The ubiquitous hyperfinite II_1 factor , lecture 1

Kyoto U. & RIMS, April 2019

Sorin Popa

< ∃ > < ⊡ >

A von Neumann (vN) algebra is a *-algebra of operators acting on a Hilbert space, $M \subset \mathcal{B}(\mathcal{H})$, that contains $1 = id_{\mathcal{H}}$ and satisfies any of the following equivalent conditions:

- 1 M is closed in the weak operator (wo) topology.
- 2 M is closed in the strong operator (so) topology.

A von Neumann (vN) algebra is a *-algebra of operators acting on a Hilbert space, $M \subset \mathcal{B}(\mathcal{H})$, that contains $1 = id_{\mathcal{H}}$ and satisfies any of the following equivalent conditions:

1 M is closed in the weak operator (wo) topology.

2 M is closed in the strong operator (so) topology.

Examples.(a) If $S = S^* \subset \mathcal{B}(\mathcal{H})$, then the commutant (or centralizer) of S in $\mathcal{B}(\mathcal{H})$, $S' := \{y \in \mathcal{B}(\mathcal{H}) \mid yx = xy, \forall x \in S\}$, satisfies 2 above, so it is a vN algebra; (b) if $p \in \mathcal{P}(M)$, then $pMp \subset \mathcal{B}(p(\mathcal{H}))$ is vN algebra.

A von Neumann (vN) algebra is a *-algebra of operators acting on a Hilbert space, $M \subset \mathcal{B}(\mathcal{H})$, that contains $1 = id_{\mathcal{H}}$ and satisfies any of the following equivalent conditions:

1 M is closed in the weak operator (wo) topology.

2 M is closed in the strong operator (so) topology.

Examples.(a) If $S = S^* \subset \mathcal{B}(\mathcal{H})$, then the commutant (or centralizer) of S in $\mathcal{B}(\mathcal{H})$, $S' := \{y \in \mathcal{B}(\mathcal{H}) \mid yx = xy, \forall x \in S\}$, satisfies 2 above, so it is a vN algebra; (b) if $p \in \mathcal{P}(\mathcal{M})$, then $pMp \subset \mathcal{B}(p(\mathcal{H}))$ is vN algebra.

• von Neumann's Bicommutant Theorem shows that $M \subset \mathcal{B}(\mathcal{H})$ satisfies the above conditions iff M = (M')' = M''.

A von Neumann (vN) algebra is a *-algebra of operators acting on a Hilbert space, $M \subset \mathcal{B}(\mathcal{H})$, that contains $1 = id_{\mathcal{H}}$ and satisfies any of the following equivalent conditions:

1 M is closed in the weak operator (wo) topology.

2 M is closed in the strong operator (so) topology.

Examples.(a) If $S = S^* \subset \mathcal{B}(\mathcal{H})$, then the commutant (or centralizer) of S in $\mathcal{B}(\mathcal{H})$, $S' := \{y \in \mathcal{B}(\mathcal{H}) \mid yx = xy, \forall x \in S\}$, satisfies 2 above, so it is a vN algebra; (b) if $p \in \mathcal{P}(\mathcal{M})$, then $pMp \subset \mathcal{B}(p(\mathcal{H}))$ is vN algebra.

• von Neumann's Bicommutant Theorem shows that $M \subset \mathcal{B}(\mathcal{H})$ satisfies the above conditions iff M = (M')' = M''.

• Kaplansky Density Theorem shows that if $M \subset \mathcal{B}(\mathcal{H})$ is a vN algebra and $M_0 \subset M$ is a *-sublgebra that's wo-dense in M, then $\overline{(M_0)_1}^{so} = (M)_1$.

A von Neumann (vN) algebra is a *-algebra of operators acting on a Hilbert space, $M \subset \mathcal{B}(\mathcal{H})$, that contains $1 = id_{\mathcal{H}}$ and satisfies any of the following equivalent conditions:

1 M is closed in the weak operator (wo) topology.

2 M is closed in the strong operator (so) topology.

Examples.(a) If $S = S^* \subset \mathcal{B}(\mathcal{H})$, then the commutant (or centralizer) of S in $\mathcal{B}(\mathcal{H})$, $S' := \{y \in \mathcal{B}(\mathcal{H}) \mid yx = xy, \forall x \in S\}$, satisfies 2 above, so it is a vN algebra; (b) if $p \in \mathcal{P}(\mathcal{M})$, then $pMp \subset \mathcal{B}(p(\mathcal{H}))$ is vN algebra.

• von Neumann's Bicommutant Theorem shows that $M \subset \mathcal{B}(\mathcal{H})$ satisfies the above conditions iff M = (M')' = M''.

• Kaplansky Density Theorem shows that if $M \subset \mathcal{B}(\mathcal{H})$ is a vN algebra and $M_0 \subset M$ is a *-sublgebra that's wo-dense in M, then $\overline{(M_0)_1}^{so} = (M)_1$.

• A vN algebra M is closed to polar decomposition and Borel functional calculus. Also, if $\{x_i\}_i \subset (M_+)_1$ is an increasing net, then $\sup_i x_i \in M$, and if $\{p_j\}_j \subset M$ are mutually orthogonal projections, then $\sum_i p_j \in M$.

Examples

• $\mathcal{B}(\mathcal{H})$ itself is a vN algebra.

• Let (X, μ) be a standard Borel probability measure space (pmp). Then the function algebra $L^{\infty}X = L^{\infty}(X,\mu)$ with its essential sup-norm $\| \|_{\infty}$, can be represented as a *-algebra of operators on the Hilbert space $L^2 X = L^2(X, \mu)$, as follows: for each $x \in L^{\infty} X$, let $\lambda(x) \in \mathcal{B}(L^2 X)$ denote the operator of (left) multiplication by x on L^2X , i.e., $\lambda(x)(\xi) = x\xi$, $\forall \xi \in L^2 X$. Then $x \mapsto \lambda(x)$ is clearly a *-algebra morphism with $\|\lambda(x)\|_{\mathcal{B}(L^2X)} = \|x\|_{\infty}, \forall x.$ Its image $A \subset \mathcal{B}(L^2X)$ satisfies A' = A, in other words A is a maximal abelian *-subalgebra (MASA) in $\mathcal{B}(L^2X)$. Indeed, if $T \in A'$ then let $\xi = T(1) \in L^2 X$. Denote by $\lambda(\xi) : L^2 X \to L^1 X$ the operator of (left) multiplication by ξ , which by Cauchy-Schwartz is bounded by $\|\xi\|_2$. But $T: L^2X \to L^2X \subset L^1X$ is also bounded as an operator into L^1X , and $\lambda(\xi)$, T coincide on the $\| \|_2$ -dense subspace $L^{\infty}X \subset L^2X$ (*Exercise!*) Thus, $\lambda(\xi) = T$ on all L^2 , forcing $\xi \in L^{\infty}X$ (Exercise!).

This shows that A is a vN algebra (by vN's bicommutant thm).

A key example: the hyperfinite II_1 factor

A vN algebra M is called a **factor** if its center, $\mathcal{Z}(M) := M' \cap M$, is trivial, $\mathcal{Z}(M) = \mathbb{C}1$.

• Let R_0 be the algebraic infinite tensor product $\mathbb{M}_2(\mathbb{C})^{\otimes \infty}$, viewed as inductive limit of the increasing sequence of algebras $\mathbb{M}_{2^n}(\mathbb{C}) = \mathbb{M}_2(\mathbb{C})^{\otimes n}$, via the embeddings $x \mapsto x \otimes \mathbb{1}_{\mathbb{M}_2}$. Endow R_0 with the norm $\|x\| = \|x\|_{\mathbb{M}_{2^n}}$, if $x \in \mathbb{M}_{2^n} \subset R_0$, which is clearly a well defined operator norm, i.e., satisfies $\|x^*x\| = \|x\|_2$. One also endows R_0 with the functional $\tau(x) = Tr(x)/2^n$, for $x \in \mathbb{M}_{2^n}$, which is well defined, positive $(\tau(x^*x) \ge 0, \forall x)$ and satisfies $\tau(xy) = \tau(yx), \forall x, y \in R_0, \tau(1) = 1$, i.e., it is a **trace state**. Define the Hilbert space $L^2(R_0)$ as the completion of R_0 with respect to the Hilbert-norm $\|y\|_2 = \tau(y^*y)^{1/2}$, $y \in R_0$, and denote \hat{R}_0 the copy of R_0 as a subspace of $L^2(R_0)$.

For each $x \in R_0$ define the operator $\lambda(x)$ on $L^2(R_0)$ by $\lambda(x)(\hat{y}) = x\hat{y}$, $\forall y \in R_0$. Note that $R_0 \ni x \mapsto \lambda(x) \in \mathcal{B}(L^2)$ is a *-algebra morphism with $\|\lambda(x)\| = \|x\|, \forall x$. Moreover, $\langle \lambda(x)(\hat{1}), \hat{1} \rangle_{L^2} = \tau(x)$.

< ≥ > < ₫ >

One can easily see that the vN algebra $R := \overline{\lambda(R_0)}^{so} = \overline{\lambda(R_0)}^{wo}$ is a factor (*Exercise!*). It can alternatively be defined by $R = \rho(R_0)'$ (*Exercise!*). This is the hyperfinite II₁ factor.

One can easily see that the vN algebra $R := \overline{\lambda(R_0)}^{so} = \overline{\lambda(R_0)}^{wo}$ is a factor (*Exercise!*). It can alternatively be defined by $R = \rho(R_0)'$ (*Exercise!*). This is the hyperfinite II₁ factor.

Yet another way to define R is as the completion of R_0 in the topology of convergence in the norm $||x||_2 = \tau (x^*x)^{1/2}$ of sequences that are bounded in the operator norm (*Exercise!*). Notice that, in both definitions, τ extends to a trace state on R. Note also that if one denotes by $D_0 \subset R_0$ the natural "diagonal subalgebra" (...), then $(D_0, \tau_{|D_0})$ coincides with the algebra of dyadic step functions on [0, 1] with the Lebesgue integral. So its closure in R in the above topology, $(D, \tau_{|D})$, is just $(L^{\infty}([0, 1]), \int d\mu)$.

One can easily see that the vN algebra $R := \overline{\lambda(R_0)}^{so} = \overline{\lambda(R_0)}^{wo}$ is a factor (*Exercise!*). It can alternatively be defined by $R = \rho(R_0)'$ (*Exercise!*). This is the hyperfinite II₁ factor.

Yet another way to define R is as the completion of R_0 in the topology of convergence in the norm $||x||_2 = \tau (x^*x)^{1/2}$ of sequences that are bounded in the operator norm (*Exercise!*). Notice that, in both definitions, τ extends to a trace state on R. Note also that if one denotes by $D_0 \subset R_0$ the natural "diagonal subalgebra" (...), then $(D_0, \tau_{|D_0})$ coincides with the algebra of dyadic step functions on [0, 1] with the Lebesgue integral. So its closure in R in the above topology, $(D, \tau_{|D})$, is just $(L^{\infty}([0, 1]), \int d\mu)$. Note that (R_0, τ) (and thus R) is completely determined by the sequence

of partial isometries $v_1 = e_{12}^1$, $v_n = (\prod_{i=1}^{n-1} e_{22}^i)e_{12}^n$, $n \ge 2$, with $p_n = v_n v_n^*$ satisfying $\tau(p_n) = 2^{-n}$ and $p_n \sim 1 - \sum_{i=1}^{n} p_i$ (*Exercise!*)

★ ∃ > ★ Ø >

Theorem A

Let M be a vN factor. The following are equivalent:

1° *M* is a **finite** vN algebra, i.e., if $p \in \mathcal{P}(M)$ satisfies $p \sim 1 = 1_M$, then p = 1 (any isometry in *M* is necessarily a unitary element).

2° *M* has a **trace state** τ (i.e., a functional $\tau : M \to \mathbb{C}$ that's positive, $\tau(x^*x) \ge 0$, with $\tau(1) = 1$, and is tracial, $\tau(xy) = \tau(yx), \forall x, y \in M$).

3° *M* has a trace state τ that's **completely additive**, i.e., $\tau(\Sigma_i p_i) = \Sigma_i \tau(p_i), \forall \{p_i\}_i \subset \mathcal{P}(M)$ mutually orthogonal projections. 4° *M* has a trace state τ that's **normal**, i.e., $\tau(\sup_i x_i) = \sup_i \tau(x_i)$,

 $\forall \{x_i\}_i \subset (M_+)_1 \text{ increasing net.}$

Thus, a vN factor is finite iff it is tracial. Moreover, such a factor has a unique trace state τ , which is automatically normal and faithful, and satisfies $\overline{co}\{uxu^* \mid u \in U(M)\} \cap \mathbb{C}1 = \{\tau(x)1\}, \forall x \in M$.

If a vN factor M has a minimal projections, then $M = \mathcal{B}(\ell^2 I)$, for some I. Moreover, if $M = \mathcal{B}(\ell^2 I)$, then the following are eq.:

 1° *M* has a trace.

 $2^{\circ} |I| < \infty.$

3° *M* is finite, i.e. $u \in M$, $u^*u = 1 \Rightarrow uu^* = 1$

Proof: Exercise.

If a vN factor M has a minimal projections, then $M = \mathcal{B}(\ell^2 I)$, for some I. Moreover, if $M = \mathcal{B}(\ell^2 I)$, then the following are eq.:

 1° *M* has a trace.

 $2^{\circ} |I| < \infty.$

3° *M* is finite, i.e. $u \in M$, $u^*u = 1 \Rightarrow uu^* = 1$

Proof: Exercise.

Lemma 2

If *M* is finite then: (a) $p, q \in \mathcal{P}(M)$, $p \sim q \Rightarrow 1 - p \sim 1 - q$. (b) pMp is finite $\forall p \in \mathcal{P}(M)$, i.e., $q \in \mathcal{P}(M)$, $q \leq p$, $q \sim p$, then q = p.

Proof: Use the comparison theorem (Exercise).

< ≣ > < @ >

If M vN factor with no atoms and $p \in \mathcal{P}(M)$ is so that $\dim(pMp) = \infty$, then $\exists P_0, P_1 \in \mathcal{P}(M)$, $P_0 \sim P_1$, $P_0 + P_1 = p$.

Proof: Consider the family $\mathcal{F} = \{(p_i^0, p_i^1)_i \mid \text{with } p_i^0, p_j^1 \text{ all mutually} \text{ orthogonal } \leq p \text{ such that } p_i^0 \sim p_i^1, \forall i\}$, with its natural order. Clearly inductively ordered. If $(p_i^0, p_i^1)_{i \in I}$ is a maximal element, then $P_0 = \sum_i p_i^0, P_1 = \sum_i p_i^1$ will do (for if not, then the comparison Thm. gives a contradiction).

If M vN factor with no atoms and $p \in \mathcal{P}(M)$ is so that $\dim(pMp) = \infty$, then $\exists P_0, P_1 \in \mathcal{P}(M)$, $P_0 \sim P_1$, $P_0 + P_1 = p$.

Proof: Consider the family $\mathcal{F} = \{(p_i^0, p_i^1)_i \mid \text{with } p_i^0, p_j^1 \text{ all mutually} orthogonal <math>\leq p$ such that $p_i^0 \sim p_i^1, \forall i\}$, with its natural order. Clearly inductively ordered. If $(p_i^0, p_i^1)_{i \in I}$ is a maximal element, then $P_0 = \sum_i p_i^0, P_1 = \sum_i p_i^1$ will do (for if not, then the comparison Thm. gives a contradiction).

Lemma 4

If *M* is a factor with no minimal projections, then $\exists \{p_n\}_n \subset \mathcal{P}(M)$ mutually orthogonal such that $p_n \sim 1 - \sum_{i=1}^n p_i$, $\forall n$.

Proof: Apply **L3** recursively.

If *M* is a finite factor and $\{p_n\}_n \subset \mathcal{P}(M)$ are as in L4, then:

(a) If $p \prec p_n$, $\forall n$, then p = 0. Equivalently, if $p \neq 0$, then $\exists n$ such that $p_n \prec p$. Moreover, if n is the first integer such that $p_n \prec p$ and $p'_n \leq p$, $p'_n \sim p_n$, then $p - p'_n \prec p_n$.

(b) If $\{q_n\}_n \subset \mathcal{P}(M)$ increasing and $q_n \leq q \in \mathcal{P}(M)$ and $q - q_n \prec p_n$, $\forall n$, then $q_n \nearrow q$ (with so-convergence).

 $(c) \sum_{n} p_n = 1.$

Proof: If $p \simeq p'_n \le p_n$, $\forall n$, then $P = \sum_n p'_n$ and $P_0 = \sum_k p'_{2k+1}$ satisfy $P_0 < P$ and $P_0 \sim P$, contradicting the finiteness of M. Rest is *Exercise!*

If *M* is a finite factor and $\{p_n\}_n \subset \mathcal{P}(M)$ are as in L4, then:

(a) If $p \prec p_n$, $\forall n$, then p = 0. Equivalently, if $p \neq 0$, then $\exists n$ such that $p_n \prec p$. Moreover, if n is the first integer such that $p_n \prec p$ and $p'_n \leq p$, $p'_n \sim p_n$, then $p - p'_n \prec p_n$.

(b) If $\{q_n\}_n \subset \mathcal{P}(M)$ increasing and $q_n \leq q \in \mathcal{P}(M)$ and $q - q_n \prec p_n$, $\forall n$, then $q_n \nearrow q$ (with so-convergence). (c) $\sum_n p_n = 1$.

Proof: If $p \simeq p'_n \leq p_n$, $\forall n$, then $P = \sum_n p'_n$ and $P_0 = \sum_k p'_{2k+1}$ satisfy $P_0 < P$ and $P_0 \sim P$, contradicting the finiteness of M. Rest is *Exercise!*

Lemma 6

Let *M* be a finite factor without atoms. If $p \in \mathcal{P}(M)$, $\neq 0$, then \exists a unique infinite sequence $1 \leq n_1 < n_2 < ...$ such that *p* decomposes as $p = \sum_{k \geq 1} p'_{n_k}$, for some $\{p'_{n_k}\}_k \subset \mathcal{P}(M)$ with $p'_{n_k} \sim p_{n_k}$, $\forall k$.

Proof: Apply Part (a) of L5 recursively (*Exercise!*).

If *M* is a finite factor without atoms, then we let dim : $\mathcal{P}(M) \to [0,1]$ be defined by dim(p) = 0 if p = 0 and dim $(p) = \sum_{k=1}^{\infty} 2^{-n_k}$, if $p \neq 0$, where $n_1 < n_2 < \dots$, are given by L4.

If *M* is a finite factor without atoms, then we let dim : $\mathcal{P}(M) \to [0, 1]$ be defined by dim(p) = 0 if p = 0 and dim $(p) = \sum_{k=1}^{\infty} 2^{-n_k}$, if $p \neq 0$, where $n_1 < n_2 < \dots$, are given by L4.

Lemma 7

 \dim satisfies the conditions:

(a) dim $(p_n) = 2^{-n}$

(b) If $p, q \in \mathcal{P}(M)$ then $p \sim q$ iff $\dim(p) \leq text \dim(q)$

(c) dim is completely additive: if $q_i \in \mathcal{P}(M)$ are mutually orthogonal, then $\dim(\Sigma_i q_i) = \Sigma_i \dim(q_i)$.

Proof: Exercise!.

If *M* is a finite factor without atoms, then we let dim : $\mathcal{P}(M) \to [0, 1]$ be defined by dim(p) = 0 if p = 0 and dim $(p) = \sum_{k=1}^{\infty} 2^{-n_k}$, if $p \neq 0$, where $n_1 < n_2 < \dots$, are given by L4.

Lemma 7

 \dim satisfies the conditions:

(a) dim $(p_n) = 2^{-n}$

(b) If $p, q \in \mathcal{P}(M)$ then $p \sim q$ iff $\dim(p) \leq text \dim(q)$

(c) dim is completely additive: if $q_i \in \mathcal{P}(M)$ are mutually orthogonal, then $\dim(\Sigma_i q_i) = \Sigma_i \dim(q_i)$.

Proof: Exercise!.

Lemma 8 (Radon-Nykodim trick)

Let $\varphi, \psi : \mathcal{P}(M) \to [0, 1]$ be completely additive functions, $\varphi \neq 0$, and $\varepsilon > 0$. There exists $p \in \mathcal{P}(M)$ with $\dim(p) = 2^{-n}$ for some $n \ge 1$, and $\theta \ge 0$, such that $\theta \varphi(q) \le \psi(q) \le (1 + \varepsilon) \theta \varphi(q)$, $\forall q \in \mathcal{P}(pMp)$.

Proof: Denote $\mathcal{F} = \{p \mid \exists n \text{ with } p \sim p_n\}$. Note first we may assume φ faithful: take a maximal family of mutually orthogonal non-zero projections $\{e_i\}_i$ with $\varphi(e_i) = 0$, $\forall i$, then let $f = 1 - \sum_i e_i \neq 0$ (because $\varphi(1) \neq 0$); it follows that φ is faithful on fMf, and by replacing with some $f_0 \leq f$ in \mathcal{F} , we may also assume $f \in \mathcal{F}$. Thus, proving the lemma for M is equivalent to proving it for fMf, which amounts to assuming φ faithful. If $\psi = 0$, then take $\theta = 0$. If $\psi \neq 0$, then by replacing φ by $\varphi(1)^{-1}\varphi$ and

 ψ by $\psi(1)^{-1}\psi$, we may assume $\varphi(1) = \psi(1) = 1$. Let us show this implies: (1) $\exists g \in \mathcal{F}$, s.t. $\forall g_0 \in \mathcal{F}$, $g_0 \leq g$, we have $\varphi(g_0) \leq \psi(g_0)$. For if not then (2) $\forall g \in \mathcal{F}$, $\exists g_0 \in \mathcal{F}$, $g_0 \leq g$ s.t. $\varphi(g_0) > \psi(g_0)$.

Take a maximal family of mut. orth. projections $\{g_i\}_i \subset \mathcal{F}$, with $\varphi(g_i) > \psi(g_i)$, $\forall i$. If $1 - \sum_i g_i \neq 0$, then take $g \in \mathcal{F}$, $g \leq 1 - \sum_i g_i$ (cf. **L5**) and apply (2) to get $g_0 \leq g$, $g_0 \in \mathcal{F}$ with $\varphi(g_0) > \psi(g_0)$, contradicting the maximality. Thus,

$$1 = \varphi(\sum_i g_i) = \sum_i \varphi(g_i) > \sum_i \psi(g_i) = \psi(\sum_i g_i) = \psi(1) = 1,$$

a contradiction. Thus, (1) holds true.

Define $\theta = \sup\{\theta' \mid \theta'\varphi(g_0) \le \psi(g_0), \forall g_0 \le g, g_0 \in \mathcal{F}\}.$

Clearly $1 \le \theta < \infty$ and $\theta \varphi(g_0) \le \psi(g_0), \forall g_0 \le g, g_0 \in \mathcal{F}$. Moreover, by def. of θ , there exists $g_0 \in \mathcal{F}$, $g_0 \le g$, s.t., $\theta \varphi(g_0) > (1 + \varepsilon)^{-1} \psi(g_0)$. We now repeat the argument for ψ and $\theta(1 + \varepsilon)\varphi$ on $g_0 Mg_0$, to prove that

(3) $\exists g' \in \mathcal{F}, g' \leq g_0$, such that for all $g'_0 \in \mathcal{F}, g'_0 \leq g_0$, we have $\psi(g'_0) \leq \theta(1 + \varepsilon)\varphi(g'_0)$.

Indeed, for if not, then

(4) $\forall g' \in \mathcal{F}, g' \leq g_0, \exists g'_0 \leq g' \text{ in } \mathcal{F} \text{ s.t. } \psi(g'_0) > \theta(1+\varepsilon)\varphi(g'_0).$

But then we take a maximal family of mutually orthogonal $g'_i \leq g_0$ in \mathcal{F} , s.t. $\psi(g'_i) \geq \theta(1+\varepsilon)\varphi(g'_i)$, and using L5 and (4) above we get $\sum_i g'_i = g_0$. This implies that $\psi(g_0) \geq \theta(1+\varepsilon)\varphi(g_0) > \psi(g_0)$, a contradiction. Thus, (3) above holds true for some $g' \leq g_0$ in \mathcal{F} . Taking p = g', we get that any $q \in \mathcal{F}$ under p satisfies both $\theta\varphi(q) \leq \psi(q)$ and $\psi(q) \leq \theta(1+\varepsilon)\varphi(q)$. By complete additivity of φ, ψ and L6, we are done.

▲ 臣 ▶ ▲ 伊 ▶

We now apply **L8** to $\psi = \dim$ and φ a vector state on $M \subset \mathcal{B}(\mathcal{H})$, to get:

Lemma 9

 $\forall \varepsilon > 0, \exists p \in \mathcal{P}(M) \text{ with } \dim(p) = 2^{-n} \text{ for some } n \ge 1, \text{ and a vector}$ (thus normal) state φ_0 on pMp such that, $\forall q \in \mathcal{P}(pMp)$, we have $(1 + \varepsilon)^{-1}\varphi_0(q) \le \dim(q) \le (1 + \varepsilon)\varphi_0(q).$

Proof: trivial by L8

▲ ヨト ▲ 伊ト

We now apply **L8** to $\psi = \dim$ and φ a vector state on $M \subset \mathcal{B}(\mathcal{H})$, to get:

Lemma 9

 $\forall \varepsilon > 0, \exists p \in \mathcal{P}(M) \text{ with } \dim(p) = 2^{-n} \text{ for some } n \ge 1, \text{ and a vector}$ (thus normal) state φ_0 on pMp such that, $\forall q \in \mathcal{P}(pMp)$, we have $(1 + \varepsilon)^{-1}\varphi_0(q) \le \dim(q) \le (1 + \varepsilon)\varphi_0(q).$

Proof: trivial by **L8**

Lemma 10

With p, φ_0 as in **L9**, let $v_1 = p, v_2, ..., v_{2^n} \in M$ such that $v_i v_i^* = p$, $\sum_i v_i^* v_i = 1$. Let $\varphi(x) := \sum_{i=1}^{2^n} \varphi_0(v_i x v_i^*)$, $x \in M$. Then φ is a normal state on M satisfying $\varphi(x^*x) \leq (1 + \varepsilon)\varphi(xx^*)$, $\forall x \in M$.

Proof: Note first that $\varphi_0(x^*x) \leq (1 + \varepsilon)\varphi_0(xx^*)$, $\forall x \in pMp$ (Hint: do it first for x partial isometry, then for x with x^*x having finite spectrum). To deduce the inequality for φ itself, note that $\sum_j v_i^* v_i = 1$ implies that for any $x \in M$ we have

$$\varphi(x^*x) = \sum_i \varphi_0(v_i x^* (\sum_j v_j^* v_j) x v_i^*) = \sum_{i,j} \varphi_0((v_i x^* v_j^*) (v_j x v_i))$$

$$\leq (1+\varepsilon)\sum_{i,j}\varphi_0((v_jxv_i)(v_ix^*v_j^*)) = \ldots = (1+\varepsilon)\varphi(xx^*).$$

∢ ≣ ► ∢ 🗗 ►

$$\leq (1+\varepsilon)\sum_{i,j}\varphi_0((v_jxv_i)(v_ix^*v_j^*)) = \ldots = (1+\varepsilon)\varphi(xx^*).$$

If φ is a state on M that satisfies $\varphi(x^*x) \leq (1+\varepsilon)\varphi(xx^*)$, $\forall x \in M$, then $(1+\varepsilon)^{-1}\varphi(p) \leq \dim(p) \leq (1+\varepsilon)\varphi(p)$, $\forall p \in \mathcal{P}(M)$.

Proof: By complete additivity, it is sufficient to prove it for $p \in \mathcal{F}$, for which we have for $v_1, ..., v_{2^n}$ as in **L10** $\varphi(p) = \varphi(v_j^* v_j) \leq (1 + \varepsilon)\varphi(v_j v_j^*)$, $\forall j$, so that

$$2^n \varphi(p) \leq (1 + \varepsilon) \sum_j \varphi(v_j v_j^*) = (1 + \varepsilon) 2^n \dim(p)$$

and similarly $2^n \dim(p) = 1 \le (1 + \varepsilon) 2^n \varphi(p)$.

|▲ 臣 ▶ ▲ @ ▶

Proof of Thm A

Define $\tau: M \to \mathbb{C}$ as follows. First, if $x \in (M_+)_1$ then we let $\tau(x) = \tau(\sum_n 2^{-n} e_n) = \sum_n 2^{-n} \dim(e_n)$, where $x = \sum_n 2^{-n} e_n$ is the (unique) dyadic decomposition of $0 \le x \le 1$. Extend τ to M_+ by homothety, then further extend to M_h by $\tau(x) = \tau(x_+) - \tau(x_-)$, where for $x = x^* \in M_h$, $x = x_+ - x_-$ is the dec. of x into its positive and negative parts. Finally, extend τ to all M by $\tau(x) = \tau(\operatorname{Re} x) + i\tau(\operatorname{Im} x)$.

Proof of Thm A

Define $\tau: M \to \mathbb{C}$ as follows. First, if $x \in (M_+)_1$ then we let $\tau(x) = \tau(\sum_n 2^{-n} e_n) = \sum_n 2^{-n} \dim(e_n)$, where $x = \sum_n 2^{-n} e_n$ is the (unique) dyadic decomposition of $0 \le x \le 1$. Extend τ to M_+ by homothety, then further extend to M_h by $\tau(x) = \tau(x_+) - \tau(x_-)$, where for $x = x^* \in M_h$, $x = x_+ - x_-$ is the dec. of x into its positive and negative parts. Finally, extend τ to all M by $\tau(x) = \tau(\operatorname{Re} x) + i\tau(\operatorname{Im} x)$.

By L11, $\forall \varepsilon > 0$, $\exists \varphi$ normal state on M such that $|\tau(p) - \varphi(p)| \leq \varepsilon$, $\forall p \in \mathcal{P}(M)$. By the way τ was defined and the linearity of φ , this implies $|\tau(x) - \varphi(x)| \leq \varepsilon$, $\forall x \in (M_+)_1$, and thus $|\tau(x) - \varphi(x)| \leq 4\varepsilon$, $\forall x \in (M)_1$. This implies $|\tau(x + y) - \tau(x) - \tau(y)| \leq 8\varepsilon$, $\forall x, y \in (M)_1$. Since $\varepsilon > 0$ was arbitrary, this shows that τ is a linear state on M.

By definition of τ , we also have $\tau(uxu^*) = \tau(x)$, $\forall x \in M$, $u \in \mathcal{U}(M)$, so τ is a trace state. From the above argument, it also follows that τ is a norm limit of normal states, which implies τ is normal as well.

< 注 > < /// →

Finite vN algebras

Theorem A'

Let M be a vN algebra that's countably decomposable (i.e., any family of mutually orthogonal projections is countable). The following are equivalent:

1° *M* is a **finite** vN algebra, i.e., if $p \in \mathcal{P}(M)$ satisfies $p \sim 1 = 1_M$, then p = 1 (any isometry in *M* is necessarily a unitary element).

 $2^\circ~M$ has a faithful normal (equivalently completely additive) trace state $\tau.$

Moreover, if M is finite, then there exists a unique normal faithful **central trace**, i.e., a linear positive map $ctr : M \to \mathcal{Z}(M)$ that satisfies ctr(1) = 1, $ctr(z_1xz_2) = z_1ctr(x)z_2$, ctr(xy) = ctr(yx), $x, y \in M$, $z_i \in \mathcal{Z}$. Any trace τ on M is of the form $\tau = \varphi_0 \circ ctr$, for some state φ_0 on \mathcal{Z} . Also, $\overline{co}\{uxu^* \mid u \in \mathcal{U}(M)\} \cap \mathcal{Z} = \{ctr(x)\}, \forall x \in M$.

Proof of $2^{\circ} \Rightarrow 1^{\circ}$: If τ is a faithful trace on M and $u^*u = 1$ for some $u \in M$, then $\tau(1 - uu^*) = 1 - \tau(uu^*) = 1 - \tau(u^*u) = 0$, thus $uu^* = 1$, $u \in \mathbb{R}$,

L^p-spaces from tracial algebras

• A *-operator algebra $M_0 \subset \mathcal{B}(\mathcal{H})$ that's closed in operator norm is called a **C***-algebra. Can be described abstractly as a Banach algebra M_0 with a *-operation and the norm satisfying the axiom $||x^*x|| = ||x||^2$, $\forall x \in M_0$.

• If M_0 is a unital C*-algebra and τ is a faithful trace state on M_0 , then for each $p \ge 1$, $||x||_p = \tau(|x|^p)^{1/p}$, $x \in M_0$, is a norm on M_0 . We denote $L^p M_0$ the completion of $(M_0, || ||_p)$. One has $||x||_p \le ||x||_q$, $\forall 1 \le p \le q \le \infty$, thus $L^p M_0 \supset L^q M_0$.

Note that $L^2 M_0$ is a Hilbert space with scalar product $\langle x, y \rangle_{\tau} = \tau(y^*x)$. The map $M_0 \ni x \mapsto \lambda(x) \in \mathcal{B}(L^2)$ defined by $\lambda(x)(\hat{y}) = x\hat{y}$ is a *-algebra isometric representation of M_0 into $\mathcal{B}(L^2)$ with $\tau(x) = \langle \lambda(x)\hat{1}, \hat{1} \rangle_{\varphi}$. Similarly, $\rho(x)(\hat{y}) = \hat{yx}$ defines an isometric representation of $(M_0)^{op}$ on $L^2 M_0$. One has $[\lambda(x_1), \rho(x_2)] = 0$, $\forall x_i \in M_0$.

More generally, $||x|| = \sup\{||xy||_p \mid ||y||_p \le 1\}$. Also, $||y||_1 = \sup\{|\tau(xy)| \mid x \in (M)_1\}$. In particular, τ extends to L^1M_0 .

Exercise!

Theorem B

Let (M, τ) be a unital C*-algebra with a faithful trace state. The following are equivalent:

1° The image of $\lambda : M \to \mathcal{B}(L^2(M, \tau))$ is a vN algebra (i.e., is wo-closed).

$$2^{\circ} \ \lambda(M) =
ho(M)'$$
 (equivalently, $ho(M) = \lambda(M)').$

 3° (*M*)₁ is complete in the norm $||x||_{2,\tau}$.

4° As Banach spaces, we have $M = (L^1(M, \tau))^*$, where the duality is given by $(M, L^1M) \ni (x, Y) \mapsto \tau(xY)$.

Proof: One uses similar arguments as when we represented $L^{\infty}([0,1])$ as a vN algebra and as in the construction of R (*Exercise!*).

II₁ factors: definition and basic properties

Definition

An ∞ -dim finite factor M (so $M \neq \mathbb{M}_n(\mathbb{C})$, $\forall n$) is called a H_1 factor.

- R is a factor, has a trace, and is ∞ -dimensional, so it is a II₁ factor.
- The construction of the trace on a non-atomic factor satisfying the finiteness axiom in Thm A is based on splitting recursively 1 dyadically into equivalent projections, with the underlying partial isometries generating the hyperfinite II_1 factor R. Thus, R embeds into any II_1 factor.
- If $A \subset M$ is a maximal abelian *-subalgebra (MASA) in a II₁ factor M, then A is diffuse (i.e., it has no atoms).

• The (unique) trace τ on a II₁ factor M is a dimension function on $\mathcal{P}(M)$, i.e., $\tau(p) = \tau(q)$ iff $p \sim q$, with $\tau(\mathcal{P}(M)) = [0, 1]$ (continuous dimension).

• If $B \subset M$ is vN alg, the orth. projection $e_B : L^2M \to \overline{\hat{B}}^{\parallel \parallel 2} = L^2B$ is positive on $\hat{M} = M$, so it takes M onto B, implementing a cond. expect. $E_B : M \to B$ that satisfies $\tau \circ E_B = \tau$. It is unique with this property.

• If $n \ge 2$ then $\mathbb{M}_n(M) = \mathbb{M}_n(\mathbb{C}) \otimes M$ is a II_1 factor with trace state $\tau((x_{ij})_{i,j}) = \sum_i \tau(x_{ii})/n, \ \forall (x_{ij})_{i,j} \in \mathbb{M}_n(M).$

• If $0 \neq p \in \mathcal{P}(M)$, then pMp is a II₁ factor with trace state $\tau(p)^{-1}\tau$, whose isomorphism class only depends on $\tau(p)$.

• Given any t > 0, let $n \ge t$ and $p \in \mathcal{P}(\mathbb{M}_n(M))$ be so that $\tau(p) = t/n$. We denote the isomorphism class of $p\mathbb{M}_n(M)p$ by M^t and call it the **amplification of** M by t (*Exercise*: show that this doesn't depend on the choice of n and p.)

• We have $(M^s)^t = M^{st}$, $\forall s, t > 0$ (*Exercise*). One denotes $\mathcal{F}(M) = \{t > 0 \mid M^t \simeq M\}$. Clearly a multiplicative subgroup of \mathbb{R}_+ , called the **fundamental group of** M. It is an isom. invariant of M.

▲注▶▲御♪