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Abstract

This note is based on KTGU Special lectures given by Pierre Mathieu
at Kyoto University from November 10 to December 1, 2017.

1 Lecture 1: Central limit theorems.

Throughout this note, we consider the solution of the following SDE
with random coefficients.

dXω
x (t) = σω(Xω

x (t))dWt + bω(Xω
x (t))dt, (1)

Xω
x (0) = x,

where Wt is d-dim BM and σω and bω are a random (d× d)-matrix and a
Rd-valued random variable respectively. We will assume several conditions
on σω and bω. Let Ω be the collection of symmetric non-negative (d× d)-
matrices defined on Rd. We will equip Ω with the topology of uniform
convergence on compact subsets of Rd. The space Rd naturally acts on Ω
by additive translation. We denote this action by (x, ω) 7→ x.ω. Denote
by Q the distribution of σω and bω.

(A1) The probability measure Q is invariant and ergodic with respect to
the action of Rd on Ω. Moreover, σω and bω satisfy the following
reversibility condition: bω = 1

2
div(aω), where aω = (σω)2.

(A2) The map x 7→ σω(x) is smooth for any ω ∈ Ω.

(A3) The matrix aω is uniformly elliptic in the following sense: there
exists a constant 0 < κ < 1 such that

κ|ξ|2 ≤ |σω(x)ξ|2 ≤ κ−1|ξ|2,

for any ξ, x ∈ Rd and any ω ∈ Ω.

The main purpose of this note is to study a perturbed version of the SDE
(1), which is given as follows: Let λ > 0 and e1 ∈ Rd with |e1| = 1.

dXλ,ω
x (t) = σω(Xλ,ω

x (t))dWt + bω(Xλ,ω
x (t))dt+ λaω(Xλ,ω

x (t)) · e1dt, (2)

Xλ,ω
x (0) = x.
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We aim to describe possible scaling limits of solutions of the SDE (2).
The following results are plausible guess for an answer of this problem.

• When λ = 0, Xω
x (t) is of order

√
t and the invariance principle holds.

• When λ > 0, Xλ,ω
x (t) is of order λt (ballistic) and the law of large

number holds.

Hence, an interesting problem is to study what happens when we scale
λ and t at the same time in such a way that λ2t tends to a positive
constant, which is equivalent to

√
t ∼ cλt for some c > 0. To do so,

we will assume the following condition, called finite range of dependence,
besides (A1)∼(A3). For a Borel subset F ⊆ Rd, we define the σ-field HF
as the one generated by {σω(x)}x∈F .

(A4) There exists a constant R > 0 such that for any Borel subsets
F,G ⊆ Rd with inf{|x − y| : x ∈ F, y ∈ G} > R, HF and HG are
independent.

In what follows, we will assume (A1)∼(A4) unless otherwise stated.

Notation 1.1. For fixed ω ∈ Ω, we denote by Pω and Eω the quenched
law and the quenched expectation with respect to W , respectively. We
denote by P and E the annealed law and the annealed expectation respec-
tively.

We start with introducing the following result.

Theorem 1.2 ([PV, O, KV]). Under the annealed measure P, the law of
εXω

0 (·/ε2) converges to the law of d-dim BM with some covariance matrix
Σ.

In what follows, we take the point of view of the environment seen
from particle, which is defined as follows. Define an Ω-valued process
ω(t) := Xω

0 (t).ω. It is not difficult to see that

• ω(t) is a Markov process under P,

• Q is invariant measure of ω(t), and

• (A3) implies that Q is ergodic.

Definition 1.3. Let D = (D1, ..., Dd) be the generator of the Rd-action on
Ω. Define σ(ω) := σω(0) and b(ω) := bω(0). Note that we have σω(x) =
σ(x.ω), bω(x) = b(x.ω) and b = 1

2
divΩ(a), where divΩ is divergence in Ω.

In other words, divΩ is the adjoint of D .

By using notation defined above, we can rewrite the SDE (1) as follows.

dXω
0 (t) = σ(ω(t))dWt + b(ω(t))dt.

In particular, the above formula shows that Xω
0 is an additive functional

of ω(·).

1.1 H−1 condition

We first introduce the Dirichlet form (E ,D) which is defined as follows.

E(f, g) :=
1

2

∫
Ω

σDf · σDgdQ,

D := {f ∈ L2(Ω,Q) : Df ∈ (L2(Ω,Q))d}.
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In the sequel, we will need the following function spaces consisting of
centered functions.

L2
0 := {f ∈ L2(Ω,Q) :

∫
fdQ = 0}, D0 := {f ∈ D :

∫
fdQ = 0}.

For f : Ω 7→ R, we define the additive functional Af (t) :=
∫ t

0
f(ω(s))ds.

Next, we explain a computation which suggests an introduction of H−1-
condition. For t > 0,

1

t
E[Af (t)2] =

2

t

∫ t

0

du

∫ u

0

E[f(ω(s))f(ω(u))]

=
2

t

∫ t

0

du

∫ u

0

E[f(ω(0))f(ω(u− s))] (∵ by stationarity)

= 2

∫ t

0

du(1− u

t
)E[f(ω(0))f(ω(u− s))].

Since the reversibility of ω(·) implies E[f(ω(0))f(ω(u− s))] ≥ 0, we have

lim
t→∞

1

t
E[Af (t)2] = 2

∫ ∞
0

E[f(ω(0))f(ω(u))]. (3)

Thus, we get the following equivalence between the convergence of 1
t
E[Af (t)2]

and H−1 condition, which will be introduced again later.

lim
t→∞

1

t
E[Af (t)2] <∞⇔ H−1-condition :

∫ ∞
0

duE[f(ω(0))f(ω(u))] <∞.

By applying the formula (3), we obtain that there exists a symmetric
matrix Σ such that

lim
t→∞

t−1E[(Xω
0 (t) · e)2] = e · (Σe). (4)

Now, we introduce the H−1-condition. Let L := 1
2
divΩ(aD) be the gen-

erator of ω(·). For f ∈ L2
0(Ω,Q), we say that f satisfies H−1-condition if

either of the following equivalent statements holds.

•
∫∞

0
duE[f(ω(0))f(ω(u))] <∞,

• f is in the domain of (−L)1/2,

• supg∈D0
|
∫
fgdQ|2/E(g, g) <∞.

We next define H1 space, and then define H−1 space as its dual. Note that
E on D0 is a norm due to ergodicity. Define H1 space as the completion
of D0 with respect to E , and H−1 space as its dual space. Then, for
f ∈ H−1, the H−1 norm ‖f‖H−1 is given as follows.

‖f‖2H−1 :=

∫ ∞
0

duE[f(ω(0))f(ω(u))] =

∫
(−L)−1f(ω) · f(ω)dQ(ω).

Theorem 1.4 (Kip-Var). For f ∈ L2
0(Ω,Q) ∩H−1, under P, the law of

εAf (·/ε2) converges to a 1-dim BM with variance Σ(f) := ‖f‖2H−1 .
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Lemma 1.5. For f ∈ L2
0(Ω,Q) ∩H−1, we have

E
[
sup
s≤t

(Af (s))2

]
≤ 8t‖f‖H−1 , for all t > 0.

See [MP, Lemma 2.2] for the proof. By the above result, we can define
Af for all f ∈ H−1. We explained the following convergence so far.

εXω
0 (·/ε2)

ε→0−−−→ d-dim BM(Σ),

εAf (·/ε2)
ε→0−−−→ 1-dim BM(Σ(f)).

Moreover, we can obtain the following joint convergence because both of
the above convergence is based on martingale approximation.(
εXω

0 (·/ε2)
εAf (·/ε2)

)
ε→0−−−→ (d+ 1)-dim BM with covariance matrix

(
Σ 0
0 Σ(f)

)
.

Note that the cross product of εXω
0 (·/ε2) and εAf (·/ε2) is zero since Xω

0

is an antisymmetric additive functional and Af is a symmetric additive
functional.

1.2 Study of the perturbed SDE (2)

In this subsection, we will explain that things discussed in the previous
subsection can be used to study the perturbed SDE (2) via the Girsanov
transform. We let t tend to∞ and λ tend to 0 in such a way that λ2t→ α
for some α > 0. Recall that Xλ,ω

0 is the solution of the following SDE.

dXλ,ω
0 (t) = σω(Xλ,ω

0 (t))dWt + bω(Xλ,ω
0 (t))dt+ λaω(Xλ,ω

0 (t)) · e1dt,

Xλ,ω
0 (0) = 0.

By the Girsanov formula, we have the following. For a bounded measur-
able function F ,

Eω
[
F (Xλ,ω

0 (s) ; s ≤ t)
]

= Eω
[
F (Xω

0 (s) ; s ≤ t) exp

(
λB(t)− λ2

2
〈B〉(t)

)]
,

where

B(t) :=

∫ t

0

σω(Xω
0 (s)) · e1dWs = Xω

0 (t)−
∫ t

0

bω(Xω
0 (s))ds. (5)

Thus, we get

E
[
F (εXλ,ω

0 (s/ε2) ; 0 ≤ s ≤ t)
]

=E
[
F (εXω

0 (s/ε2) ; 0 ≤ s ≤ t) exp

(
λB(t/ε2)− λ2

2
〈B〉(t/ε2)

)]
.

Discussions in the previous subsection implies the invariance principle
for (Xω

0 , B). Applying the invariance principle for (Xω
0 , B) to the above

equality, the limit of the RHS of the above equality turns out to be

E
[
F (Z1(s) ; 0 ≤ s ≤ t) exp

(√
αZ2(t)− α

2
〈Z2〉(t)

)]
,
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where (Z1, Z2) is a (d + 1)-dim BM whose covariance matrix is given as
follows. (

Σ Σe1

(Σe1)T something irrelevant

)
.

Note that we use orthogonality of symmetric and antisymmetric additive
functionals and the second equality of the formula (5) for the computation
of the cross product. On the other hand, we the following by the Girsanov
formula.

E
[
F (Z1(s) ; 0 ≤ s ≤ t) exp

(√
αZ2(t)− α

2
〈Z2〉(t)

)]
=E [F (Z1(s) + µs ; 0 ≤ s ≤ t)] ,

where µ =
√
αΣe1. This is the result obtained in [LR].

Theorem 1.6 ([LR]). Let α > 0. As λ and ε tend to 0 in such a way
that λ2/ε2 tends to α, under P, the law of εXλ,ω

0 (·/ε2) converges to the
law of a d-dim BM with constant drift whose covariance matrix and drift
term are Σ and

√
αΣe1, respectively.

Let f ∈ H−1. For the same reason we discuss below Lemma 1.5, we
obtain that under P, the law of (εXλ,ω

0 (·/ε2), εAf (·/ε2)) converges to the
law of (d + 1)-dim BM with constant drift whose covariance matrix and
drift are (

Σ 0
0 Σ(f)

)
,

(
Σe1

Γ(f)

)
, respectively.

We will compute Γ(f).

Γ(f) = lim
t→∞

1

t
E
[
Af (t)B(t)

]
= lim
t→∞

1

t
E [Af (t)(−Ab·e1(t))]

= −2〈f, b · e1〉H−1 = −Σ(f, b · e1),

where Σ(f, g) := 2〈f, g〉H−1 . Recall that Σ(f) = 2‖f‖2H−1 .

2 Lecture 2: Fluctuation-dissipation re-
lations.

In this section, we will introduce the notion of steady state, which is
an invariant measure for the Markov process ωλ(·), and study a couple of
its properties. Recall that the generators of the Markov processes Xω

x (t)
and Xλ,ω

x (t) are respectively given by

Lω =
1

2
div(aω∇),

Lλ,ω =
1

2
eλV div(e−λV aω∇),

where V (y) = −2y · e1. We next give the definition of steady state. Note
that for λ > 0, the probability measure Q is no longer invariant.
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Definition 2.1. For λ > 0, a Borel probability measure νλ on Ω is said
to be steady state if for any bounded continuous function f , for Q-a.e. ω
and P almost surely, we have

lim
t→∞

1

t

∫ t

0

f(ωλ(s))ds = νλ(f),

where ωλ(s) := Xλ,ω
0 (s).ω.

Note that steady state νλ is an invariant for ωλ(·) and unique if exists.
One of the purposes of introduction of steady state is to utilize it to prove
the following Einstein relation.

lim
λ→0

1

λ
l(λ) = Σe1, where l(λ) = lim

t→∞

Xλ,ω
0 (t)

t
Q-a.e.

See (4) for the definition of the matrix Σ. Of course, existence of the speed
l(λ) is not obvious at all and we will prove its existence in Section 3 and
4 using regeneration times.

2.1 Intuition

In this subsection, we will give an intuitive explanation of things be-
hind the proof of the Einstein relation. What we will do here is to com-
pute ∂λ=0νλ by using non-rigorous arguments. By the definition of steady
state, we have

∂λ=0νλ(f) = ∂λ=0 lim
t→∞

E
[

1

t

∫ t

0

f(ωλ(s))ds

]
.

If we exchange two limits in the RHS (not rigorous yet!), we get

∂λ=0νλ(f) = lim
t→∞

∂λ=0E
[

1

t

∫ t

0

f(ωλ(s))ds

]
= lim
t→∞

∂λ=0E
[

1

t

∫ t

0

f(ω(s))ds · exp

(
λB(t)− λ2

2
〈B〉(t)

)]
= lim
t→∞

∂λ=0E
[

1

t

∫ t

0

f(ω(s))ds ·B(t)

]
= Γ(f). (See the first lecture.)

Note that we use the Girsanov formula in the second equality. But there
are two technical problems in the above computations.

1. It is not clear whether we can exchange two limits.

2. Γ(f) is defined for f ∈ H−1 though νλ(f) makes sense only for
f ∈ L1(νλ).

2.2 Introduction of H−1∞ and H̃−1∞
Let F be a vector valued function in (L2(Ω,Q))d. Then, the formula

〈F, u〉 := −
∫

Ω

F ·DudQ

defines a continuous linear functional on H1(Ω). Thus, there exists an
element f ∈ H−1 such that 〈F, u〉 = 〈f, u〉H−1 . This implies that f =
divΩF . We now define subspaces of H−1.
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Definition 2.2. Define

H−1
∞ := {f ∈ H−1 ; f = divΩF for some F ∈ (L∞(Ω,Q))d},

‖f‖
H−1
∞

:= min{‖F‖∞ ; f = divΩF}.

Then, it can be checked that (H−1
∞ , ‖ ·‖

H−1
∞

) is a Banach space. (See [MP,

Section 3.1.].) Analogously, define

H̃−1
∞ := {f ∈ H−1

∞ ; f = divΩF for some bounded continuous function F}.

2.3 Steady state functional

Definition 2.3. A continuous linear functional νλ on H̃−1
∞ is called steady

state functional if for any f ∈ H̃−1
∞

lim
t→∞

1

t

∫ t

0

f(ωλ(s))ds = νλ(f),

Q-a.e., and in L1(P ).

Our goal is to compute the derivative of steady state. To do so, we
first prove the Lipschitz continuity of steady state functional.

Theorem 2.4. Assume that there is a steady state functional νλ for all
0 < λ < 1. Then, there exists a constant c1 > 0 such that for any f ∈ H−1

∞

|νλ(f)| ≤ c1λ‖f‖H−1
∞
.

3 Lecture 3: A priori estimates on diffu-
sions.

We see in Theorem 2.4 that Xλ,ω
0 · e1 ≤ cλt for some c > 0. One of

aims in this section is to prove the lower bound. Specifically, we will prove
the following.

Xλ,ω
0 · e1 ≥ cλt, for λ2t ≥ 1.

The reason why we need λ2t ≥ 1 is that for the process to be ballistic, the
effect of the drift term should be strong enough compared to the effect of
the diffusive part. We will assume e1 = e := (1, 0, ..., 0) without loss of
generality. The following estimate plays an important role in what follows.

Notation 3.1. Let L > 0. Define Π := {x ∈ Rd ; −L ≤ x · e ≤ L}. For
x ∈ Rd, define

u(x) := Pω
(
Xλ,ω
x exits Π from the right side

)
.

Define T±L to be the first hitting time of {x · e = ±L} by the Xλ,ω
0 respec-

tively.

Lemma 3.2. There exists L0 depending only on κ and d such that for all
L ≥ L0, u(0) ≥ 2/3.
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We will apply this lemma to the rescaled process X̃λ,ω
0 (t) := λXλ,ω

0 (t/λ2).
The following results are consequences of Lemma 3.2.

Lemma 3.3. There exists c, κ1 > 0 depending only on κ, d such that

Pω(T−L < +∞) ≤ ce−κ1λL,

for all ω ∈ Ω, all L > 0 and all λ < 1.

Proof. We only need to combine Lemma 3.2 with a suitable coupling with
a biased RW on Z. 2

Lemma 3.4. There exists c, κ2 > 0 depending only on κ and d such that

Pω(TL ≥ t) ≤ ce−κ2λ
2t+λL,

for all ω ∈ Ω, all L > 0, all t > 0 and all λ < 1.

Proof. We only need to combine Lemma 3.2 with the following Aronson
bound [A]: there exists a constant δ0 > 0 such that

P (|Xλ,ω(1) · e| ≥ L0) ≥ δ0.

2

The above estimates will be utilized in section 4. We summarize below
things we want to prove.

• Existence of steady state and steady state functional.

• The computation of the derivative of steady state. Specifically,

∂λ=0νλ(f) = Γ(f), for f ∈ H−1.

The above relation is known as the fluctuation-dissipation theorem.

To prove the above claims, we utilize the assumption (A4). The func-
tion f : Ω 7→ R is called local if there exists a constant Rf > 0 such that
f is HB(x,Rf )-measurable for some x ∈ Rd. The following theorem gives
the existence of steady state.

Theorem 3.5. For all λ > 0, there exists a unique Borel probability
measure νλ on Ω such that for any bounded local function, we have

lim
t→∞

1

t

∫ t

0

f(ωλ(s))ds =: νλ(f)

exists P -a.s., and Q-a.s.

Theorem 3.6. Let f ∈ H−1
∞ . When f is local,

lim
t→∞

1

t

∫ t

0

f(ωλ(s))ds =: νλ(f)

exists P -a.s., and Q-a.s.
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Once we have the two theorems above, we can extend the definition
of νλ(f) for any bounded continuous function by using Theorem 2.4. See
the proof of [MP, Corollary 4.3] for details.

The following result is called the fluctuation-dissipation theorem, which
is one of main goals of this article.

Theorem 3.7. Let f ∈ H−1
∞ . When f is local, limλ→0

1
λ
νλ(f) = Γ(f).

The proof of Theorem 3.7 is given in the end of this note. By combining
Theorem 3.7 with the estimate given in [MP, Lemma 3.1.] and imposing
a stronger condition on f , we can relax the locality assumption as follows.

Theorem 3.8. For f ∈ H̃−1
∞ , we have limλ→0

1
λ
νλ(f) = Γ(f).

We will prove the above theorems by using regeneration times. We
first introduce notation and define regeneration times in next section. For
λ > 0, define the annealed measure Pλx on Ω× C([0,∞);Rd) by

Pλx(A) :=

∫
dQ(ω)

∫
1(ω,w)∈AdP

λ,ω
x (w).

LetX(t) and Z(t) be the coordinate process on C([0,∞);Rd) and C([0,∞);Rd+1)
respectively. Fix f ∈ H−1. We also denote by Pλx the annealed law of the
process

Zλ,ωx := (Xλ,ω
x (t),

∫ t

0

f(ωλ(s))ds+W 1(t); t ≥ 0),

where W (t)1 is a 1-dim BM. Regeneration times are a increasing sequence
of random times τλ1 < τλ2 < ... such that{(

Z(τλk+1)− Z(τλk ), τλk+1 − τλk
)}

k∈N

are i.i.d. random variables. Once we construct regeneration times and ob-
tain some moment bounds for them, we can prove Theorem 3.5 by the law
of large numbers. In the sequel, we will need the following moment esti-
mates of regeneration times, which are essentially proved in [Sh, Theorem
4.9, Corollary 4.10]. See Proposition 4.9 in [MP] for details.

Proposition 3.9. Let f be a local function in H−1
∞ . Then, there exists

constants C(f), C(f) > 0 such that

Eλ
[
exp

(
C(f)λ2τλ1

)]
< C(f), and Eλ

[
exp

(
C(f)λmax

s≤τλ1
|Z(s)|

)]
< C(f).

4 Lecture 4: Regeneration times and steady
states.

In this section, we will give a sketchy explanation of the construction
of regeneration times. See [Sh, GMP, MP] for details. In what follows,
we first discuss the construction of regeneration times for Xλ,ω, and the
briefly discuss the construction for Zλ,ω. We start with the construction
of τλ1 . The strategy is as follows:
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Step 1. Wait until first time when the trajectory of Xλ,ω has progressed
by distance 2/λ from its past maximum in direction e1. We denote
such time by Nλ. Note that Nλ is a stopping time.

Step 2. Toss a coin, which is modeled by a Bernoulli random variable,
and if it fails, add time 1/λ2 and then go back to Step1. Denote by
Nλ
k the time when the k-th coin tossing is carried out. If it successes,

add time 1/λ2 and then force the trajectory to make a deterministic
jump, which is independent of ω, of size O(1/λ) in direction e1. Let
Sλk := Nλ

k + 1/λ2.

Step 3. Assume that the coin tossing successes for the first time at the
j-th trial. Define

Dλ := inf

{
t > Sλj ; (Xλ,ω

0 (t)−Xλ,ω
0 (SλK)) · e1 ≤ −

1

3λ

}
.

If Dλ <∞, then go back to Step 1. If Dλ =∞, then set τλ1 := Sλj ,
and start again with Step 1 after time τλ1 to define τλ2 < τλ3 < ....
Then, the law of trajectory X(·+ τλ1 )−X(τλ1 ) is Pλ( · |Dλ =∞).

By the construction, X(τλ1 ) depends only on the environment σω(y)
for y · e1 ≤ X(τλ1 ) · e1 − 1/λ, and the event {Dλ = ∞} depend only on
σω(y) for y · e1 ≥ X(τλ1 · e1)− 1/3λ. Remark that we need to enlarge the
probability space Ω to define a coin tossing. We explain a coin tossing
involved in the above strategy. Let Y be a Bernoulli random variable
with success probability 0 < δ < 1. Suppose that we now toss a coin Y
at location x at time t.

When Y = 1 (success): Sample X(t + 1/λ2) with uniform law on the
ball B(x+ 1/λ, 10−5/λ).

When Y = 0 (fail): Sample X(t+ 1/λ2) so that

P(Xλ,ω
x (1/λ2) ∈ ·) =δ(the normalized uniform law on B(x+ 1/λ, 10−5/λ))

+ (1− δ)Pλx(X(1/λ2) ∈ · | Y = 0).

The choice of the value δ is related to the Aronson bound. See [Sh,
GMP] for details. the following moment estimates for τλ1 , proved in [MP,
Proposition 5.3], give information about the order of magnitude of τλ1 .

Proposition 4.1. There exists a constant C1(f) > 0 such that for all
0 < λ ≤ 1

Eλ
[
exp

(
C1(f)λ2τλ1

)]
<∞, and Eλ

[
exp

(
C1(f)λ(e1 ·X(τλ1 ))

)]
<∞

4.1 The law of large numbers and the central
limit theorem

For fixed λ, by regeneration times and the moment estimates in Propo-
sition 4.1, we can decompose Xλ,ω into the sum of increments between
successive regeneration times, which are Rd-valued i.i.d. random vari-
ables, and a negligible error term. Thus, Xλ,ω/t converges Q-a.s., and
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P -a.s. We will denote the limiting vector by l(λ), and call it the speed of
Xλ,ω. We have the following expression of l(λ).

l(λ) =
Eλ
[
X(τλ2 )−X(τλ1 ))

]
Eλ
[
τλ2 − τλ1

] =
Eλ
[
X(τλ1 ) | Dλ =∞

]
Eλ
[
τλ1 | Dλ =∞

] .

Remark that we can check that l(λ)·e1, which is plausible by the definition
of Xλ,ω. By the same reason, we also have the following central limit
theorem. Under Pλ

Xλ,ω(t) · e1 − (l(λ) · e1) t√
t

weakly converges to the centered normal distribution with covariance e1 ·
Σλe1, where

e1 · Σλe1 =
E
[(
X(τλ1 ) · e1 − (l(λ) · e1)τλ1

)2 | Dλ =∞
]

E[τλ1 | Dλ =∞]
.

The construction of regeneration times for Zλ,ω is similar to that for
Xλ,ω. One of differences is that we have to change the value of success
probability δ into a positive constant depending on f that is related to
the Aronson bound for generator of Zλ,ω, which is given by

Mλ,ω := (Lλ,ω)x +
1

2
∂2
y + f(x.ω)∂y,

for z = (x, y), x ∈ Rd, y ∈ R. Recall that

Zλ,ωz := (Xλ,ω
x , y +W 1(t) +

∫ t

0

f(ωλ(s))ds).

Thus, we can prove Theorem 3.5 and Theorem 3.6 by using regeneration
times of Zλ,ω.

5 Lecture 5: FDR and scaling limits.

In this section, we will finish the proof of the Einstein relation and the
fluctuation-dissipation theorem. Recall that Xλ,ω and Zλ,ω are given by

dXλ,ω
0 (t) = σω(Xλ,ω

0 (t))dWt + bω(Xλ,ω
0 )dt+ λσω(Xλ,ω

0 (t))dt,

Xλ,ω
0 (0) = 0,

and

Zλ,ω0 (t) = (Xλ,ω
0 ; W 1

t +

∫ t

0

f(ωλ(s))ds).

By the regeneration times constructed in previous sections, we already
know that when f is local and either bounded or in H−1

∞ , we have the
following convergence Q, P almost surely.

1

t

∫ t

0

f(ωλ(s))ds→ νλ(f) =
Eλ[Af (τλ1 );Dλ =∞]

Eλ[τλ1 ;Dλ =∞]
.
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This proves the existence of steady states. Now we turn to the proof of
the Einstein relation. We have∣∣∣∣ l(λ)

λ
− Σe1

∣∣∣∣ ≤
∣∣∣∣∣ l(λ)

λ
− E[Xλ,ω

0 (t) · e1]

λt

∣∣∣∣∣+

∣∣∣∣∣Σe1 −
E[Xλ,ω

0 (t) · e1]

λt

∣∣∣∣∣ .
By Theorem 1.6, the second term vanishes when λ tends to 0 and t tends
to ∞ so that λ2t tends to α for some fixed α > 0. To end the proof, we
will show the following estimate.

lim
α→∞

lim
λ→0,t→∞,λ2t→α

Var

(
l(λ)

λ
− E[Xλ,ω

0 (t) · e1]

λt

)
.

We will only give a sketch of the proof below. Note that{(
Z(τλk+1)− Z(τλk ), τλk+1 − τλk

)}
k∈N

are i.i.d. random variables. Thus, under the annealed measure P, the
computation of the variance of Xλ,ω(τλk ) is quite elementary. Hence we
have

Var

(
l(λ)

λ
−
Xλ,ω(τλn(t))

λt

)
≤ n(t)

λ2t2
∼ t−1 → 0,

where

n(t) :=
t

Eλ[τλ1 | Dλ =∞]
.

By using the convergence of variance to 0 again, we also obtain that for
any ε > 0, we have τλn(t) ∼ t + εt on the event whose probability tends
to 1 as t → ∞. Finally, using the Aronson bound, we get the control
of fluctuation of diffusion processes on time intervals of size εt. More
precisely, we show that the process Xλ,ω fluctuates at most λεt on such
time intervals. Thus, we obtain that∣∣∣∣∣Xλ,ω(t)

λt
−
Xλ,ω(τλn(t))

λt

∣∣∣∣∣ ≤ ε on the event {τλn(t) ∼ t+ εt}.

By letting α→∞, we get the conclusion.
Finally, we will prove the fluctuation-dissipation theorem by a different

approach. We will utilize the following result.

Lemma 5.1. For m ∈ N, let H(m) be a Fλ−2m-measurable bounded
random variable. Then we have

Eλ[H(λ2τλ1 ) | Dλ =∞] =
∑
k≥1

Eλ[H(λ2Sλk )1Sλ
k
<Dλ ].

By using the above result, we obtain the following proposition. Recall
that λZλ,ω0 (·/λ2) converges in law the (d+ 1)-dim BM with constant drift
with the covariance matrix(

Σ 0
0 1 + Σ(f)

)
,
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and the drift (
Σe1

Γ(f)

)
.

Denote the limiting distribution by P and its expectation by E .

Proposition 5.2. Let φ : Rd+1 × R+ × [0, 1] be a continuous function
which has at most polynomial growth. Then we have

lim
λ→0

Eλ[φ(λZλ,ω(τλ1 ), λ2τλ1 , λ) | Dλ =∞]

Eλ[λ2τλ1 | Dλ =∞]
=

[φ(Z(τ1), τ1, 0) | D =∞]

E [τ1 | D =∞]
.

By the above Proposition, we obtain that for f ∈ H̃−1
∞

νλ(f)

λ
=

Eλ[λAf (τλ1 ) | Dλ =∞]

λ2Eλ[τλ1 | Dλ =∞]

= the drift term the last component of Zλ,ω under P = Γ(f).

This proves the fluctuation-dissipation theorem.
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