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1. Introduction

The main topic of this note is a fundamental theorem in the metric theory of tensor
products due to Grothendieck [4] in 1953. Now it is called Grothendieck’s theorem (or
Grothendieck’s inequality), and we will refer to it as GT (or GI) for short. There are many
formulations of GT, and Theorem 1.1 below is an elementary one due to Lindenstrauss and
Pe lczyński [15]. We refer to Pisier’s paper [22] (and its “UNCUT” version, avairable at
his homepage) for GT and its related topics, including connection with computer science,
graph theory, and quantum mechanics (see also [11]).

In what follows, K denotes R or C. For any normed space X, SX and BX denote the
unit sphere and the closed unit ball of X, respectively. Let H be the separable Hilbert
space ℓ2 over K. For any a = [aij ] ∈Mn(K), we define two norms ∥a∥h and ∥a∥∨ by

∥a∥h = sup{|
n∑

i,j=1

aij⟨xi, yj⟩| | xi, yj ∈ SH}, ∥a∥∨ = sup{|
n∑

i,j=1

aijsitj | | si, tj ∈ SK}.

Clearly, we have ∥a∥∨ ≤ ∥a∥h.

Theorem 1.1 (GT/ inequality). There exists a constant K > 0 such that for any n ∈ N
and any a ∈Mn(K) it follows that ∥a∥h ≤ K∥a∥∨.

Note that the constant K is independent of the dimension n. The smallest K is called the
Grothendieck constant and denoted by KG. The exact value of KG is still open and depends
on the field K, and hence we will write KR

G and KC
G. It is known that 1.33 ≤ KC

G < KR
G <

1.782 · · · . In Grothendieck’s paper [4], it was shown that KR
G ≤ sinh(π/2) = 2.301 · · · .

Krivine [14] proved KR
G ≤ π(2 log(1 +

√
2))−1 = 1.782 · · · and conjectured that this is the

best constant. However, in the recent paper [2], it was proved that KR
G is strictly smaller

than Krivine’s constant.

Actually GT follows from (and equivalent to) the following:

Theorem 1.2. There exist a constant K > 0, a probability space (Ω,A,P) and (possibly
non-linear) maps φ,ψ from SH into the closed unit ball of L∞(Ω,A,P) such that ⟨x, y⟩ =
KE[φxψy] for x, y ∈ SH .

Note that ∥a∥∨ = sup{|
∑
aijsitj | | si, tj ∈ BK}. Thus, if φ and ψ are as in Theorem

1.2, then it follows that

|
∑

aij⟨xi, yj⟩| = |
∑

aijKE[φxiψyj ]|

≤ K ess sup{|
∑

aijφxi(ω)ψyj (ω)| | ω ∈ Ω}
1
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≤ K sup{|
∑

aijsitj | | si, tj ∈ BK}
= K∥a∥∨,

which implies Theorem 1.1.

Proof of Theorem 1.1 for R and K = sinh(π/2). Take an i.i.d. sequence {gi | i ∈ N} of
N(0, 1) Gaussian random variables on a probability space (Ω,A,P). Let {ej}j≥1 be the
standard basis of H = ℓ2. For any x =

∑
j xjej ∈ SH , we set Xx :=

∑
j xjgj ∈ L2(Ω,A,P).

Since ⟨x, y⟩ = ⟨Xx, Xy⟩ holds, Xx is also N(0, 1) Gaussian. The key fact is that

⟨x, y⟩ = sin
(π

2
E[sgn(Xx) sgn(Xy)]

)
(see [21, Lemma 5.20]). We set F (t) := 2

π arcsin(t) for t ∈ [−1, 1] and Sx := sgn(Xx) for
x ∈ SH . Then, the above formula becomes

F (⟨x, y⟩) = E[SxSy].

Let F (z)−1 = sin(π2 z) =
∑∞

j=0 a2j+1z
2j+1 be the Taylor expansion (i.e., a2j+1 = (−1)j

(2j+1)!(
π
2 )2j+1).

We then have

⟨x, y⟩ = F−1(F (⟨x, y⟩) =

∞∑
j=0

a2j+1E[SxSy]
2j+1 =

∞∑
j=0

a2j+1E[S⊗2j+1
x S⊗2j+1

y ].

Put Ω̂ :=
⊔∞
j=0 Ω2j+1 and ν :=

∑∞
j=0 |a2j+1|P⊗2j+1 and define φ,ψ : SH → L∞(Ω̂, ν) by

φx|Ω2j+1 := S⊗2j+1
x , ψy|Ω2j+1 := sgn(a2j+1)S

⊗2j+1
y .

Then, we have ⟨x, y⟩ = ⟨φx, ψy⟩L2(Ω̂,ν)
. Since ν(Ω̂) =

∑
j |a2j+1| = sinh(π/2), we obtain

⟨x, y⟩ = sinh(π/2)E[φxψy], where the probability P is just ν after normalization. □

We next see that KR
G ≤ π

2 log(1+
√
2)

following Krivine’s proof. Set a := log(1 +
√

2). Since

sinh(a) = 1 holds, CF := 2a
π satisfies that

∑
j |a2j+1|C2j+1

F = 1.

Krivine’s trick: There exist a Hilbert space H and two mappings SH ∋ x 7→ x′ ∈ SH and
SH ∋ y 7→ y′′ ∈ SH such that ⟨x′, y′′⟩H = F−1(CF ⟨x, y⟩H).

Indeed, the Hilbert space H :=
⊕∞

j=0H
⊗2j+1 and the mappings

x′ :=

∞⊕
j=0

|a2j+1|
1
2C

2j+1
2

F x⊗2j+1, y′′ :=

∞⊕
j=0

sgn(a2j+1)|a2j+1|
1
2C

2j+1
2

F y⊗2j+1

satisfy the desired condition.

Proof of Theorem 1.1 for R with K = π/2a. Let S : SH → L2(Ω,A,P) be as above. By
the choice of H, we have F−1(CF ⟨x, y⟩H) = ⟨x′, y′′⟩H = F−1(E[Sx′Sy′′ ]), and hence ⟨x, y⟩ =

C−1
F E[Sx′Sy′′ ]. □

In the complex case, the bound KC
G ≤ 8

π(K0+1) = 1.4049 · · · is due to Haagerup [6], where

K0 is the unique solution in (0, 1) of the equation

π

8
(K + 1) = K

∫ π/2

0

cos2 t

(1 −K2 sin2 t)1/2
dt =: G(K).

The key of Haargerup’s proof is proving that G−1 is analytic in {z ∈ C | −1 < Re z < 1}
and its Taylor expansion

∑
j b2j+1z

2j+1 satisfies that b1 = π/4 and bn ≤ 0 for n ≥ 3. Also,
for standard complex Gaussian X,Y one has

G(E[XY ]) = E[sgnX · sgnY ].
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If CG ∈ [0, 1] satisfies that
∑

j |b2j+1|C2j+1
G = 1, then the conditions on the Taylor coeffi-

cients force CG = π(K0+1)/8. Thus, following Krivine’s argument above, we get the above
estimate.

The next theorem is called the “little GT” and is an immediate consequence of GT.

Theorem 1.3 (Little GT/ inequality). There exists k > 0 such that for any n ∈ N and
any a = [aij ] ∈Mn(K) with a ≥ 0, it follows that ∥a∥h ≤ k∥a∥∨.

The best constant k is denoted by kKG. It is known that kKG = ∥g∥−2
1 , where g is a standard

Gaussian random variable. Thus, we have kRG = π/2 and kCG = 4/π.

2. Connes–Kirchberg problem

2.1. Connes’s problem. Let (M, τ) be a tracial probability space, i.e., M is a finite
von Neumann algebra and τ is a faithful normal tracial state on M . For a given fam-
ily (M(i), τ i)i∈I of tracial probability spaces, we set B :=

∏
i∈I M(i) = {x = (xi)i∈I |

supi∈I ∥xi∥M(i) <∞}. Take a free ultrafilter U on I and set IU := {x ∈ B | limU ∥xi∥L2(τ i) =

0}, where ∥xi∥L2(τ i) = τ i(x∗ixi)
1/2. The ultraproduct (MU , τU ) is the tracial probability

space MU = B/IU and τU ((xi)i) = limU τ
i(xi). The next conjecture is called Connes’s

embedding conjecture ([3]).

Conjecture 2.1 (Connes). For any tracial probability space (M, τ), there is a trace pre-
serving embedding (M, τ) ⊂ (MU , τU ) with dimM(i) <∞. Equivalently, there exist Ni ∈ N
and bounded linear maps ui : M →MNi(C) such that limi ∥ui(a∗b)− ui(a)∗ui(b)∥2 = 0 and
limi |τNi(ui(a)) − τ(a)| = 0 for a, b ∈ M , where τn is the canonical normalized trace on
Mn(C).

Theorem 2.2 (Kirchberg). There is a trace preserving embedding (M, τ) ⊂ (MU , τU ) with
dimM(i) < ∞ if and only if for any ε > 0, n ∈ N and unitary elements u1, . . . , un ∈ M ,
these exist N ∈ N and unitary elements v1, . . . , vn ∈MN (C) such that |τ(u∗iuj)−τN (v∗i vj)| <
ε for all i, j.

2.2. Kirchberg’s problem. A norm on a ∗-algebra A is called a C∗-norm if it satisfies
that ∥a∗a∥ = ∥a∥2, ∥a∥ = ∥a∗∥, and ∥ab∥ ≤ ∥a∥∥b∥ for a, b ∈ A. The completion of a ∗-
algebra with a C∗-norm is called a C∗-algebra. An important fact is that, after completion,
the C∗-norm is unique. It is known that every C∗-algebra can be embedded into B(H) for
some Hilbert space H.

Let A ⊂ B(H) and B ⊂ B(K) be C∗-algebras. Their algebraic tensor product A⊗alg B
forms a ∗-algebra. For t =

∑
j aj ⊗ bj ∈ A ⊗alg B, the minimal and the maximal tensor

norms are defined by

∥t∥min := ∥
∑
j

aj ⊗ bj∥B(H⊗K), ∥t∥max := sup ∥
∑
j

π(aj)σ(bj)∥,

where the supremum runs over all ∗-representations π : A → B(H ′) and σ : B → B(H ′)
whose ranges commute. It is known that ∥ · ∥min is the smallest C∗-norm on A⊗alg B, and
hence does not depend on the embeddings A ⊂ B(H) and B ⊂ B(K). The completion of
A ⊗alg B by ∥ · ∥min and ∥ · ∥max are called the minimal and the maximal tensor products
of A and B, and denoted by A⊗min B and A⊗max B, respectively.

Definition 2.3. (A,B) is said to be a nuclear pair if ∥ · ∥max = ∥ · ∥min on A ⊗alg B. A
C∗-algebra A is called nuclear if (A,B) is nuclear for any C∗-algebra B.

Let G be a discrete group and C[G] be its group algebra. Any element x ∈ C[G] is of the
form

∑
g∈G x(g)g for some x(g) ∈ C. The full group C∗-algebra C∗(G) is the completion of
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C[G] with respect to the norm ∥x∥C∗(G) := sup ∥
∑

g x(g)π(g)∥, where the supremum runs

over all unitary representations π : G→ B(Hπ).

Theorem 2.4 (Kirchberg [13]). Let C := C∗(F∞) and B := B(ℓ2). Then, (B, C) is a
nuclear pair.

Note that the C∗-algebra C is “projectively” universal in the sense that every separable
C∗-algebra is a quotient of C. Also, the C∗-algebra B is “injectively” universal in the sence
that every separable C∗-algebra can be embedded into B. Kirchberg showed that C has
the lifting property (LP), and hence local lifting property (LLP). By definition, B has the
weak expectation property (WEP). With these observations, in [12] Kirhberg characterized
LLP and WEP in terms of tensor products with C and B. Here we adopt Kirchberg’s
characterizations as definitions:

Definition 2.5. A C∗-algebra A is said to have the WEP if (A, C) is nuclear. We also say
that A has the LLP if (A,B) is nuclear.

One of the main results of [12] is that there is a separable non-nuclear C∗-algebra A such
that (A, Ā) is nuclear, where Ā = {ā | a ∈ A} is the conjugate C∗-algebra of A, i.e., Ā = A

as an involutive ring but it has the conjugate vector space structure: λā = λ̄a for λ ∈ C
and a ∈ A. Kirchberg also conjectured:

Conjecture 2.6 (Kirchberg). For C = C∗(F∞) and B = B(ℓ2), the following are true:

• (B, B̄) is nuclear.
• (C, C̄) is nuclear.

Note that B̄ ∼= B and C̄ ∼= C. The first conjecture was settled negatively by Junge and
Pisier [10]. The second one is still open. In fact, Kirchberg showed that the second one is
equivalent to the above Connes conjecture.

Theorem 2.7. The following are equivalent:

(i) Connes’s conjecture has a positive solution.
(ii) (C, C̄) is nuclear.

(iii) For any n ∈ N, and x1, . . . , xn ∈ C we have

∥
n∑
j=1

xj ⊗ x̄j∥min = ∥
n∑
j=1

xj ⊗ x̄j∥max

Equivalence between (ii) and (iii) is due to Haagerup. Kirchberg’s conjecture is also
equivalent to the QWEP conjecture: whether any C∗-algebra is a quotient of a C∗-algebra
with the WEP. We refer to the reader to Ozawa’s survey [17] for this topic.

In the rest of this section, we explain a connection between these conjectures with GT. Let
Uj ∈ C be the unitary corresponding to the j-th generator of F∞ and set E := span{I, Uj |
j ∈ N} ⊂ C. Note that E is isometrically isomorphic to ℓ1 via the mapping Uj 7→ ej .

Theorem 2.8 (Ozawa [18]). The following are equivalent:

• (C, C) is nuclear
• For any n ∈ N and any [aij ] ∈ Mn(C), it follows that ∥

∑n
i,j=1 aijUi ⊗ Ūj∥min =

∥
∑n

i,j=1 aijUi ⊗ Ūj∥max, equivalently ∥ · ∥min = ∥ · ∥max on E ⊗alg Ē.

• Same holds for all [aij ] ≥ 0.

On the other hand, GT tells us that these two norms on E ⊗alg E are equivalent:

Proposition 2.9. For any a ∈ E ⊗alg Ē, it follows that ∥a∥max ≤ KC
G∥a∥min. Moreover,

we have ∥a∥max ≤ kCG∥a∥min for a ≥ 0. (Note that kCG = 4/π).
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Proof. Let a =
∑n

i,j=1 aijUi ⊗ Ūj be given. We also denote by a the matrix [aij ] ∈ Mn(C).

For any unitary representations π, σ : F∞ → B(H) whose ranges commute, and any unit
vectors ξ, η ∈ SH , we have |⟨

∑
aijπ(Ui)σ(Uj)ξ, η⟩| = |

∑
aij⟨π(Ui)ξ, σ(Uj)

∗η⟩| ≤ ∥a∥h.
Thus, it follows that ∥a∥max ≤ ∥a∥h. On the other hand, for any si, tj ∈ SC, if we set
π(Ui) := si and σ(Uj) := tj , then we have |

∑
aijsitj | = ∥

∑
aijπ(Ui) ⊗ σ(Uj)∥min ≤

∥a∥min, which implies ∥a∥∨ ≤ ∥a∥min. Therefore, it follows from GT that ∥a∥max ≤ ∥a∥h ≤
KC
G∥a∥∨ ≤ KC

G∥a∥min. □
Proposition 2.10 (Tsirelson [28]). For any n ≥ 1 and a = [aij ] ∈ Mn(R), it follows that
∥a∥max = ∥a∥min.

Proof. Since ∥a∥min ≤ ∥a∥max ≤ ∥a∥h holds, it suffices to show that ∥a∥h ≤ ∥a∥min. Since
aij is real, we have ∥a∥h = sup{|

∑
aij⟨xi, yj⟩ | xi, yj ∈ SH}, where H is a real Hilbert

space. We claim that for given xi, yj ∈ SH , there exist a finite dimensional Hilbert space
F , selfadjoint unitaries ui, vj on F , and a unit vector Ω ∈ F satisfying that uivj = vjui and
⟨uivjΩ,Ω⟩ = ⟨xi, yj⟩ for all i, j. This can be confirmed as follows. We can regard xi, yj ∈ Rn
for all i, j. Set K := Cn and let F := CΩ ⊕

⊕n
k=1K

∧k be the antisymmetric Fock space
over K. For each x ∈ K, we define cx, dx : F → F by cxy := x∧ y and dxy := y ∧ x. Then,
ui := cxi + c∗xi and vj := dyj + d∗yj are selfadjoint unitaries satisfying uivj = vjui

1. We also

have ⟨uivjΩ,Ω⟩ = ⟨xi, yj⟩. This proves the claim.
Since F is finite dimensional, the C∗-algebra B(F) is nuclear, and hence we have

|
∑

aij⟨xi, yj⟩| = |
∑

aij⟨uivjΩ,Ω⟩| ≤ ∥
∑

aijui⊗ vj∥max = ∥
∑

aijui⊗ vj∥min ≤ ∥a∥min.

Since xi, yj are arbitrary, we have ∥a∥h ≤ ∥a∥min. □

3. Schur multipliers

For a given φ = [φij ] ∈ Mn(K) the Schur multiplier Mφ : Mn(K) → Mn(K) is defined
by Mφ[aij ] = [φijaij ]. Let S := {[sitj ] ∈ Mn(K) | si, tj ∈ SK}. For each φ = [sitj ] ∈ S, we
have Mφa = DsaDt, where Ds = diag(s1, . . . , sn) and Dt = diag(t1, . . . , tn) are diagonal
unitaries. Thus, we have ∥Mφa∥ = ∥a∥. For a, b ∈Mn we set ⟨a, b⟩ =

∑
i,j aijbij . The next

theorem is essentially due to Grothendieck.

Theorem 3.1. The following hold true:

(i) For any a ∈Mn(K), we have ∥a∥h = sup∥Mφ∥≤1 |⟨φ, a⟩|.
(ii) If ∥Mφ∥ ≤ 1 holds, then we have φ ∈ KG convS.

KG is the best constant satisfying (ii). We need the next lemma, which will be proven
in the next section (see Remark 4.7 below).

Lemma 3.2. For any a ∈ Mn, ∥a∥h ≤ 1 if and only if ∥[λ
−1/2
i aijµ

−1/2
j ]∥Mn ≤ 1 for some

λj , µj ≥ 0 with
∑n

j=1 λj =
∑n

j=1 µj = 1 with the convention 0/0 := 0.

Proof of Theorem 3.1. We prove (i): For any a ∈Mn with ∥a∥h = 1, we can find λi, µj > 0

such that
∑
λi =

∑
µj = 1 and ∥[λ

−1/2
i aijµ

−1/2
j ]∥Mn ≤ 1. For any φ ∈Mn, we have

|
∑

aijφij | = |
∑

λ
1/2
i (λ

−1/2
i aijµ

−1/2
j φij)µ

1/2
j |

= ∥[λ
1/2
1 · · ·λ1/2n ][λ

−1/2
i aijµ

−1/2
j φij ][µ

1/2
1 · · ·µ1/2n ]T ∥

≤ ∥Mφ∥∥[λ
−1/2
i aijµ

−1/2
j ]∥Mn

≤ ∥Mφ∥,

1We use the fact that ⟨xi, yj⟩ is real here. For example, compare uivjΩ = uiyj = xi ∧ yj + ⟨yj , xi⟩Ω with
vjuiΩ = vjxi = xi ∧ yj + ⟨xi, yj⟩Ω.
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which implies sup∥Mφ∥≤1 |⟨a, φ⟩| ≤ ∥a∥h. Conversely, for any xi, yj ∈ SH , letting ψ =

[⟨xi, yj⟩] ∈Mn we have |
∑

i,j aij⟨xi, yj⟩| = |⟨a, ψ⟩|. Since it is not hard to see that ∥Mψ∥ ≤
1, we obtain ∥a∥h ≤ sup∥Mφ∥≤1 |⟨a, φ⟩|.

We show (ii): By (i) and GT, we have

sup
∥Mφ∥≤1

|⟨a, φ⟩| ≤ KG sup
ψ∈S

|⟨a, ψ⟩|.

Using the Hahn–Banach separation theorem, we get φ ∈ KG convS. □

4. GT as a factorization theorem

A state on a C∗-algebra A is a linear functional f : A → K satisfying that f(x∗x) ≥ 0
for x ∈ A and ∥f∥ = 1. By the Gelfand–Naimark duality, every (unital) commutative
C∗-algebra is isomorphic to C(S) for some compact Hausdorff space S. Note that there is
a one-to-one correspondence between states on C(S) and Radon probability measures on
S.

Theorem 4.1 (GT/factorization). Let A and B be commutative C∗-algebras. Then, for
any bounded bilinear form φ : A×B → K, there exist states f and g on A and B respectively,
such that

|φ(x, y)| ≤ Cf(|x|2)1/2g(|y|2)1/2 for a ∈ A, b ∈ B

with C = KK
G∥φ∥.

Remark 4.2. The above theorem says that every bounded linear map u : C(S) → C(T )∗

factors through a Hilbert space, where S and T are compact Hausdorff spaces. Let φ be
the bilinear form on C(S)×C(T ) defined by φ(x, y) = ⟨u(x), y⟩ with the dual pairing ⟨·, ·⟩
between C(T )∗ and C(T ). Theorem 4.1 says that there exist probability measures λ, µ on
S, T , respectively satisfying that |⟨u(x), y⟩| ≤ C∥x∥L2(λ)∥y∥L2(µ). Thus, if Jλ : C(S) →
L2(λ) and Jµ : C(T ) → L2(µ) denote the canonical (norm 1) maps, then there exists a
linear map v : L2(λ) → L2(µ)∗ with ∥v∥ ≤ C such that u is factorized as u = J∗

µvJλ.

C(S)
u //

Jλ
��

C(T )∗

L2(λ)
v // L2(µ)∗

J∗
µ

OO

Remark 4.3. GT says that any Banach space E with isometric embeddings v : E → L1

and w : E∗ → L1 is isomorphic to a Hilbert space. Indeed, if we apply GT for u = wv∗ :
L∞ → E∗ ⊂ L1 ⊂ L∗

∞, this map factors through a Hilbert space. Since v∗ is surjective, E∗

(and so E) is isomorphic to a Hilbert space. Note that the isomorphism obtained here is
possibly not isometric. Indeed, Schneider [27] gave a counterexample, a finite dimensional
real Banach space E such that E ⊂ L1 and E∗ ⊂ L1 isometrically but E is not isometric
to a Hilbert space. Curiously, the complex case apparently remains open.

Example 4.4. Consider the case when A = C(S) and B = C(T ) with S = T = {1, . . . , n}.
For any a ∈ Mn, ∥a∥∨ equals to the norm of φ : A × B → K defined by φ(x, y) =∑n

s,t=1 astx(s)y(t). Then, the above theorem says that there exist probability vectors λ =

(λ1, · · ·λn), µ = (µ1, . . . , µn) such that

|
∑
s,t

astxsyt| ≤ C(
∑
s

λs|x(s)|2)1/2(
∑
t

µt|y(t)|2)1/2.

We will show that Theorem 4.1 is equivalent to the following theorem:
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Theorem 4.5. Let φ : A×B → K be as in Theorem 4.1. Then, for anym ≥ 1, x1, . . . , xm ∈
A, and y1, . . . , ym ∈ B, we have

|
m∑
j=1

φ(xj , yj)| ≤ C∥
m∑
j=1

|xj |2∥1/2∥
m∑
j=1

|yj |2∥1/2.

We first consider the case when S = T = {1, . . . , n}. Let φ : C(S) × C(T ) → K be
a given bilinear form and a ∈ Mn be the matrix given by

∑n
s,t=1 astx(s)y(t) = φ(x, y)

for x ∈ C(S) and y ∈ C(T ). Note that ∥φ∥ = ∥a∥∨. Fix m ≥ 1 and x1, . . . , xm ∈
A, y1, . . . , ym ∈ B arbitrarily. Set X(s) :=

∑
j xj(s)ej ∈ ℓ2 and Y (t) :=

∑
j yj(t)ej ∈ ℓ2.

Since ∥a∥h = sup{|
∑
aij⟨zi, wj⟩| | zi, wj ∈ BH} holds, we have |

∑n
s,t=1 ast⟨X(s), Y (t)⟩| ≤

∥a∥h sups ∥X(s)∥ℓ2 supt ∥Y (t)∥ℓ2 . Thus, Theorem 1.1 tells us that

|
n∑

s,t=1

ast⟨X(s), Y (t)⟩| ≤ KK
G∥a∥∨ sup

s
∥X(s)∥ℓ2 sup

t
∥Y (t)∥ℓ2 .

This is equivalent to

|
m∑
j=1

φ(xj , yj)| ≤ KK
G∥φ∥ sup

s

 m∑
j=1

|xj(s)|2
1/2

sup
t

 m∑
j=1

|yj(t)|2
1/2

.

Therefore, in this case Theorem 4.5 follows from Theorem 1.1. In fact, we can reduce
Theorem 4.5 to the finite dimensional case (c.f. [19]). Thus, we only have to show that
Theorem 4.5 ⇒ Theorem 4.1. (The converse implication easily follows from the Cauchy–
Schwarz inequality.) We need the following variant of the Hahn–Banach theorem:

Theorem 4.6. Let S be a set and F ⊂ ℓ∞(S,R) be a convex cone satisfying sups∈S f(s) ≥ 0
for all f ∈ F . Then, there exists a net λα of finitely supported probability measures on S
such that limα

∫
fdλα ≥ 0 for all f ∈ F .

Proof. By assumption, we have F ∩ {g ∈ ℓ∞(S,R) | sups∈S g(s) < 0} = ∅. Thus, by
the Hahn–Banach separation theorem, we can find λ ∈ ℓ∞(S,R)∗ such that λ(f) ≥ 0 for
f ∈ F . Since λ can be approximated by finitely supported probability measures on S in
the weak∗-topology, we are done. □

Proof of Theorem 4.5 ⇒ Theorem 4.1. Let A = C(S) and B = C(T ). Let m ∈ N, x =
(xi) ∈ Am, y = (yj) ∈ Bm be arbitrary. By assumption and the arithmetic-geometric mean
inequality, we have

|
m∑
j=1

φ(xj , yj)| ≤
1

2
C sup
S×T

(
m∑
i=1

|xi(s)|2 +
m∑
j=1

|yj(t)|2).

Define fx,y ∈ ℓ∞(S × T,R) by

fx,y(s, t) :=
C

2
(
∑
i

|xi(s)|2 +
∑
j

|yj(t)|2) − |
∑
i

φ(xi, yi)|

Then, F := {fx,y | m ∈ N, (x, y) ∈ Am × Bm} forms a convex cone satisfying that
supS×T fx,y(s, t) ≥ 0 for all fx,y ∈ F . By Theorem 4.6 we can find a net λα of finitely
supported probability measures on S × T satisfying

|φ(x, y)| ≤ C

2
lim
α

(∫
S×T

|x(s)|2dλα +

∫
S×T

|y(t)|2dλα
)
.
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Then, there exist probability measures P and Q on S and T , respectively such that
limα

∫
S×T |x(s)|2dλα =

∫
S |x|

2dP and limα

∫
S×T |y(t)|2dλα =

∫
T |y|2dQ, and hence we get

|φ(x, y)| = |φ(tx,
y

t
)| ≤ C

2

(
t2∥x∥L2(P) +

1

t2
∥y∥L2(Q)

)
for all t > 0. Since

√
ab = inft>0

1
2(ta+ b

t ) holds for any a, b ∈ [0,∞), we obtain |φ(x, y)| ≤
C∥x∥L2(P)∥y∥L2(Q).

□
Remark 4.7. We can now prove Lemma 3.2. Let a = [aij ] be a given matrix and φ :
ℓn∞ × ℓn∞ → K be as in Example 4.4. Then, ∥a∥h ≤ 1 holds if and only if the assertion
of Theorem 4.5 holds with C = 1. Let λ, µ be probability measures on {1, . . . , n} as in

Theorem 4.1. Then, we can check that ∥[λ
−1/2
i aijµ

−1/2
j ]ij∥Mn ≤ 1 with the convention

0/0 = 0.

Theorem 4.8 (Little GT/factorization). Let A be a commutative C∗-algebra. For any
bounded linear map u from A to a Hilbert space H, there exists a state f on A such that

∥u(x)∥ ≤
√
kG∥u∥f(|x|2)1/2 for x ∈ A.

Proof. Set φ(x, y) := ⟨u(x), u(y)⟩ for x, y ∈ A. Since ∥φ∥ = ∥u∥2 holds, Theorem 4.1 says
that there exists a probability measure P on S, where A = C(S), such that ∥u(x)∥2 ≤
C∥x∥2L2(P). When A ∼= ℓn∞, the matrix [⟨u(ei), u(ej)⟩]ij is positive definite. Thus, we get

∥u(x)∥2 ≤ kG∥u∥2∥x∥2L2(P) □

Note that kG ≤ KG. We next see that

kG ≥ 1

∥g∥21
=

{
π/2 K = R,
4/π K = C,

where g is a standard Gaussian random variable. Let g1, g2, . . . be an i.i.d. sequence of copies
of g on (Ω,A,P). Let G := span{gi | i ≥ 1} and P : L2 → G be the orthogonal projection.
Consider a natural map J : L2 → L1. For each x ∈ G, we have ∥Jx∥1 = ∥g∥1∥x∥2. Define
the bilinear form φ : L∞ × L∞ → K by φ(x, y) := ⟨x, Py⟩. Then, we have ∥φ∥ = ∥g∥21. By
the fact that ∥φ∥h := inf{C in Theorem 4.5} ≥ 1, we have 1 ≤ ∥φ∥h ≤ kG∥φ∥ = kG∥g∥21,
and hence kG ≥ ∥g∥−2

1 .

5. Non-commutative GT

Grothendieck conjectured a non-commutative analogue of Theorem 4.1. This was proved
by Pisier [20] under an approximation assumption. The following optimal form was proved
by Haagerup [5].

Theorem 5.1 (Non-commutative GT). Let A and B be C∗-algebras and φ : A × B → C
be a bounded bilinear form. Then, there exist states f1, f2 on A and g1, g2 on B such that

|φ(x, y)| ≤ C(f1(x
∗x) + f2(xx

∗))1/2(g1(y
∗y) + g2(yy

∗))1/2 for x ∈ A, y ∈ B

with C = ∥φ∥.
Note that this theorem implies the original GT with constant ≤ 2. In [7] it was proved

that the constant 1 is optimal for this non-commutative GT. As in the commutative case,
we can show that Theorem 5.1 is equivalent to the following theorem:

Theorem 5.2. Let φ : A × B → C be as above. Then, for any m ∈ N, x = (xj)j ∈ Am,
and y = (yj) ∈ Bm one has

|
∑
j

φ(xj , yj)| ≤ C{∥
∑
j

x∗jxj∥ + ∥
∑
j

xjx
∗
j∥}1/2{∥

∑
j

y∗j yj∥ + ∥
∑
j

yjy
∗
j ∥}1/2.
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Let us introduce the following notations. For m ≥ 1, x = (xj)
m
j=1 ∈ Am, we define the

column and row norms by

∥x∥C := ∥
∑
j

x∗jxj∥1/2, ∥x∥R := ∥
∑
j

xjx
∗
j∥1/2.

For p ≥ 1, we denote by Cp(φ) the best constant C > 0 (possibly C = +∞) such that

|
∑
j

λjφ(xj , yj)| ≤ C

∥
∑
j

λj |xj |p∥ + ∥
∑
j

λj |x∗j |p∥


1/p∥

∑
j

λj |yj |p∥ + ∥
∑
j

λj |y∗j |p∥


1/p

holds for all m ∈ N and x ∈ Am, y ∈ Bm and λj ≥ 0 with
∑m

j=1 λj = 1. Also we set

C∞(φ) := ∥φ∥. Our goal is to show that C2(φ) ≤ C∞(φ). This is proved in the following
steps.

Step 1: Show that C2(φ) ≤ C4(φ).

Step 2: Show that C4(φ) ≤
√
C2(φ)C∞(φ).

Step 3: Show that C2(φ) <∞.

Indeed, Step 1 and Step 2 leads to C2(φ)2 ≤ C2(φ)C∞(φ), and then Step 3 enables us
to divide this inequality by C2(φ); giving C2(φ) ≤ C∞(φ).

Proof of Step 1. Fix m ≥ 1, x = (xj) ∈ Am and y = (yj) ∈ Bm arbitrarily. Define vector-
valued continuous functions Sx : Tm → A and Ty : Tm → B by Sx(z) :=

∑
j zjxj and

Ty(z) :=
∑

j z̄jyj for z = (zj) ∈ Tm. Let µ be the Haar probability measure on Tm. By the

definition of C4(φ), it follows that

|E[φ(Sx, Ty)]| ≤ C4(φ)
{
∥E[|Sx|4]∥ + ∥E[|S∗

x|4]∥
}1/4 {∥E[|Ty|4]∥ + ∥E[|T ∗

y |4]∥
}1/4

.

We observe that |Sx|4 = (S∗
xSx)2 = (

∑m
j=1 x

∗
jxj +

∑
k ̸=l z̄kzlx

∗
kxl)

2. By the orthogonality

of (zj)j (with respect to µ), we have

E[|Sx|4] =

∫
Tm

(
∑
j

x∗jxj +
∑
k ̸=l

z̄kzlx
∗
kxl)

2dµ = (
∑
j

x∗jxj)
2 +

∑
k ̸=l

x∗kxlx
∗
l xk.

Thus, the inequality that ∥
∑

k ̸=l x
∗
kxlx

∗
l xk∥ ≤ ∥x∥2R∥x∥2C implies that

∥E[|Sx|4]∥ + ∥E[|S∗
x|4]∥ ≤ (∥x∥2C + ∥x∥2R)2.

Since the same inequality holds for y and T , we have

|E[φ(Sx, Ty)|] ≤ C4(φ)(∥x∥2C + ∥x∥2R)1/2(∥y∥2C + ∥y∥2R)1/2.

On the other hand, for any λ = (λj) with λj ≥ 0 and
∑

j λj = 1, one has

|
∑
j

λjφ(xj , yj)| = |
∫ ∑

i,j

λ
1/2
i λ

1/2
j ziz̄jφ(xi, yj)dµ| = |E[φ(Sλ1/2·x, Tλ1/2·y)]|,

where λ1/2 · x = (λ
1/2
j xj). Thus, the above estimate implies that

|
∑
j

λjφ(xj , yj)| ≤ C4(φ)(∥λ1/2 · x∥2C + ∥λ1/2 · x∥2R)1/2(∥λ1/2 · y∥2C + ∥λ1/2 · y∥2R)1/2,

so we have C2(φ) ≤ C4(φ). □
Proof of Step 2. Take x = (xj) ∈ Am and y = (yj) ∈ Bm and λ = (λj) arbitrarily. For z ∈
C with Re z > 0, we set fj(z) = uj |xj |z ∈ A and gj(z) = vj |yj |z ∈ B, where xj = uj |xj | and
yj = vj |yj | are polar decompositions. Then, fj ’s and gj ’s are analytic in {z ∈ C | Re z > 0},
and hence so is h(z) :=

∑
j λjφ(fj(z), gj(z)). We observe that fj(z)∗fj(z) = (x∗jxj)

Re z,
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fj(z)fj(z)
∗ = (xjx

∗
j )

Re z, gj(z)
∗gj(z) = (y∗j yj)

Re z and gj(z)gj(z)
∗ = (yjy

∗
j )

Re z. Thus, for
any t ∈ R we have

|h(2 + it)| ≤ C2(φ){∥
∑
j

λj(x
∗
jxj)

2∥ + ∥
∑
j

λj(xjx
∗
j )

2∥}1/2

× {∥
∑
j

λj(y
∗
j yj)

2∥ + ∥
∑
j

λj(yjy
∗
j )

2∥}1/2.

For ε ∈ (0, 1), we also have

|h(ε+ it)| ≤ C∞(φ)
∑
j

λj∥xj∥ε∥yj∥ε.

Applying the three line theorem (see, e.g. [1, Lemma 1.2.2]) to h and the strip {z ∈ C | ε <
Re z < 2}, we obtain

|h(1)| ≤ sup
t∈R

|h(ε+ it)|1/(2−ε) sup
s∈R

|h(2 + is)|(1−ε)/(2−ε).

Taking the limit ε→ 0 we have

|
∑
j

λjφ(xj , yj)| ≤
√
C∞(φ)C2(φ){∥

∑
j

λj |xj |4∥ + ∥
∑
j

λj |x∗j |4∥}1/4

× {∥
∑
j

λj |yj |4∥ + ∥
∑
j

λj |y∗j |4∥}1/4,

which implies C4(φ) ≤
√
C∞(φ)C2(φ). □

Finally, we briefly explain the outline of Step 3 (see [5, Section 3] for details). It suffices
to show that C2(φ) <∞ when A and B are von Neumann algebras and ∥φ∥ = φ(1, 1) = 1.
(By considering second duals and ultraproducts, we may assume that ∥φ∥ = φ(u, v) for
some unitaries u, v. Then, we can replace φ by φ′(a, b) := φ(au, bv).) Then, f(x) := φ(x, 1)
and g(y) := φ(1, y) for x ∈ A and y ∈ B define states on A and B, respectively. For any

a = a∗ ∈ A and b = b∗ ∈ B, it is not so hard to show that |Reφ(a, b)| ≤ f(a2)1/2g(b2)1/2.
For the imaginary part of φ(a, b), the similar inequality does not hold in general. However,

using spectral resolutions of a and b we can show that | Imφ(a, b)| ≤ 2f(a4)1/4g(b4)1/4.
Thus, by a similar argument as in Step 1 (using Rademacher functions instead of zj ’s), we
can find states f ′ and g′ in such a way that

| Imφ(a, b)| ≤ 4f ′(a2)1/2g′(b2)1/2.

Therefore, letting f ′′ := f/5 + 4f ′/5 and g′′ := g/5 + 4g′/5 we have

|φ(x, y)| ≤ 5

2
φ′′(x∗x+ xx∗)1/2ψ′′(y∗y + yy∗)1/2

for all x ∈ A, y ∈ B. This implies C2(φ) <∞.

Remark 5.3. The ideas for steps 1 and 2 are already in [20], but step 3 is the main new
contribution from [5].

Theorem 5.4 (Non-commutative little GT). For any bounded linear map u from a C∗-
algebra A into a Hilbert space H, there exist states f1 and f2 on A such that

∥u(x)∥ ≤ ∥u∥(f1(x
∗x) + f2(xx

∗))1/2 for x ∈ A.
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6. GT for operator spaces

An operator space E is a closed subspace of B(H) with a Hilbert space H. Then, for
any n ≥ 1, we can induce the norm on Mn(E) from Mn(B(H)) ∼= B(H⊕n). Let F be
another operator space and u : E → F be a linear map. For each n ∈ N, we define
un : Mn(E) → Mn(F ) by un([xij ]) = [u(xij)]. The linear map u is said to be completely
bounded (c.b. for short) if ∥u∥cb := supn≥1 ∥un : Mn(E) →Mn(F )∥ <∞ holds.

Definition 6.1. Let E, F and G be operator spaces and φ : E × F → G be a bilinear
map. For each n ∈ N, we define φn : Mn(E) ×Mn(F ) → Mn2(G) by φn([aij ], [bpq]) :=
[φ(aij , bpq)](i,j),(p,q). We say that φ is jointly completely bounded (j.c.b. for short) if ∥φ∥jcb :=
supn ∥φn∥ <∞.

For any operator space E, its dual space E∗ has a natural operator space structure.
If F is an operator space and φ : E × F → C is a bounded bilinear form, then one has
∥φ∥jcb = ∥uφ∥cb = ∥vφ∥cb, where uφ : E → F ∗ and vφ : F → E∗ are linear maps defined by
φ(x, y) = ⟨uφ(x), y⟩F ∗×F = ⟨x, vφ(y)⟩E×E∗ for x ∈ E, y ∈ F .

Theorem 6.2 (Operator space GT). Let A and B be C∗-algebras and φ : A×B → C be a
j.c.b. bilinear form. Then, there exist states f1, f2 and g1, g2 on A and B, respectively such
that

|φ(x, y)| ≤ C
(
f1(x

∗x)1/2g1(yy
∗)1/2 + f2(xx

∗)1/2g2(y
∗y)1/2

)
for all x ∈ A, y ∈ B with C = ∥φ∥jcb.

Pisier and Shlyakhtenko [25] showed this inequality for exact (see Definition 7.1 below)
C∗-algebras using type III von Neumann algebras. Haagerup and Musat [8] generalized it for
arbitrary C∗-algebras using different type III von Neumann algebras. Very recently, Regev
and Vidick [26] gave a very short proof using ideas originating in quantum information
theory.

The reader should compare this operator space GT with the non-commutative GT (The-
orem5.1) for bounded bilinear forms. We note that if the above inequality holds for a given
bilinear form φ, then φ is j.c.b. with ∥φ∥jcb ≤ 2C. This follows from the next proposition.

Proposition 6.3. Consider operator spaces E ⊂ A and F ⊂ B and a j.c.b. map φ :
E × F → C. For any states f, f ′ on A and g, g′ on B, the following hold true:

(i) If |φ(x, y)| ≤ f(xx∗)1/2g(y∗y)1/2 holds for (x, y) ∈ E×F , then we have ∥φ∥jcb ≤ 1.

(ii) If |φ(x, y)| ≤ f ′(x∗x)1/2g′(yy∗)1/2 holds for (x, y) ∈ E×F , then we have ∥φ∥jcb ≤ 1.

(iii) If |φ(x, y)| ≤ f(xx∗)1/2g(y∗y)1/2 + f ′(x∗x)1/2g′(yy∗)1/2 for (x, y) ∈ E × F , then we
have ∥φ∥jcb ≤ 2.

The assertion (iii) follows from the following lemma (credited to Pisier in [29]).

Lemma 6.4 ([29, Proposition 5.1]). If the assumption of (iii) holds, then there exist φ1, φ2

such that φ = φ1 + φ2 and φ1 and φ2 satisfy the assumption of (i) and (ii), respectively.

Using Theorem 4.6 we can show the following proposition.

Proposition 6.5 ([22, Proposition 18.2]). Let E ⊂ A and F ⊂ B be operator spaces and
let φ be a bilinear form on E × F . The following are equivalent:

(i) For any m ∈ N, x = (xj) ∈ Em, y = (yj) ∈ Fm and t = (tj) with tj > 0, it follows
that

|
∑
j

φ(xj , yj)| ≤
(
∥x∥C∥y∥R + ∥t · x∥R∥t−1 · y∥C

)
.
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(ii) There exist states f1, f2 on A and g1, g2 on B such that

|φ(x, y)| ≤
(
f1(x

∗x)1/2g1(yy
∗)1/2 + f2(xx

∗)1/2g2(y
∗y)1/2

)
for all x ∈ E, y ∈ F .

Remark 6.6. As in the classical case, the above inequalities are equivalent to a factorization
property: Consider two operator spaces R := span{e1j | j ≥ 1}, C := span{ei1 | i ≥
1} ⊂ B(ℓ2). Let E and F be separable operator spaces and u : E → F ∗ be a c.b. map.
Suppose that the bilinear form φ on E × F associated to u satisfies the conditions in the
previous proposition. Then, one has inf{∥v∥cb∥w∥cb} ≤ 2, where the infimum runs over all
factorizations of u through the operator space R⊕ C ⊂ B(ℓ2 ⊕ ℓ2):

E
u //

v ��<
<<

<<
<<

F ∗

R⊕ C

w

@@�������

Conversely, inf{∥v∥cb∥w∥cb} ≤ 1 implies that φ satisfies the conditions in Proposition 6.5.

Lemma 6.7. For any n ∈ N and any t > 0, there exists a matrix L(t) ∈Mn with positive
matrix entries L(t)pq > 0 satisfying the following:

(i) supp
∑n

q=1 L(t)pq ≤ 1;

(ii) supq
∑n

p=1 L(t)pq ≤ t2;

(iii) |t−1⟨L(t)Φn,Φn⟩ − 1| ≤ C(log n)−1 log(1 + max(t, t−1)),

where Φn = 1
zn

∑n
p=1

1√
pep ∈ Cn with zn = (

∑n
p=1 p

−1)1/2 and C is a universal constant.

Proof. Set L(t)pq := |[p− 1, p)∩ [(q− 1)t2, qt2)| for p, q = 1, . . . , n and t > 0. Then, one can
easily check the assertions (i) and (ii). The last assertion can be shown by calculus. □

The vector Φ̂n := 1
zn

∑n
p=1

1√
pep ⊗ ep is known as “embezzlement state” in quantum

information theory.

Proof of Theorem 6.2 by Regev–Vidick. Fix n ≥ 1. Let {epq}np,q=1 be a system of matrix

units of Mn. Set Xpqj := L(tj)
1/2
pq epq⊗xj ∈Mn⊗A and Ypqj := t−1

j L(tj)
1/2
pq epq⊗yj ∈Mn⊗B

for 1 ≤ j ≤ m and 1 ≤ p, q ≤ n. We may assume that ∥φ∥jcb = 1. Let Φ̂n ∈ Cn ⊗Cn be as

above and ψ be the vector state on Mn ⊗Mn associated with Φ̂n. Since ψ ◦ φn defines a
contractive bilinear form on Mn(A) ×Mn(B), we can apply the non-commutative GT for
X := (Xpqj)p,q,j and Y := (Ypqj)p,q,j . Then, we obtain

|
m∑
j=1

n∑
p,q=1

ψ ◦ φn(Xpqj , Ypqj)| ≤ (∥X∥2R + ∥X∥2C)1/2(∥Y ∥2R + ∥Y ∥2C)1/2.

It follows from (i) and (ii) of Lemma 6.7 that ∥X∥R ≤ ∥x∥R, ∥X∥C ≤ ∥t·x∥C , ∥Y ∥C ≤ ∥y∥C ,
and ∥Y ∥R ≤ ∥t−1 · y∥R. For each 1 ≤ j ≤ m, we have

∑
p,q ψ ◦ φn(Xpqj , Ypqj) =∑

p,q⟨φn(Xpqj , Ypqj)Φ̂n, Φ̂n⟩ = φ(xj , yj)t
−1
j ⟨L(tj)Φn,Φn⟩. Thus, by (iii) of Lemma 6.7, let-

ting n → ∞ we obtain |
∑m

j=1 φ(xj , yj)| ≤ (∥x∥2R + ∥t · x∥2C)1/2(∥t−1 · y∥2R + ∥y∥2C)1/2.

Replacing xj , yj by sxj , s
−1yj and tj by s′tj for some s, s′ > 0, we have |

∑m
j=1 φ(xj , yj)| ≤

∥x∥R∥y∥C + ∥t · x∥C∥t−1 · y∥R. □

Corollary 6.8. Let E be an operator space. If there exist C∗-algebras A and B such that E
and E∗ can be embedded into A∗ and B∗ completely isometrically, then E is a subquotient
of R⊕ C.
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Proof. By assumption and the operator space GT, E must be isomorphic to a Hilbert
space and fortiori reflexive. Thus the embeddings E ⊂ A∗ and E∗ ⊂ B∗ give a mapping
u : B∗∗ → E ⊂ A∗. Applying the operator space GT again, u factors through R⊕ C. □

7. GT for exact operator spaces

It is natural to consider GT for bilinear forms on arbitrary Banach spaces, but the class
of pairs of Banach spaces for which GT holds is known to be rather restrictive. However,
for j.c.b. maps on exact operator spaces, we can show an analogue of GT.

Let E and F be operator spaces. We define the c.b. distance by

dcb(E,F ) := inf{∥u∥cb∥u−1∥cb | u : E → F isomorphism}.

When E and F are not isomorphic, we set dcb(E,F ) = ∞.

Definition 7.1. An operator space X ⊂ B(H) will be called C-exact if for any finite
dimensional subspace E ⊂ X, there exist N ∈ N and F ⊂ MN such that dcb(E,F ) ≤ C.
The exact constant of X is defined by ex(X) := inf{C | X is C-exact}.

Kirchberg showed that for any C∗-algebra A its exact constant is 1 or ∞. More generally,
it is known that the following are equivalent:

• A is exact.
• ex(A) = 1.
• ex(A) <∞.
• Any embedding ιA : A ↪→ B(H) is nuclear, i.e., for any C∗-algebra B, ιA ⊗ idB :
A⊗max B → B(H) ⊗max B factors through A⊗min B.

When A is separable, the above conditions are also equivalent to

• A is a subalgebra of a nuclear C∗-algebra.
• A is a subalgebra of the Cuntz algebra O2.

For any operator space E with dimE = n, we have ex(F ) ≤ n. Let En = span{U1, . . . , Un} ⊂
C = C∗(F∞), then one has ex(En) ≥ n

2
√
n−1

≥
√
n
2 . Thus, C is not exact (see Example 8.6

below).
The following is due to Junge and Pisier [10].

Theorem 7.2 (GT for exact operator spaces). If E and F are exact operator spaces and
φ : E×F → C is a j.c.b. map, then for any m ∈ N and any x = (xj) ∈ Em, y = (yj) ∈ Fm

one has

|
∑
j

φ(xj , yj)| ≤ C(∥x∥2C + ∥x∥2R)1/2(∥y∥2C + ∥y∥2R)1/2

with C = 2ex(E)ex(F )∥φ∥jcb.

This can be shown by using randam matrix techniques. Let Y (N) be an N ×N -Gaussian
random matrix, i.e., its matrix entries form an i.i.d. sequence ofN(0, N−1) Gaussian random

variables on a probability space (Ω,A,P). We will denote by Y (N)(i, j) the (i, j)-entry of

Y (N). Let Y
(N)
1 , Y

(N)
2 , . . . be an i.i.d. sequence of copies of Y (N). By the strong law of large

numbers, τN (Y
(N)
i Y

(N)
j ) converges to δi,j almost surely. Thus, one has almost surely

|
m∑
j=1

φ(xj , yj)| = lim
N→∞

|
m∑

i,j=1

φ(xi, yj)τN (Y
(N)
i Y

(N)
j )|

≤ lim sup
N→∞

∥φ∥jcb∥
m∑
j=1

Y
(N)
j ⊗ xj∥∥

m∑
j=1

Y
(N)
j ⊗ yj∥.
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Let F be the full Fock space over H := ℓ2(N× {1, 2}), i.e., F = C⊕H ⊕H⊗2 ⊕ · · · . For a
given h ∈ H, we denote by ℓ(h) the left creation operator on F . Let {e(i,j)}(i,j)∈N×{1,2} be
the canonical basis. Define “free circular” elements cj := ℓ(e(j,1)) + ℓ(e(j,2))

∗ for j ∈ N. For

any m,K ∈ N and x = (xj) ∈ (MK)m, one can check that ∥
∑m

j=1 cj ⊗ xj∥ ≤ ∥x∥R + ∥x∥C .

Thus, Theorem 7.2 follows from Haagerup and Thorbjørnsen’s result [9], which guarantees

that lim supN→∞ ∥
∑m

j=1 Y
(N)
j ⊗ xj∥ ≤ ∥

∑m
j=1 cj ⊗ xj∥ almost surely.

8. GT for subexponential operator spaces

In this section, we consider GT for more general operator spaces. We refer the reader to
[24] for a reference of this section.

8.1. Tight and Subexponential operator spaces.

Definition 8.1. Let E be an operator space.

(i) E is said to be C-tight if for any m ∈ N and x1, . . . , xm ∈ E, one has almost surely

lim sup
N→∞

E∥
m∑
j=1

Y
(N)
j ⊗ xj∥ = lim sup

N→∞
∥

m∑
j=1

Y
(N)
j ⊗ xj∥ ≤ C(∥x∥2R + ∥x∥2C)1/2.

(ii) E is said to be completely C-tight if Mn(E) is C-tight for all n ∈ N.

Note that the first equality in (i) always holds by well known results on concentration of
measure for Gaussian measures. Using the method in [8] one can show the following (see
[22, §18]):

Theorem 8.2. If E and F are completely CE and CF -tight, respectively, then for any j.c.b.
map φ : E × F → C and any m ∈ N, x = (xj) ∈ Em, y = (yj) ∈ Fm, and t = (tj) with
tj > 0 one has

|
∑
j

φ(xj , yj)| ≤ C(∥x∥R∥y∥C + ∥t · x∥C∥t−1 · y∥R),

with C ≤ CECF ∥φ∥jcb.

Proposition 8.3. If E is an exact operator space, then E is CE-tight with CE ≤
√

2ex(E).

We need the following theorem:

Theorem 8.4 (Haagerup–Thorbjørnsen [9] + measure concentration). For any ε > 0 there
exists γε such that for any N,K, n ∈ N and any x1, . . . , xm ∈MK one has

E∥
n∑
j=1

Y
(N)
j ⊗ xj∥ ≤ (1 + ε)

[
1 + γε

(
logK

N

)1/2
]

(∥x∥R + ∥x∥C).

Proof of Proposition 8.3. Set β(N) := (1+ε)[1+γε(
LogK
N )1/2]. Let x1, . . . , xn ∈ E be given

and set E0 := span{x1, . . . , xn}. Since E is C-exact, there exist K ∈ N, F ⊂ MK , and a
c.b. map u : E0 → F such that ∥u∥cb∥u−1∥cb ≤ C. One has

E∥
∑

Y
(N)
j ⊗ xj∥ ≤ ∥u−1∥cbE∥

∑
Y

(N)
j ⊗ u(xj)∥

≤ ∥u−1∥cbβ(N)(∥u(x)∥R + ∥u(x)∥C)

≤ ∥u−1∥cb∥u∥cbβ(N)(∥x∥R + ∥x∥C)

≤
√

2Cβ(N)(∥x∥2R + ∥x∥2C).

Since β(N) tends to 1 + ε as N → ∞, we are done. □
Corollary 8.5. If an operator space E and its dual space E∗ are exact, then E ∼= RI⊕CJ ⊂
B(ℓ2(I) ⊕ ℓ2(J)) completely isomorphically.
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Proof. The identity map E → E is trivially completely bounded with c.b. norm 1. Thus, the
canonical pairing E × E∗ → C has the j.c.b. norm 1. By Theorem 8.2 and Proposition 8.3
idE : E → E factors though R⊕ C. By Oikhberg’s result [16], E is completely isomorphic
to some RI ⊕ CJ . □
Example 8.6. The C∗-algebra C is not exact. To see this, let En := span{U1, . . . , Un]} ⊂
C. We observe that ∥(Uj)∥C = ∥(Uj)∥R =

√
n. Thus, by the above theorem, one has

limN→∞ E∥
∑n

j=1 Y
(N)
j ⊗Uj∥ ≤ 2

√
2n ex(En). Note that sup∥aj∥≤1 ∥

∑
j yj⊗aj∥ ≤ ∥

∑
j yj⊗

Uj∥ for all yj ∈MN . Thus, we have∑
j

τN (|Y (N)
j |2) ≤ ∥

∑
j

Y
(N)
j ⊗ Y

(N)
j ∥ ≤ sup

i
∥Y (N)

i ∥∥
∑
j

Y
(N)
j ⊗ Uj∥.

By the fact that limN→∞ supj ∥Y
(N)
j ∥ = 2, and

E[

n∑
j=1

τN (|Y (N)
j |2)] = N−1

n∑
j=1

N∑
k,l=1

E[|Y (N)(k, l)|2] = n,

we have n/2 ≤ 2
√

2n ex(En), and hence ex(En) ≥
√
n

4
√
2
. This implies that C is not exact.

Definition 8.7. Let E and F be operator spaces with dimE = dimF <∞ and u : E → F
be a linear map. For each N ∈ N, let uN : MN (E) → MN (F ) be as in Section 6. We set
dN (E,F ) := inf{∥uN∥∥(uN )−1∥ | u : E → F : isomorphism}.

For any C ≥ 1 and any operator space E with dimE <∞, we set

KE(N,C) := inf{K ∈ N | ∃F ⊂MK ; dN (E,F ) ≤ C}.

Definition 8.8. Let E be a finite dimensional operator space. We say that E is C-
subexponential if one has lim supN→∞N−1 logKE(N,C) = 0. For a given operator space
X, we say that X is C-subexponential if every finite dimensional subspace of X is C-
subexponential. We set subexp(X) := inf{C | X is C-subexponential}.

Remark 8.9. By Theorem 8.4, one can show that any C-subexponential operator space
X is 2C-tight. Since subexp(X) = subexp(Mn(X)) for n ≥ 1, X is completely 2C-tight.
Thus, the assertion of Theorem 8.2 holds for subexponential operator spaces. We also note
that a finite dimensional operator space E is C-exact if and only if supN KE(N,C) < ∞
holds. Finally, we note that one has dcb(E,F ) = supN dN (E,F ) for dimE = dimF <∞.

8.2. Non-exact subexponential C∗-algebras. We will show that the class of subex-
ponential operator spaces is strictly larger than the class of exact ones. Recall that

{Y (N)
j }j≥1 is an i.i.d. sequence of N × N -Gaussian random matrices on a probability

space (Ω,A,P). For the sake of convenience we set Y
(N)
0 := 1. For each ω ∈ Ω, let

Yj(ω) = (Y
(N)
j (ω))N≥1 ∈ B :=

∏
N≥1MN . Let A(ω) be the “random” C∗-subalgebra of B

generated by {Yj(ω) | j ≥ 0}.

Theorem 8.10. The C∗-algebra A(ω) is 1-subexponential almost surely, but not exact.

Remark 8.11. de la Salle showed the same assertion for uniformly distributed unitary
random matrices.

Deterministic picture. We first consider the “non-random” case. We fix n ∈ N and

yj = (y
(N)
j )N≥1 ∈ B for 1 ≤ j ≤ n. Set y0 := 1 and A := C∗(yj | 0 ≤ j ≤ n) ⊂ B. Let C be

a unital C∗-algebra with faithful trace τ . Suppose that C is generated by c0, . . . , cn with
c0 = 1. We denote by P the set of non-commutative ∗-polynomials in n variables, and by
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Pd the polynomials in P of degree ≥ d. We set y := (yj)
n
j=1 ∈ Bn, y(N) := (y

(N)
j )nj=1 ∈Mn

N ,

and c := (cj)
n
j=1 ∈ Cn.

For any n-tuple z = (zj)
n
j=1 of elements in a C∗-algebra A0 and P ∈ P (resp. m ≥ 1 and

P ∈Mm⊗P), we denote by P (z) the elements in A0 (resp. Mm⊗A0) given by substituting
each zj for the j-th variable of P .

We assume that y(N) converges to c strongly as N → ∞, that is, for any P ∈ P, we have

lim
N→∞

τN (P (y(N))) = τ(P (c)), lim
N→∞

∥P (y(N))∥ = ∥P (c)∥.

For d,m, t ∈ N, we define

Cd(t,m) := sup
N≥m

sup
k≤t

{∥P (y(N))∥ | P ∈Mk ⊗ Pd, ∥P (c)∥ ≤ 1}.

Theorem 8.12. Suppose that for any d ≥ 1 there exist constants a ≥ 1 and D ≥ 1 such that
limN→∞Cd(N, aN

D) = 1, and the C∗-algebra C is exact. Then, A is (1+ε)-subexponential
for all ε > 0.

Proof. Let E ⊂ A be a given finite dimensional subspace and ε > 0 be arbitrary. We
will show that limN→∞N−1 logKN (E, 1 + ε) = 0. We may assume that E ⊂ Pd(y) :=
{P (y) | P ∈ Pd} for some d ∈ N. Then, we find a > 0 and D > 0 in such a way that
Cd(N, aN

D) ≤ 1 + ε for all sufficiently large N ≥ 1.

Let Ê be the image of E by the canonical surjection B →
∏
N ′≥aND MN ′ . We denote by

ŷj the element in Ê corresponding to yj ∈ A, and set ŷ := (ŷj)
n
j=1. Consider the map

u : Ê ∋ P (ŷ) 7→ P (c) ∈ C for P ∈ Pd.

Note that ∥u∥cb ≤ 1 and F := u(Ê) is a finite dimensional subspace of C and is independent

of N . The condition Cd(N, aN
D) ≤ 1+ε implies that ∥(uN : MN (Ê) →MN (F ))−1∥ ≤ 1+ε.

Since C is 1-exact, there exist K ∈ N and F̂ ⊂MK such that dcb(F, F̂ ) ≤ 1 + ε. Therefore,
there exists G ⊂ (

∏
N ′<aND MN ′)⊕MK such that dN (E,G) ≤ (1 + ε)2, which implies that

KE(N, (1 + ε)2) ≤ 2−1a2N2D +K. □
Remark 8.13. In Theorem 8.12, if we further assume that

∑n
j=1 τ(|cj |2) > ∥

∑n
j=1 yj ⊗

c̄j∥min, then A is not exact. To see this, take an ultrafilter U on N and let MU be the
ultraproduct of (Mn, τn)n≥1. Let Q1 : B → MU be the quotient map and V : A ↪→ B be
the inclusion map. By the assumption of strong convergence, we can show that there is a
trace preserving embedding C ⊂MU satisfying that Q2Q1V (yj) = cj for 1 ≤ j ≤ n, where
Q2 : MU → C ′′ ⊂ MU is the trace preserving conditional expectation. Now suppose that
A is exact. Then, V ⊗ id : A ⊗min C̄ → B ⊗max C̄ must be bounded. This implies that
∥
∑

j cj⊗c̄j∥max ≤ ∥
∑n

j=1 yj⊗c̄j∥min, and hence one has
∑n

j=1 τ(|cj |2) ≤ ∥
∑n

j=1 yj⊗c̄j∥min,
which contradicts our assumption.

We now go back to the random C∗-algebras A(ω), ω ∈ Ω. Firstly, we observe that∑n
j=1 τ(|cj |2) = n and ∥

∑n
j=1 yj ⊗ c̄j∥min ≤ ∥(yj)j∥R + ∥(yj)∥C ≤ 2

√
n sup ∥yj∥ hold when

(cj)j is a free circular system. In the unitary case yj has norm 1, but in the Gaussian
case we do not have supj ∥Yj(ω)∥B < ∞ almost surely. However, each Yj(ω) is a.s. in B
and we still can estimate ∥

∑n
j=1 Yj(ω) ⊗ c̄j∥. Indeed, I show in my paper [24] that this is

a.s. O(
√
n) when n→ ∞. So we conclude in this way that A(ω) is a.s. not exact.

Remark 8.14. Let E be an operator space E with dimE = n and let C > 1 and N ∈ N.
In [23], the following variant was introduced:

kE(N,C) := inf{k ≥ 1 | ∃F ⊂
k⊕
i=1

MN ; dN (E,F ) ≤ C}.
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Then, we can show that KE(N,C) ≤ ( 3C
C−1)2nN

2
and KE(N,C) ≤ NkE(N,C). Thus, one

has logKE(N,C) ≤ nN2C ′, where C ′ depends only on C. We do not know whether there
exist operator spaces E such that logKE(N,C) is intermediate between O(N) and O(N2).

Using quantum expanders, we can show that there exists E such that log kE(N,C) ≈ N2.
For example, this holds for E = OHn or E = span{U1, . . . , Un} ⊂ C. In fact, OH and C
are not exact and also not subexponential.
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