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Generalities on von Neumann algebras

A von Neumann (vN) algebra is a ∗-algebra of operators acting on a
Hilbert space, M ⊂ B(H), that contains 1 = idH and satisfies any of the
following equivalent conditions:

1 M is closed in the weak operator (wo) topology.

2 M is closed in the strong operator (so) topology.

Examples.(a) If S = S∗ ⊂ B(H), then the commutant (or centralizer) of S
in B(H), S ′ := {y ∈ B(H) | yx = xy , ∀x ∈ S}, satisfies 2 above, so it is a
vN algebra; (b) if p ∈ P(M), then pMp ⊂ B(p(H)) is vN algebra.

• von Neumann’s Bicommutant Theorem shows that M ⊂ B(H)
satisfies the above conditions iff M = (M ′)′ = M ′′.

• Kaplansky Density Theorem shows that if M ⊂ B(H) is a vN algebra
and M0 ⊂ M is a ∗-sublgebra that’s wo-dense in M, then (M0)1

so
= (M)1.

• A vN algebra M is closed to polar decomposition and Borel functional
calculus. Also, if {xi}i ⊂ (M+)1 is an increasing net, then supi xi ∈ M,
and if {pj}j ⊂ M are mutually orthogonal projections, then

∑
j pj ∈ M.
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Examples

• B(H) itself is a vN algebra.

• Let (X , µ) be a standard Borel probability measure space (pmp). Then
the function algebra L∞X = L∞(X , µ) with its essential sup-norm ‖ ‖∞,
can be represented as a ∗-algebra of operators on the Hilbert space
L2X = L2(X , µ), as follows: for each x ∈ L∞X , let λ(x) ∈ B(L2X ) denote
the operator of (left) multiplication by x on L2X , i.e., λ(x)(ξ) = xξ,
∀ξ ∈ L2X . Then x 7→ λ(x) is clearly a ∗-algebra morphism with
‖λ(x)‖B(L2X ) = ‖x‖∞, ∀x . Its image A ⊂ B(L2X ) satisfies A′ = A, in

other words A is a maximal abelian ∗-subalgebra (MASA) in B(L2X ).

Indeed, if T ∈ A′ then let ξ = T (1) ∈ L2X . Denote by λ(ξ) : L2X → L1X
the operator of (left) multiplication by ξ, which by Cauchy-Schwartz is
bounded by ‖ξ‖2. But T : L2X → L2X ⊂ L1X is also bounded as an
operator into L1X , and λ(ξ),T coincide on the ‖ ‖2-dense subspace
L∞X ⊂ L2X (Exercise!) Thus, λ(ξ) = T on all L2, forcing ξ ∈ L∞X
(Exercise!).

This shows that A is a vN algebra (by vN’s bicommutant thm).
3/20



A key example: the hyperfinite II1 factor

A vN algebra M is called a factor if its center, Z(M) := M ′ ∩M, is trivial,
Z(M) = C1.

• Let R0 be the algebraic infinite tensor product M2(C)⊗∞, viewed as
inductive limit of the increasing sequence of algebras M2n(C) = M2(C)⊗n,
via the embeddings x 7→ x ⊗ 1M2 . Endow R0 with the norm
‖x‖ = ‖x‖M2n

, if x ∈M2n ⊂ R0, which is clearly a well defined operator
norm, i.e., satisfies ‖x∗x‖ = ‖x‖2. One also endows R0 with the functional
τ(x) = Tr(x)/2n, for x ∈M2n , which is well defined, positive
(τ(x∗x) ≥ 0, ∀x) and satisfies τ(xy) = τ(yx), ∀x , y ∈ R0, τ(1) = 1, i.e., it
is a trace state. Define the Hilbert space L2(R0) as the completion of R0

with respect to the Hilbert-norm ‖y‖2 = τ(y∗y)1/2, y ∈ R0, and denote
R̂0 the copy of R0 as a subspace of L2(R0).

For each x ∈ R0 define the operator λ(x) on L2(R0) by λ(x)(ŷ) = x̂y ,
∀y ∈ R0. Note that R0 3 x 7→ λ(x) ∈ B(L2) is a ∗-algebra morphism with
‖λ(x)‖ = ‖x‖, ∀x . Moreover, 〈λ(x)(1̂), 1̂〉L2 = τ(x).
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One similarly defines ρ(x) to be the operator of right multiplication by x
on L2(R0), for which we have [λ(y), ρ(x)] = 0, ∀x , y ∈ R0.

One can easily see that the vN algebra R := λ(R0)
so

= λ(R0)
wo

is a factor
(Exercise!). It can alternatively be defined by R = ρ(R0)′ (Exercise!). This
is the hyperfinite II1 factor.

Yet another way to define R is as the completion of R0 in the topology of
convergence in the norm ‖x‖2 = τ(x∗x)1/2 of sequences that are bounded
in the operator norm (Exercise!). Notice that, in both definitions, τ
extends to a trace state on R. Note also that if one denotes by D0 ⊂ R0

the natural “diagonal subalgebra” (...), then (D0, τ|D0
) coincides with the

algebra of dyadic step functions on [0, 1] with the Lebesgue integral. So its
closure in R in the above topology, (D, τ|D), is just (L∞([0, 1]),

∫
dµ).

Note that (R0, τ) (and thus R) is completely determined by the sequence
of partial isometries v1 = e112, vn = (Πn−1

i=1 e
i
22)en12, n ≥ 2, with pn = vnv

∗
n

satisfying τ(pn) = 2−n and pn ∼ 1−
∑n

i=1 pi (Exercise!)
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Finite factors: some equivalent characterizations

Theorem A

Let M be a vN factor. The following are equivalent:

1◦ M is a finite vN algebra, i.e., if p ∈ P(M) satisfies p ∼ 1 = 1M , then
p = 1 (any isometry in M is necessarily a unitary element).

2◦ M has a trace state τ (i.e., a functional τ : M → C that’s positive,
τ(x∗x) ≥ 0, with τ(1) = 1, and is tracial, τ(xy) = τ(yx), ∀x , y ∈ M).

3◦ M has a trace state τ that’s completely additive, i.e.,
τ(Σipi ) = Σiτ(pi ), ∀{pi}i ⊂ P(M) mutually orthogonal projections.

4◦ M has a trace state τ that’s normal, i.e., τ(supi xi ) = supi τ(xi ),
∀{xi}i ⊂ (M+)1 increasing net.

Thus, a vN factor is finite iff it is tracial. Moreover, such a factor has a
unique trace state τ , which is automatically normal and faithful,
and satisfies co{uxu∗ | u ∈ U(M)} ∩ C1 = {τ(x)1}, ∀x ∈ M.
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Some preliminary lemmas

Lemma 1

If a vN factor M has a minimal projections, then M = B(`2I ), for some I .
Moreover, if M = B(`2I ), then the following are eq.:

1◦ M has a trace.

2◦ |I | <∞.

3◦ M is finite, i.e. u ∈ M, u∗u = 1⇒ uu∗ = 1

Proof: Exercise.

Lemma 2

If M is finite then:
(a) p, q ∈ P(M), p ∼ q ⇒ 1− p ∼ 1− q.
(b) pMp is finite ∀p ∈ P(M), i.e., q ∈ P(M), q ≤ p, q ∼ p, then q = p.

Proof: Use the comparison theorem (Exercise).
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Lemma 3

If M vN factor with no atoms and p ∈ P(M) is so that dim(pMp) =∞,
then ∃P0,P1 ∈ P(M), P0 ∼ P1, P0 + P1 = p.

Proof: Consider the family F = {(p0i , p1i )i | with p0i , p
1
j all mutually

orthogonal ≤ p such that p0i ∼ p1i , ∀i}, with its natural order. Clearly
inductively ordered. If (p0i , p

1
i )i∈I is a maximal element, then

P0 =
∑

i p
0
i ,P1 =

∑
i p

1
i will do (for if not, then the comparison Thm.

gives a contradiction).

Lemma 4

If M is a factor with no minimal projections, then ∃{pn}n ⊂ P(M)
mutually orthogonal such that pn ∼ 1−

∑n
i=1 pi , ∀n.

Proof: Apply L3 recursively.
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Lemma 5

If M is a finite factor and {pn}n ⊂ P(M) are as in L4, then:

(a) If p ≺ pn, ∀n, then p = 0. Equivalently, if p 6= 0, then ∃n such that
pn ≺ p. Moreover, if n is the first integer such that pn ≺ p and p′n ≤ p,
p′n ∼ pn, then p − p′n ≺ pn.

(b) If {qn}n ⊂ P(M) increasing and qn ≤ q ∈ P(M) and q − qn ≺ pn, ∀n,
then qn ↗ q (with so-convergence).

(c)
∑

n pn = 1.

Proof: If p ' p′n ≤ pn, ∀n, then P =
∑

n p
′
n and P0 =

∑
k p
′
2k+1 satisfy

P0 < P and P0 ∼ P, contradicting the finiteness of M. Rest is Exercise!

Lemma 6

Let M be a finite factor without atoms. If p ∈ P(M), 6= 0, then ∃ a
unique infinite sequence 1 ≤ n1 < n2 < ... such that p decomposes as
p =

∑
k≥1 p

′
nk

, for some {p′nk}k ⊂ P(M) with p′nk ∼ pnk , ∀k .

Proof: Apply Part (a) of L5 recursively (Exercise!).
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If M is a finite factor without atoms, then we let dim : P(M)→ [0, 1] be
defined by dim(p) = 0 if p = 0 and dim(p) =

∑∞
k=1 2−nk , if p 6= 0, where

n1 < n2 < ..., are given by L4.

Lemma 7

dim satisfies the conditions:

(a) dim(pn) = 2−n

(b) If p, q ∈ P(M) then p ∼ q iff dim(p) ≤ textdim(q)

(c) dim is completely additive: if qi ∈ P(M) are mutually orthogonal,
then dim(Σiqi ) = Σidim(qi ).

Proof: Exercise!.

Lemma 8 (Radon-Nykodim trick)

Let ϕ,ψ : P(M)→ [0, 1] be completely additive functions, ϕ 6= 0, and
ε > 0. There exists p ∈ P(M) with dim(p) = 2−n for some n ≥ 1, and
θ ≥ 0, such that θϕ(q) ≤ ψ(q) ≤ (1 + ε)θϕ(q), ∀q ∈ P(pMp).

10/20
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Proof: Denote F = {p | ∃n with p ∼ pn}. Note first we may assume ϕ
faithful: take a maximal family of mutually orthogonal non-zero
projections {ei}i with ϕ(ei ) = 0, ∀i , then let f = 1−

∑
i ei 6= 0 (because

ϕ(1) 6= 0); it follows that ϕ is faithful on fMf , and by replacing with some
f0 ≤ f in F , we may also assume f ∈ F . Thus, proving the lemma for M
is equivalent to proving it for fMf , which amounts to assuming ϕ faithful.

If ψ = 0, then take θ = 0. If ψ 6= 0, then by replacing ϕ by ϕ(1)−1ϕ and
ψ by ψ(1)−1ψ, we may assume ϕ(1) = ψ(1) = 1. Let us show this implies:

(1) ∃g ∈ F , s.t. ∀g0 ∈ F , g0 ≤ g , we have ϕ(g0) ≤ ψ(g0). For if not then

(2) ∀g ∈ F , ∃g0 ∈ F , g0 ≤ g s.t. ϕ(g0) > ψ(g0).

Take a maximal family of mut. orth. projections {gi}i ⊂ F , with
ϕ(gi ) > ψ(gi ), ∀i . If 1−

∑
i gi 6= 0, then take g ∈ F , g ≤ 1−

∑
i gi (cf.

L5) and apply (2) to get g0 ≤ g , g0 ∈ F with ϕ(g0) > ψ(g0),
contradicting the maximality. Thus,

1 = ϕ(
∑
i

gi ) =
∑
i

ϕ(gi ) >
∑
i

ψ(gi ) = ψ(
∑
i

gi ) = ψ(1) = 1,

a contradiction. Thus, (1) holds true.
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Define θ = sup{θ′ | θ′ϕ(g0) ≤ ψ(g0),∀g0 ≤ g , g0 ∈ F}.
Clearly 1 ≤ θ <∞ and θϕ(g0) ≤ ψ(g0), ∀g0 ≤ g , g0 ∈ F . Moreover, by
def. of θ, there exists g0 ∈ F , g0 ≤ g , s.t., θϕ(g0) > (1 + ε)−1ψ(g0).
We now repeat the argument for ψ and θ(1 + ε)ϕ on g0Mg0, to prove that

(3) ∃g ′ ∈ F , g ′ ≤ g0, such that for all g ′0 ∈ F , g ′0 ≤ g0, we have
ψ(g ′0) ≤ θ(1 + ε)ϕ(g ′0).

Indeed, for if not, then

(4) ∀g ′ ∈ F , g ′ ≤ g0, ∃g ′0 ≤ g ′ in F s.t. ψ(g ′0) > θ(1 + ε)ϕ(g ′0).

But then we take a maximal family of mutually orthogonal g ′i ≤ g0 in F ,
s.t. ψ(g ′i ) ≥ θ(1 + ε)ϕ(g ′i ), and using L5 and (4) above we get∑

i g
′
i = g0. This implies that ψ(g0) ≥ θ(1 + ε)ϕ(g0) > ψ(g0), a

contradiction. Thus, (3) above holds true for some g ′ ≤ g0 in F . Taking
p = g ′, we get that any q ∈ F under p satisfies both θϕ(q) ≤ ψ(q) and
ψ(q) ≤ θ(1 + ε)ϕ(q). By complete additivity of ϕ,ψ and L6, we are done.

12/20



We now apply L8 to ψ = dim and ϕ a vector state on M ⊂ B(H), to get:

Lemma 9

∀ε > 0, ∃p ∈ P(M) with dim(p) = 2−n for some n ≥ 1, and a vector
(thus normal) state ϕ0 on pMp such that, ∀q ∈ P(pMp), we have
(1 + ε)−1ϕ0(q) ≤ dim(q) ≤ (1 + ε)ϕ0(q).

Proof: trivial by L8

Lemma 10

With p, ϕ0 as in L9, let v1 = p, v2, ..., v2n ∈ M such that viv
∗
i = p,∑

i v
∗
i vi = 1. Let ϕ(x) :=

∑2n

i=1 ϕ0(vixv
∗
i ), x ∈ M. Then ϕ is a normal

state on M satisfying ϕ(x∗x) ≤ (1 + ε)ϕ(xx∗), ∀x ∈ M.

Proof: Note first that ϕ0(x∗x) ≤ (1 + ε)ϕ0(xx∗), ∀x ∈ pMp (Hint: do it
first for x partial isometry, then for x with x∗x having finite spectrum). To
deduce the inequality for ϕ itself, note that

∑
j v
∗
i vi = 1 implies that for

any x ∈ M we have

ϕ(x∗x) =
∑
i

ϕ0(vix
∗(
∑
j

v∗j vj)xv
∗
i ) =

∑
i ,j

ϕ0((vix
∗v∗j )(vjxvi ))
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≤ (1 + ε)
∑
i ,j

ϕ0((vjxvi )(vix
∗v∗j )) = ... = (1 + ε)ϕ(xx∗).

Lemma 11

If ϕ is a state on M that satisfies ϕ(x∗x) ≤ (1 + ε)ϕ(xx∗), ∀x ∈ M, then
(1 + ε)−1ϕ(p) ≤ dim(p) ≤ (1 + ε)ϕ(p), ∀p ∈ P(M).

Proof: By complete additivity, it is sufficient to prove it for p ∈ F , for
which we have for v1, ..., v2n as in L10 ϕ(p) = ϕ(v∗j vj) ≤ (1 + ε)ϕ(vjv

∗
j ),

∀j , so that

2nϕ(p) ≤ (1 + ε)
∑
j

ϕ(vjv
∗
j ) = (1 + ε)2ndim(p)

and similarly 2ndim(p) = 1 ≤ (1 + ε)2nϕ(p).
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Proof of Thm A

Define τ : M → C as follows. First, if x ∈ (M+)1 then we let
τ(x) = τ(Σn2−nen) = Σn2−ndim(en), where x = Σn2−nen is the (unique)
dyadic decomposition of 0 ≤ x ≤ 1. Extend τ to M+ by homothety, then
further extend to Mh by τ(x) = τ(x+)− τ(x−), where for x = x∗ ∈ Mh,
x = x+ − x− is the dec. of x into its positive and negative parts.
Finally, extend τ to all M by τ(x) = τ(Rex) + iτ(Imx).

By L11, ∀ε > 0, ∃ϕ normal state on M such that |τ(p)− ϕ(p)| ≤ ε,
∀p ∈ P(M). By the way τ was defined and the linearity of ϕ, this implies
|τ(x)− ϕ(x)| ≤ ε, ∀x ∈ (M+)1, and thus |τ(x)− ϕ(x)| ≤ 4ε, ∀x ∈ (M)1.
This implies |τ(x + y)− τ(x)− τ(y)| ≤ 8ε, ∀x , y ∈ (M)1. Since ε > 0
was arbitrary, this shows that τ is a linear state on M.

By definition of τ , we also have τ(uxu∗) = τ(x), ∀x ∈ M, u ∈ U(M), so τ
is a trace state. From the above argument, it also follows that τ is a norm
limit of normal states, which implies τ is normal as well.
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Finite vN algebras

Theorem A’

Let M be a vN algebra that’s countably decomposable (i.e., any family of
mutually orthogonal projections is countable). The following are
equivalent:

1◦ M is a finite vN algebra, i.e., if p ∈ P(M) satisfies p ∼ 1 = 1M , then
p = 1 (any isometry in M is necessarily a unitary element).

2◦ M has a faithful normal (equivalently completely additive) trace state τ .

Moreover, if M is finite, then there exists a unique normal faithful central
trace, i.e., a linear positive map ctr : M → Z(M) that satisfies
ctr(1) = 1, ctr(z1xz2) = z1ctr(x)z2, ctr(xy) = ctr(yx), x , y ∈ M, zi ∈ Z.

Any trace τ on M is of the form τ = ϕ0 ◦ ctr , for some state ϕ0 on Z.

Also, co{uxu∗ | u ∈ U(M)} ∩ Z = {ctr(x)}, ∀x ∈ M.

Proof of 2◦ ⇒ 1◦: If τ is a faithful trace on M and u∗u = 1 for some
u ∈ M, then τ(1− uu∗) = 1− τ(uu∗) = 1− τ(u∗u) = 0, thus uu∗ = 1.
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Lp-spaces from tracial algebras

• A ∗-operator algebra M0 ⊂ B(H) that’s closed in operator norm is called
a C∗-algebra. Can be described abstractly as a Banach algebra M0 with a
∗-operation and the norm satisfying the axiom ‖x∗x‖ = ‖x‖2, ∀x ∈ M0.

• If M0 is a unital C∗-algebra and τ is a faithful trace state on M0, then
for each p ≥ 1, ‖x‖p = τ(|x |p)1/p, x ∈ M0, is a norm on M0. We denote
LpM0 the completion of (M0, ‖ ‖p). One has ‖x‖p ≤ ‖x‖q,
∀1 ≤ p ≤ q ≤ ∞, thus LpM0 ⊃ LqM0.

Note that L2M0 is a Hilbert space with scalar product 〈x , y〉τ = τ(y∗x).
The map M0 3 x 7→ λ(x) ∈ B(L2) defined by λ(x)(ŷ) = x̂y is a ∗-algebra
isometric representation of M0 into B(L2) with τ(x) = 〈λ(x)1̂, 1̂〉ϕ.
Similarly, ρ(x)(ŷ) = ŷx defines an isometric representation of (M0)op on
L2M0. One has [λ(x1), ρ(x2)] = 0, ∀xi ∈ M0.

More generally, ‖x‖ = sup{‖xy‖p | ‖y‖p ≤ 1}. Also,
‖y‖1 = sup{|τ(xy)| | x ∈ (M)1}. In particular, τ extends to L1M0.

Exercise!
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Abstract characterizations of finite vN algebras

Theorem B

Let (M, τ) be a unital C∗-algebra with a faithful trace state. The following
are equivalent:

1◦ The image of λ : M → B(L2(M, τ)) is a vN algebra (i.e., is wo-closed).

2◦ λ(M) = ρ(M)′ (equivalently, ρ(M) = λ(M)′).

3◦ (M)1 is complete in the norm ‖x‖2,τ .

4◦ As Banach spaces, we have M = (L1(M, τ))∗, where the duality is
given by (M, L1M) 3 (x ,Y ) 7→ τ(xY ).

Proof: One uses similar arguments as when we represented L∞([0, 1]) as a
vN algebra and as in the construction of R (Exercise!).
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II1 factors: definition and basic properties

Definition

An ∞-dim finite factor M (so M 6= Mn(C), ∀n) is called a II1 factor.

• R is a factor, has a trace, and is ∞-dimensional, so it is a II1 factor.

• The construction of the trace on a non-atomic factor satisfying the
finiteness axiom in Thm A is based on splitting recursively 1 dyadically into
equivalent projections, with the underlying partial isometries generating
the hyperfinite II1 factor R. Thus, R embeds into any II1 factor.

• If A ⊂ M is a maximal abelian ∗-subalgebra (MASA) in a II1 factor M,
then A is diffuse (i.e., it has no atoms).

• The (unique) trace τ on a II1 factor M is a dimension function on P(M),
i.e., τ(p) = τ(q) iff p ∼ q, with τ(P(M)) = [0, 1] (continuous dimension).

• If B ⊂ M is vN alg, the orth. projection eB : L2M → B̂
‖ ‖2

= L2B is
positive on M̂ = M, so it takes M onto B, implementing a cond. expect.
EB : M → B that satisfies τ ◦ EB = τ . It is unique with this property.
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Amplifications of II1 factors

• If n ≥ 2 then Mn(M) = Mn(C)⊗M is a II1 factor with trace state
τ((xij)i ,j) =

∑
i τ(xii )/n, ∀(xij)i ,j ∈Mn(M).

• If 0 6= p ∈ P(M), then pMp is a II1 factor with trace state τ(p)−1τ ,
whose isomorphism class only depends on τ(p).

• Given any t > 0, let n ≥ t and p ∈ P(Mn(M)) be so that τ(p) = t/n.
We denote the isomorphism class of pMn(M)p by Mt and call it the
amplification of M by t (Exercise: show that this doesn’t depend on the
choice of n and p.)

• We have (Ms)t = Mst , ∀s, t > 0 (Exercise). One denotes
F(M) = {t > 0 | Mt ' M}. Clearly a multiplicative subgroup of R+,
called the fundamental group of M. It is an isom. invariant of M.
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