodic

}
.
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Goal: Regularity estimates for the solutions to (∗) which is uniform in ϵ ∈ (0, 1).

Homogenization
For the homogenization of the equation (∗) in the limit ϵ → 0, we need the following
Zd-periodic (cell) corrector χ = χ(y) ∈ R satisfying

−∇ · a(y)∇(y + χ(y)) = 0 , y ∈ Rd ,

−
∫
Td

χ = 0 .

The function y + χ(y) is called a-harmonic function. By using the corrector, we can make
an ansatz for the solution uϵ = uϵ(x) of (∗) as

uϵ(x) ∼ ū(x) + ϵχ(
x

ϵ
) · ∇ū(x) ,

and if x0 ∈ Rd is sufficiently close to x ∈ Rd then we also have

uϵ(x) ∼ ū(x0) + ϵ
(x− x0

ϵ
+ χ(

x

ϵ
)
)
· ∇ū(x0) .

Here ū = ū(x) is a solution to the homogenized equation of (∗)

−∇ · ā∇ū = 0 , x ∈ B(0, 1) ,

where the constant ā ∈ Rd×d is given by

ā = −
∫
Td

(ā(y) + ā(y)∇χ(y)) .

Now we prove a key lemma concerning the convergence of the solutions to (∗).

Lemma 1.1 Let a ∈ Aper(Λ, L) and let a sequence {ϵk} satisfy ϵk → 0. Assume that a
family of solutions {uk} of

−∇ · a( x
ϵk
)∇uk = 0 , x ∈ B(0, 1) (12)

is uniformly bounded in W 1,2(B(0, 1)). Then, up to a subsequence of {uk}, we have

uk → ū in L2(B(0, 1)) ,

∇uk ⇀ ∇ū in L2(B(0, 1))d ,

a(
x

ϵk
)∇uk ⇀ ā∇ū in L2(B(0, 1))d .

(13)

Proof: We make a simplification by assuming that a = {aαβ}α,β∈{1,...,d} is a symmetric
matrix, namely that aαβ = aβα for all α, β ∈ {1, . . . , d}. Since {∇uk} is uniformly
bounded in L2(B(0, 1))d, we know that there exists a function ξ ∈ L2(B(0, 1))d such that

a(
x

ϵk
)∇uk ⇀ ξ in L2(B(0, 1))d . (14)
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Note that ξ satisfies ∇ · ξ = 0. We apply the oscillating test function method by Murat and
Tartar in late 70’s. Let φ ∈ C∞

c (B(0, 1)) and β ∈ {1, . . . , d}. Then by testig the function

φ(x)(xβ + ϵkχβ(
x

ϵk
)) ∈ R

against the equation (12) and applying the integration by parts, we observe that∫
B(0,1)

(
a(

x

ϵk
)∇uk

)
· ∇φ(xβ + ϵkχβ(

x

ϵk
))

= −
∫
B(0,1)

(
a(

x

ϵk
)∇uk

)
· ∇(xβ + ϵkχβ(

x

ϵk
))φ .

(15)

The first line in (15) converges to, in the limit k → ∞,∫
B(0,1)

ξ∇φxβ = −
∫
B(0,1)

ξβφ . (16)

Here the integration by parts is applied combined with ∇ · ξ = 0. On the other hand, the
limit of the second line in (15) is computed as

−
∫
B(0,1)

∇uk · a(
x

ϵk
)∇(xβ + ϵkχβ(

x

ϵk
))φ

=

∫
B(0,1)

uka(
x

ϵk
)∇(xβ + ϵkχβ(

x

ϵk
)) · ∇φ

→
∫
B(0,1)

ūāβ · ∇φ = −
∫
B(0,1)

(ā∇ū)βφ . (17)

Thus we obtain ξβ = (ā∇ū)β for any β ∈ {1, . . . , d}, and hence ξ = (ā∇ū). Then (14)
leads to the last line of (13). The proof is complete. 2

Next we state a uniform estimate to the problem (∗).

Theorem 1.2 (Avellaneda and Lin, uniform Lipschitz estimates) For all ϵ ∈ (0,∞), for
all a ∈ Aper(Λ, L) with a ∈ C0,µ(Rd) and [a]C0,µ ≤ M , and for all solutions uϵ to (∗),
there exists a constant C = C(d,Λ, L,M) ∈ (0,∞) such that we have

∥∇uϵ∥L∞(B(0, 1
2
)) ≤ C∥uϵ∥L2(B(0,1)) . (18)

Sketch of the proof of Theorem 1.2: The proof consists of three steps.

Step (i): Improvement of flatness (corresponding to Lemma 1.4)
We apply the compactness argument and use the regularity for the limit equation of (∗).

Step (ii): Iteration of Step (i) (corresponding to Lemma 1.5)
We iterate the argument in Step (i) and go down to the scale ϵ.

Step (iii): Blow-up step
We apply classical regularity theory for the scale below ϵ. 2

We prepare a lemma for a characterization of Hölder continuity.
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Lemma 1.3 (Campanato) Let Ω ⊂ Rd be a Lipschitz domain. Then for any α ∈ (0, 1] we
have

C0,α(Ω) ≃ L2,λ(Ω) , λ = d+ 2α ∈ (d, d+ 2] , (19)

where the function space L2,λ(Ω) is defined as

L2,λ(Ω) =

{
u ∈ L2(Ω) | [u]2,λ = sup

x0∈Ω,
ρ∈(0,∞)

ρ−λ

∫
Ω∩B(x,ρ)

|u− (u)x0,ρ|2 < ∞
}
. (20)

Here we have set for x0 ∈ Rd and ρ ∈ (0,∞),

(u)x0,ρ = −
∫
Ω∩B(x,ρ)

u .

The next lemma will be used in Step (i) of the proof of Theorem 1.2.

Lemma 1.4 Let α ∈ (0, 1). Then there exist constants θ ∈ (0, 12) and ϵ0 ∈ (0,∞) such
that for all a ∈ Aper(Λ, L), for all ϵ ∈ (0, ϵ0), and for all solutions uϵ to (∗), if

−
∫
B(0,1)

|uϵ|2 ≤ 1

holds, then we have

−
∫
B(0,θ)

|uϵ(x)− (uϵ)0,θ − (∇uϵ)0,θ · (x+ ϵχ(
x

ϵ
))|2 ≤ θ2+2α .

Proof: Step (i): Choice of θ
The ϵ-zero limit equation of (∗) is given by

−∇ · ā∇ū = 0 , x ∈ B(0,
1

2
) ,

where ā is an elliptic constant matrix with constant Λ and |ā| ≤ L. Classical regularity
theory implies ū ∈ C2(B(0, 14)). Then by the Campanato inequality we have

−
∫
B(0,θ)

|ū(x)− (ū)0,θ − (∇ū)0,θ · x|2 ≤ Cθ4 , (21)

where C is independent of θ. We choose θ ∈ (0, 12) sufficiently small so that

Cθ4 < θ2+2α . (22)

Step (ii): Contradiction
Assume that there exist sequences {ϵk} and {uk} such that ϵk → 0 and uk = uk(x) satisfies

−∇ · a( x
ϵk
)∇uk = 0 , x ∈ B(0, 1) ,

−
∫
B(0,1)

|uk|2 ≤ 1 ,
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and

−
∫
B(0,θ)

|uk(x)− (uk)0,θ − (∇uk)0,θ · (x+ ϵkχ(
x

ϵk
))|2 > θ2+2α . (23)

Then by the Caccioppoli inequality {uk} is uniformly bounded in W 1,2(B(0, 12)). In a
similar manner as in the proof of Lemma 1.1 we can prove that

uk → ū in L2(B(0,
1

2
)) , (24)

∇uk ⇀ ∇ū in L2(B(0,
1

2
)) , (25)

and

−∇ · ā∇ū = 0 , x ∈ B(0,
1

2
) .

Here ā is an elliptic constant matrix with constant Λ and |ā| ≤ L. By (24)–(25) we see that

(uk)0,θ → (ū)0,θ , (∇uk)0,θ → (∇ū)0,θ . (26)

Since the corrector χ is bounded in Rd, it is easy to see that

−
∫
B(0,θ)

|ϵkχ(
x

ϵk
))|2 ≤ Cϵ2k .

Thus by taking the limit k → ∞ of (23) we obtain

θ2+2α ≤ lim sup
k→∞

−
∫
B(0,θ)

|uk(x)− (uk)0,θ − (∇uk)0,θ · x|2

≤ −
∫
B(0,θ)

|ū(x)− (ū)0,θ − (∇ū)0,θ · x|2

< θ2+2α

from (21)–(22) in Step (i). Hence we have a contradiction. This completes the proof. 2

The next lemma corresponds to Step (ii) in the proof of Theorem 1.2.

Lemma 1.5 Let α, θ, and ϵ0 be given in Lemma 1.4. Then for all k ∈ N, for all a ∈
Aper(Λ, L), for all ϵ ∈ (0, θk−1ϵ0), and for all solutions uϵ to (∗), if

−
∫
B(0,1)

|uϵ|2 ≤ 1 (27)

holds, then we have

inf
a∈R,
b∈Rd

−
∫
B(0,θk)

|uϵ(x)− a− b · (x+ ϵχ(
x

ϵ
)|2

≤ −
∫
B(0,θk)

|uϵ(x)− aϵk − bϵk · (x+ ϵχ(
x

ϵ
)|2

≤ θ(2α+2)k ,

(28)
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where the constants aϵk ∈ R and bϵk ∈ Rd respectively satisfy

|aϵk| ≤ θ−
θ
2 (1 + θ2α+2 + · · ·+ θ(2α+2)(k−1)) , (29)

|bϵk| ≤ Cθ−
θ
2 (1 + θ2α+1 + · · ·+ θ(2α+1)(k−1)) . (30)

Remark 1.6 The iteration would be easier if there is no correction χ; we would have

aϵk = (uϵ)0,θk , bϵk = (∇uϵ)0,θk .

Proof: The proof is by iteration on k ∈ N.
k = 1: The estimate (28) follows from Lemma 1.4. By the assumption (27) and the equation
(∗) we have

|(uϵ)0,θ| ≤ θ−
d
2 , |(∇uϵ)0,θ)| ≤ Cθ−

d
2 .

k > 1: Assume that the assertions in the lemma hold for all k − 1 ≥ 1. Then we set

U ϵ(x) =
uϵ(θk−1x)− aϵk−1 − bϵk−1(θ

k−1x+ ϵχ( θ
k−1x
ϵ ))

θ(2α+2)(k−1)
.

By the iteration assumption we have

−
∫
B(0,1)

|U ϵ|2 ≤ 1

θ(2α+2)(k−1)
−
∫
B(0,θk−1)

|uϵ(x)− aϵk−1 − bϵk−1(x+ ϵχ(
x

ϵ
))|2

≤ 1 , (31)

and

−∇ · a(θ
k−1x

ϵ
)∇U ϵ = 0 , x ∈ B(0, 1) . (32)

Then Lemma 1.4 and the assumption ϵ ∈ (0, θk−1ϵ0) lead to

θ2α+2 ≥ −
∫
B(0,θ)

|U ϵ(x)− (U ϵ)0,θ − (∇U ϵ)0,θ · (x+
ϵ

θk−1
χ(

θk−1x

ϵ
))|2

=
1

θ(2α+2)(k−1)
−
∫
B(0,θk)

|uϵ(x)− aϵk − bϵk(x+ ϵχ(
x

ϵ
))|2 ,

where we set

aϵk = aϵk−1 + θ(2α+2)(k−1)(U ϵ)0,θ , bϵk = bϵk−1 + θ(2α+1)(k−1)(∇U ϵ)0,θ .

Thus we have (28). We also have from (31) and (32),

|(U ϵ)0,θ| ≤ θ−d , |(∇U ϵ)0,θ| ≤ Cθ−d .

This completes the proof. 2

From the iteration argument in the proof of Lemma 1.5, we find that for any ρ ∈ ( ϵ
ϵ0
, 12),

inf
a∈R,
b∈Rd

−
∫
B(0,ρ)

|uϵ(x)− a− b · (x+ ϵχ(
x

ϵ
)|2 ≤ ρ2α+2−

∫
B(0,1)

|uϵ|2 . (33)

This inequality is a key estimate in the next subsection.
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1.4 Liouville theorems

We consider

−∇ · a(y)∇u = 0 , y ∈ Rd ,

where a ∈ Aper(Λ, L). The theorem is the following:

Theorem 1.7 (i) If there exist constants C ∈ (0,∞) and σ ∈ (0, 1) such that

−
∫
B(0,R)

|u|2 ≤ CR2σ

holds for all R ≥ 2017, then there exists a number a ∈ R such that

u(y) = a , y ∈ Rd .

(ii) If there exist constants C ∈ (0,∞) and σ ∈ (0, 1) such that

−
∫
B(0,R)

|u|2 ≤ CR2σ+2

holds for all R ≥ 2017, then there exist numbers a ∈ R and b ∈ Rd such that

u(y) = a+ b(y + χ(y)) , y ∈ Rd .

Proof: We only prove the claim (ii). We note that u = u(y) satisfies

−∇ · a(y)∇u = 0 , y ∈ B(0, R) .

We fix α ∈ (0, σ). By rescaling the inequality (33) we have for any fixed r ∈ [1, R2 ),

inf
a∈R,
b∈Rd

−
∫
B(0,r)

|u(y)− a− b · (y + ϵχ(y)|2 ≤
( r
R

)2+2α−
∫
B(0,R)

|u|2 .

Then from the choice of α we see that( r
R

)2+2α−
∫
B(0,R)

|u|2 ≤ r2α+2R2(α−σ) → 0

in the limit R → ∞. Hence we obtain the claim (ii). This completes the proof. 2

2 Lectures 3 – 4: Partial regularity for Navier-Stokes

2.1 Introduction

In this lecture we consider the three-dimensional Navier-Stokes equations{
∂tu−∆u+ u · ∇u+∇p = 0 ,

∇ · u = 0 .
(NSE)
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Here u = u(x, t) ∈ R3 and p = p(x, t) ∈ R respectively denote the velocity field and the
pressure field of the fluid. Our aim in this lecture is the following claim.

Aim Let (u, p) be a “sufficiently nice” solution to (NSE). Then if∫
B(0,1)×(−1,0)

|u|3 + |p|
3
2 ≤ ϵ∗ (34)

holds with some small positive constant ϵ∗ ∈ (0,∞), then the solution u = u(x, t) is regular
in B(0, 12)× (−1

4 , 0). This is one of the Caffarelli-Kohn-Nirenberg (ϵ-regular) criteria.

For fixed (x0, t0) ∈ R3× (−∞, 0], we denote by Qr(x0, t0) the parabolic cylinder centered
at (x0, t0) with radius r ∈ (0,∞):

Qr(x0, t0) = B(x0, r)× (−r2 + t0, t0) .

For the case (x0, t0) = (0, 0), we denote Qr(x0, t0) by Qr for simplicity.

2.2 Fundamental facts

To start with, let us mention a few fundamental facts about the Navier-Stokes equations.

Weak solution
The pair (u, p) is a weak solution to (NSE) if we have

−⟨u, ∂tφ⟩+ ⟨u · ∇u, φ⟩+ ⟨∇u,∇φ⟩ − ⟨p,∇ · φ⟩ = 0 , φ ∈ C∞
c (R3 × R)3 , (35)

and

⟨u,∇ϕ⟩ = 0 , ϕ ∈ C∞
c (R3 × R) . (36)

Evolution problem vs. regularity problem

Evolution problem: The equations are considered in Ω× (0, T ), where Ω is a domain in R3

and T ∈ (0,∞), together with the boundary condition at ∂Ω and initial condition at t = 0.

Regularity problem: The equations are considered locally in a space-time domain Q, with-
out imposing any initial condition nor boundary condition.

Local energy equality
Assume that a solution (u, p) to (NSE) is smooth. Then for all φ ∈ C∞

c (R3 × R)3 and for
all −∞ < t′ < t < ∞, we have the following local energy equality∫

R3

|u(·, t)|2φ(·, t) + 2

∫ t

t′

∫
R3

|∇u|2φ

=

∫
R3

|u(·, t′)|2φ(·, t′) +
∫ t

t′

∫
R3

|u|2(∂tφ+∆φ) + (|u|2 + 2p)u · ∇φ .

(LEE)

Pressure
Formally operating ∇· to the first equation of (NSE) we have

−∆p = ∇ · (u · ∇u) .
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Hence the regularity in space is not influenced by the nonlocal effects of the pressure p, and
however, the regularity in time is influenced. This is indeed the case for the next example
by Serrin: let a(t) ∈ R be any bounded function and Φ(x) ∈ R be any harmonic function.
Then the pair

u(x, t) = a(t)∇Φ(x) , p(x, t) = −a′(t)∇Φ(x)− 1

2
|u|2 ,

gives a weak solution to (NSE). The regularity in time of ∂tu is same as the one of p.

Scaling
Let λ ∈ (0,∞). If u = u(x, t) is a solution to (NSE), then we see that

uλ(x, t) = λu(λx, λ2t)

is also a solution to (NSE). In view of scale-invariance, regularity results read “If some
scale invariant quantity F (u, p, r) is small, then the solution is regular”. In the 2d case, the
energy is scale invariant. In the 3d case, for the initial value problem with u0 ∈ L2

σ we have

1

2

∫
R3

|u(·, t)|2 +
∫ T

0

∫
R3

|∇u|2 ≤ 1

2

∫
R3

|u0|2 .

We note that the energy is supercritical for the 3d case.

Local Suitable Weak Solution
As a “nice class of solutions”, we introduce the following local suitable weak solutions.

Definition 2.1 A pair (u, p) in Q1 is a Local Suitable Weak Solution (LSWS) of (NSE) if
(1) (u, p) is a weak solution of (NSE).

(2) (u, p) satisfies u ∈ L∞
t L2

x(Q1) ∩ L2
tH

1
x(Q1) and p ∈ L

3
2
t,x(Q1).

(3) (u, p) satisfies the local energy inequality for all φ ∈ C∞
c (B(0, 1)× (−1, 0]), φ ≥ 0 ;∫

R3

|u(·, t)|2φ(·, t) + 2

∫ t

−1

∫
R3

|∇u|2φ

≤
∫ t

−1

∫
R3

|u|2(∂tφ+∆φ) + (|u|2 + 2p)u · ∇φ , a.e. t ∈ (−1, 0) .

(LEI)

2.3 u+ p criteria

We prove the following theorem.

Theorem 2.2 There exist constants ϵ∗ ∈ (0,∞), C ∈ (0,∞), and α ∈ (0, 1) such that for
all LSWS (u, p) to (NSE) in Q1, if ∫

Q1

|u|3 + |p|
3
2 ≤ ϵ∗ (S-ϵ∗)

holds, then we have u ∈ Cα
par(Q 1

2
) and

[u]Cα
par(Q 1

2
) ≤ C .

Here u ∈ Cα
par(Q 1

2
) means that u ∈ L∞(Q 1

2
) and u = u(x, t) satisfies

|u(x, t)− u(x̂, t̂)| ≤ [u]Cα
par(Q 1

2
)(|x− x̂|2α + |t− t̂|α) , (x, t) , (x̂, t̂) ∈ Q 1

2
.
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Firstly we mention the Campanato characterization of Hölder continuity: let p ∈ [1,∞).
Then u ∈ Cα

par(Q1) if and only if u ∈ Lp(Q1) and

sup
r∈(0,∞),
(x0,t0)∈Q1

1

rαp
−
∫
Qr(x0,t0)

|u− (u)r|p < ∞ .

Here the integral −
∫
Qr

on the parabolic cylinder Qr is defined as for r ∈ (0,∞),

−
∫
Qr(x0,t0)

f =
1

|Qr|

∫
Qr(x0,t0)

f(x, t) , |Qr| ∼ r5 ,

and (u)r is defined as for r ∈ (0,∞),

(u)r = −
∫
Qr

u .

Let us define the quantity F (u, p, r) by for r ∈ (0,∞),

F (u, p, r) =
1

r2

∫
Qr

|u|3 + |p|
3
2 .

Then the quantity F (u, p, r) is invariant under the scaling of the Navier-Stokes equations:

F (u, p, r) = F (uλ, pλ,
r

λ
) , λ > 0 .

Moreover, we have the rescaled version of Theorem 2.2 as follows: there exist constants
ϵ∗ ∈ (0,∞), C ∈ (0,∞), and α ∈ (0, 1) such that if there exists r ∈ (0,∞) such that if

F (u, p, r) ≤ ϵ∗ (37)

holds, then we have

[u]Cα
par(Q r

2
) ≤ C .

Sketch of the proof of Theorem 2.2: The proof is due to Lin [12]. We set

osc(u, p, r) =

(
−
∫
Qr

|u− (u)r|3
) 1

3

+ r

(
−
∫
Qr

|p− (p)r(t)|
3
2

) 2
3

,

where the function (p)r = (p)r(t) is defined as

(p)r(t) = −
∫
B(0,r)

p(·, t) .

Step (i): Improvement of flatness (corresponding to Lemma 2.3)
We prove the following claim: if (u, p) satisfies (S-ϵ∗), then there exist some θ ∈ (0, 12) and
α ∈ (0, 13) such that we have

osc(u, p, θ) ≤ θ2αϵ∗ .
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Step (ii): Iteration of Step (i) (corresponding to Lemma 2.4)
In this step we consider the Navier-Stokes equations with drift b ∈ R3:{

∂tu+ u · ∇u+ b · ∇u−∆u+∇p = 0 ,

∇ · u = 0 .
(NSEdrift)

and extend the notion of LSWS to (NSEdrift). 2

The next lemma is used in Step (i) of the proof of Theorem 2.2.

Lemma 2.3 There exist constants ϵ0 ∈ (0,∞), θ ∈ (0, 12), and α ∈ (0, 13) such that for all
b ∈ R3 and for all LSWS (u, p) to (NSEdrift) in Q1, if (i) the smallness condition(

−
∫
Q1

|u|3
) 1

3

+

(
−
∫
Q1

|p|
3
2

) 2
3

≤ ϵ0

holds and (ii) b satisfies |b| ≤ 1, then we have

osc(u, p, θ) ≤ θ2αϵ0 .

Proof: Step (i): Limit equation
By fixing θ and α, we consider the limit (linear) equations{

∂tv + b · ∇v −∆v +∇q = 0 , (x, t) ∈ Q 2
3
,

∇ · v = 0 , (x, t) ∈ Q 2
3
,

(38)

with |b| ≤ 1 and

∥v∥L3(Q 2
3
) ≤ |Q1|

1
3 , ∥q∥

L
3
2 (Q 2

3
)
≤ |Q1|

1
3 .

By the regularity theory for the Stokes (linear) problem, for the velocity v we have

v ∈ C
1
3
par(Q 1

3
) .

Hence, by Campanato’s characterization of Hölder continuity, we see that for all θ ∈ (0, 13),(
−
∫
Qθ

|v − (v)θ|3
) 1

3

≤ C0θ
1
3 .

Next we consider the estimate for the pressure q. Since we have

−∆q = 0 , (x, t) ∈ Q 2
3
,

from the regularity in space for harmonic equations, we see that for all θ ∈ (0, 23),(
−
∫
B(0,θ)

|q(·, t)− (q)θ(t)|
3
2

) 2
3

≤ Cθ

(
−
∫
B(0, 2

3
)
|q(·, t)|

3
2

) 2
3

. (39)
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Then, by the integration in time and ∥q∥
L

3
2 (Q 2

3
)
≤ |Q1|

1
3 , we obtain for all θ ∈ (0, 23),

θ

(
−
∫
Qθ

|q − (q)θ(t)|
3
2

) 2
3

≤ Cθ
2
3

(
−
∫
Q 2

3

|q|
3
2

) 2
3

≤ C1θ
2
3 . (40)

Finally we fix α ∈ (0, 13) and choose θ ∈ (0, 12) sufficiently small so that

C0θ
1
3 + C1θ

2
3 ≤ 1

2
θ2α . (41)

Step (ii): Beginning of contradiction argument
Assume that there exist sequences {ϵk} and {(uk, pk)} such that ϵk → 0 and (uk, pk) is anx
LSWS to (NSEdrift) in Q1 satisfying(

−
∫
Q1

|uk|3
) 1

3

+

(
−
∫
Q1

|pk|
3
2

) 2
3

= ϵk

and (
−
∫
Qθ

|uk − (uk)θ|3
) 1

3

+ θ

(
−
∫
Qθ

|pk − (pk)θ(t)|
3
2

) 2
3

> θ2αϵk .

Firstly we rescale (uk, pk) by setting

vk =
uk
ϵk

, qk =
pk
ϵk

,

which leads to(
−
∫
Q1

|vk|3
) 1

3

+

(
−
∫
Q1

|qk|
3
2

) 2
3

= 1 , (42)(
−
∫
Qθ

|vk − (vk)θ|3
) 1

3

+ θ

(
−
∫
Qθ

|qk − (qk)θ(t)|
3
2

) 2
3

> θ2α . (43)

We see that (vk, qk) is an LSWS to{
∂tvk + ϵkvk · ∇vk + b · ∇vk −∆vk +∇qk = 0 , (x, t) ∈ Q1 ,

∇ · vk = 0 , (x, t) ∈ Q1 .
(NSEdrift-ϵk)

From (42) we have weak convergences vk ⇀ v in L3(Q1) and qk ⇀ q in L
3
2 (Q1) and

∥v∥L3(Q1) ≤ lim inf
k→∞

∥vk∥L3(Q1) ≤ 1 ,

∥q∥
L

3
2 (Q1)

≤ lim inf
k→∞

∥qk∥
L

3
2 (Q1)

≤ 1 .

Step (iii): Strong compactness
We will prove the following claim that up to a subsequence we have

vk → v in L3(Q 2
3
) .
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From the local energy inequality of (NSEdrift-ϵk), we have for all φ ∈ C∞
c (B(0, 1) ×

(−1, 0]), φ ≥ 0 ,∫
R3

|vk(·, t)|2φ(·, t) + 2

∫ t

−1

∫
R3

|∇vk|2φ

≤
∫ t

−1

∫
R3

|vk|2(∂tφ+∆φ) + |vk|2b · ∇φ+ (ϵk|vk|2 + 2qk)vk · ∇φ

≤ C , a.e. t ∈ (−1, 0) ,

(44)

which implies

{vk} is uniformly bounded in L∞
t L2

x(Q 2
3
) ∩ L2

tH
1
x(Q 2

3
) . (45)

Thus, in particular, we have by the Hölder inequality,

{vk} is uniformly bounded in L
10
3
t,x(Q 2

3
) . (46)

Moreover, by using the equations (NSEdrift-ϵk) we have for all φ ∈ C∞
c (Q 2

3
;R3),

|⟨∂tvk, φ⟩| ≤
∣∣∣∣ ∫ 0

−( 2
3
)2

∫
B(0, 2

3
)
∇vk · ∇φ

∣∣∣∣+ ∣∣∣∣ ∫ 0

−( 2
3
)2

∫
B(0, 2

3
)
((ϵkvk + b) · ∇vk) · φ

∣∣∣∣
+

∣∣∣∣ ∫ 0

−( 2
3
)2

∫
B(0, 2

3
)
qk∇ · φ

∣∣∣∣
≤ ∥∇vk∥

L
3
2
t L2

x(Q 2
3
)
∥∇φ∥L3

tL
2
x(Q 2

3
)

+ ∥ϵkvk + b∥L∞
t L2

x(Q 2
3
)∥∇vk∥

L
3
2
t L2

x(Q 2
3
)
∥φ∥L3

tL
∞
x (Q 2

3
)

+ ∥qk∥
L

3
2
t,x(Q 2

3
)
∥∇φ∥L3

t,x(Q 2
3
)

≤ C∥φ∥L3
tH

2
x(Q 2

3
) .

Thus we observe that

∂tvk ∈ L
3
2
t (H

2
0 (Q 2

3
))′x .

Hence by the Aubin-Lions-Rellich lemma we see that {vk} is precompact in L
3
2
t,x(Q 2

3
).

Then by the uniform bound in L
10
3
t,x(Q 2

3
) in (46), we have for all q ∈ [1, 103 ),

vk → v in Lq(Q 2
3
) . (47)

Step (iv): Passing to the limit
We take the limit k → ∞ of (43). By observing that v = lim

k→∞
vk is a solution to the linear

equations (38), and by using the bounds in (45)–(46) and the convergence (47), we obtain

θ2α ≤
(
−
∫
Qθ

|v − (v)θ|3
) 1

3

+ lim sup
k→∞

θ

(
−
∫
Qθ

|qk − (qk)θ(t)|
3
2

) 2
3

≤ C0θ
1
3 + lim sup

k→∞
θ

(
−
∫
Qθ

|qk − (qk)θ(t)|
3
2

) 2
3

. (48)
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We consider a control of the pressure. We decompose qk as qk = hk + gk. Here hk satisfies −∆hk = 0 , x ∈ B(0,
2

3
) ,

(hk)θ(t) = (qk)θ(t) ,

while gk satisfies 
−∆gk = ϵk∇ · (vk · ∇vk) , x ∈ B(0,

2

3
) ,

gk = 0 , x ∈ ∂B(0,
2

3
) .

The Calderon-Zygmund estimates for gk lead to

∥∇gk(t)∥
L

9
8
x (B(0, 2

3
))
≤ ϵk∥vk(t) · ∇vk(t)∥

L
9
8
x (B(0, 2

3
))
.

By integrating in time and combining with the Poincaré-Sobolev inequality we have(
−
∫
Q 2

3

|gk|
3
2

) 2
3

≤ C∥gk∥
L

3
2
t

(
−( 2

3
)2, 0 ;L

9
5
x (B(0, 2

3
)
)

≤ C∥∇gk∥
L

3
2
t

(
−( 2

3
)2, 0 ;L

9
8
x (B(0, 2

3
)
)

≤ Cϵk∥vk · ∇vk∥
L

3
2
t

(
−( 2

3
)2, 0 ;L

9
8
x (B(0, 2

3
)
)

≤ Cϵk ,

where the energy inequality (44) is applied to derive the last line. By a similar argument as
we have derived (39) and (40) and hk = qk − gk we have

θ

(
−
∫
Qθ

|hk − (hk)θ(t)|
3
2

) 2
3

≤ Cθ
2
3

((
−
∫
Q(0, 2

3
)
|qk|

3
2

) 2
3

+

(
−
∫
Q(0, 2

3
)
|gk|

3
2

) 2
3
)

≤ C1θ
2
3 + Cϵk .

Then we see that

lim sup
k→∞

θ

(
−
∫
Qθ

|qk − (qk)θ(t)|
3
2

) 2
3

≤ lim sup
k→∞

θ

(
−
∫
Qθ

|hk − (hk)θ(t)|
3
2

) 2
3

+ lim sup
k→∞

θ

(
−
∫
Qθ

|gk|
3
2

) 2
3

≤ C1θ
2
3 .

Thus from (48) we find

θ2α ≤ C0θ
1
3 + C1θ

2
3 .

On the other hand, from (41) in Step (i) we have C0θ
1
3 + C1θ

2
3 < 1

2θ
2α. Hence we have a

contradiction. This completes the proof of Lemma 2.3. 2

The lemma in the next corresponds to Step (ii) in the proof of Theorem 2.2.
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Lemma 2.4 Let θ, α, and ϵ0 be given in Lemma 2.3. Choose ϵ0 sufficiently small so that

ϵ0 ∈ (0,
θ5

2
]

if needed. Then for all k ∈ N and for all LSWS (u, p) to (NSEdrift) in Qθk , if (i) the
smallness condition

osc(u, p, θk) ≤ θ2αkϵ0

holds and (ii) θk(u)θk satisfies |θk(u)θk | ≤ 1, then we have

osc(u, p, θk+1) ≤ θ2α(k+1)ϵ0 , (49)

|θk+1(u)θk+1 | ≤ 1 . (50)

Proof: Let us consider the rescaled functions

U(x, t) =
u(θkx, θ2kt)− (u)θk

θ2αk
, P (x, t) =

p(θkx, θ2kt)− (p)θk(θ
2kt)

θ(2α−1)k
.

Then we have

−
∫
Q1

U = −
∫
B(0,1)

P (·, θ2kt) = 0 .

By the assumption osc(u, p, θk) ≤ θ2αkϵ0 we also have(
−
∫
Q1

|U |3
) 1

3

+

(
−
∫
Q1

|P |
3
2

) 2
3

≤ ϵ0 .

Note that (U,P ) satisfies (NSEdrift-ϵk) in the Step (ii) of the proof of Lemma 2.3 replacing
(vk, qk), ϵk, and b respectively by (U,P ), θk+2αk, and θk(u)θk . Hence, by reproducing a
similar argument as in the proof of Lemma 2.3, we can prove that

osc(U,P, θ) ≤ θ2αϵ0 ,

which implies the first assertion (49). Moreover, from |θk(u)θk | ≤ 1 we see that

|θk+1(u)θk+1 | ≤ θk+1|(u)θk+1 − (u)θk |+ θ|θk(u)θk |

≤ θk+1−
∫
Q

θk+1

|u− (u)θk |+
1

2

≤ θk+1θ−5

(
−
∫
Q

θk

|u− (u)θk |3
) 1

3

+
1

2

≤ θk+1θ−5θ2αkϵ0 +
1

2
≤ 1 ,

where we have used the conditions ϵ0 ∈ (0, θ
5

2 ] and θ ∈ (0, 12). Then we obtain the second
assertion (50). The proof is complete. 2
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2.4 Comments

In this subsection we make comments on the regularity of the solutions to (NSE).

Regularity
We refer to Serrin [16], Struwe [18], Ladyzhenskaya and Seregin [10], Prodi, Takahashi
[19], and Escauriaza, Seregin, and Sverák [5]. Let (u, p) be a solution to (NSE) such that

u ∈ L∞
t L2

x(Q1) , ∇u ∈ L2
tL

2
x(Q1) .

Then if additionally u satisfies

u ∈ Lp
tL

q
x(Q1) with

2

p
+

3

q
≤ 1 , p ∈ [2,∞) , q ∈ (3,∞) ,

then we have for all fixed t ∈ (−1, 0),

u(·, t) ∈ C∞(B(0, 1)) .

A more quantitative result is available due to Necas, Ruzicka, and Sverák [13]: let ϵ∗ be the
constant in (37) in the rescaled version of Theorem 2.2. Then for all k ∈ N, there exists a
constant Ck ∈ (0,∞) depending on k such that for all r ∈ (0,∞) and for all LSWS (u, p)
in Qr, if

1

r2

∫
Qr

|u|3 + |p|
3
2 ≤ ϵ∗

holds, then we have ∇ku ∈ Cα
par(Q r

2
) and

sup
(x,t)∈Q r

2

|∇ku| ≤ Ckr
−1−k .

Partial regularity
We state a theorem without proof.

Table 1: History

Leray-Hopf LSWS, ϵ-regularity
Leray 1934 [11], Hopf 1951 [8] Scheffer 1976-77 [14, 15]

R3 Calderon-Zygmund theory, p ∈ L
5
3
t,x Caffarelli, Kohn, Nirenberg 1982 [4]

Sohr and Von Wahl 1986 [17] p ∈ L
5
4
t,x(Q1)

bounded or exterior domain, Lin 1998 [12]

p ∈ L
5
3
t,x for smooth initial data p ∈ L

3
2
t,x(Q1)

Ladyzhenskaya and Seregin 1999 [10]
bounded domain Ω,
p ∈ L

3
2 (Ω× (δ, T )) for δ > 0

Vasseur 2007 [20], Kukavica 2009 [9]
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Theorem 2.5 (limsup criteria) Let ϵ∗ be the constant in (37) in the rescaled version of
Theorem 2.2. Then there exists a constant ϵ1 ∈ (0,∞) such that for all LSWS (u, p) to
(NSE) in Q1, if

lim sup
r→∞

1

r

∫
Qr

|∇u|2 ≤ ϵ1

holds, then we have

1

ρ2

∫
Qρ

|u|3 + |p|
3
2 ≤ ϵ∗

for some ρ ∈ (0,∞). Thus the rescaled version of Theorem 2.2 implies u ∈ Cα
par(Q ρ

2
).

We briefly describe an important application of the limsup criteria. Let (u, p) be an LSWS
to (NSE) in Q1. Then the point (x, t) ∈ Q1 is said to be regular for u = u(x, t) if

u ∈ L∞(Qr(x, t)) for some r ∈ (0, 1) ,

and is said to be singular for u(x, t) if

u ̸∈ L∞(Qr(x, t)) for any r ∈ (0, 1) .

The singular set S ⊂ Q1 of u(x, t) is defined by

S = {(x, t) ∈ Q1 | u is singular at (x, t)} .

Then we can prove the following statement by using Theorem 2.5:

H1
par(S) = 0 , dimhaus(S) ≤ 1 .

Here H1
par denotes the parabolic Hausdorff measure of S and dimhaus(S) denotes the

parabolic Hausdorff dimension of S.
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