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1 Preliminary topics

1.1 Overview

Spin glass theory is closely related to the problem to determine properties of the law of
the maximum max�2�H (�) for stochastic random �elds, where � is a �nite (but large)
set and H = fH (�)g�2� is a family of real valued random variables.

To write H for the random variables is done in order to align (partly) with the
physicists viewpoint where H is a random Hamiltonian. However, physicists prefer to
look at the minimum, the so-called ground state, but that�s only a question of changing
the sign, of course. We stay here with the probabilists preference to be interested in the
maximum.

In many cases H is a Gaussian family. This simpli�es quite a number of arguments.
It is important that there is a �soft�version of this problem, by introducing a para-

meter � > 0; the so-called inverse temperature, and investigating (in physicists jargon)
the partition function

Z� :=
X
�

e�H(�):

Physicists prefer to have a minus sign in the exponent, but this is a bit of a nuisance, and
we stay with the +. It is clear that for large �; this sum is dominated by the summands
where H (�) is near its maximum. The maximum can typically be recovered by a � !1
procedure, but the analysis of the situation for �nite (or even small) � is often much
simpler.1

The main fascination is coming from the fact that there is a supposed universality
for a large class of very di¤erent models, where for large � a limit object is appearing,
Ruelle�s probability cascades, introduced in [39] which are closely related to what is now
called the Bolthausen-Sznitman [10] coalescent process. This is proved just in a very
limited number of cases. Here are very few examples:

1Please keep in mind that � is the inverse temperature. Therefore, the case of small �, which is
typically the less interesting situation, is called �high-temperature� case in physics jargon, which gives
it a more interesting touch.
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� The d-dimensional lattice free �eld: Here � = �N = f1; : : : ; Ngd ; and H is cen-
tered Gaussian with EH (�)H (�0) = GN;d (�; �

0), GN;d being the Green�s function
on �N of the discrete Laplacian with Dirichlet boundary conditions. Probabilisti-
cally, GN;d (�; �0) is the mean number of visits of �0 of a random walk starting in
�0 with killing when exiting �N . For d = 1, this is a random walk with Gaussian
increments, tied down at both ends. This case is rather simple, and is not really
related to spin glass theory. The most interesting case is d = 2 where max�H (�)
was �rst determined in leading order in Bolthausen-Deuschel-Giacomin [12], and
where the relations with spin glass theory had been proved. Although it is a kind
of �trivial� from the spin glass viewpoint, it got tremendous popularity recently,
as it is related to branching random walks, SLEs, Liouville quantum gravity, and
even the Riemann hypothesis, and there are many more re�ned works on it, e.g.
by Bramson-Zeitouni [19], Biskup-Louidor [9], Arguin-Zindy [6], and many others.

� The Sherrington-Kirkpatrick model with �N = f�1; 1gN and

H (�) :=
X

1�i<j�N
gij�i�j

with gij being standard Gaussians (typically scaled down by a factor
p
N which

is not important for the moment). Here, the leading order of max�H (�) is much
more interesting than in the free �eld case, but also much less is known rigorously.
The leading order was �rst rigorously determined by Talagrand [41], proving a fa-
mous formula of Parisi. There is a recent new approach on the topic by Panchenko
[37], [38].

1.2 Notations

We generally use (
;F ;P) for the basic probability space on which the random Hamil-
tonians H (�) are de�ned. Occasionally, if we want to stress the random character, we
write H! (�) : For a �nite parameter � > 0; the random Gibbs distribution on � is
de�ned by G!;� :

G�;! (�) :=
1

Z�;!
exp [�H! (�)] :

For many considerations, it is important to investigate properties of a replicated system,
by taking, for �xed !, product measures of G! :

G
n! (�) :=

nY
i=1

G!
�
�i
�
; � =

�
�1; : : : ; �n

�
on �n: The �1; : : : ; �n are called �replicas�. Typically, we write E(n) or sometimes simply
h�i for the expectations under this measure: If � : �n ! R

E(n)� :=
X
�

� (�)G
n! (�) :
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It is important to note that this expectation is still a random variable de�ned on
(
;F ;P).

Of crucial importance for many investigations are the measures �(n) on 
��n given
by

�(n) (d!; �) := P (d!)G
n! (�) ;

or it�s marginal on �n

�(n) (�) :=

Z


G
n! (�)P (d!) : (1.1)

We don�t distinguish in notations between the two, as it will always be clear from the
context if we consider the measure on 
��n or only its marginal on �n: It is important
to note that �(n) is not the product measure of �(1), but it is important to note that the
marginal of �(n+1) on �n is �(n): We therefore often drop the index n in �(n), and write
just �, if there it is clear from the context how many replicas are considered.

Often, we write expectations of a function � : �n ! R with respect to �(n) just as
�(n) (�) or � (�) :

1.3 Gaussian random variables

Let N 2 N; and 
N be the standard normal distribution on RN : 
N has the den-

sity (2�)�N=2 exp
h
� jxj2 =2

i
with respect to Lebesgue measure, where jxj denotes the

Euclidean norm. 
N is invariant under rotations, i.e. if � : RN ! RN is an orthogonal
map, then 
N��1 = 
N : If f : RN ! R is Lipshitz continuous then it is integrable with
respect to 
N : We write 
N (f) for its expectation.

Theorem 1.1
Let f : RN ! R be Lipshitz continuous with

kfkLip := sup
x 6=y

jf (x)� f (y)j
jx� yj <1:

Then for any t > 0


N
��
x 2 RN : jf (x)� 
N (f)j > t

	�
� 2 exp

h
�t2=2 kfk2Lip

i
:

Proof. See e.g. [32]
The second result we need from Gaussian variables is Wick�s identity:

Theorem 1.2
Let (X1; : : : ; Xd) be a centered Gaussian random vector with covariance matrix � =
(
ij) ; and let � : Rd ! R be a continuously di¤erentiable function with partial deriva-
tives @j�, satisfying for some C > 0

j� (x1; : : : ; xd)j � C exp [C jxj] ;
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where jxj is the Euclidean norm of x = (x1; : : : ; xd). Then

E (Xi� (X1; : : : ; Xd)) =
X
j


ijE@j� (X1; : : : ; Xd) :

Proof. For the case of i.i.d. standard Gaussians Xi, the statement is

E (Xi� (X1; : : : ; Xd)) = E@i� (X1; : : : ; Xd) ;

and it su¢ ces to consider the case d = 1: For that special case, it is partial integration

E (X� (X)) =

Z 1

�1

1p
2�
e�x

2=2x� (x) dx

= � 1p
2�
e�x

2=2� (x)

����1
x=�1

+

Z 1

�1

1p
2�
e�x

2=2�0 (x) dx;

and the �rst term vanishes by the growth condition on �, and so the rhs is E�0 (X) :
For the general case, we represent the X�s through a linear transformation of i.i.d.

Gaussians �i :

Xi =

dX
j=1

aij�j ;

where the matrix A = (aij) satis�es AAT = �: Then

E (Xi� (X1; : : : ; Xd)) =
X
j

aijE�j� (A�) ;

� as a column vector, and

E�j� (A�) =
X
l

aljE@l� (A�)

=
X
l

aljE@l� (X) :

This proves the claim.
We give a simple application which will be used several times.
Let � be a �nite set, and fH (�)g�2� be a Gaussian vector. De�ne the Gibbs

distribution and �(n) as in Section 1.2.
Consider an additional centered Gaussian random vector fX (�)g�2� such that fX (�) ;H (�)g�2�

is jointly Gaussian.

Proposition 1.3
Under the above conditions

�(n)
�
X
�
�1
�
� (�)

�
= �(n)

h
� (�)

Xn

i=1
cov

�
X
�
�1
�
;H
�
�i
��i

� n�(n)
�
� (�) cov

�
X
�
�1
�
;H
�
�n+1

���
:

with � =
�
�1; : : : ; �n

�
: (In the second summand, the (n+ 1)-th replica �n+1 enters only

via H).
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Proof.

�(n)
�
X
�
�1
�
� (�)

�
=
X
�

� (�)EX
�
�1
� 1
Zn

exp
hXn

i=1
H
�
�i
�i
:

From Theorem 1.2, one obtains

EX
�
�1
� 1
Zn

exp
hXn

i=1
H
�
�i
�i
=

nX
i=1

cov
�
X
�
�1
�
;H
�
�i
��
E
1

Zn
exp

hXn

i=1
H
�
�i
�i

�n
X
�2�

E
1

Zn+1
cov

�
X
�
�1
�
;H (�)

�
exp

hXn

i=1
H
�
�i
�
+H (�)

i
:

We may denote the new summation over � as a summation over a �new�variable �n+1.
Implementing this, we get the claimed expression.

Remark 1.4
TheH-variables don�t have to be centered. Writing them asH (�) = H0 (�)+a (�) ; a (�)
2 R, and H0 centered, one evidently gets the same formula.

1.4 Point processes

The point processes we consider are all either on R, R+ or Rd: We write X for either
of these spaces, being more speci�c when needed. We just give a summary of the fact
which are relevant for us. For proofs, see for instance [31] or [21].

The Borel-�-�eld on X is denoted by X . A measure � on (X;X ) is called Radon
measure if � (K) < 1 for any compact K � X: We write RADX for the set of Radon
measures on (X;X ) :We can equip RADX with the topology of vague convergence which
is generated by the evaluation mappings � 7�!

R
fd�; f 2 C0 (X) ; where C0 (X) denotes

the set of continuous functions X ! R of compact support. We leave out the index X if
there is no danger of confusion. It is known that on RAD there exists a metric � which is
complete, and such that RAD has a countable dense subset, which is a metric for vague
convergence. The Borel �-�eld is denoted by BRAD:

A sequence fQngn2N of probability measures on (RAD;BRAD) is said to converge
weakly to a probability measure Q if

lim
n!1

Z
F (�)Qn (d�) =

Z
F (�)Q (d�)

for any bounded continuous function F : RAD! R:
A convenient tool is the Laplace functional. Let � 2 C+0 (X) : These are the non-

negative functions in C0 (X) : If Q is a probability measure on (RAD;BRAD) ; the Laplace
functional LQ on C

+
0 (X) is de�ned by

LQ (�) :=

Z
exp

�
�
Z
� d�

�
Q (d�) :
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Proposition 1.5
a) If LQ (�) = LQ0 (�) for all �; then Q = Q0:

b) If fQng is a sequence of probability measures on (RAD;BRAD) ; and Q is a prob-
ability measure, then fQng converges weakly to Q if and only if

lim
n!1

LQn (�) = LQ (�)

holds for all � 2 C+0 (X) :

For proofs, see for instance [21] Prop. 11.1.VIII.
Of interest for us are only point measures on X; i.e. measures of the formX

i2I
�xi ;

where fxig is a �nite or countable sequence inX which has the property that
P

i 1K (xi) <
1 for any compact subset K � X: The set of Radon measures of this form is denoted
by PTX : It is easy to see that this is a Borel subset of RADX .

De�nition 1.6
A random variable � de�ned on some probability space (
;F ; P ) with values in (PT;BPT)
is called a point process.

One can always realize such a point process through a �nite or in�nite sequence f�kg
or X-valued random variables: � =

P
k ��k : The ordering of the random variables is

irrelevant for the point process. If X = R or R+; and � is almost surely a single point
measure where the points have a largest element, then one can choose a �xed ordering
of the points by ordering them downwards �1 > �2 > : : : . This is sometimes convenient.

De�nition 1.7
Let � be a Radon measure on (X;X ) : A point process � is called a Poisson point
process with intensity measure � (supposed to be Radon) if the following two
conditions are satis�ed

� If A � X has compact closure then � (A) is Poisson distributed with parameter
� (A) :

� If A1; : : : ; An are pairwise disjoint sets, then � (A1) ; : : : ;� (An) are independent
random variables.

We say that � is a PPP (�) if it is a Poisson point process with intensity measure �:
For a point process, we write L� for the Laplace functional of its distribution:

L� (�) =

Z
exp

�
�
Z
� d�

�
P��1 (d�) = E exp

�
�
Z
� d�

�
:
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Proposition 1.8
If � is a PPP (�) then for all � 2 C+0 (X)

L� (�) = exp

�
�
Z �

1� e��(x)
�
� (dx)

�
:

Proof. Let � 2 C+0 (X) : Given " > 0; we can �nd �nitely many A1; : : : ; An 2 X
with compact closure, and nonnegative numbers a1; : : : ; an such that


��X

i
ai1Ai





1
� ":

Replacing � by the simple function s =
P

i ai1Ai , we get

E exp

�
�
Z
sd�

�
= E exp

h
�
X

i
ai� (Ai)

i
=
Yn

i=1
E exp [�ai� (Ai)] ;

as the � (Ai) are independent. As they are Poisson with parameter � (Ai) we get

E exp [�ai� (Ai)] = e��(Ai)
1X
k=0

� (Ai)
k

k!
e�kai

= exp
�
�� (Ai)

�
e�ai � 1

��
;

i.e.

E exp

�
�
Z
sd�

�
= exp

h
�
X

i
� (Ai)

�
e�ai � 1

�i
= exp

�
�
Z �

1� e�s(x)
�
� (dx)

�
:

The result now follows by an approximation procedure.
A basic result in point process theory is:

Theorem 1.9
For any Radon measure � on (X;X ) ; a PPP (�) exists.

For a proof, see e.g. [21].
We are interested only in the case where X is R or Rd or an open subset of these

spaces, and where � has a density with respect to Lebesgue measure. If g is such a
density, we say that a PPP (�) is a Poisson point process with density g; and sometimes
write PPP (g (t) dt) :

If X;X 0 are two separable, locally compact metric spaces, and f : X ! X 0 is a
continuous mapping, then f de�nes a mapping from measures � on X to measures �f�1

on X 0: However, if � is Radon, then not necessarily, �f�1 is Radon. We therefore assume
that f has the property that f�1 (K) is compact in X whenever K � X 0 is compact.
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Lemma 1.10
Let f : X ! X 0 be a continuous mapping such that f�1 (K) is compact whenever
K � X 0 is compact. If � is a PPP (�) ; then �f�1 is a PPP

�
�f�1

�
:

Proof. Check the Laplace functional.

2 Examples of spin glasses

The most �natural�example of a spin glass is the

2.1 Edwards-Anderson model

This is a spin glass version of the standard Ising model. Take �N := f1; : : : ; Ngd ; �N :=
f�1; 1g�N : For � = f�xgx2�N 2 �N ; �x 2 f�1; 1g

N , take

HN;! (�) :=
X

i�j2�N

gij (!)�i�j ;

where gij are i.i.d. standard Gaussian random variables, de�ned on a probability space
(
;F ;P) and the sum is over unordered nearest neighbor pairs. (gij should depend only
on fi; jg, not on the ordering). The partition function is de�ned by

ZN;�;! :=
X
�

exp [�HN;! (�)] ;

and the Gibbs measure

GN;�;! (�) :=
1

ZN;�;!
exp [�HN;! (�)] :

Natural questions are to determine the free energy:

f (�) := lim
N!1

1

N
logZN;�;!:

The following result is not di¢ cult to prove, using the subadditive ergodic theorem, and
Gaussian concentration:

Proposition 2.1
f (�) exists and

f (�) = lim
N!1

1

N
E logZN;�:

In particular, the free energy is non-random.

I leave the proof as an exercise. It will play no role in what follows.
The fact that

lim
N!1

1

N
logZN;�;! = lim

N!1

1

N
E logZN;�

9



is usually called self-averaging of the free energy.
For d = 1, the model can be discussed through a transfer matrix approach using the

theory of products of random matrices.
Unfortunately, for d � 2, besides of elementary properties, essentially nothing is

known about the EA-model. At the moment, there are no techniques available to eval-
uate or seriously discuss f (�). There are some results for high temperature, i.e. small
�, but for instance, the question about a phase transition and its properties is largely
unknown.

The problems are stemming to a large extent from the fact that the model exhibits
so-called frustration, because the g can take both positive and negative values. For
instance, in d = 2, there will (for large N) be points (i1; i2) 2 �N with g(i1;i2);(i1+1;i2) >
0; g(i1;i2);(i1;i2+1) < 0; g(i1+1;i2);(i1+1;i2+1) > 0; g(i1;i2+1);(i1+1;i2+1) > 0; which implies
that under the Gibbs measure, �(i1;i2) would �like� to be the same as �(i1+1;i2); and
this the same as �(i1+1;i2+1); and the latter, because of g(i1;i2+1);(i1+1;i2+1) > 0 to be the
same as �(i1;i2+1): However, �(i1;i2+1) would like to have opposite sign to �(i1;i2) because
of g(i1;i2);(i1;i2+1) < 0. This causes already a problem to �nd the ground state, i.e. the
con�guration � which minimizes H (�) which would be a trivial problem if all g�s would
be positive. In fact, to �nd min�H (�) is an enormously hard and unsolved problem for
the EA model and this is then also re�ected for the �nite but large � Gibbs measure.
For the high-temperature case, see [24].

For a recent survey about the problems arising in short range spin glasses, and also
a discussion of possible relation with mean-�eld glasses, see [36].

One should add that the problems appearing here are very standard problems in
classical probability theory. Remark that the collection fHN (�)g�2�N is a family of
centered Gaussian random variables. The covariance structure is easily computed:

cov (HN (�) ;HN (�)) =
X

i�j2�N ;

X
i0�;j02�N

Egijgi0j0�i�j�i0�j0

=
X

i�j2�N ;
�i�j�i�j :

To �nd min�HN (�) therefore amount to �nd the minimum of Gaussian �eld of random
variables which have a �simple�covariance structure.

2.2 Sherrington-Kirkpatrick model: A mean �eld version of the EA
model

In a mean-�eld model, all the sites in the base space interact with any other on equal
footing. There is then no point to assume a geometric structure of �N and one just
takes �N = f1; : : : ; Ng and �N := f�1; 1gN . The Hamiltonian is de�ned by

HN;! (�) :=
X

1�i<j�N

gij (!)p
N

�i�j :
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The gij are again standard Gaussian random variables. It is convenient to de�ne the gij
for all pairs of indices by putting gij := gji for i > j, and gii = 0:

At �rst sight, when one compares with the Curie-Weiss model (see Section 9), thep
N normalization looks strange, but a moment�s re�ection reveals that it is the right

one: A speci�c spin �i interacts with the other ones through

1p
N

X
j:j 6=i

gij�j :

This quantity, for �xed �j ; j 6= i; is a Gaussian with variance (N � 1) =N , so the in�uence
of the other spins on �i is of order 1 with the above normalization. In this respect, the
situation is the same as in the Curie-Weiss or the EA model.

Typically, one includes also a non-random external �eld with strength h, i.e. the
Hamiltonian is

HN;h;! (�) :=
X

1�i<j�N

gij (!)p
N

�i�j + h
X
i

�i; (2.1)

sometimes also random one:

HN;h;! (�) :=
X

1�i<j�N

gij (!)p
N

�i�j +
X
i

gi (!)�i;

with new independent Gaussians gi; but we stay mainly with (2.1). The partition func-
tion, and the Gibbs measure are then de�ned by

ZN;�;h;! :=
X
�

exp [�HN;h;! (�)] ;

GN;�;h;! (�) :=
1

ZN;�;h;!
exp [�HN;h;! (�)] :

In the case of a non-vanishing external �eld, also h would get multiplied by �. That�s
the way physicists like it, but mathematically, there is no point to multiply h by �; and
we set

ZN;�;h;! :=
X
�

exp

24� X
1�i<j�N

gij (!)p
N

�i�j + h
X
i

�i

35 ;
and the Gibbs measure accordingly.

The covariance structure of the Hamiltonian is easily computed:

E

0@ X
1�i<j�N

gijp
N
�i�j

X
1�i<j�N

gijp
N
�i�j

1A =
1

N

X
1�i<j�N

�i�j�i�j

=
1

2N

NX
i;j=1

�i�j�i�j �
1

2

=
N

2
RN (�; �)

2 � 1
2
;
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where the overlap is de�ned by the inner product:

RN (�; �) =
1

N

NX
i=1

�i�i: (2.2)

2.3 The perceptron

The perceptron is a particular neural net. In its simplest form, one has M patterns�
Ski
�
1�i�N ; 1 � k � M; of �1 and one has to �nd �neural net parameters��i which

produce 1 as the output of sign
�P

i �iS
k
i

�
; k = 1; : : : ;M: There are many more versions,

for instance where the function sign (x) is replaced by another one, and mainly, where
the network has several �layers�, i.e. where the output of a �rst layer is the input for
a second layer, and so on. Also there can be (and typically is in networks which are
applied in practice) a complicated pattern how the outputs are used in the next layer.
We completely neglect these subtleties and ask only how many patterns in the single
layer perceptron can be stored safely, meaning how big canM be such that ��s are found
which give output one to all the patterns.

That�s not really a well posed problem as the answer will depend very much on the
interrelations between the patterns. To simplify further, we assume that the patterns
are randomly chosen. Further simpli�cations arise by assuming that the Ski are i.i.d.
Gaussians: write gik instead, and the �i are �1: These latter simpli�cations are actually
not so important, and with some e¤orts, many of the results which were obtained (rig-
orously mainly by Talagrand, or non-rigorously mainly by Gardner and Derrida) can be
generalized relaxing the conditions, but not the basic independence of the patterns. In
the above framework, the problems have some similarity with the problems in the SK
model. Let�s �rst de�ne

Hk :=
n
x 2 RN :

X
i
xigik � 0

o
; k = 1; : : : ;M

which are random half spaces de�ned by the patterns. Then question about the existence
of neural net parameters � is if

TM
k=1Hk \ �N is �typically�non-empty where �N :=

f�1; 1gN .
Bernard Derrida and Elizabeth Gardner in the late eighties derived by non-rigorous

replica computations a number remarkable results. Finally, Talagrand gave rigorous
proofs for a number of their results by a complicated version of his �cavity method�
(Chap 2, 8, 9 of [42]).

A trivial observation is:

E
����\M

k=1
Hk \ �N

���� = X
�2�N

P
�
� 2

\M

k=1
Hk

�

= 2NP
�
� 2

\M

k=1
Hk

�
= 2N2�M = 2N�M :

12



Therefore, for � > 1

P
�\�N

k=1
Hk \ �N 6= ;

�
! 0: (2.3)

On the other hand, for � < 1; M = �N; the above expectation is exponentially growing

inN:Does that mean that P
�T�N

k=1Hk \ �N 6= ;
�
! 1? The answer is of course �No�, as

otherwise there would be no point to publish on the problem. Here is one of Talagrand�s
result:

Theorem 2.2
a) There exists � < 1 such that (2.3) holds.

b) For small � 2 (0; 1)

1

N
log

����\�N

k=1
Hk \ �N

����! log 2 + RS (�) ; a:s:

RS (�) := �r
2
(1� q)+E log cosh (pqZ)+�E log �

���Zpqp
1� q ;1

��
; Z Gaussian:

where � is the standard normal distribution, and r; q satisfy

q = E tanh2
�p
rZ
�
; r =

�

1� qEF
��Zpqp

1� q

�
; F (x) :=

1p
2�

exp
�
�x2=2

�
P (Z � x)

;

(a formula of which Talagrand wrote that �you should rush to require medical
attention if it seems transparent to you�).

There is a �soft�version of the problem. Given a smooth function u : R! R, and
the so-called �cavity variables�,

y�;k :=
1p
N

NX
i=1

gik�i (2.4)

de�ne

ZN;u;� :=
X
�

exp

�X�N

k=1
u (y�;k)

�
: (2.5)

Our original problem corresponds to the special choice

u (x) = �11(�1;0) (x) ; with 0 � 1 = 0:

With this choice, exp
hP�N

k=1 u (y�;k)
i
= 1 if and only if y�;k � 0 for all k; and so

ZN;u;� =

����\�N

k=1
Hk \ �N

���� :

13



This choice for u is of course not �smooth�which creates a lot of problems. Talagrand
�rst derived a formula for

f (u; �) := lim
N!1

1

N
logZN;u;�;

for smooth u (and small �), and �nally, by a very complicated approximation procedure
with a choice of N -dependent smooth uN approximating �11(�1;0) he was able to
prove the above theorem.

There are a number of reasons why the perceptron, i.e. the spin glass with Hamil-
tonian

H (�) :=
X�N

k=1
u (y�;k)

is interesting. For instance, the so-called bipartite SK-model with two sets of spin
variables �1; : : : ; �N ; �1; : : : ; �N 2 f�1; 1g and Hamiltonian

H (�; �) :=
1p
N

NX
i=1

NX
j=1

gij�i�k

can easily reduced to it: Summing out for instance the ��s, one gets a perceptron with
u (x) = � log cosh (x) :

Despite the fact that the bipartite SK-model �looks�being simpler than the ordinary
SK-model, much less is known about it (for large �).

There are other models which can be reduced to the perceptron, for instance the
Hop�eld model.

The form of the partition function (2.5) suggests a connection with classical large
deviation theory: De�ning with the �cavity� variables y�;k from (2.4) the empirical
distribution

LN;�;� (!) :=
1

�N

�NX
k=1

�yk;�(!)

one can write
[�N ]X
k=1

u (yk;� (!)) := �N

Z
u (x)LN;�;� (dx) ;

i.e. the Hamiltonian is simply a linear function of the empirical measure. One may ask
if there is a �quenched�large deviation principle for LN;�;�. For a given �xed �, this is
of course nothing but the classical Sanov theorem as the yk;� are independent in k, and
standard normally distributed. Therefore, for �xed �, one has

lim sup
N!1

1

N
logP (LN;�;� 2 A) � � inf

�2A
I (�j�) ; A closed �M+

1 (R)

lim sup
N!1

1

N
logP (LN;�;� 2 U) � � inf

�2U
I (�j�) ; U open �M+

1 (R) ;

where I (�j�) is the usual relative entropy of � w.r.t. the standard normal distribution
�; and whereM+

1 (R) is the set of probability measures on R.

14



The proper formulation for our problem is to look at

NN (A;!) := # f� : LN;�;�;! 2 Ag ;

so that
ENN (A) = 2NP (LN;�;� 2 A) ;

where the RHS is independent of �. The proper question is

Conjecture 2.3
There exists a �rate function�J :M+

1 (R)! [0;1] such that

lim sup
N!1

1

N
logNN (A) � log 2� inf

�2A
J (�) ; A closed �M+

1 (R) ; a:s:

lim inf
N!1

1

N
logNN (A) � log 2� inf

�2U
J (�) ; U open �M+

1 (R) ; a:s::

This is beyond reach at the moment. Such a result has been proved for a �perceptron
version�of the generalized random energy model in [15].

2.4 Combinatorial optimization: The assignment problem

There are similar models of interest in combinatorics, for instance in combinatorial
optimization. One such case is the optimal assignment problem. In the simplest case
one has twice N objects, say N girls and N boys. For every girl i and boy j; there is
a mutual �satisfaction�of matching i with j; say Uij : The problem is to �nd a perfect
matching, i.e. an assignment of girls to the boys such that the sum of the satisfactions
is maximal. Mathematically formulated, one is looking at

SN = max
�

NX
i=1

Ui�(i);

the maximum running over all permutations of N elements. We assume now that the
Uij are i.i.d. uniformly distributed on [0; 1] : Mathematically, it is the same whether we
are maximizing the satisfaction or minimizing it. The latter is formally slightly more
convenient. Of course, we could try to �nd a matching such that for any i; � (i) is chosen
that Ui�(i) = minj Uij ; but a moments re�ection shows that this will not work as there
may be di¤erent girls i which would choose the same boy, something which is forbidden.
It however turns out that

P
iminj Uij is not so far o¤ from SN : A simple computation

gives that

Emin
j
Uij =

1

N
+ o

�
1

N

�
;

and therefore
E
X
i

min
j
Uij = 1 + o (1) :

15



It is a mathematical proved result, that

lim
N!1

ESN =
�2

6
: (2.6)

This was �rst derived in the physics literature by regarding it as spin glass problem.
One introduces a �nite temperature model by taking � > 0; and setting

F�;N =
1

N
log
X
�

exp
h
��N

X
i
Ui�(i)

i
;

one lets N !1; and then divide it by �; and lets � !1: The outcome from spin glass
computation (see [34]) was that the limit is indeed �2=6: However, this was by no means
a mathematically rigorous proof. A proof of (2.6) was �rst given by David Aldous in 2001
[4]. From the spin glass theory viewpoint however, the problem is not very interesting
and rather �trivial�, as it does not exhibit the so-called �replica symmetry breaking�
like the SK model. For a thorough discussion of the model from a spin glass viewpoint,
see [33].

2.5 The simplest spin glass: The Random Energy Model (REM)

The main di¢ culty of the SK-model is coming from the fact that the Gaussian random
variables (2.1) are correlated. Derrida [22] had the idea to ask if something interesting
is happening if one just considers i.i.d. random variables as the Hamiltonian. However,
one wants to keep the variance of the right order. The SK-Hamiltonian has a variance of
order N: We assume that the variance is exactly N: Evidently, then also the � need not
to carry an internal structure. We therefore assume that we have just 2N independent
Gaussian random variables, call them ! ! HN;! (�) ; 1 � � � 2N ; de�ned on some
probability space (
;F ;P), which are centered and have variance N: Of course, one may
still assume that � 2 �N ; but this will be of no relevance here. We then de�ne the
�Gibbs measure�on the � by de�ning for any ! 2 
; and any � > 0

GN;�;!(�) =
exp [�HN;! (�)]

ZN;�;!
; (2.7)

where ZN;�;! =
P

� exp [�HN;! (�)] :We leave the index ! typically out. The free energy
is as usual de�ned by

f(�) = lim
N!1

1

N
logZN;�:

In principle, this could still be a random variable, but we will see in a moment, that
the limit exists almost P-almost surely, and does not depend on !: In fact, we have the
following result:

Theorem 2.4
f(�) exists almost surely and is given by

f(�) =

(
�2

2 + log 2 if � �
p
2 log 2p

2 log 2� if � �
p
2 log 2

:
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Remark 2.5
The high temperature (small �) value is the annealed free energy

lim
N!1

1

N
logEZN;�:

If EZ2� � C (EZ�)2, with C not depending on N; then one gets in a standard way (see
the discussion in Section 3.2)

f (�) = lim
N!1

1

N
logEZN;�:

One should however observe that this method rarely gives

lim
N!1

1

N
logZN;� = lim

N!1

1

N
logEZN;�

in the correct range of �. Also here

EZ2N;� =
X
�;�0

E exp
�
�
�
HN (�) +HN

�
�0
���

=
X
�

exp
�
2�2N

�
+
X
� 6=�00

exp
�
�2N

�
= exp

�
2�2N +N log 2

�
+ 2N

�
2N � 1

�
exp

�
N�2

�
:

The �rst summand dominates the second as soon as � >
p
log 2; and in fact,

EZ2N;�
(EZN;�)

2 is

exponentially growing in this case. One therefore sees that the second moment method
fails to prove f (�) = �2=2 + log 2 in the full region.

Proof of Theorem 2.4. The trick is to apply the �second moment method�not
directly to Z but to

AN (s)
def
= #f� : HN (�) � sNg: (2.8)

Let � as usual be the standard normal distribution function. Then

EAN (s) = 2N
�
1� �

�
s
p
N
��
� 2Ne�s2N=2:

Here we use the following notation: Given two sequences faNg ; fbNg of positive real
numbers, which may depend on other parameters (like s above), then we write aN � bN ;
provided for any " > 0 there exists N0 (which may depend on the auxiliary parameters),
such that

e�"NaN � bN � e"NaN
for N � N0.
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For s >
p
2 log 2; EAN (s) converges to 0; exponentially fast in N: From the Markov

inequality, one gets P (AN (s) 6= 0) converges to 0; exponentially fast, and then by Borel-
Cantelli argument, we get that AN (s) = 0 for large enough N; a.s. As this holds true
for all s >

p
2 log 2; we get

P
�
lim sup
N!1

1

N
sup
�
HN (�) �

p
2 log 2

�
= 1 (2.9)

For the second moment, we obtain

EAN (s)2 = 2N
�
1� �

�
s
p
N
��
+ 2N (2N � 1)

�
1� �

�
s
p
N
��2

;

we see that for 0 � s <
p
2 log 2; this is [EAN (s)]2 ; up to a factor, which is exponentially

close to 1: From that we get

AN (s) � EAN (s) = 2N
�
1� �

�
s
p
N
��
� exp

�
N

�
log 2� s2

2

��
:

Summarizing, we get

AN (s) �

8><>:
0 if s >

p
2 log 2

exp
h
N
�
log 2� s2

2

�i
if s 2

�
0;
p
2 log 2

�
2N if s � 0

with high probability. UsingX
�

e�HN (�) = N�

Z 1

�1
AN (s)e

N�sds

the reader will have no di¢ culty to derive the theorem.
We next want to describe the large N behavior of the Gibbs measure G!;�;N . We

have to distinguish between the high temperature case � <
p
2 log 2; and the low tem-

perature case � >
p
2 log 2: We abstain from discussing the critical case � =

p
2 log 2:

The fundamental di¤erence is that in the high temperature case, the Gibbs measure
is concentrated on a growing number of energy levels, which become dense and denser
packed as N ! 1: In contrast, in the low temperature regime, the Gibbs distribution
is essentially concentrated on the top energy levels. We now make this precise.

Exercise 2.6
Assume � <

p
2 log 2

a) For any " > 0; there exist K; � > 0 such that

P
�n
! : G!;�;N

�n
� : X� 2

h
�N �K

p
N; �N +K

p
N
io�

� 1� "
o�

� 1� e��N ;

i.e. up to a negligible P-probability, G is concentrated ��s for which the energy levels are
in a window of size of order

p
N around �N: (The fact that exactly � is the value where

the energy levels concentrate under the Gibbs measure is an �accident�.)
b) max� P!;�;N (�) is exponentially decaying, P-a.s.
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The low temperature regime � >
p
2 log 2 is more interesting, as there, the energies

get a macroscopic but random weight. For any sequence aN of real numbers,
P

� �X��aN
de�nes a point process on R:We will sometimes just call such an object �the point process
fX� � aNg��.

Proposition 2.7
If aN =

p
2 log 2N � 1

2
p
2 log 2

logN + 1
2
p
2 log 2

log(2�); then the above point process con-

verges weakly to a PPP
�p
2 log 2 exp

�
�
p
2 log 2t

�
dt
�
:

Proof. We denote by QN the law of
P

� �Xa�aN . If � 2 C+o (R); the

LQN (�) = E exp

"
�
X
�

�
�
X(N)
� � aN

�#

=

�
1p
2�N

Z
exp

�
��(x� aN )�

x2

2N

�
dx

�2N

=

(
1� 1p

2�N

Z �
1� e��(x)

�
exp

"
�(x+ aN )

2

2N

#
dx

)2N
:

We abbreviate

� (x;N) :=
1p
2�N

�
1� e��(x)

�
exp

"
�(x+ aN )

2

2N

#
;

and so

LQN (�) = exp

�
2N log

�
1�

Z
� (x;N) dx

��
:

As � has compact support, there exist K > 0 such that � = 0 outside [�K;K] ; and
therefore � (x;N) = 0, too, outside this interval. On the other hand

exp

"
�(x+ aN )

2

2N

#
=
p
4� log 2e�x

p
2 log 2 exp [�N log 2]

p
N(1 + o(1));

uniformly in x 2 [�K;K] ; and therefore

� (x;N) = 2�N
�
1� e��(x)

�p
2 log 2e�x

p
2 log 2(1 + o(1));

uniformly in x 2 [�K;K]. Expanding log (1� ") = �" � O
�
"2
�
for " small, it follows

from the fact that � (x;N) = 0 outside [�K;K] :

exp

�
2N log

�
1�

Z
� (x;N) dx

��
= exp

�
�
Z �

1� e��(x)
�p

2 log 2e�x
p
2 log 2dx(1 + o(1)) +O

�
2�N

��
;
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i.e.

lim
N!1

LQN (�) = exp

�
�
p
2 log 2

Z �
1� e��(x)

�
exp

h
�
p
2 log 2x

i
dx

�
:

We next have to discuss the properties and some transformations of a PPP (ae�axdx)
� = f�ig on R where the parameter a is > 0. As

R
ae�axdx = 1, the point process

has in�nitely many points. On the other hand, as the density is rapidly decaying for
x ! 1, it is evident that there are only �nitely many points on the positive real axis.
So, there is almost surely a largest point, and we can order the points downwards. For
� > 0, the point process

�
e��i

	
is again a Poisson point process on R+, which, according

to Lemma 1.10 has as its intensity measure the one obtained from � (dx) = ae�axdx
under the transformation f given by f (x) = e�x with inverse f�1 (x) = ��1 log x: So
the resulting Poisson point process has density

a exp
�
�a��1 log x

� 1
�x

= a��1x�a�
�1�1:

We set � := a��1:

Lemma 2.8
Assume 0 < � < 1 and f�ig be a PPP

�
�x���1dx

�
on R+. Then the point process has

in�nitely many points, but only �nitely many above any " > 0: FurthermoreX
i

�i <1; a:s:

Proof. That there are only �nitely many points above " > 0 follows from the
integrability of the density on [";1): But there are in�nitely many points as the density
is not integrable over R+. On the other hand

E
�X

i
�i1�i�1

�
=

Z 1

0
x�x���1dx <1;

as we assumed � < 1: So
P

i �i1�i�1 <1 almost surely. As there are only �nitely points
above 1, we conclude that

P
i �i <1:

(Remark that E (
P

i �i) =
R1
0 x�x���1dx =1, but that does of course not excludeP

i �i <1).

Remark 2.9
If � � 1, then

P
i �i =1 almost surely.

Given a PPP
�
�x���1dx

�
f�ig with � < 1 we can normalize the points by putting

��i :=
�iP
j �j

:

Then of course
P

i ��i = 1. We may regard f��ig as a random probability distribution on
N. For that, we have to attach the points to set of natural numbers. This is typically
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done by ordering the points downwards ��1 > ��2 > � � � which can always be done. It
should be kept in mind that this ordering is not encoded into the notion of a point
process, and we do it only when it is necessary, or convenient.

De�nition 2.10
The point process f��ig is called the Poisson-Dirichlet point process with parameter
� 2 (0; 1) : We denote it by PD(�) :

We want to combine this result with Proposition 2.7 to obtain the limiting point
process of the Gibbs weights fX�g of the REM, for � >

p
2 log 2: First, we realize that

G�;N (�) =
exp [�X�]P
� exp [�X�]

=
exp [�X� � �aN ]P
� exp [�X� � �aN ]

:

As fX� � aNg� converges to a PPP
�p
2 log 2e�

p
2 log 2xdx

�
; the following result is plau-

sible:

Exercise 2.11
Prove that for � >

p
2 log 2; the point processes fG�;N (�)g1���2N converge as N !1

weakly to PD
�p

2 log 2
�

�
:

The proof is not completely trivial as the operation of normalizing to a random
probability distribution is not continuous in the standard vague topology. One needs a
truncation argument to prove the result.

The remarkable claim of the Parisi theory is that the Poisson-Dirichlet point process
appears quite generally as the limit point process of the Gibbs weights of the so-called
�pure states�. It has however to be remarked that the notion of a �pure state�has not
been made rigorous for most of the models.

3 First properties of the SK-model

In this chapter, we use the basic Hamiltonian of the SK model (2.1).

3.1 Basic properties of the free energy

An important property is the self-averaging of the free energy:

Theorem 3.1

lim sup
N!1

���� 1N E logZ�;h;N � 1

N
logZ�;h;N

���� = 0; a:s:
Proof. This follows by Theorem 1.1 applied to the functions ' : RN(N�1)=2 ! R

given by

' (x) = log
X
�

exp

24 �p
N

X
1�i<j�N

xij�i�j + h

NX
i=1

�i

35 :
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Clearly������
X

1�i<j�N
xij�i�j �

X
1�i<j�N

yij�i�j

������ =
������
X

1�i<j�N
(xij � yij)�i�j

������
�
r
N (N � 1)

2

s X
1�i<j�N

(xij � yij)2

= kx� yk
r
N (N � 1)

2
� Np

2
kx� yk

by the Cauchy-Schwarz inequality, where k�k denotes the Euclidean norm on RN(N�1)=2:
Therefore, with

 (x; �)
def
=

�p
N

X
1�i<j�N

xij�i�j + h

NX
i=1

�i

we obtain

exp [ (y; �)] exp

"
��

p
Np
2
kx� yk

#
� exp [ (x; �)]

� exp [ (y; �)] exp
"
�
p
Np
2
kx� yk

#
;

and therefore

j' (x)� ' (y)j � �
p
Np
2
kx� yk ;

i.e. ' is Lipshitz with

k'kLip �
�
p
Np
2
:

From Theorem 1.1 we obtain

P
����� 1N logZN �

1

N
E logZN

���� � N�1=4
�
� 2 exp

"
�
p
N

�2

#
: (3.1)

As X
N

exp

"
�
p
N

�2

#
<1;

it follows by the Borel-Cantelli Lemma that with P-probability one, the set of N 2 N
with ���� 1N logZN �

1

N
E logZN

���� � N�1=4

is �nite.
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As a consequence, one sees that if limN!1N�1 logZN exists, it is non-random. For
the existence of the limit, one only has to investigate the limit of the expectation. This
was mathematically an open problem for quite some time, and was �rst proved by Guerra
and Toninelli [30].

Theorem 3.2

f (�; h) = lim
N!1

1

N
E logZ�;h;N 2 R

exists.

Proof. The proof is due to Guerra and Toninelli [30]. It uses one of the basic
tools on which much of the recent progress in spin glass theory relies, namely a clever
interpolation argument.

Let N1; N2 2 N; and N := N1 + N2: We choose independent standard Gaussians
gij ; g

0
ij ; g

00
ij ; and de�ne for t 2 [0; 1] the HamiltonianHt (�) which depends on the g; g0; g00 :

Ht (�) := �

r
t

N

X
1�i<j�N

gij�i�j + �

r
1� t
N1

X
1�i<j�N1

g0ij�i�j (3.2)

+ �

r
1� t
N2

X
N1<i<j�N

g00ij�i�j + h
NX
i=1

�i:

(We incorporate � into the Hamiltonian Ht). We will need the derivative with respect
to t :

dHt (�)

dt
=
�

2

(r
1

tN

X
1�i<j�N

gij�i�j (3.3)

�
s

1

(1� t)N1

X
1�i<j�N1

g0ij�i�j �
s

1

(1� t)N2

X
N1<i<j�N

g00ij�i�j

)

Then we de�ne the partition function

Z (t) :=
X
�2�N

expHt (�) ;

and the Gibbs measure Gt (�) := exp [Ht (�)] =Z (t) ; with expectation Et: (Please always
remember that these are quenched expectations, i.e. they still depend on !). Evidently,
Z (1) is the partition function ZN we are looking after (depending on the random vari-
ables g), and Z (0) is the product of two of our partition function ZN1 (g

0)ZN2 (g
00) ; where

the important point is that the factors are independent, as they depend on independent
random variables.
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Di¤erentiating with respect to t; we get

d

dt

1

N
E logZ (t) =

1

N
E

1

Z (t)

dZ (t)

dt

=
1

N

X
�2�N

E
exp [Ht (�)]

Z (t)

dHt (�)

dt
:

For the derivative we implement the expression (3.3) getting

d

dt

1

N
E logZ (t) = S1 � S2 � S3;

where

S1 :=
�

2
p
tN3=2

X
�2�N

X
1�i<j�N

�i�jEgij
exp [Ht (�)]

Z (t)

=
�

2
p
tN3=2

X
i<j

�t (�i�jgij) ;

where we use �t as introduced in (1.1), here with the interpolated Hamiltonian. S2; S3
are similarly de�ned terms from the second and third summand of (3.3).

We can apply Proposition 1.3 with n = 1; F (�) = �i�j ; X (�) = gij (this latter does
not depend on �). So, we get

�t (�i�jgij) = �

r
t

N

h
�t

�
(�i�j)

2
�
� �t

�
�i�j�

0
i�
0
j

�i
= �

r
t

N

�
1� �t

�
�i�j�

0
i�
0
j

��
;

with a replicated set �0 of spin variables. Please remember that � is applied to a possible
arbitrary number of replicas, here two, as explained in Section 1.2. So

S1 =
�2

2N2

X
1�i<j�N

�
1� �t

�
�i�j�

0
i�
0
j

��
=
�2

4

�
1� �t

�
RN

�
�; �0

�2��
;

with the overlap RN (�; �0) de�ned by (2.2).
By a similar computation, one gets

S2 =
�2N1
4N

�
1� �t

�
RN1

�
�; �0

�2��
S3 =

�2N2
4N

�
1� �t

�
RN1;N1+N2

�
�; �0

�2��
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with

RN1
�
�; �0

�
:=

1

N1

N1X
i=1

�i�
0
i;

RN1;N1+N2
�
�; �0

�
:=

1

N2

N1+N2=NX
i=N1+1

�i�
0
i

so that

RN =
N1
N
RN1 +

N2
N
RN1;N2 : (3.4)

Plugging that into the computation for S2 and S3; we get

d

dt

1

N
E logZ (t) = S1 � S2 � S3 = �

�2

4
�t

�
R2N �

N1
N
R2N1 �

N2
N
R2N1;N2

�
:

From (3.4), one gets

R2N �
N1
N
R2N1 +

N2
N
R2N1;N2

and therefore
d

dt

1

N
E logZ (t) � 0:

From that we conclude

1

N
E logZ (1) � 1

N
E logZ (0)

E
1

N
logZN �

N1
N
E
1

N1
logZN1 +

N2
N
E
1

N2
logZN2 :

This is a superadditivity property of the sequence of real numbers E 1
N logZN : Therefore,

it follows that
f (�; h) = lim

N!1
E
1

N
logZN

exists, and equals

sup
N
E
1

N
logZN :

In order to prove the theorem, it only remains to show that this supremum is �nite,
but this follows from Jensen�s inequality

E
1

N
logZN �

1

N
logEZN ;

and the supremum of the latter is �nite by the annealed computation we had done before.
We in fact have the following annealed bound (see the Proposition below).

f (�; h) � �2

4
+ log cosh (h) + log 2:

Finally, two simple properties
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Proposition 3.3
a) f (�; h) is a convex function of (�; h) 2 R+ � R:

b)

f (�; h) � fann (�; h) := lim
N!1

1

N
logEZN 8�; h

Proof. b) follows from Jensen. a) follows in the usual way from the Hölder inequal-
ity: Let �; �0 > 0; and h; h0 2 R; and � 2 [0; 1] : Put � (�) := �� + (1� �)�0; h (�) :=
�h+ (1� �)h0: Then

Z�(�);h(�);N =
X
�

exp

24�� + (1� �)�0p
N

X
i<j

gij�i�j +
�
�h+ (1� �)h0

�X
i

�i

35
=
X
�

8<:exp
24 �p

N

X
i<j

gij�i�j + h
X
i

�i

359=;
�

�

8<:exp
24 �0p

N

X
i<j

gij�i�j + h
0
X
i

�i

359=;
1��

�

8<:X
�

exp

24 �p
N

X
i<j

gij�i�j + h
X
i

�i

359=;
�

�

8<:X
�

exp

24 �0p
N

X
i<j

gij�i�j + h
0
X
i

�i

359=;
1��

by the Hölder inequality. Therefore

1

N
logZ�(�);h(�);N � �

1

N
logZ�;h;N + (1� �)

1

N
logZ�0;h0;N :

Going the the N !1 limit, we get

f (� (�) ; h (�)) � �f (�; h) + (1� �) f
�
�0; h0

�
:

Exercise 3.4
Replace the Gaussian variables gij in the Hamiltonian by i.i.d. symmetric Bernoulli
variables �ij taking values �1: Write ZBernoulli�;h;N for the corresponding partition function.
Prove that

lim
N!1

1

N
E logZBernoulli�;h;N = f (�; h)

for all �; h; where the expectation on the left hand side is with respect to the Bernoulli-
variables �ij ; and the right hand side is the SK free energy.
Hint: Interpolate in a suitable way between the SK-Hamiltonian and the Bernoulli one,
and try to control the derivative.
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3.2 High temperature, no external �eld

This was �rst discussed by Aizenman, Lebowitz and Ruelle, and Fröhlich and Zegarlinski
([1], [26]):

Theorem 3.5
Assume h = 0 and � � 1: Then

f (�; 0) =
�2

4
+ log 2:

Proof. The so-called annealed free energy is easily computed:

fann (�; 0) = lim
N!1

1

N
logE

X
�

exp

24 �p
N

X
1�i<j�N

gij�i�j

35
= log 2 + lim

N!1

1

N
log exp

24 �2
2N

X
1�i<j�N

�2i �
2
j

35
=
�2

4
+ log 2:

Therefore, the claim is that for � � 1, the free energy agrees with the annealed one. The
proof is based on the �second moment method�. We compute EZ2 :

EZ2�;0;N =
X
�;�

E exp

24 �p
N

X
1�i<j�N

gij (�i�j + �i�j)

35
=
X
�;�

exp

24 �2
2N

X
1�i<j�N

(�i�j + �i�j)
2

35
=
X
�;�

exp

24�2
N

X
1�i<j�N

(1 + �i�j�i�j)

35
= 22N exp

�
�2 (N � 1)

2

�
2�2N

X
�;�

exp

24�2
N

X
1�i<j�N

�i�j�i�j

35
= 22N exp

�
�2 (N � 1)

2

�
2�2N

X
�;�

exp

�
�2

2N

�X
i
�i�i

�2
� �2

2

�

= e��
2=222N exp

�
�2 (N � 1)

2

�
2�2N

X
�;�

exp

�
�2

2N

�X
i
�i�i

�2�
:

The �; � -sum with the 2�2N in front is just an expectation over two independent coin
tossing sequence, and then �i�i under this measure has just the same distribution as a
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single coin tossing. Therefore

2�2N
X
�;�

exp

�
�2

2N

�X
i
�i�i

�2�
= 2�N

X
�

exp

�
�2

2N

�X
i
�i

�2�
:

This is exactly the partition function of the Curie-Weiss model (see Section 9) with an
additional 2�N in front, and � replaced by �2=2: Therefore

lim
N!1

1

N
log 2�N

X
�

exp

�
�2

2N

�X
i
�i

�2�
= sup

x2[�1;1]

�
�2

2
x2 � I (x)

�
= 0

where I (x) is given in (9.2). The last equation is for �2=2 � 1=2; i.e. � � 1: We claim
that for � < 1

sup
N
2�N

X
�

exp

�
�2

2N

�X
i
�i

�2�
� C (�) <1:

It can be proved by carefully evaluating Stirling�s formula. Another method is to remove
the square by an extra Gaussian integration, relying on the fact that

ea
2=2 = E

�
eaZ
�

for a standard Gaussian variable Z, which is evident by completing squares in the expo-
nent

E
�
eaZ
�
=

1p
2�

Z
exp

�
az � z2=2

�
dz:

Therefore, we have2

exp

�
�2

2N

�X
i
�i

�2�
= E

�
exp

�
�p
N
Z
X

i
�i

��
:

The �-summation can now easily be done individually on the �i; leading to

2�N
X
�

exp

�
�2

2N

�X
i
�i

�2�
= E coshN

�
�p
N
Z

�
= E exp

�
N log cosh

�
�p
N
Z

��
:

Now,
d2 log cosh (x)

dx2
= 1� tanh2 (x) � 1;

and so
log cosh (x) � x2=2;

2The trick is widely used in physics, and sometimes is called �Hubbard-Stratonovich transformation�.
The physicist Res Jost (1918-1990) used the call it the �Babylonian trick�, because the Babylonians
invented the method of completing squares.
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E exp

�
N log cosh

�
�p
N
Z

��
� E exp

�
�2

2
Z2
�
=

1p
1� �2

<1;

if � < 1: Therefore, we have for � < 1

EZ2�;0;N �
e��

2=2p
1� �2

22N exp

�
�2 (N � 1)

2

�
=

e��
2=2p

1� �2
(EZ�;0;N )2 :

Let AN := fZN � EZN=2g : Then

EZN = E (ZN ;AcN ) + E (ZN ;AN ) �
EZN
2

+
q
E
�
Z2N
�
P (AN );

and therefore

P (AN ) �
(EZN )2

4E
�
Z2N
� � C (�) > 0;

i.e.

P
�
1

N
logZN �

1

N
logEZN �

log 2

N

�
� C (�) :

Combining with (3.1), we see that

f (�; 0) = lim
N!1

1

N
E logZN � lim

N!1

1

N
logEZN =

�2

4
+ log 2

for � < 1: Using Theorem 3.2 d), we conclude that f (�; 0) = �2=4+ log 2 for � < 1: The
same holds true for � = 1 because of the convexity of f which implies continuity, as f is
bounded.

We will see in Section 3.3 that f (�; 0) < �2=4 for � > 1: Furthermore, for h 6= 0,
one has for all � f (�; h) 6= limN!1N�1 logEZN :

3.3 Guerra�s replica symmetric upper bound

The original claim by Sherrington-Kirkpatrick was that

f (�; h) = RS (�; h)
def
= inf

q�0

(
(1� q)2 �2

4
+ EZ log cosh (h+ �

p
qZ) + log 2

)
;

where Z is a standard normal random variable, and EZ here denotes the expectation
with respect to Z. We will later see that this is correct for small enough �; but is wrong
for large �: It is readily checked that the in�mum in q satis�es the following �xed point
equation

q = EZ tanh
2 (h+ �

p
qZ) : (3.5)

For h = 0; q = 0 is clearly a solution.
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Exercise 3.6
Check that for h = 0 and � � 1 the equation (3.5) has the unique solution q = 0, and
for � > 1, there is another solution q (�) > 0 which gives the minimum.

Trickier is the situation for h 6= 0.

Lemma 3.7
Let �; h 6= 0 be arbitrary. Then the equation (3.5) has a unique solution q (�; h) � 0:

The proof is quite tricky and was given by Latala and Guerra. It can be found in
Talagrand�s book [42]. It is convenient to have this property, but it is not really needed
in the proofs that f (�; h) = RS (�; h) in certain regions. There are many situations
where similar �xed point equations are not known to have unique solutions. As it does
not add much to the understanding of the basic problems in spin glasses, I skip the proof
here.

Guerra�s idea for an upper bound for f (�; h) which goes beyond the annealed upper
bound, was to try a comparison of the system with SK-Hamiltonian with a simple Hamil-
tonian with independent spins. The �rst result was the following remarkable bound:

Theorem 3.8 (Guerra)
For all � > 0; h 2 R; and any N; one has

1

N
E logZ�;h;N � RS (�; h) ;

and in particular
f (�; h) � RS (�; h) :

Proof. 3The proof is again by interpolation quite similar as in (3.2). Let for an
arbitrary number q � 0; (not necessarily the solution of the �xed point equation above),
and t 2 [0; 1]

Ht (�) = �

r
t

N

X
1�i<j�N

gij�i�j + �
p
1� t

NX
i=1

p
qgi�i + h

NX
i=1

�i (3.6)

where gi is a set of standard Gaussian variables, independent of the gij�s.
We write

ZN (t) =
X
�

exp [Ht (�)] ; Gt (�) =
exp [Ht (�)]

Z (t)
; (3.7)

� (t) =
1

N
E logZN (t) : (3.8)

Remark that

� (0) =

Z
log cosh (�

p
qx+ h)

1p
2�
e�x

2=2dx+ log 2;

� (1) =
1

N
E logZ�;h;N

3The proof was �rst presented by Francesco Guerra at a conference in Vulcano in 1998.
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We again compute the derivative of � (t) with respect to t:

d� (t)

dt
=
1

N
E

1

Z (t)

dZ (t)

dt

=
1

N

X
�2�N

E
exp [Ht (�)]

Z (t)

dHt (�)

dt

dHt

dt
=

�

2
p
tN

X
1�i<j�N

gij�i�j �
�
p
q

2
p
(1� t)

NX
i=1

gi�i

leading to
d�

dt
= S1 � S2;

where

S1 :=
�

2
p
tN3=2

X
�2�N

X
1�i<j�N

�i�jEgij
exp [Ht (�)]

Z (t)
;

S2 :=
�
p
q

2N
p
(1� t)

X
�2�N

NX
i=1

�iEgi
exp [Ht (�)]

Z (t)

and as in the section above,

S1 =
�2

4

�
1� �t

�
R2N

�
�; �0

���
;

with

RN
�
�; �0

�
=
1

N

NX
i=1

�i�
0
i:

The computation of S2 is similar. Here one takes in Proposition 1.3, n = 1; � (�) =
�i; X (�) = gi; leading to

S2 =
�
p
q

2N
p
1� t

E

 X
�

1

Z (t)

X
i
gi�i exp [Ht (�)]

!

=
�
p
q

2N
p
1� t

X
i
�t (gi�i) :

�t (gi�i) = �
p
q
p
1� t� �pq

p
1� t�t

�
�i�

0
i

�
d�

dt
=
�2

4
�t
�
1�R2N � 2q (1�RN )

	
=
�2

4

n
(1� q)2 � �t

h�
RN

�
�; �0

�
� q
�2io

;
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which integrated gives

� (t)� � (0) = �2t

4
(1� q)2 � �2

4

Z t

0
�s

h
(RN (�; �)� q)2

i
ds; (3.9)

and dropping the second summand and taking t = 1 :

� (1)� � (0) � �2

4
(1� q)2 :

This implies that for any N; we have

1

N
E logZ�;h;N � RS (�; h) :

The proof does not only give the desired result, but gives also an expression of the
di¤erence, namely

RS (�; h)� 1

N
E logZ�;h;N =

�2

4

Z 1

0
�t

h
(RN (�; �)� q)2

i
dt (3.10)

In order to prove that f (�; h) = RS (�; h) ; one therefore �only�has to show that for the
optimal q (i.e. the one given by (3.5)), one has RN (�; �) ' q with large �(2)t -probability,
at least in the t-average. This is not true for large �; but it is true for small �; as we
will prove in the next section.

It should also be remarked that Guerra�s bound already proves that f (�; 0) < �2=4
for � > 1: Up to � = 1; the unique �xed point of (3.5) with h = 0 is at q = 0 which gives
RS (�; 0) = �2=4 for � � 1; but for � > 1; there is a �xed point at q > 0 which gives a
smaller value, so RS (�; 0) < �2=4 and Guerra�s bound proves that f (�; 0) 6= fann (�; 0) ;
as soon as � > 1: This was �rst proved by Comets [20] with a more complicated argument.

3.4 Latala�s proof of f = RS

The following result was �rst proved by Talagrand. The simple proof given here is based
on an unpublished argument by Latala.

Theorem 3.9
If � � 1=2, then for every h

lim
N!1

1

N
E logZ�;h;N = RS (�; h) : (3.11)

Remark 3.10
In the physics literature, there is a precise prediction about the region for which the above
statement should be true which is the celebrated de Almeida - Thouless condition

�2E
1

cosh4
�
h+ �

p
qZ
� � 1: (3.12)
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This is mathematically still not proved, despite the fact that the full Parisi formula for
f (�; h) is proved. The Parisi formula is analytically very di¢ cult to analyze. On the
other hand, it was proved in [16] that a simple iteration scheme for the TAP equations is
stable and converges up to and including the AT-line (see the next Section). The TAP
equations are closely connected to the free energy via the cavity method. There is also
a lot of numerical evidence that (3.12) is the correct condition. (Oral communication
by Michel Talagrand). So, I think, there is no reasonable doubt that the AT condition
is the precise condition for the validity of (3.11). It is actually rigorously known, that
(3.11) is not correct if the de Almeida-Thouless condition is not satis�ed. [43].

Latala�s argument works only up to � = 1=2. So, even for h = 0, it does not catch
the correct critical value.

Proof of Theorem 3.9. The basis of the argument is the representation (3.10).
We use the same interpolating Hamiltonian (3.6) and have to apply it to two �replicas�,
that is we consider the product measure G(2)t . As usual, we write �(k)t for

R
G(k)t;!P (d!),

dropping often the index k; and use it also for the expectation. For a deterministic
function f : �2N ! R, we want to compute d (�tf) =dt. The f we have in mind is the
expression (R (�; �0)� q)2. In contrast to the previous section where we investigated the
derivative of logZN;t, we already get an additional replica from the derivative. We write
�1; �2 instead of �; �0; and write �3; �4 for additional replicas. The reader should keep
in mind that f will always only depend on the �rst two. We will also assume that f is
symmetric: f

�
�1; �2

�
= f

�
�2; �1

�
which covers the situation we are interested in.

d

dt
(�tf) =

d

dt
E
X
�1;�2

f
�
�1; �2

� exp �Ht

�
�1
�
+Ht

�
�2
��

Z (t)2

= E
X
�1;�2

f
�
�1; �2

� �
H 0
t

�
�1
�
+H 0

t

�
�2
�� exp �Ht

�
�1
�
+Ht

�
�2
��

Z (t)2

� 2
X

�1;�2;�3

f
�
�1; �2

�
H 0
t

�
�3
� exp �Ht

�
�1
�
+Ht

�
�2
�
+Ht

�
�3
��

Z (t)3

= 2�t
�
f
�
�1; �2

�
H 0
t

�
�1
��
� 2�t

�
f
�
�1; �2

�
H 0
t

�
�3
��
:

In the �rst summand, we have used the fact that f is symmetric, and therefore

�t
�
f
�
�1; �2

�
H 0
t

�
�1
��
= �t

�
f
�
�1; �2

�
H 0
t

�
�2
��
:

All the terms are of the same type as we have already encountered with

H 0
t

�
�1
�
=

�

2
p
tN

X
1�i<j�N

gij�
1
i �
1
j �

�
p
q

2
p
(1� t)

NX
i=1

gi�
1
i ;
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so that

�t
�
f
�
�1; �2

�
H 0
t

�
�1
��

= �t

"
f
�
�1; �2

� " �

2
p
tN

X
1�i<j�N

gij�
1
i �
1
j �

�
p
q

2
p
(1� t)

XN

i=1
gi�

1
i

##

= �t

24f ��1; �2� �2
2N

X
1�i<j�N

�1i �
1
j

�
�1i �

1
j + �
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Combining, we get
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=
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h
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(R12 � q)2 � 4 (R13 � q)2
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2
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h
f
h
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ii
:

We apply this inequality to f
�
�1; �2

�
:= exp

h
�N (R12 � q)2

i
, � > 0: For the mo-

ment, q is still completely arbitrary. Under G(4)t ; R12 and R34 are independent, and
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therefore

E(4)t

�
(R34 � q)2 exp

h
�N (R12 � q)2

i�
= E(2)t

�
(R12 � q)2 E(2)t

�
exp

h
�N (R12 � q)2

i��
� E(2)t

�
(R12 � q)2

�
exp

h
�N (R12 � q)2

i��
;

as for X > 0, X and exp [aX] are positively correlated for a > 0: After integrating over
P, we get the same inequality for the �-expectation. Therefore, we get

d

dt
�t

�
exp

h
�N (R12 � q)2

i�
� 2N�2�t

�
(R12 � q)2

�
exp

h
�N (R12 � q)2

i��
:

As a consequence, we conclude that

d

dt
�t

�
exp

h�
�� 2t�2

�
N (R12 � q)2

i�
� 0 (3.13)

for t � �=2�2:
The crucial point with choosing q just comes now. We investigate exponential mo-

ments of N (R12 � q)2 under �0. Under Gt=0 the single spins are independent, and
distributed according to

Gt=0 (�i = 1) =
exp

�
�
p
qgi + h

�
cosh

�
�
p
qgi + h

� :
Therefore

Et=0 (�i) = tanh (�
p
qgi + h) ;

and
E(2)t=0

�
�1i �

2
i

�
= tanh2 (�

p
qgi + h) :

Therefore,
v0
�
�1i �

2
i

�
= EZ tanh

2 (�
p
qZ + h) :

If q is the solution of the �xed point equation (3.5), then this is q. It is therefore clear
that R12 concentrates around q under �0: The �1i �

2
i are under �0 i.i.d. �1 random

variables with expectation q if the �xed point equation is satis�ed. Some elementary
computation for the binomial distribution then lead easily to the fact that for � < 1=2;
q the solution of (3.5) and all N

�0 exp
h
�N (R12 � q)2

i
� (1� 2�)�1 : (3.14)

If � < 1=2, then � (�) := 1=4��2 > 0; and with � := 1=2��; we have ��2�2 = � > 0:
Using (3.14), together with (3.13) leads to

�t exp
h
� (�)N (R12 � q)2

i
� 1p

� (�)
<1
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for all N 2 N; t � 1; and � < 1=2:
Together with (3.9), this immediately proves the Theorem 3.9.
In fact, the exponential estimate in the proposition evidently implies that

�t

�
(R12 � q)2

�
� C (�)

N
;

so that we obtain much more, namely���� 1N E logZ�;h;N � RS (�; h)
���� � C (�)

N
:

3.5 On the TAP equations

The appearance of q and the �xed point equation is a bit mysterious, but the form
of the second summand of (3.6) indicates that the �i under the Gibbs measure in the
high temperature (small �) regime essentially look like independent ones with a random
expectation. This is indeed the case and has been proved by Talagrand in [42].

The Gibbs expectations mi (!) := E!�i satisfy the the TAP equations (for Thouless,
Anderson and Palmer). These equations are somewhat similar to the mean �eld equation
(9.3) for the Curie-Weiss model

m = tanh (h+ �m) ;

but they are more tricky. (We drop � in front of h in accordance with our habit in the
SK-model).

We �rst give a heuristic derivation of the TAP equations. Let�s try to compute m1

in terms of the others:

m1 =

P
� �1 exp

h
�p
N

P
i<j gij�i�j + h

PN
i=1 �i

i
P

� exp
h

�p
N

P
i<j gij�i�j + h

PN
i=1 �i

i :

We can split the Hamiltonian by taking everything which depends on �1 outside: With
y1;�(1) := N�1=2PN

j=2 g1j�j for the so-called cavity variables, and where �
(1) := (�2; : : : ; �N ) :

�p
N

X
i<j

gij�i�j + h
NX
i=1

�i = �1

h
�y1;�(1) + h

i

+
�p
N

X
2�i<j�N

gij�i�j + h

NX
i=2

�i:

The second part is just the Hamiltonian for �2; : : : ; �N where all the interactions with
�1 are dropped. We denote the corresponding Gibbs expectation as Ecut(1):

Summing out �1, one obtains

m1 =
Ecut(1) sinh

�
�y1;�(1) + h

�
Ecut(1) cosh

�
�y1;�(1) + h

� ;
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The curious fact is that one can take Ecut(1) inside sinh and cosh:

Ecut(1) sinh
�
�y1;�(1) + h

�
Ecut(1) cosh

�
�y1;�(1) + h

� � sinh
�
�Ecut(1)y1;�(1) + h

�
cosh

�
�Ecut(1)y1;�(1) + h

�
= tanh

0@h+ �p
N

2X
j=1

g1jm
(1)
j

1A ;

where m(1)
j := Ecut(1)�j . There is no mystery in the above computation. In fact, one

cannot just take the Ecut(1) expectation inside sinh and cosh; but one can do it up to a
factor which cancels out.4

In order to see this, write

y1;�(1) =
1p
N

NX
j=2

g1j

�
�j �m(1)

j

�
+

1p
N

NX
j=2

g1jm
(1)
j ;

where now m
(1)
i denotes the Gibbs expectation of �i under Ecut(1): One should now

remark that
n
m
(1)
j

o
and fg1jg are independent random variables. We pretend now

that the variables
n
�j �m(1)

j

o
2�j�N

are su¢ ciently independent under Gcut(1) that they
satisfy a central limit theorem, and assuming that this is correct, it is then easy to see

that 1p
N

PN
j=2 g1j

�
�j �m(1)

j

�
satis�es a CLT, too. The variance 
2 does not interest

us. Anyway, accepting these somewhat dubious facts, one would get
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2=2;

and similarly, with Ecut(1) cosh
�
�y1;�(1) + h

�
: Therefore, the e


2=2 factor cancels out,

and

m1 � tanh
�

�p
N

XN

j=2
g1jm

(1)
j + h

�
:

Similarly, one can do that with any mi :

mi � tanh
�

�p
N

X
j:j 6=i

gijm
(i)
j + h

�
; (3.15)

where m(i)
j := Ecut(i) (�j) ; and gij = gji for i > j: This is one form of the TAP equations.

It is clear that they should hold only in an approximate sense as N ! 1; as we have
4This is an artifact of some very special properties of the SK model. In only slightly more complicated

models, for instance if the �i take more than two possible values, this is no longer the case, and the TAP
equations become more complicated.
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used a CLT argument. Typically, one writes them in a form where one replaces m(i)
j by

mj : It turns out that the correction is for each j only of order 1=
p
N but this contributes

to the outcome. We sketch the argument. Using the TAP equation for the mj we have

mj � tanh
�

�p
N

X
k:k 6=j

gjkm
(j)
k + h

�
:

On the other hand, m(i)
j is obtained by just cutting the interaction between i and j :

m
(i)
j � tanh

�
�p
N

X
k:k 6=j;i

gjkm
(j)
k + h

�
:

Therefore, by Taylor, as tanh0 (x) = 1� tanh2 (x)

mj � m
(i)
j +

�p
N
gjim

(j)
i

�
1�m(i)2

j

�
The correction is of order 1=

p
N; and we are not interested in corrections of lower order.

One should also observe that for N�1PN
i=1m

2
i , the correction is irrelevant. If one

believes that there should be a LLN for this quantity, one gets from (3.15) that

q = lim
N!1

1

N

NX
i=1

m2
i = EZ tanh

2 (h+
p
q�Z) ;

that implies that q = q (�; h) satis�es exactly our �xed point equation (3.5). We next
implement the corrections for m(i)

j into (3.15). We then obtain

mi � tanh

0@h+ �p
N

X
j:j 6=i

gijmj � �2mi
1

N

X
j:j 6=i

g2ij

�
1�m(i)2

j

�1A :

1

N

X
j:j 6=i

g2ij

�
1�m(i)2

j

�
� 1

N

X
j:j 6=i

�
1�m(i)2

j

�
� 1� q:

Therefore,

mi � tanh

0@h+ �p
N

X
j:j 6=i

gijmj � (1� q)�2mi

1A : (3.16)

This is the TAP equation in the usual form. The correction term � (1� q)�2mi is
usually called �Onsager correction�, but it is there for the very same reason as the
correction term in Itô calculus, so I usually call it �Onsager-Itô-correction�.

In physics literature, the equations are claimed to be correct also in the low temper-
ature regime, but there, mi is not the (global) Gibbs mean of the spin variables, but
rather the average under �pure states�, whatever that exactly means.5

5Despite of the recent progress on the low-temperature SK-model, there are absolutely no rigorous
results on the validity of the TAP equations in low temperature.
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The equation has some precise global stability property exactly up to the AT-line.
This has been discussed in my recent paper [16]. One can de�ne what a solution means
(in a N !1 sense) without any reference to the SK model. The way it was set up was

via an iterative construction. For every N one de�nes a sequence
n
m
[k]
i

o
1�i�N

, k � 0;
by

m
[0]
i := 0; m

[1]
i =

p
q;

m
[k+1]
i := tanh

0@h+ �p
N

X
j:j 6=i

gijm
[k]
j � (1� q)�2m[k�1]

i

1A ; k � 1:

Then

Theorem 3.11

lim sup
k;l!1

lim sup
N!1

1

N

NX
i=1

�
m
[l]
i �m

[k]
i

�2
= 0; a:s:

if and only if the AT-condition is satis�ed.

As the construction leads to an interesting representation and has lead to develop-
ments in other �elds (see [8]), we sketch it.

In order to keep the formulas short, we use the abbreviation

Th (x) = tanh (h+ �x) :

Then
m
[2]
i = Th

�p
q�
[1]
i

�
where

�
[1]
i =

1p
N

NX
j=1

gij ;

and

m
[3]
i = Th

�
1p
N

XN

j=1
gijm

[2]
j � � (1� q)pq

�
: (3.17)

We �rst discuss now m[3] carefully, and then sketch the general scheme for the higher
order iterates. A seeming di¢ culty in the analysis is that m[2] depends on the gij in a
non-linear way. However, it turns out that this can be analyzed in a simple way. For
that, we �correct� the matrix (gij) and make it independent of the �[1] and therefore
independent of the m[2]: As the �[1] are linear combinations of the matrix elements, this
can be done in a straightforward way. The exact formula is a bit complicated, but

g
[2]
ij := gij �

�
[1]
i + �

[1]
jp

N
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is �su¢ ciently�independent of �[1]: Just check the covariances: Whereas

E
�
�
[1]
i gij

�
=

1p
N
;

we have
E
�
�
[1]
i g

[2]
ij

�
= 2N�3=2:

For the sketchy approach done here, it su¢ ces to work with
�
g
[2]
ij

�
as de�ned above, but

one should be aware that in order to get g[2] fully independent of the �[1]; one needs a
more complicated expression. If we substitute g[2] for the gij in (3.17), we get

m
[3]
i = Th
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N

XN

j=1
g
[2]
ij m

[2]
j + �

[1]
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1
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+
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j=1
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[1]
j m

[2]
j � � (1� q)pq

�
:

By the law of large numbers

1

N

NX
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m
[2]
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1

N

NX
j=1
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�p

q�
[1]
i

�
�
Z
Th (

p
qx)� (dx) ;

where � is the standard normal distribution. We set 
1 :=
R
Th
�p
qx
�
� (dx) :

1

N

XN

j=1
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[1]
j m

[2]
j =

1

N
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j=1
�
[1]
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�p
q�
[1]
i

�
�
Z
xTh (

p
qx)� (dx) = �

p
q (1� q) ;

which cancels the Onsager term. Therefore, we get

m
[3]
i � Th

�
1p
N

XN

j=1
g
[2]
ij m

[2]
j + 
1�

[1]
i

�
: (3.18)

We don�t give precise estimates for the approximations involved. This is indeed quite
a delicate point in the later iterations, and it contributed to the length of [16], but we
don�t wish to discuss this point here, as it would become too lengthy, and somewhat
obscures the basic simplicity of the structure.

The above expression reveals a simple structure of m[3]: The �[1]i are of course
Gaussian with variance 1� 1=N � 1; and are nearly independent, as

E�[1]i �
[1]
j =

1

N
; i 6= j:

The �rst summand inside Th (�) in (3.18) is of course not Gaussian, but it is Gaussian
conditioned on F1 := �

�
�
[1]
i : 1 � i � N

�
: We compute the conditional variance. First

remark that
1p
N

XN

j=1
g
[2]
ij m

[2]
j � 1p

N

XN

j=1
g
[2]
ij

�
m
[2]
j � 
1

�
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as
P

j g
[2]
ij � 0 by construction. (Actually, one gets exactly 0 if one corrects the gij

precisely such that they become independent of the �[1]). If one chooses i.i.d. copies of
the �[1]i ; independent of everything de�ned so far, call them ��i, then

�gij = g
[2]
ij +

��i + ��jp
N

has the same distribution as the original gij and is independent of the the �[1]: Further-
more

1p
N

XN

j=1

��i + ��jp
N

�
m
[2]
j � 
1

�
� 0:

Therefore, we see that the conditional distribution of

1p
N

XN

j=1
g
[2]
ij m

[2]
j (3.19)

is centered Gaussian with variance

1

N

NX
j=1

�
m
[2]
j � 
1

�2
=
1

N

NX
j=1

m
[2]2
j � 
21 � q � 
21 :

Therefore, although the unconditional distribution is for �nite N clearly not Gaussian,
it is approximately so, because the conditional variance is by the LLN, in the N ! 1
limit, s constant. Furthermore, it becomes asymptotically independent of �[1]:

We describe now the construction for general k; and give an outline of the proof.
m
[k]
i has the following representation:

m
[k]
i � Th

�
1p
N

X
j
g
[k�1]
ij m

[k�1]
j +

Xk�2

t=1

t�

[t]
i

�
(3.20)

with real coe¢ cients 
t; random variables �[t]i ; and transformed matrices
�
g
[k�1]
ij

�
which

we will describe. g[1]ij := gij ; and g[2] we have de�ned already above. To de�ne them,
let h�; �i be the inner product in RN which is the standard one, divided by N: �k is
the orthogonal projection in RN ; with respect to this inner product, onto the subspace
spanned by the vectors 1; m[1]; : : : ;m[k]. Let

�[k] =
m[k] ��k�1

�
m[k]

�

m[k] ��k�1
�
m[k]

�

 ;
where kxk :=

p
hx; xi; x 2 RN . �[1] is the vector identically to 1.

The representation (3.20) leads to an evaluation of the inner products


m[s];m[t]

�
in

the form

lim
N!1

D
m[t];m[t]

E
= q; 8t (3.21)

lim
N!1

D
m[s];m[t]

E
= �s; s < t;
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where the sequence f�sg is related to the sequence f
tg ; as will be explained below. It
is important that limN!1



m[s];m[t]

�
does not depend on t provided t > s:

The �[1]i we have de�ned above. They are Gaussian�s, and for N ! 1; essentially
i.i.d. standard. The exact construction of the random variables and constants entering
(3.20) is intertwined. The crucial point is the construction of the g[t] where g[1]ij = gij :

Given these, the �[t] are de�ned by

�
[t]
i :=

1p
N

NX
j=1

g
[t]
ij �

[t]
j : (3.22)

We de�ne Ft as the �-�eld generated by the �[s]; s � t:
Next the recursive construction of g[t]. It is done such that g[t] is conditionally

Gaussian given Ft�2; and conditionally independent of Ft�1: We describe now, how to
construct g[t+1]: On the RHS of (3.22), the �[t]j are Ft�1-m.b., and the g

[t]
ij are, conditioned

on Ft�2 Gaussians which are independent of the �[t]: We can therefore correct the g[t]ij
by linear combinations of the �[t]j . These corrected matrix we call g

[t+1]
ij : It is evidently

Gaussian, conditioned on Ft�1, and by construction, conditionally independent of Ft:
The exact expression is unfortunately slightly involved, but as before with g[2], we use a
simpli�ed formula which gives asymptotically as N !1 the correct expression

g
[t+1]
ij = g

[t]
ij �

�
[t]
i �

[t]
j + �

[t]
j �

[t]
ip

N
:

(For t = 1, this is the old expression as �[1]i = 1). It is readily checked by this construction
that

1p
N

NX
j=1

g
[t]
ij �

[s]
j � 0

for s < t; and therefore
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NX
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g
[t]
ijm
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�
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�


 1p
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NX
j=1

g
[t]
ij �

[t]
j

=



m[t] ��k�1

�
m[t]

�


 �[t]i :
Furthermore, in the same way as in the analysis of (3.19), one gets, that conditionally
on Ft�1; N�1=2PN

j=1 g
[t]
ij �

[t]
j has the same distribution as N�1=2PN

j=1 �gij�
[t]
j with copies

�gij of gij which are independent of Ft�1:

1p
N

NX
j=1

g
[t]
ijm

[t]
j
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is Gaussian, as N !1; with variance


m[t] ��t�1
�
m[t]

�


2 = 


m[t]



2 � 


�t�1 �m[t]

�


2 :
We will see that

lim
N!1




m[t]



2 = q; lim

N!1




�t�1 �m[t]
�


2 = �2t�1; (3.23)

where

�2t�1 :=
t�1X
j=1


2j :

We have however not yet explained how the coe¢ cients 
j are constructed. Let us
�rst explain that the validity of (3.20) and (3.23)

Assume that (3.20) is valid for k: The considerations above reveal that in the limit
as N !1; the expression inside Th (�) is a sum of independent Gaussians, the �[t]i with

variance 1; and N�1=2PN
j=1 g

[k�1]
ij m

[k�1]
j with variance q � �2k�2: From that, we get

lim
N!1
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2 = q:

For s < k; we get that
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N!1

D
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E
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�q
q � �2s�1Z 00 + 
s�1Z 0 + �s�2Z

�
� Th

�q
q � �2s�2Z 0 + �s�2Z

�
with independent standard Gaussians Z;Z 0; Z 00:

De�ne the function  : [0; q]! [0; q] by

 (t) := E Th
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p
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�
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�
again with independent Z;Z 0; Z 00: Remark that  (0) =

�
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��2
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21 ; and
 (q) = q: A simple computation gives
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�
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�
:

So, we see that the relation between the ��s and the 
�s is given as

�s =  

�

s�1

q
q � �2s�2 + �2s�2

�
:
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We will see that actually the expression inside  (�) is �s�1; i.e.


n =
�n � �2n�1q
q � �2n�1

; (3.24)

but for the moment, these relations are a bit of a miracle. This is now solved by boosting
the crucial relation (3.20). Assume that is valid for k; and we sketch the argument how
to prove it for k + 1 instead of k assuming that it is valid smaller levels. For that, we
start with the original de�nition

m
[k+1]
i = Th

0@ 1p
N

X
j

gijm
[k]
j � � (1� q)m[k�1]

i

1A :

Replacing g = g[1] by g[2] gives

m
[k+1]
i = Th

� 1p
N

XN

j=1
g
[2]
ij m

[k]
j + �

[1]
i

1

N

XN

j=1
m
[k]
j

+
1

N

XN

j=1
�
[1]
j m

[k]
j � � (1� q)pq

�
:

Given the representation (3.20) for k, we get

1

N

XN

j=1
m
[k]
j � 
1;

and for k � 3

1

N

XN

j=1
�
[1]
j m

[k]
j � EZ Th

�q
q � 
21Z 0 + 
1Z

�
= � (1� q) 
1;

so that

m
[k+1]
i � Th

�
1p
N

XN

j=1
g
[2]
ij m

[k]
j + 
1�

[1]
i � � (1� q)

�
m
[k�1]
i � 
1

��
:

Based on the inductive use of (3.20), it is not di¢ cult to check that by the sequence of
replacements g[2] ! g[3] ! � � � ! g[k] we successively produce the terms 
2�[2]; 
3�[3]; : : : ;

k�1�

[k�1]; and �eat up�successively the Onsager term with � (1� q) ; where the 
�s are
given recursively by (3.24).

All this is correct for any parameter �; and also in the low temperature regime.
However, it is useful only if

lim
N!1

var

�
1p
N

X
j
g
[k�1]
ij m

[k�1]
j

�
= q �

1X
j=1


2j = 0:
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The reader will have no di¢ cult to check that this is true if and only if

lim
k!1

�k = q: (3.25)

It is elementary to check that the function  is strictly convex, and as it has q as a �xed
point and satis�es  (0) = 
1 > 0 if h > 0; we get that (3.25) holds true if and only if
 0 (q) � 1: By an elementary computation, this is equivalent to the AT-condition. So,
the Theorem 3.11 follows.

In principle, TAP type equations can be discussed for most of the mean-�eld spin
glasses, for instance also for the perceptron. The details of an iterative scheme have
however not been worked out in other cases besides SK. Even more important would be
a discussion of the TAP equations in low temperature.

4 Ruelle�s probability cascades

4.1 The Poisson-Dirichlet point process

We have already introduced the Poisson Dirichlet point process PD(�) with parameter
0 < � < 1. It is obtained from a PPP

�
�x���1dx

�
f�ig on R+ via the normalization

��i := �i=
P

j �j , see De�nition 2.10. � < 1 implies
P

j �j < 1 almost surely. If �
is a point process on R+ where the points have a �nite sum, we write N (�) for this
normalization.

As remarked, the point processes don�t care for the labeling of the points by the
natural numbers. Such a labeling can always be done by ordering the points downwards
if there exists a largest point.

Proposition 4.1
a) Let f�ig be a PPP

�
�x���1dx

�
on R+; and let fYig be an i.i.d. sequence of

real-valued random variables with distribution �: Assume that  : R! R is a
measurable function with C (�) :=

R
e� (y)� (dy) < 1: Then the point process��

e (Yi)�i; Yi
�	

i
on R+�R has the same law as the point process

n�
C (�)1=� �i; Y

0
i

�o
i

where Y 0i is i.i.d. with distribution

�0 (dy) := C (�)�1 e� (y)� (dy) :

b) If f�igi is a PPP
�
�x���1dx

�
; and 0 < � < � 0 < 1; then

n
��

0

i

o
i
is a

PPP
�
�
�0x

��=�0�1dx
�

c) Let �k =
�
�ki
	
i
; k 2 N be an i.i.d. sequence of PPP

�
�x���1dx

�
�s; and let fykg

be a sequence of positive real numbers satisfying C (�) def=
P

k y
�
k < 1: Then the

point process
n
yk�

k
i =C (�)

1=�
o
i;k
is also a PPP

�
�x���1dx

�
:
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d) Let 0 < � < � 0 < 1; y = fyig be a sequence in R+ with C (�;y)
def
=
P

k y
�
k < 1;

and �k =
�
�ki
	
i
; k 2 N be an i.i.d. sequence of PPP

�
�x���1dx

�
�s. Then

X
i;k

�
yk�

k
i

��0
<1;

almost surely, and

N
 ��

yk�
k
i

��0�
i;k

!
=L PD

�
�

� 0

�
:

In particular, the law of the right-hand side does not depend on the sequence y:

Proof. a) f(�i; Yi)gi is a Poisson point process on R+ � R with intensity measure
� (dx; dy) := �x���1dx 
 � (dy) : If we map the points by the mapping � : (x; y) !�
xe (y); y

�
we get a new Poisson point process, and we just have to compute the trans-

formation of the intensity measure �x���1dx under �: ���1 (dx; dy) = �x���1dx 

e� (y)� (dy) :

Remark that this is again a marked Poisson point process with independent marks.
Indeed, we can write

�x���1dxe� (y)� (dy) = C (�) �x���1dx � �0 (dy) ;

where

C (�) :=

Z
e� (y)� (dy) ;

�0 (dy) :=
1

C (�)
e� (y)� (dy) :

So,
��
�ie

 (Yi); Yi
�	
is equal in distribution with f(�0i; Y 0i )g with f�0ig being a

PPP
�
C (�) �x���1dx

�
with independent marks Y 0i having distribution �

0: However, the
above PPP

�
C (�) �x���1dx

�
is simply a PPP

�
�x���1dx

�
with the points stretched by

a �xed factor C (�)1=� :
b) follows from the basic transformation formula for Poisson point processes.
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c) We compute the Laplace functional. Let � 2 C+0 (R+) : Then

E
�
exp

h
�
X

i;k
�
�
C (�)�1=� yk�

k
i

�i�
=
Y

k
Ek exp

h
�
X

i
�
�
C (�)�1=� yk�

k
i

�i
=
Y

k
exp

�
�
Z �

1� e�(C(�)
�1=�ykx)

�
�x���1dx

�
=
Y

k
exp

"
�

y�k
C (�)

Z �
1� e�(z)

�
�z���1dz

#

= exp

"
�
X
k

y�k
C (�)

Z �
1� e�(z)

�
�z���1dz

#

= exp

�
�
Z �

1� e�(z)
�
�z���1dz

�
;

as claimed.
d) follows from b) and c).
Part a) of the proposition has the following consequence:

Corollary 4.2
Consider a PD(�) f��ig and independent Yi with Ee� (Yi) <1: De�ne

�̂i :=
��ie

 (Yi)P
j ��je

 (Yj)

Then f(�̂i; Yi)g is (as a point process) identical in law to f(��i; Y 0i )g with Y 0i independent
marks with the law �0 as de�ned above.

Proof. We represent f��ig as N (f�ig), where f�ig is a PPP
�
�x���1dx

�
; and apply

the Proposition. As the scaling factor C (�)1=� cancels out after normalization, the claim
follows.

We will draw an important conclusion from this corollary.
A PD(�) f��ig can be interpreted as a random probability distribution on the integers

N. For that we have to use an ordering which is usually done by order them downwards:
��1 > ��2 > � � � . Then 1 gets probability ��1, 2 gets probability ��2 etc. Actually all the
�nal properties we derive don�t depend on this ordering. We could start with the �fth
largest, and go on in some way.

We denote this random probability law by G, as it will turn out to be related to our
random Gibbs measures. We can then also consider the product measures G(n) on Nn.
One should keep in mind that these laws are random through the random character of
the point process. We will write as usual E for the expectation under this, and use again
�(n) for the probability measure

R
G(n)dP on Nn but often drop the index n:

For 1 � i; j � N we de�ne the �overlap�Rij : Nn ! f0; 1g as Rij (x) := �xi;xj ; x 2
Nn, and the matrix R(n) = (Rij)1�i;j�n : The aim now is to derive the Ghirlanda-Guerra-
identity for the R(n):
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Proposition 4.3
a)

� (R12 = 1) = 1� �

b) For n � 2; the conditional law of R1;n+1 given R(n) is

1

n
L� (R12) +

1

n

nX
k=2

�R1;k::

Firts proof. We apply Corollary 4.2 with Yi = gi � �, gi standard normal, and
 (y) = y: In this case, �0 is just the standard normal distribution.

Let F be a real valued function de�ned on the set of n � n-matrices, and consider
the point process f(�̂i; Yi)g as de�ned above. Below, we compute expectations E with
respect to this point process, and one has to take into account that the Yi enter into the
point process f�̂ig : However, f�̂ig is simply a PD(�) : From the corollary, we get

E
X
x2Nn

(�̂x1 � � � � � �̂xn)F
�
R(n) (x)

�
Yx1

= E
X
x2Nn

(��x1 � � � � � ��xn)F
�
R(n) (x)

�
Y 0x1 :

In the point process f(��i; Y 0i )gi, the Y 0i are independent marks. So the RHS above is 0
as the Y 0i are standard normal.

�̂i =
��ie

gi��P
j ��je

gj�� :

Using the partial integration (Proposition 1.3), we get with �(n) :=
R
G(n)dP

0 = �(n)
�
F
�
R(n) (x)

�
(gx1 � �)

�
=

nX
k=1

�(n) cov (gx1 ; gxk)F
�
R(n) (x)

�
� n�(n+1) cov

�
gxn+1 ; gx1

�
F
�
R(n) (x)

�
� ��(n)

h
F
�
R(n) (x)

�i
:

Here x is regarded as a random variable under �: E �nally integrates out the whole point
process f(�̂i; Yi)g including the Gauss variables. Remark that cov (gx1 ; gxk) = �x1xk =
R1;k (x) : Taking into account R (1; 1) = 1; we obtain

�(n+1)
h
R1;n+1F

�
R(n)

�i
=
1� �
n

�(n)F
�
R(n)

�
+
1

n

nX
k=2

�(n)
h
R1;kF

�
R(m)

�i
: (4.1)

In particular, with n = 1; and F = 1; we get

�(2) (R1;2) = E
X

��2i = 1� �; (4.2)
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which is a). Applying the above formula (4.1) for n � 2 then proves b).
Second proof. The above proof is from Panchenko�s book [38]. A less elegant but

maybe more intuitive argument runs as follows. I use a slightly non-rigorous formulation
which can easily be made precise.

A point process f�ig which is a PPP (f (t) dt) on R+, and for which Z :=
P

i �i <1
almost surely, can be described as follows: In each in�nitesimal interval [t; t+ dt] there is
the chance f (t) dt to have a point in this interval, and the di¤erent in�nitesimal intervals
are independent. Therefore, conditioned on [t; t+ dt] containing a point, the conditional
distribution of Z is the unconditional distribution of t + Z: Therefore, for any m > 0;
one has

E
X

��mi =

Z 1

0
dt f (t) tmE

�
1

(t+ Z)m

�
: (4.3)

Applying that to f (t) = �t���1 and m = 2; we get

� (R1;2) =

Z 1

0
dt �t���1t2E

�
1

(t+ Z)2

�
= (1� �)

Z 1

0
dt �t���1tE

�
1

t+ Z

�
= (1� �)E

X
��i = (1� �) ;

by partial integration, which is a). b) can be proved along the same line.6

Exercise 4.4
Let again f��ig be a PD(�) ; and de�ne for r = (r1; : : : ; rn) 2 Nn0 (N0 := f0; 1; 2; : : :g)

X
(n)
r :=

X�

i
�r1i1 �

r2
i2
� � � � � �rnin ; (4.4)

where
P�
i means that we take the sum over n-tuples i = (i1; : : : ; in) which are all distinct.

Prove that (4.1) and (4.2) imply the following formula

EX(n)
r =

(n� 1)!
(N � 1)!�

n�1
nY
i=1

g (ri; �) ;

where N :=
Pn

k=1 rk and

g (r; �) :=

�
1 if r = 1
(r � 1� �) (r � 2� �) � � � � � (1� �) if r � 2 : (4.5)

Exercise 4.5
Prove that (4.1) and (4.2) characterize PD(�) ; that is if a point process f�ig on R+
satis�es

P
�i = 1 and these two equations, then it has to be a PD(�). This follows by

the fact that the moments characterize the point process.
6Of course, the argument with in�nitesimal intervals has to be replaced by a more careful reasoning

to justify (4.3).
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4.2 The GREM and the Ruelle cascades

Derrida evidently felt that the REM is too simple to shed any light on �real� spin
glasses. He therefore invented a modi�cation, called the �generalized random energy
model�, GREM for short, where the energies are correlated, like in the SK-model, but
in a very special hierarchical way.

I will not prove anything of substance about Derrida�s GREM, but I will quickly go
to the limiting object, the Ruelle cascades.7 I will however give a short description of
the GREM, and discuss some of its properties, as it sheds some light on the concepts of
the physicists, particularly what they understand by the notion of �pure states�.

Consider a tree with a root and K levels. On each level, a bond branches into 2N=K

�children�bonds. The leaves which we call � can then be written as

� = (i1; i2; : : : ; iK) ; 1 � ij � 2N=K :

(We assume that N is divisible by K). The bonds from (i1; : : : ; ij�1) to (i1; : : : ; ij) of
the graph can be identi�ed with (i1; : : : ; ij), j � K: To pass from the root to the leaf �
on passes through the bonds

i1; (i1; i2) ; (i1; i2; i3) ; : : : ; (i1; i2; : : : ; iK) :

The energies of the GREM are given by summing independent bond energies along the
path from the root to the leaves.

H (�)
def
= X

(1)
i1
+X

(2)
i1;i2

+ � � �+X(K)
i1;:::;iK

:

All the X(j)-variables are assumed to be independent and centered Gaussians. On level
j � K; all variables have the same variances

var
�
X
(j)
i1;:::;ij

�
= �2jN:

Usually, one assumes that �21 > �22 > � � � > �2K ; but it is not really necessary. (If it is
not satis�ed, then some of the levels simply disappear in the limit. See the discussion in
Section 7.1). We also assume

KX
i=1

�2i = 1

which is a normalization of no importance.
The covariances are trivially computed

E
�
H (�)H

�
�0
��
= N

q(�;�0)X
i=1

�2i ;

7Ruelle did not prove that Derrida�s GREM converges to the object he introduced, although he
seemed to have taken it as a kind of �evident�.
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where

q
�
(i1; : : : ; iK) ;

�
i01; : : : ; i

0
K

��
= max

�
m : (i1; : : : ; im) =

�
i01; : : : ; i

0
m

��
:

Particularly, the variance of the variables is N as in the REM case.
The partition function and the Gibbs measure are de�ned in the usual way:

ZN;�;! :=
X
�

exp [�H (�)] ; GN;�;! (�) :=
1

ZN;�;!
exp [�H (�)] :

The free energy

f (�) := lim
N!1

1

N
logZN

can be computed explicitly. It is piecewise quadratic with K pieces of di¤erent second
derivative (provided �21 > �22 > � � � > �2K): The model has K critical values:

�cr1 :=

p
2 log 2p
K�1

< �cr2 :=

p
2 log 2p
K�2

< � � � < �crK :=

p
2 log 2p
K�K

:

For � < �cr1 , the free energy equals the annealed free energy. f (�) = �2=2 + log 2:
For � > �crK ; the free energy is linear in �: The second derivative of the free energy in �
jumps at all critical values down, but the �rst derivative stays continuous.

It may be instructive to discuss quickly K = 2 which has all the ingredients.
Let�s �rst look back at the random energy model which is the special case K = 1;

�21 = 1: There, for s � 0;

# f� : H (�) � sNg � 2N exp
�
�s

2N

2

�
;

with high probability. We are neglecting parts which are not exponentially in N . Also
� sN should mean sN � o (N) � H (�) � sN + o (N) : If s >

p
2 log 2; then the right

hand side goes to 0 exponentially fast, meaning that f� : H (�) � sNg = ; with high
probability. In fact max�H (�) is

p
2 log 2N + o (N) with high probability, where o (N)

actually is only of order logN . The free energy is then obtained through

ZN �
X

s�
p
2 log 2

# f� : H (�) � sNg e�sN

� exp
"
N sup
0�s�

p
2 log 2

�
�s� s2=2

�#

leading to the expression we have obtained in Section 2.5. For � <
p
2 log 2; the sup

over s is attained at s (�) := �; and for � �
p
2 log 2, it is attained at s (�) :=

p
2 log 2:

This suggests (it�s actually just an exercise) that the Gibbs distribution is concentrated
on ��s for which H (�) � s (�)N . The crucial distinction is whether � <

p
2 log 2 or

not. In the former case, no single spin gets a Gibbs weight which is of order 1; and
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in fact maxG (�) is exponentially decaying. There are simply �too many� ��s which
satisfy G (�) � s (�)N: On the other hand, if � >

p
2 log 2, then the Gibbs weights

just concentrate on the ��s for which H (�) is among the top values, and in the limit as
N !1, the Gibbs distribution is given by a Poisson-Dirichlet point process. In physics
jargon, for � <

p
2 log 2; there is just one �pure state�, and for � >

p
2 log 2; there are

countably many with random weights, given by a PD : We abstain from discussing the
border line case � =

p
2 log 2 which is slightly tricky.

Let�s now look at the modi�cation for K = 2:We again want to compute the number
of con�gurations � with H (�) � sN: This is now slightly more di¢ cult. We best �x
s1 < s; and ask about about #A (s1; s) where

A (s1; s) :=
�
� = (i1; i2) : X

1
i1 � s1N; X

2
i1;i2 � (s� s1)N

	
We �rst observe that with A1 (s1) :=

�
i1 : X

1
i1
� s1N

	
we have, as in the REM case

#A1 (s1) � 2N=2 exp
�
�s

2
1N

2�21

�
= exp

�
N

�
1

2
log 2� s21

2�21

��
:

The exponent gets negative for
s1 > �1

p
log 2

which means that A1 (s1) = ; and therefore also A (s1; s) = ; with high probability. So,
we have to restrict to s1 � �1

p
log 2. In that case

#A (s1; s) � #A1 (s1)�#
�
i2 : X

2
1;i2 � (s� s1)N

	
� exp

�
N

�
1

2
log 2� s21

2�21

��
exp

"
N

(
1

2
log 2� (s� s1)

2

2�22

)#

= exp

"
N

(
log 2� s21

2�21
� (s� s1)

2

2�22

)#
:

It is not di¢ cult to prove that, up to corrections of subexponential order, one has

#A (s) = sup
s1:s1��1

p
log 2

exp

"
N

(
log 2� s21

2�21
� (s� s1)

2

2�22

)#

= exp

"
N

(
log 2� inf

s1:s1��1
p
log 2

 
s21
2�21

+
(s� s1)2

2�22

!)#
:

Write

� (s) := inf
s1:s1��1

p
log 2

 
s21
2�21

+
(s� s1)2

2�22

!
(4.6)

For �xed s the unrestricted minimum in s1 is attained at

s1 = �21s:
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This is however only � �1
p
log 2 if

s �
p
log 2

�1
<
p
2 log 2

as we had assumed �21 + �
2
2 = 1 and �

2
1 > �22: For s satisfying this restriction, we have

� (s) =
s2

2

which is the same as for the REM. On the other hand, if s >
p
log 2
�1

we have

� (s) =
log 2

2
+

�
s� �1

p
log 2

�2
2�22

:

Therefore, #A (s) can be 6= 0 only if � (s) � log 2; i.e.

s � (�1 + �2)
p
log 2:

Having computed � (s) for all s; it is easy to see that

f (�) = lim
N!1

1

N
logZN;� = sup

s�(�1+�2)
p
log 2

(�s� � (s)) + log 2

The reader may easily check that for � � �cr1 = ��11
p
log 2, the supremum is attained

at s = s (�) := � leading to f (�) = �2=2 + log 2: For �cr1 = ��11
p
log 2 � � � �cr2 =

��12
p
log 2; the supremum is attained at

s (�) := �1
p
log 2 + �22� 2

�p
log 2

�1
; (�1 + �2)

p
log 2

�
:

Finally, for � > �cr2 , the supremum is attained at s (�) := (�1 + �2)
p
log 2: Remark

that (�1 + �2)
p
log 2N is the maximum of H (�) (up to smaller order in N). We write

also s1 (�) for the maximizer in the variational formula (4.6) which satis�es s1 (�) <
�1
p
log 2 if and only if � < �cr1 . (Remember that �1

p
log 2N was in leading order the

maximal value of X(1)
i ; 1 � i � 2N=2: Plugging that in, one gets the explicit formula for

the free energy which is not very interesting. More interesting is what the above analysis
suggests for the behavior of the Gibbs distribution. (For more details about that, see
[11] and [18]).

For � < �cr1 ; nothing interesting happens: The Gibbs measure concentrates at ��s
for which H (�) � s (�)N which means that it concentrates on � = (i1; i2) where
X
(1)
i1

� s1 (�)N; X
(2)
i1i2

� (s (�)� s1 (�))N , up to smaller order in N , and the reader
will have no di¢ culty to check that in fact the maximal Gibbs weight is exponential
small in N: Not only that, also the marginal distribution on the �rst level

G1 (i1) =
X
i2

G ((i1; i2))
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has the property that maxi1 G1 (i1) is exponentially small in N:
In the region �cr1 < � < �cr2 . The Gibbs distribution concentrates on � = (i1; i2)

where X(1)
i1
� �1

p
log 2N (up to smaller order in N), and X(2)

i1i2
�
�
s (�)� �1

p
log 2

�
N .

The maximum of the Gibbs distribution is still exponentially small in N; but now G1
concentrates on i1 for which X

(1)
i1
is maximal. This then implies that G1 remains macro-

scopic in the N !1 limit, and in factX
i1

�G1(i1)

converges weakly to a Poisson-Dirichlet point process. One says that the Gibbs distribu-
tion �freezes�on the �rst level. In physics jargon, there are countably many pure states
in this case.8 They consist of the exponentially large collection of ��s which have i1�s for
which G1 (i1) belongs to the top ones. Finally for � > �cr2 the Gibbs distribution itself
freezes, and

P
� �G(�) converges to a Poisson-Dirichlet point process. In that case, the

�pure states�are the single con�gurations.
The most interesting case is the intermediate one �cr1 < � < �cr2 . There, the individ-

ual con�gurations have only exponential small Gibbs weights. The con�gurations can
however be bundled into lumps with the same �rst component i1: The lumps then have
Gibbs weights given by Poisson-Dirichlet, and they are what in physics literature are
called �pure states�. In physics literature on mean-�eld spin glasses like in [35], it is
suggested that something like that should be true in other more interesting models like
the SK-model. There is however no mathematical proof except in some special cases of
p-spin models which are investigated in [42].

We don�t give any more details about that, which has been thoroughly investigated
by Bovier and Kurkova [18], but now present Ruelle�s limit object [39].

Ruelle argued that the limit Gibbs measure (for � large) should have the following
cascade structure. One chooses K parameters 0 < �1 < � � � < �K < 1: Then, on a
�rst level one chooses a PPP

�
�1x

��1�1dx
�
; �1 =

�
�1i
	
i
. On the next level, one chooses

for any i 2 N a PPP
�
�2x

��2�1dx
�
�2i whose countably many points are denoted byn

�2ij

o
j2N

; and we furthermore assume that these point processes are all independent,

and also independent of �1: In this way, one proceeds: On the third level, one chooses in-

dependent point processes �3i1i2
def
=
n
�3i1i2j

o
j
for any i1; i2 2 N; and these point processes

have intensity measure �3x��3�1dx:
Such a cascade of point processes �1;�2i1 ;�

3
i1i2

; : : : ;�Ki1i2:::iK�1 is called a Ruelle
cascade to the parameter (�1; : : : ; �K) :

We can multiply the points of the all the processes: For i = (i1; : : : ; iK) 2 NK ; we
put

�i
def
= �1i1�

2
i1i2 � � � �

K
i1;i2;:::;iK

(4.7)

8Strictly speaking, this does not make any mathematically precise sense as it would refer to a N =1
situation. The proper notion will appear later in Section 7.2
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This leads to the point process

�tot
def
= f�ig

One should think of the points of this point process as the unnormalized Gibbs weights
of a limiting GREM-type spin glass. For a proof of this fact, see [18]. In a special case,
it was also proved in [11].

The �rst surprise is

Proposition 4.6
N
�
�tot

�
is stochastically independent of the cascade up to level K � 1 and its law is

PD(�K) :

Proof. TakeK = 2: Remark that because of �1 < �2 < 1 we have
R
(0;1) x

�2�1x
��1�1dx

<1; and therefore
C :=

X
i

�
�1i
��2 <1 (4.8)

almost surely. We can now apply Proposition 4.1. For that we condition on the �rst

level
�
�1i
	
; and apply the Proposition with yi

def
= �1i ; � = �2; �

0 = 1: Then

N
��
�1i �

2
ij

	�
=L PD(�2) :

That is the conditioned law on the �rst level. As this law does not depend on
�
�1i
	
;

the statement follows.
The general K case follows easily by induction, always conditioning on the level

K � 1.
At �rst sight, this proposition seems to tell that the introduction of the cascade

structure does not give anything new which is not already present in the case K = 1;
but this is wrong, as there is a non-trivial notion of an overlap structure.

To discuss it, it is best to order the points downwards. Therefore, we assume �11 >
�12 > � � � and for any i : �2i1 > �2i2 > �2i3 > � � � etc. In this way, the index set i for �i is
identi�ed with NK : We can order the �i downwards which leads to a random bijection
� : N! NK : ��(k) is the k-th biggest among the �i:

Let 0 � k � K and �x it for the moment. We de�ne a (random) equivalence relation
on N by setting

i �k j
def() � (i)r = � (j)r 8r � k

In other words, i is equivalent to j if and only if the branching between the i-th largest
and the j-th largest is at level k or later.

The equivalence relation induces a partition Zk of N into disjoint subsets, the equiv-
alence classes under the equivalence relations �k : By the very de�nition, it is clear that
Zk+1 is a �ner partition than Zk: If Z and Z 0 are to partitionings of N we write Z 0 � Z
if Z is obtained by possibly dividing the sets of Z 0; i.e. if it is the �ner partitioning.
Using this notation, we evidently have

ZK = ffig : i 2 Ng � ZK�1 � � � � � Z1 � Z0 = fNg : (4.9)
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The Ruelle cascade therefore leads to a sequence of random partitionings (Z0;Z1; : : : ;ZK) :
Of course only the Zk with 1 � k � K � 1 are random.

A most remarkable property is

Proposition 4.7
N (f�ig) and (Z0;Z1; : : : ;ZK) are stochastically independent.

Proof. We do the proof only for K = 2 which contains essentially all the ingredients.
The general case is only notational more cumbersome. For K = 2; the only point is to
prove that Z1 is independent of N (f�ig) :

We start with a sequence y = fykg of positive reals, and independent point processes�
�2ki
	
i
which are PPP

�
�2x

��2�1dx
�
: For notational simplicity, we drop the index 2 for

the moment. Then consider N
�
fyk�kigi;k

�
: Assuming C (�;y) :=

P
y�k <1; we know

that it is a PD(�) : We order the points yk�ki downwards, creating in this way the
random partitionings Z of the natural numbers. Formally, we simply attach to a point

of the point-process N
�
fyk�kigi;k

�
the number ` if the point stems from the group yl�`�:

This creates a marked point process with marks in N.
We now prove that this marked point process is a PD(�) point process with inde-

pendently attached marks in N, where the law of the marks depends on the sequence
fykg : Having proved that, we have proved the proposition applying it to fykg =

�
�1k
	

which is, as a point process, independent of N
��
�1k�

2
ki

	
i;k

�
:

A point process with values in R+ with marks in N is a point process with values in
R+�N which has the property that almost surely, one has for all s 2 R+ there is at most
one point in fsg � N: One also requires that the projection of the points to R+ gives a
point process on R+ (which is not automatic from the requirement that one has a point
process on R+ � N). On the other hand, there is no requirement that the projection
onto N leads to a point process on N: A very special case is the one where independent
marks are attached to a point process on R+: We have encountered that before (with
marks in R).

We compute the Laplace functional of a point process f�ig with independent marks
Xi in N which are distributed according to probability weights p = fp (k)gk2N : If � 2
C+o (R� N), then

E exp
h
�
X

i
� (�i; Xi)

i
=
X
k

p (k)E exp
h
�
X

i
� (�i; k)

i
= E exp

h
�
X

i
 (�i)

i
;

where
e� (y) =

X
k

p (k) e��(y;k):
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So, if f�ig is a PPP
�
�x���1dx

�
, this is

exp

�
�
Z �

1� e� (x)
�
�x���1dx

�
= exp

�
�
X

k
p (k)

Z �
1� e��(x;k)

�
�x���1dx

�
:

We apply this to
n
(yk�ki; k)i;k

o
: Let � : R+ �N! R+ be continuous with compact

support. Then

E exp
h
�
X

i;j
� (yk�ki; k)

i
=
Y

k
E exp

h
�
X

i
� (yk�ki; k)

i
=
Y

k
exp

�
�
Z �

1� e��(ykx;k)
�
�x���1dx

�
=
Y

k
exp

"
�
Z �

1� e��(x;k)
� �

yk

�
x

yk

����1
dx

#

= exp

�
�
X

k

Z �
1� e��(x;k)

�
p�;y (k)C (�;y) �x

���1dx

�
;

where
p�;y (k) := y�k=C (�;y) :

This proves that, for �xed sequences y with C (�;y) <1, the point processn
(yk�ki; k)k;i

o
is a marked point process which is a PPP

�
C (�;y) �x���1dx

�
with independently at-

tached points in N with law p�;y; and therefore
��

yk�ki=C (�;y)
1=� ; k

�
k;i

�
is a

PPP
�
�x���1dx

�
with independently attached marks in N. After normalization8<:

 
yk�kiP
`;j yl�`j

; k

!
i;k

9=;
we get a PD(�) with independent marks in N, distributed according to p�;y:

The statement (for K = 2) now follows easily. Conditionally on the �rst level�
�1i1
	
i1
; the clustering is through marks, independently attached to the point process

� = N
��
�1i1�

2
i1i2

	�
: The law of the latter does not depend on the realization of

�
�1i
	
;

however the distribution of the marks does. As
�
�1i
	
and N

��
�1i1�

2
i1i2

	�
are independent

by Proposition 4.6, the claim follows.
Therefore, the clustering is stochastically independent of �tot; and is obtained through

a two-stage procedure: Depending on �1; one computes a probability law on N through�
p�2;�1 (i)

	
i2N
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and chosen conditionally independent marks, given �1; the marks attached to the point
process �: The matching is performed by matching points with the same marks. The
total distribution of the matching is obtained by choosing �1 according to its law.

Remark 4.8
It is important to carefully spell out the mechanism of the matching procedure. Condi-
tionally on the �rst level �1; both, the point process �, and the matching depend on the
point process �2; and are stochastically independent. The point process � is however
independent of �1; whereas the matching is not. Nevertheless, this implies that � and
the matching are also unconditionally independent.

The point process
�
p�2;�1 (i)

	
i2N itself is obtained through normalizing

n�
�1i
��2o ;

i.e. it is a PD(�2=�1) according to Proposition 4.1 d).

Another important property of the Ruelle cascades is that they satisfy the Ghirlanda-
Guerra identities. It is irrelevant if one formulates this in terms of the original indices
for �toti , or after reordering the weights in decreasing order. Let�s do the former, as
then the overlap is �not random�. We de�ne the the overlap R

�
i; i0
�
to be the largest

number k such that (i1; : : : ; ik) = (i01; : : : ; i
0
k) : Here, these are numbers in f0; 1; : : : ;Kg :

For the formulation of the Ghirlanda-Guerra identity, we can take this as the overlap.
Later we will use a monotone map f0; 1; : : : ;Kg ! [0; 1] ; but for the moment, this
is irrelevant. We take the normalized weights ��toti which de�nes a random probability
distribution in NK ; and take product measures. We can as well take the in�nite one,
but it does not matter for the formulation. Integrating out, after taking the product
measure: � :=

R �
��tot
�
N

dP, where P refers to the law for the Ruelle cascades, we arrive
at a probability measure on

�
NK
�N
: We write Ik for the projections

�
NK
�N ! NK :

Proposition 4.9
Let n 2 N. Under �; the conditional distribution of R (I1; In+1) given the random matrix
(R (Ij ; Ik))j;k�n is

1

n

nX
j=2

�R(I1;Ij) +
1

n
LR(I1;I2):

Proof. I don�t give a proof. It is a good exercise to try to prove the K = 2 case.
The Ghirlanda-Guerra identity characterizes the Ruelle cascades in a way which will

be made precise later.

4.3 The coalescent process

The aim of this section is to give further information about the structure of the distri-
bution of (Z0;Z1; : : : ;ZK) : For that, we de�ne a continuous time , time homogeneous,
Markov process f�tgt�0 taking values in the set of partitionings of N (or equivalently,
in the set of equivalence relations). We write �N for the set of equivalence relations on
N: The set of equivalence relations is a subset of the set of all relations on N: The latter
is evidently a compact set, as it can be presented as a subset of f0; 1gP(N) ; where P (N)
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denotes the set of (unordered) pairs of N:. It is readily checked that �N is a closed subset
of the set of relations, and therefore, it is compact as well.

If I is a �nite subset of N; then we write �I for the set of equivalence relations on I:
This is a �nite set. We write �J;I for the projection �J ! �I :

We construct the process f�tg via its projections �t;I
def
= �N;I (�t) for I �� N: f�t;Ig

itself is a Markov process which is not automatic from the Markov property of f�tg ; of
course. Anyway, f�t;Ig being a continuous time Markov process on the �nite set �I ; it
is perfectly described by its transition matrix Rt;I (
; 
0) ; 
; 
0 2 �I ; which then can be
written as

Rt;I = exp [tQI ] ;

with the Q-matrix QI (
; 
0) ; satisfyingX

0

Q
�

; 
0

�
= 0; 8
;

Q
�

; 
0

�
� 0; 8
 6= 
0:

Here it is: Transitions are possible only to coarser partitionings, i.e. from 
 to a

0 � 
: Therefore, if 
 has just one class, then no transitions are possible, and this is
absorbing. This means that QI (
; 
0) = 0 if j
j = 1: j
j here the number of classes in 
:
If j
j = N � 2; and if 
0 is obtained from 
 by clumping together exactly k � 2 classes,
then

QI
�

; 
0

� def
=

1

(N � 1)
�
N�2
k�2
� :

All other QI (
; 
0) with 
0 6= 
 are 0: So, in�nitesimally, only one clumping act is
possible, but the number of clumped sets is not restricted. Furthermore, of course,

QI (
; 
) = �
X


0:
0 6=

QI
�

; 
0

�
:

This de�nes in the standard way a Markov process f�t;Igt�0 :

Exercise 4.10
The transitions of the Markov process f�t;Ig ; I �� N; are given in the following way.
Conditioned on f�t;I = 
g ; the process stays in 
 for an exponential time with expec-
tation (j
j � 1)�1 : (Of course, if j
j = 1; then the process stays there forever). At the
jump time, � 2 f2; : : : ; j
jg classes are clumped with

P (� = k) =
j
j

j
j � 1
1

k (k � 1) :

Conditioned on f� = kg ; the k classes to be clumped together in one new class are chosen
with equal probability among the

�
N
k

�
possibilities.

With probability one, the process reaches the absorbing one-class state after a �nite
time.
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Somewhat surprisingly, the transition kernel Rt;I for I �nite, can be computed ex-
plicitly:

Proposition 4.11
Assume 
 2 �I has N classes, and 
0 is obtained by clumping r1; r2; : : : ; rk � 1 classes
of 
; with

P
i ri = N: Then

Rt;I
�

; 
0

�
=
(k � 1)!
(N � 1)!e

�(k�1)t
kY
i=1

g
�
rj ; e

�t� ; (4.10)

where g (r; �) is de�ned in (4.5).

Proof. We write qt (
; 
0) for the right-hand side of (4.10). Evidently, q0 is the
identity matrix. We prove

dqt
dt
= Qqt:

From that, the claim follows.
We write x = e�t; fx (s) = sx; s > 0: Then

qt
�

; 
0

�
= (�1)N�k (k � 1)!

(N � 1)!

kY
i=1

f (ri)x (1) ;

where f (m) denotes the m-th derivative w.r.t. s:
For m � 1; one has

@f
(m)
x (1)

@t
=

@m

@sm
(�x log s) fx (s)

����
s=1

= x

mX
j=1

(�1)j
�
m

j

�
(j � 1)!f (m�j)x (1) :

The functions fx (s) satisfy the identity

xf (r)x (1) = f (r+1)x (1) + rf (r)x (1) ;

and implementing that, we get

@f
(m)
x (1)

@t
= m!

mX
j=2

(�1)j�1 f
(m�j+1)
x (1)

j (j � 1) (m� j)! �mf
(m)
x (1) ;

where the sum over j is 0 in case m = 1:
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Let now 
; 
0 be as in the statement of the proposition. Then

dqt (
; 

0)

dt
= (�N + 1) qt

�

; 
0

�
+ (�1)N�k (k � 1)!

(N � 1)!

�
X
i:mi�2

miX
r=2

(�1)r�1 mi!f
(mi�r+1)
x (1)

(mi � r)!r (r � 1)x
Y
j:j 6=i

f
(mj)
x (1)

= (�N + 1) qt
�

; 
0

�
+
X
i:mi�2

miX
r=2

1

(N � 1)
�
N�2
r�2
��mi

r

�
(�1)N�k�r+1

� (k � 1)!
(N � r)!

1

x
f (mi�r+1)
x (1)

Y
j:j 6=i

f
(mj)
x (1)

=
X


00:
0�
00�

Q
�

; 
00

�
qt
�

00; 
0

�
:

This proves the claim.
We next claim that the Markov processes on �I ; I �� N; are compatible, meaning

that if I � J; then the Markov process constructed with values in �J ; projected onto
�I is the Markov process with this state space. This is proved by checking that the
Q-matrices have the appropriate compatibility property, namely

Lemma 4.12
Let 
; 
0 2 �I ; 
0 � 
; and ~
 be any element in �J with �J;I (~
) = 
: Then

QI
�

; 
0

�
=

X
~
02�J :~
0�~
;
�J;I(~


0)=
0

QJ
�
~
; ~
0

�
:

Proof. We only have to check the formula when 
0 is obtained from 
 by clumping k
classes, 
 having N � k classes, k � 2: The chosen ~
 may have N classes, too, or more.
Say, it has ~N � N classes. Now, in order to get by a simple clumping a partitioning
~
0 which when restricted to I equals 
0; one has several possibilities, but certainly, the
extensions of the classes clumped in 
 have to be clumped. Of the ~N �N new classes
in ~
; the clumping of them has no in�uence on the trace on I: Therefore, if we decide
to clump l � ~N �N of them, there are simply

� ~N�N
l

�
to select this group which should

be clumped, and in this case, we have

QJ
�
~
; ~
0

�
=

1�
~N � 1

� � ~N�2
k+l�2

� :
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Therefore, all we have to check is

1

(N � 1)
�
N�2
k�2
� = ~N�NX

l=0

� ~N �N
l

�
1�

~N � 1
� � ~N�2

k+l�2
�

which is elementary.
As a consequence, one obtains the compatibility of the semigroups Rt;I ; namely that

if I � J; and ~
 2 �J ; then

Rt;I (�J;I (~
) ; �) = Rt;J

�
~
; ��1J;I (�)

�
: (4.11)

and then, by soft arguments, one can extend the semigroup to a Feller semigroup fRtg
on �N; satisfying

Rt;I (�N;I (~
) ; �) = Rt

�
~
; ��1N;I (�)

�
(4.12)

for any I �� N; ~
 2 �N: This leads to a Feller process f�tgt�0 taking values in �N which
we start with the trivial partitioning of N into single points. This process is characterized
by the property that its projections to �I ; I �� N; are Markov with the semigroup Rt;I :

A nice direct description of the coalescent process is due to Goldschmidt and Martin
[28], which we shortly describe.

We start with an in�nite random tree, i.e. a graph with no loops, which has vertex set
N. The construction is as follows. We start with the vertex 1 and 2 with a bond between
them. Then vertex 3 is with probability 1=2 either attached to 1 or 2: �Attached�means
that we draw a bond either to 1 or 2. Then vertex 4 is with probability 1=3 attached
either to 1; 2 or 3, and one proceeds in this way. It is clear that in this way an in�nite tree
is constructed. We consider 1 to be the root of the tree. The unique path from 1 to vertex
n 6= 1 is evidently an increasing random sequence of vertices 1 < i1 < � � � < ik = n: If
two bonds i; j are connected by a path i < i1 < � � � ik = j, we say that j is below i:

For the dynamics, we have to switch to a formally more general notions, where the
vertices are no longer single numbers but subsets of N. The set of all subsets belonging
to a tree is supposed to be a partition of N. This notion appears with the dynamics
we will describe in a few lines. It will turn out that with probability one, one always
falls on in�nite partitions where each of the sets is in�nite, except at the time 0:We can
order the sets in the partition according to the smallest element in the sets, i.e. if A;A0

are members of a partition, then A < A0 if minA < minA0: Therefore, from the point of
view of the graph, the interpretation of the vertices as sets is just a formal labeling. It
is however important for the dynamics and the relation with the coalescent, as we will
explain.

We equip now all bonds of the tree with an exponential clock. If a clock rings at
time t; then the part of the tree below the bond is erased and the erased sets are added
to the vertex above the bond. Of course, as there are in�nitely many bonds, there are
in any �nite time interval in�nitely many clocks ringing, and so, it is a priory not clear
that in this way a dynamics is de�ned. This point can however be easily handled by an
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approximation with �nite trees and a compatibility similar to (4.11). It is then proved
in [28] that the dynamics of the partitions, i.e. forgetting the tree structure behind, is
identical in law with the dynamics of coalescent process.

The tree representation is particularly useful to prove several crucial properties, like
the following one:

Exercise 4.13
Prove that for any t > 0; �t has in�nitely many countably in�nite classes, and no �nite
classes, almost surely. In particular, �t is non-trivial for any t > 0:

Our next task is to relate the above semigroup to the clusterings coming from the
Ruelle cascades.

To do that, we describe the semigroup in a di¤erent way.
Assume that 
 is a partitioning of N, 
 = fC1; C2; : : :g ; and let t > 0:We �rst choose

a PD
�
e�t
�
; leading to a random probability distribution �� = f��igi2N : Conditioned on

this realization of the Poisson-Dirichlet process, we choose for every Ck independent
random numbers Yk where

P (Yk = jj ��) = ��j :

Then we cluster the sets with the same number. This constructs a random partitioning

0 � 
: The corresponding kernel is denoted by St; i.e. St (
; �) is the distribution of the
above constructed random 
0:

Lemma 4.14

St = Rt; 8t � 0:

Proof. For any �nite I �� N; we can de�ne kernels St;I in an evident way by
restricting the above random matching mechanism to �nitely many classes. By the very
construction, one has (4.12) satis�ed for the kernels St; St;I : It therefore su¢ ces to prove
St;I = Rt;I for all �nite I:

Let 
 2 �I have N classes, and 
0 be a coarsening obtained by clumping r1; : : : ; rk
classes together,

P
ri = N: Then, conditioned on ��; the probability that under St;I one

arrives at 
0 X�

i1;:::;ik
��r1i1 ��

r2
i2
� � � ��rkik ;

and so
St;I

�

; 
0

�
= E

X�

i1;:::;ik
��r1i1 ��

r2
i2
� � � ��rkik ;

the expectation with respect to the Poisson-Dirichlet process PD
�
e�t
�
. This quantity,

the reader has (hopefully) computed in Exercise 4.4:

E
X�

i1;:::;ik
��r1i1 ��

r2
i2
� � � ��rkik =

(k � 1)!
(N � 1)!e

�t(k�1)
kY
i=1

g
�
ri; e

�t� ;
where g (r; �) is from (4.5). This is exactly the expression, we obtained Proposition 4.11
for St;I (
; 
0) :
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We are now in the position to identify the law of the Ruelle-clustering in terms of
the coalescent process:

We take as before 0 < �1 < � � � < �K < 1; and de�ne the clustering Zj ; 0 � j � K;
by (4.9).

Theorem 4.15
The law of (ZK ;ZK�1; : : : ;Z1) is the same as that of

�
�0;�t1 ; : : : ;�tK�1

�
with

e�ti =
�K�i
�K

:

Proof. We �rst check the caseK = 2 where there is only one non-trivial partitioning,
namely Z1; and where we have already done the computation in the proof of Proposition
4.7. There we have proved that Z1 is obtained by attaching marks to N coming from
a PD

�
�1
�2

�
; and identifying points with the same marks. (See Remark 4.8). So this is

exactly the procedure we have for the kernel St1 with e
�t1 = �1

�2
:

For the general K � 2 case, the same argument shows that ZK�1 is obtained from
the trivial (i.e. non-)clustering ZK by applying the kernel St1 with e

�t1 = �K�1=�K :
Now, the way ZK�2 is obtained from ZK�1 is again simply by setting marks to the
points of the (K � 1)-th level, coming from the (K � 2)-th level, and matching points
(i.e. clusters of the �nite point process) which have the same marks. This transition is
done via the kernel St2 where t2 = �K�2=�K�1: There is however one di¢ culty: One has
to check that the new clustering is not in�uenced (stochastically) by the �rst clustering.

For that, remember that ZK�1 is obtained through a two-stage procedure: One
chooses the marks conditionally independent, according to a probability distribution
which is computed from �1; : : : ; �K�1 trough

p(K�1) (i1; : : : ; iK�1) =

�
�1i1�

2
i1;i2

� � � �K�1i1;:::;iK�1

��K
normalization

:

This is a PD(�K�1=�K) which is independent of of �1; : : : ; �K�2: Now, the clustering
from ZK�1 to ZK�2 is obtained again through conditionally independent marks, the
distribution of the marks being given by

p(K�2) (i1; : : : ; iK�2) =

�
�1i1�

2
i1;i2

� � � �K�2i1;:::;iK�2

��K�2
normalization

which is a PD(�K�2=�K�1) ; depends on �K�2; of course, but is independent of �1; : : : ; �K�3:
Therefore, the clustering procedure from ZK�1 to ZK�2 is independent of the clustering
procedure from ZK to ZK�1 : One just takes the clusters, puts the marks according to
p(K�2) which itself is a PD(�K�2=�K�1) ; so that the transition is simply by St2 : Then
again, this clustering is independent of �1; : : : ; �K�3; and one proceeds in this way.
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5 Guerra�s replica symmetry breaking bound: The Aizen-
man-Sims-Starr proof

5.1 The Aizenman-Sims-Starr random overlap structures
De�nition 5.1
A random overlap structure R (ROSt for short) consists of a �nite or countable set
A; a probability space (
;F ;P) ; and random variables �� � 0; q�;�0 ; �; �0 2 A; de�ned
on this probability space, satisfying the following properties

1.
P

� �a <1

2.
�
q�;�0

�
is positive de�nite and satis�es q�;� = 1:

The �� play the rôle of (unnormalized) Gibbs weights, and the q�s are the abstract
overlaps.

Example 5.2
As an example take A = �N

def
= f�1; 1gN . For ��; � 2 �N ; we take

��
def
= exp

24 �p
N

X
1�i<j�N

gij�i�j + h

NX
i=1

�i

35 :
For q�;�0 we take the standard overlap RN (�; �0) ; as introduced before. We write RSKN
for this overlap structure. The q here are nonrandom. On the other hand, we can use a
(random) reordering of the set A by ordering the �� downwards: �1 > �2 > : : : > �2N :
After this random reordering, the q become random: q1;2 for instance is the overlap of
the two indices with the largest �-weight.

Example 5.3
Another overlap structure is de�ned by Ruelle�s probability cascades introduced in the
last section. Fix 0 = �0 < �1 < : : : < �K < 1: We take A = NK ; and the � are the
(unnormalized) weights �i as in the last section with �i; 1 � i � K, see (4.7). The
overlaps are de�ned in the following way. Fix a sequence 0 � q1 < q2 < : : : < qK <
qK+1 = 1; and we set qi;i0 = qr with

r = r
�
i; i0
� def
= max

�
k : (i1; : : : ; ik) =

�
i01; : : : ; i

0
k

�	
+ 1;

i.e. we measure the hierarchical distance on the tree, and weight it with the function q:
For this random overlap structure, we write RRuelleK : Remark that if i; i0 don�t overlap,
we still give them an overlap q1 which may be positive.

One may also just take the clustering process of Section 4.3 to de�ne the overlaps,
avoiding in this way the necessity to work with �nitely many levels.
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Given any ROSt, we attach to it families of Gaussian random variables (y�;i)�2A; i2N ;
(��)�2A by requiring

E (����0) = q2�;�0 ; (5.1)

and the �cavity �eld�by
E
�
y�;jy�0;j0

�
= q�;�0�j;j0 : (5.2)

The � and the y are independent. In case, the q�s itself are random variables, these are
just the conditional distributions, given (�; q) : It is not di¢ cult to see that such random
variables exist. By an extension of the probability space, we can assume that all the
random variables are de�ned on a single probability space. E-expectations below refer to
taking the expectations over the overlap structure and then also over these (conditional)
Gaussians.

The above notion of a ROSt needs some explanation. The basic idea comes from
what in the physics literature is called the �cavity method�. We consider the standard
SK-Hamiltonian, but now with N +M spins, where one should think of N being much
larger than M: We then try to write the Hamiltonian in terms of the Hamiltonian on N
spin variables acting on the M �newcomers�. We write �i = �N+i for the newcomers.

�p
N +M

X
1�i<j�N+M

gij�i�j + h
N+MX
i=1

�i

=

p
Np

N +M

�p
N

X
1�i<j�N

gij�i�j + h

NX
i=1

�i +
�p

N +M

MX
j=1

 
NX
i=1

gi;N+j�i

!
�j

+
�p

N +M

X
1�i<j�M

gN+i;N+j�i�j + h
MX
j=1

�j :

We neglect the parts which are stochastically o (1) for N ! 1; M �xed. In partic-
ular, we can neglect the interaction among the newcomers, i.e. we can drop the fourth
summand on the right hand side above. Furthermore, we may as well replace

p
N +M

by
p
N in the third summand. We however should not replace

p
Np

N+M
by 1 in the

�rst summand, because N�1=2P
i<j�N gij�i�j is typically of order N under the Gibbs

distribution. De�ning the cavity variables

y�;j
def
=

1p
N

MX
j=1

gi;N+j�i;

we see that they have exactly the right distribution as required in (5.2), with respect
to the random overlap structure RSKN coming from the N system. The ��s are used to
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correct the normalization in the �rst summand. Put U (�) def=
P
1�i<j�N gij�i�j : Then

E
�

U (�)p
N +M

U (�0)p
N +M

�
=

N

(N +M)
E
�
U (�)p
N

U (�0)p
N

�
=

N

(N +M)

�
N

2
RN

�
�; �0

�2 � 1
2

�
� E

�
U (�)p
N

U (�0)p
N

�
� M

2
q2�;�0

Therefore, �
U (�)p
N

�
�2�N

�L
(

U (�)p
N +M

+

r
M

2
��

)
�2�N

;

with U and � being independent, up to an error which disappears in the N !1 limit,
M �xed.

If we set

��
def
= exp

24 �p
N +M

X
i<j�N

gij�i�j + h

NX
i=1

�i

35 ;
we see that

ZN+M =
X

�2�N ; �2�M
�� exp

�XM

i=1
(�y�;i + h) �i

�
;

ZN �
X

�2�N
�� exp

h
�
p
M=2��

i
;

and therefore

ZN+M
ZN

�

P
�2�N ; �2�M �� exp

hPM
i=1 (�y�;i + h) �i

i
P

�2�N �� exp
h
�
p
M=2��

i : (5.3)

Here we have used the ROSt from theN -spin SK model (with Gibbs weights coming from
a slightly changed temperature parameter). As E logZN is � Nf (�; h), it is natural to
look at

1

M
E logZN+M � 1

M
E logZM ;

which then should, at least for large N be close to f (�; h) : Aizenman, Sims and Starr
had the idea to consider the above object when the N system is replaced by an arbitrary
ROSt R; and therefore to consider the �relative �nite M free energy�

GM (�; h;R) :=
1

M
E log

X
�;�2�M

�� exp

�XM

i=1
(�y�;i + h) �i

�
(5.4)

� 1

M
E log

X
�
�� exp

h
�
p
M=2��

i
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where the E expectation is taken with respect both to the law of the random overlap
structure and the cavity variables y�;i and ��: When taking R = RSKN ; one has, up to a
negligible corrections when N !1:

GM
�
�; h;RSKN

�
=
1

M
E logZN+M � 1

M
E logZN : (5.5)

Theorem 5.4 (Guerra, Aizenman-Sims-Starr)
For any M , and any random overlap structure R one has

fM (�; h) :=
1

M
E logZM � GM (�; h;R) ; (5.6)

ZM here being the SK-partition function.

Proof. To a large extent it is a rerun of the computation done in Section 3.3. One
uses the following interpolation:

HM (�; �; t) :=

p
1� tp
M

X
1�i<j�M

gij�i�j +

r
M (1� t)

2
�� +

p
t
XM

i=1
y�;i�i

and de�nes the unnormalized Gibbs weights on A� �M

u (�; �; t) := �� exp
h
�HM (�; �; t) + h

X
i
�i

i
:

After normalization, they lead to the Gibbs measure Gt. Then we write �(k) for the
expectation under P
G(k)t ; where P is the probability law, governing the cavity variables
y�;i; the ��s, the g�s, and the q�s, if they are random. Remark however, that the g�s
and the rest are independent, and conditionally on the q�s, the y�s and the ��s are
independent. Put

ĜM (�; h; t;R) :=
1

M
E log

X
�2A; �2�M

u (�; �; t) (5.7)

� 1

M
E log

X
�2A

�� exp
h
�
p
M=2��

i
:

where E is taken with respect to the overlap structure, i.e. the y�s and the ��s, and the
g�s (which are supposed to be independent). For t = 0; the �-part cancels, and one just
gets fM (�; h) : For t = 1; one gets GM (�; h;R) :

We compute the t-derivative of ĜM : Remark that the denominator on the right hand
side does not depend on t; so it does not appear. We therefore get

dĜ

dt
=

�

M
�
(1)
t

�
dHM

dt

�
dHM (�; �; t)

dt
= � 1

2
p
M
p
1� t

X
1�i<j�M

gij�i�j �
r
M

2

1

2
p
1� t

��

+
1

2
p
t

MX
i=1

y�;i�i;
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so we get
dĜ

dt
= �S1 � S2 + S3; say:

The computation of S1 is exactly the same as in Section 3.3. Remark that the gij are
taken independently of R.

S1 =
�2

4

h
1� �(2)t

�
RM

�
�; � 0

�2�i
:

Here we stress a bit the notation. �(2)t is a probability measure on (A� �M )2 :When we
write �(2)t

�
RM (�; �

0)2
�
; we mean in fact that we sum RM (�; �

0)2 over ((�; �) ; (�0; � 0)) ;

weighted with the probabilities from �
(2)
t :

We do the same type of computation for S2: The ��s are conditionally Gaussian,
conditioned on the q�s. This however doesn�t matter: We �rst compute the conditional
expectation according to Proposition 1.3, and afterwards integrate out over the distrib-
ution of q. The conditional covariances cov (��; ��0) are q (�; �0)

2, and using the same
computation as before, we get

S2 =
�2

4

h
1� �(2)t

�
q
�
�; �0

�2�i
:

Finally, for the S3 we have Gaussians
PM

i=1 y�;i�i with covariances q�;�0
PM

i=1 �i�
0
i

leading to

S3 =
�2

2

h
1� �(2)t

�
RM

�
�; � 0

�
q
�
�; �0

��i
:

Therefore

�S1 � S2 + S3 =
�2

4
�
(2)
t

��
RM

�
�; � 0

�
� q

�
�; �0

��2� � 0:
So, we get

dĜM (�; h; t;R)
dt

� 0; (5.8)

and therefore,

GM (�; h;R) = ĜM (�; h; 1;R) � ĜM (�; h; 0;R) = fM (�; h)

which immediately implies the theorem.
The theorem gives upper bounds for fM (�; h) by choosing any random overlap struc-

ture. Of course, the �correct�choice would be to pick the ROSt from SK, but then, one
cannot do any computation. The really interesting bound comes from taking the Ru-
elle ROSt which gives the Parisi expression as an upper bound, as we see in the next
subsection.

One has however to be aware that one is using here a very special property of the
SK-model. Even in harmless looking modi�cation (even simpli�cation), it no longer
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works. For instance, take an SK-type model where the interaction is only between the
�rst half of the spins and the second half, i.e.

HN (�) =
1p
N

N=2X
i=1

NX
j=N=2+1

gij�i�j :

In that case, the Guerra type bounds do not apply. For the high temperature regime,
methods developed by Talagrand do the job, but the low temperature regime is still
completely open.

5.2 Guerra�s replica symmetry breaking bound

We �rst have to explain the Parisi formula for the SK-model:
If f : R! R is a function satisfying

jf (x)j � CeCjxj (5.9)

for some C > 0; 0 < � � 1; � � 0; we de�ne

	�;� (f) (x) :=
h
Ef (x+�Z)�

i1=�
; (5.10)

with a standard Gaussian Z: It is readily checked that the operation 	m;� maps the set
of functions which satisfy (5.9) into itself.

If � = (�0; �1; : : : ; �K) and q = (q1; : : : ; qK+1) with

0 = �0 < �1 < � � � < �K�1 < �K = 1;

0 � q1 < q2 < � � � < qK < qK+1 = 1;

de�ne the Parisi measure with respect to these sequences by

��;q :=
KX
i=1

(�i � �i�1) �qi ; (5.11)

and put

'K;�;q :=
�
	�1;�

p
q2�q1 � � � � �	�K ;�pqK+1�qK

�
(cosh) :

Set

PK (�;q;�; h)
def
= E log'K;�;q (h+ �

p
q1Z)�

�2

4

KX
i=1

�i
�
q2i+1 � q2i

�
+ log 2: (5.12)

Theorem 5.5 (Parisi, Guerra, Talagrand, Panchenko)
For the SK-model free energy f (�; h) one has

f (�; h) = inf
K;�;q

PK (�;q;�; h)
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Remark 5.6
Let�s look at P1. There is only one parameter q = q1 which is assumed to satisfy
0 � q < 1: Then '1 is

'1 (x) = 	1;1�q (cosh) (x) = EZ cosh
�
x+ �

p
1� qZ

�
= cosh (x) exp

�
�2

2
(1� q)

�
:

Therefore,

P1 (�;q;�; h) = EZ log cosh (h+ �
p
qZ) +

�2

2
(1� q)� �2

4

�
1� q2

�
+ log 2

= EZ log cosh (h+ �
p
qZ) +

�2

4
(1� q)2 + log 2;

and the in�mum is over q yields RS (�; h).

Guerra �rst proved the one-sided bound which follows from Theorem 5.4 and

Lemma 5.7
We take RRuelleK (�;q) as the ROSt from Example 5.3. Then

GM

�
�; h;RRuelleK

�
= G1

�
�; h;RRuelleK

�
= PK (�;q;�; h) : (5.13)

Remark 5.8
There is a slight problem with the formulation above, as RRuelleK is de�ned only for
�K < 1. There is however no problem to de�ne PK (�; q;�; h) with �K < 1, and let
�K ! 1 in the end.

Proof. We handle the two parts in (5.4) separately. We take M = 1: It will be
clear after the computation that for general M the outcome will be the same. We �rst
represent the cavity variables in a convenient way:

yi =
p
q1g

(0) +
KX
k=1

p
qk+1 � qkg(k)i1;:::;ik ; (5.14)

where the new g�s are independent standard Gaussian, also independent of the gij : As
we assume M = 1; we need only one set of the yi�s. For general M; we would need M
independent copies of them. The �i are constructed in a similar way.

1

2

X
i;�2�1

�i exp [(�yi + h) � ] =
X
i

�i cosh (�yi + h)

=
X

(i1;:::;iK)

�1i1�
2
i1i2 � � � � � �

K
i1i2:::iK

cosh (XK;i + h) ;
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with the abbreviation

Xl := �
p
q1g

(0) + �
lX

k=1

p
qk+1 � qkg(k)i1;:::;ik ; 0 � l � K:

For l = 0; the second summand is absent.
We write

Fl := �
�
�1i1 ; �

2
i1i2 ; : : : ; �

l
i1i2:::il

; g(0); : : : ; g(l)
�

We condition on FK�1. Then the point process
n�
�Ki1i2:::iK cosh (XK + h)

�
iK

o
is a

PPP
�
t! �Kt

��K�1
�
whose points are multiplied by the independent random variables�

cosh
�
�
PK

n=0

p
qk+1 � qkg(n)i1;:::;in

+ h
��

iK
:From Proposition 4.1 a) the conditional law

(conditioned on FK�1) of �
�Ki1i2:::iK cosh (XK + h)

	
iK

is the same as that of�h
E
�
cosh�K (XK + h) jFK�1

�i1=�K
�Ki1;:::;iK

�
iK

;

and
E
�
cosh�K (XK + h) jFK�1

�
= 	�K ;qK+1�qK (cosh) (h+XK�1) ;

by the de�nition of 	. So, we have

f�i cosh (�yi + h)gi =
L �1i1 � � � �

K�1
i1;:::;iK�1

�
	�K ;qK+1�qK (cosh) (h+XK�1)

�
�Ki1;:::;iK :

Arguing in exactly the same way, we see thatn
�K�1i1;:::;iK�1

	�K ;qK+1�qK (cosh) (h+XK�1)
o
iK�1

;

is in law identical ton
	�K�1;qK�qK�1 �	�K ;qK+1�qK (cosh) (h+XK�2) �

K�1
i1i2:::iK�1

o
iK�1

;

and therefore,

f�i cosh (�yi + h)gi =
L �1i1�

2
i1i2 � � � �

K�2
i1;:::;iK�2�

	�K�1;qK�qK�1 �	�K ;qK+1�qK (cosh) (h+XK�2)
�

� �K�1i1;:::;iK�1
�Ki1;:::;iK :

In this way, one proceeds, and arrives at

f�i cosh (�yi + h)gi =
L
n
'K;�;q

�
h+

p
q1g

(0)
�
�i

o
i
:
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The second part in (5.4) is similar and somewhat simpler because there one has in
every step just an integration of a Gaussian in the exponent. If f�kg is a PPP

�
�t���1dt

�
;

and the Zk are independent Gaussians with variance q2i+1 � q2i , thenn
�i exp

h�
�=
p
2
�
Zi

io
i
=L

�h
E
�
exp

h
�
�
�=
p
2
�
Z
i�i1=�

�i

�
i

;

and h
E
�
exp

h
�
�
�=
p
2
�
Z
i�i1=m

=

�
exp

�
�2
�2

4

�
q2i+1 � q2i

���1=�
= exp

�
�
�2

4

�
q2i+1 � q2i

��
:

Iterating this in the same way as above, we see that multiplying the points �i by

exp
h�
�=
p
2
�
�i

i
simply leads to a multiplication of the point process by exp

h�
�2=4

�PK
i=1 �i

�
q2i+1 � q2i

�i
:

We implement that now into (5.4) with M = 1

G1

�
�; h;RRuelle

�
= E

�
log
X

i;�2f�1;1g
�i exp [(�yi + h) � ]

�
� E

�
log
X

i
�i exp

h
�
p
1=2�i

i�
= E

�
log
�
'K;�;q

�
h+

p
q1g

(0)
�X

i
�i

��
� E

 
log

 
exp

"�
�2=4

� KX
i=0

�i
�
q2i+1 � q2i

�#X
i
�i

!!
+ log 2

= E
�
log'K;�;q

�
h+

p
q1g

(0)
��
� �2

4

KX
i=0

�i
�
q2i+1 � q2i

�
+ log 2

The upshot of this computation is that

G1 (�; h;R) = E log Y1 �
�2

4

KX
i=0

�i
�
q2i+1 � q2i

�
+ log 2

= PK (�;q;�; h) :

It is fairly evident from this computation that we get the same for arbitrary M: (One
is just having M factors of cosh (�) with independent contents, so in every step of the
above argument, the factoring remains).

Combining this result with Theorem 5.4, one gets Guerra�s result:
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Theorem 5.9 (Guerra)

fM (�; h) � PK (�;q;�; h)

for any K; and any sequence � and q: Therefore

fM (�; h) � inf
K;�;q

PK (�;q;�; h) :

Remark 5.10
The variational formula on the right hand side is analytically di¢ cult. For small �; one
knows that one can take K = 1 which leads to the replica symmetric formula we had
proved in Section 3.4. In physics literature, it is claimed that this is the situation up to
the AT-line, but this has not been proved. It is also claimed that beyond the AT-line,
one has to let K ! 1: That isn�t proved neither. One can formulate the variational
formula directly in the continuum with an arbitrary Parisi measure not just one in the
form (5.11). It has recently been proved by Au¢ nger and Chen [7] that the variational
formula always has a unique solution, but it is not shown that one has to go outside the
class of measures of the form (5.11). It is however proved by Toninelli [43] that K = 1
will not do beyond the AT-line

6 The Ghirlanda-Guerra identities

I discuss here shortly the Ghirlanda-Guerra identities for the SK-model. These enter
into the recent proof of ultrametricity by Panchenko, but in a somewhat complicated
way. The di¢ cult point is that the SK Gibbs distribution does not satisfy the identities.
This follows from Talagrand�s positivity result: The Ghirlanda-Guerra identities imply
positivity of the overlaps which is not the case for SK, at least not for h = 0; due
to symmetry. In order that they can be proved one needs a (small) perturbation of
the Hamiltonian which however does not a¤ect the free energy. The Ghirlanda-Guerra
identities in this framework were �rst proved in [27], [2], and variants were proved by
many other authors.

One of the basic insights Guerra had was that one should use stability properties
of the system under perturbations. The background of this idea was that the Parisi
solution itself has quite some stability properties. Therefore, the hope was that if one
can prove that the systems under investigation have similar stability properties, in the
N !1 limit, then one can derive properties which could in the end prove the validity
of the Parisi solution. This was the key idea for the derivation of the Ghirlanda-Guerra
identities by just using basic stability properties. At �rst, it was generally believed that
these identities are not su¢ cient to prove the Parisi formula, but in the end it turned out
that this was wrong. For a discussion of the background, see also the insightful paper
by Aizenman and Contucci [2].

We follow here Talagrand�s presentation in the second volume of [42], Chapter 12.
We will need the following result about convex functions:
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Exercise 6.1
Let f; g be convex function on R, x 2 R and y > 0: Then��f 0 (x)� g0 (x)�� � g0 (x+ y)� g0 (x� y) + w (x; y)

with

w (x; y) := y�1
1X

m=�1
jf (x+my)� g (x+my)j :

We write H for the SK-Hamiltonian including the parameters N; �; h which we don�t
explicitly write in the notation. So

H (�) :=
�p
N

X
1�i<j�N

gij�i�j + h
NX
i=1

�i:

The Ghirlanda-Guerra identities are proved only under a slightly perturbed Hamiltonian
where we keep the perturbation open for the moment:

Hper
x (�) = H (�) + xG (�) ;

where x 2 R and fG (�)g�2�N is a family of centered Gaussians which is independent of
H: We write Gx;G(n)x ; �x with the usual meaning, with the perturbed Hamiltonian. The
basic property used to derive the identities is the following concentration property:

Proposition 6.2
Assume that �2N := var (G (�)) is independent of �, and

�2N = O (N) ; �2N=
p
N !1: (6.1)

Then, for some constant C (�) > 0; not depending on h;N; and N large enoughZ 1

�1
�x

�����GN � �x (G)

N

����� dx � C (�) �NN
�3=4

Proof.

�x

�����GN � �x (G)

N

����� � �x

�����GN � Ex (G)
N

�����+ �x�����Ex (G)N
� �x (G)

N

����� : (6.2)

Let � (x) := N�1 logZx which is a random convex function, and  (x) := E� (x) : A
simple computation gives

�0 (x) = Ex
�
G

N

�
; �00 (x) =

1

N
varGx (G) ;

and therefore
 00 (x) =

1

N
�x

�
(G� Ex (G))2

�
:
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So, we obtain Z 1

�1
�x

 �
G

N
� Ex (G)

N

�2!
dx =

1

N

�
 0 (1)�  0 (�1)

�
:

By Proposition 1.3, we have

 0 (z) = �z

�
G

N

�
= z

�
�z (U1;1)� �(2)z (U1;2)

�
;

where Ui;k := N�1EG
�
�i
�
G
�
�k
�
. Evidently jUi;kj � N�1

p
EG2 (�i)EG2 (�k) = N�1�2N ,

so �� 0 (z)�� � 2 jzj �2N
N

; (6.3)

Z 1

�1
�x

 �
G

N
� Ex (G)

N

�2!
dx � 4N�2�2N ;Z 1

�1
�x

�����GN � Ex (G)
N

����� dx � p2q4N�2�2N =

p
8

N
�N = o

�
�NN

�3=4
�

For the estimate of the second summand in (6.2), more precisely its integral over x,
we represent it as

E
Z 1

�1

���0 (x)�  0 (x)�� dx:
� is a random convex function in x; and  its convex expectation. We �rst have to
estimate E j� (x)�  (x)j : � (x) is the �nite N free energy, and  (x) its expectation. We
use the concentration inequality in Theorem 1.1 much in the same way as in the proof
of Theorem 3.1. This yields that for some constant C > 0; we have

E j� (x)�  (x)j � C

q
�2N + x2�2N

N
:

We will use that for x stays bounded, and �N = O (N) ; and therefore, with some new
C (�)

E j� (x)�  (x)j � C (�)p
N

;

We apply now the exercise with f = �, g =  , jxj � 1, and y =
p
���1N N1=4: As we

assume (6.1), y � 1 for large enough N: Therefore, we get

Ew (x; y) � C (�) =y
p
N:
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So, using again (6.3)Z a

�a
E
���0 (x)�  0 (x)�� dx � C (�)

y
p
N
+

Z 1

�1

�
 0 (x+ y)�  0 (x� y)

�
dx

=
C (�)

y
p
N
+

Z 1+y

1�y
 0 (x) dx+

Z �1+y

�1�y
 0 (x) dx:

� C (�)

�
1

y
p
N
+
jyj �2N
N

�
;

and by our choice of y; we get that this is bounded by C (�) �NN�3=4. So, we have
proved the claim.

We apply this concentration inequality to a replicated system with Hper
x (�) : As

usual, we write �x also for
R
G(n)x dP with unspeci�ed n: For two replicas �i; �j , we write

Uij :=
1

N
EG

�
�i
�
G
�
�j
�
;

Let also f be a function �nN ! R which is bounded by 1:

Theorem 6.3
Let

�x :=

�������x (U1;n+1f)� 1

n

nX
j=2

�x (U1;jf)�
1

n
�x (U1;2) �x (f)

������ :
Then, for some constant C (�; n) > 0Z 1

�1
�xdx � C (�; n) �NN

�3=4 logN:

Proof. We write

�x := �x

�����GN � �x
�
G

N

������ :
Then

�x := �x

�
G

N
f

�
� �x

�
G

N

�
�x (f)

satis�es j�xj � �x; as f is assumed to be bounded by 1: Proposition 1.3 gives

�x

�
G

N

�
= x (� (U11)� � (U12)) ;

�x

�
G

N
f

�
= x

�Xn

j=1
�x (U1;jf)� n�x (U1;n+1f)

�
:

By our assumption, U11 does not depend on �. Therefore �x (U11f) = �x (U11) �x (f) ;
and we obtain

�x �
j�xj
n jxj �

�x

n jxj �
C (�; n) �N

jxjN3=4
:
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On the other hand, for any jxj � 1; we have �x � C�2N ; and so

�x � C (�; n)min
�
�NN

�3=4 jxj�1 ; �2N
�
:

For jxj �
�
�NN

3=4
��1

; the minimum is C�2N andZ (�NN3=4)
�1

�(�NN3=4)
�1
�xdx � 2C (�; n) �NN�3=4:

For jxj >
�
�NN

3=4
��1
, we estimateZ

(�NN3=4)
�1�jxj�1

�xdx � 2C (�; n) �NN�3=4 log
�
�NN

3=4
�

� C 0 (�; n) �NN
�3=4 logN;

with some new C 0: This proves the claim.
The interesting feature is that one can apply that to small perturbations which don�t

in�uence the free energy of the model. Take for instance

G (�) = "N

NX
k=1

gk�k

with "N ! 0. Then �2N = "2NN; and

Uij =
"2N
N
E

NX
k=1

g2k�
(i)
k �

(j)
k = "2NRij :

If f is a bounded function of R(n) = (Rij)i;j�n ; we getZ 1

�1

����x �R1;n+1f �R(n)��� 1

n

nX
j=2

�x

�
R1;jf

�
R(n)

��
� 1
n
�x (R1;2) �x

�
f
�
R(n)

�� ���dx � C (�; n) "�1N N�1=4:

For instance, if "N = N�1=8; this still converges to 0: On the other hand:

Exercise 6.4
For the Hamiltonian

Hper
x (�) :=

�p
N

X
1�i<j�N

gij�i�j + h
NX
i=1

�i + xN
�1=8

NX
i=1

gi�i;

one has
lim
N!1

1

N
logZperN;x = f (�; h) ;

i.e. the free energy is the same as that for SK-model.
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With other (small) perturbations, one can prove the Ghirlanda-Guerra identities. If
one takes

G (�) = "NN
�p=2+1

X
i1;i2;��� ;ip�N

gi1i2���ip�i1�i2 � � � � � �ip

with i.i.d. standard Gaussians gi1i2���ip , one gets Uij = "2NR
p
ij and therefore, with "N =

N�1=8 Z 1

�1

����x �Rp1;n+1f �R(n)��� 1

n

nX
j=2

�x

�
Rp1;jf

�
R(n)

��
� 1
n
�x

�
Rp1;2

�
�x

�
f
�
R(n)

�� ���dx � C (p; �; n)N�1=8:

With the help of these identities one can prove that suitably perturbed Hamiltonians
satisfy the Ghirlanda-Guerra identities in the N ! 1 limit, with using perturbations
which don�t a¤ect the free energy. For more details, see [42] Vol II, Ch. 12.

7 Ultrametricity

A somewhat vaguely formulated claim in the physics literature is that the Gibbs measure
is organized in a hierarchical way, and in the end by a Ruelle cascade. A concrete rigorous
picture is lacking, but the picture should be as follows. The con�guration space �N can
be divided into countably many �pure states�. This of course does not make any sense,
and has always to keep in mind, that in some sense, which is not made precise, this refers
to N ! 1. The pure states are then collections A� of con�gurations, and the Gibbs
measure, restricted to any of the A� should have the following property: The mean of the
�i under the Gibbs measure, conditioned on A� is m�

i which satis�es the TAP equation.
The �i, under the conditioned law, are essentially independent. In particular, this means
that two replicas �1i ; �

2
i under the conditioned law, have an overlap N

�1P (m�
i )
2 which

should be a constant qmax < 1:9 The Gibbs weights of the A� are distributed according
to a PD point process, i.e. the distribution is random.

A metric d is called an ultrametric, if it satis�es the stronger triangle inequality

d (x; z) � max (d (x; y) ; d (y; z)) :

An equivalent formulation is that if two balls (with respect to the metric) overlap, then
one is contained in the other. An example is the case of a rooted tree with positive
weights on the bonds, with the metric space given by the leafs and the weighted graph
distance. That�s essentially the only example, at least in the case of a metric space with
�nitely many elements: An ultrametric space is a space with a tree structure.

The general formulation of the ultrametricity conjecture for spin glasses, say with
Gaussian Hamiltonians HN (�), � 2 �N ; would be that the metric

d
�
�; �0

�
:=


HN (�)�HN

�
�0
�


2

9This has not to be taken completely literally, as evidently, there is a symmetry between � and ��,
at least if h = 0, and therefore negative overlaps are as likely as positive ones.
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is asymptotically an ultrametric. Take the SK-model without external �eld where

E
�
HN (�)�HN

�
�0
��2

= N
�
1�RN

�
�; �0

�2�
:

The ultrametricity conjecture would then say that for any " > 0

lim
N!1

�
(3)
N

��
�1; �2; �3

�
: d
�
�1; �3

�
� max

�
d
�
�1; �3

�
; d
�
�1; �3

��
+ "N

	
= 0: (7.1)

(As the distances are typically of order N; one should ask for deviations from the ul-
trametricity property by "N). In this form, it is not a proved statement for SK, and I
don�t know if everybody agrees that it should be correct.

7.1 A non-hierarchical version of the generalized random energy model

A simple case where ultrametricity has been proved is a non-hierarchical version of the
generalized random energy model which was investigated in two papers with Nicolas
Kistler: [13], [14].

The motivation was coming from the following trivial observation: In the SK-model
with N even, N = 2M; and h = 0; one can split the Hamiltonian:

HN (�) =
1p
N

X
1�i<j�M

gij�i�j +
1p
N

X
M+1�i<j�N

gij�i�j

+
1p
N

X
1�i�M

X
M+1<j�N

gij�i�j ;

and the three parts are independent. In an analogy, a random energy version of such a
structure would look like

H ((�1; �2)) = X1
�1 +X

2
�2 +X

1;2
�1;�2

where 1 � �1; �2 � 2N=2; and the X1; X2; X1;2 are independent Gaussians with vari-
ances of order N; perhaps not the same for the three di¤erent types. Say var

�
X1
�
=

�21N; var
�
X2
�
= �22N; and var

�
X1;2

�
= �21;2N: The covariances are then

1

N
E
�
H (�1; �2)H

�
�01; �

0
2

��
=

8>><>>:
�21 + �

2
2 + �

2
12 if �1 = �01; �2 = �02

�21 if �1 = �01; �2 6= �02
�22 if �1 6= �01; �2 = �02
0 otherwise

:

For this model, the L2 distance

d
�
(�1; �2) ;

�
�01; �

0
2

��
:=

q
E (H (�1; �2)�H (�01; �02))

2

is evidently not an ultrametric.
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It however turns out that the limiting Gibbs distribution is for all choices of �1; �2; �12
> 0 a Ruelle cascade, and the metric d is asymptotically an ultrametric in the sense of
(7.1). This is essentially based on simple combinatorial facts which reveal that non-
hierarchically organized con�gurations are less likely than hierarchically organized ones.
That is for such type of models not di¢ cult to see, but a similar combinatorial insight
is lacking for more complicated spin glasses.

I will shortly describe the approach for these non hierarchical GREMs.
Let�s �x the general setup. We �x K 2 N, write [K] := f1; : : : ;Kg and consider

� = (�1; : : : ; �K), where 1 � �i � 2N=K : For notational simplicity, we assume that N=K
is an integer. K will be �xed through all considerations and N !1. For J � [K] and
� is as above, we write �J for (�i)i2J : We write �[K] for the set of all con�gurations,
and �J for the set of con�gurations with indices in J: Evidently j�J j = 2N jJ j=K :

Let �2J � 0, J � [K] ; J 6= ;, be numbers satisfying
P

J2S �
2
J = 1. The latter is just

a normalization of no importance. We set

P :=
�
J � [K] : �2J > 0

	
:

The model is described by the following Hamiltonian

H (�) :=
X
J2P

XJ
�J
;

where for any J 2 P, the XJ
�J
are i.i.d. centered Gaussians with variance �2J : For

di¤erent J�s, the variables are independent.
We de�ne as usual

f (�) := lim
N!1

1

N
logZN;� =

1

N
E logZN;�;

where
ZN;� :=

X
�

exp [�H (�)]

The example we had before has K = 2 and P all non-void subsets of [2]. Another
exemple is K = 3 and P = ff1; 2g ; f2; 3g ; f1; 3gg in which case

H (�1; �2; �3) = X1;2
�1;�2 +X

1;3
�1;�3 +X

2;3
�2;�3 (7.2)

with independent Gaussian X contributions with the assigned variances.
It is clear that Derrida�s REM and GREM are special cases. The REM takes K = 1;

and the GREM has K > 1 and

P = ff1g ; f1; 2g ; : : : ; f1; : : : ;Kgg :

Actually, any nested P leads to a GREM. We call P nested if P = fJ1; J2; : : : ; Jmg
with

J1 � J2 � � � � � Jm:
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Any of our models can be coarse grained into GREMs in the following way: Choose
a sequence T = fA0; : : : ; Amg, Ai � [K], with

A0 = ; � A1 � A2 � � � � � Am = [K] : (7.3)

The Ai are not required to belong to P. Write

�̂2Aj :=
X

J2PAj nPAj�1

�2J ; 1 � j � m

where PB := fJ 2 P : J � Bg : Evidently
Pm

j=1 �̂
2
Aj
= 1: We then write HT (�) for the

corresponding Hamiltonian. From the very construction, for any N , the distance on the
con�guration space given by dT (�; �0) = kHT (�)�HT (�0)k2 is (deterministically) an
ultrametric.

We de�ne then
f (�;T) := lim

N!1

1

N
E logZN;T;

where ZN;T is the partition function corresponding to the above coarse grained GREM
model with P replaced by T and the corresponding parameters �̂.

Theorem 7.1
There exists a nested sequence T satisfying

f (�) = f (�;T) ;

and
f (�) � f (�;T)

holds for any T.

This is proved in [13], and reveals already a rough form of ultrametricity, as it
implies that the free energy is the same as that coming from a course graining with a
tree structure. �Real�ultrametricity of the Gibbs measure in the form of (7.1) requires
an irreducibility assumption which is complicated to state generally. An example where
this irreducibility is not satis�ed is when P contains disjoint sets A;B for which there
is no chain C0 = A;C1; : : : ; Cm�1; Cm = B; Ci 2 P with Ci \ Ci+1 6= ;; 1 � i � m� 1.
This is evidently satis�ed for instance in the example (7.2).

If the irreducibility assumptions is satis�ed, then the limiting Gibbs distribution
together with the naturally de�ned overlaps converges as N !1 to a Poisson-Dirichlet
point process with overlap distributions given by the coalescent. This is proved in [14],
but we will not go into that here.

We will give now explanations of the key points of the proof of the above theorem. A
simplifying feature is that one can compute f with a truncated second moment method,
leading to a variational formula which at �rst sight does not �look� ultrametric, but
where one sees later, that it in fact is.
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To evaluate the free energy, it is convenient to investigate �rst for � > 0

N (�) := # f� : H (�) � �Ng

where we don�t specify exactly, what � �N means. We can take

N (�) := #
n
� : �N �

p
N � H (�) � �N +

p
N
o
:

This grows exponential in N; at least for small � with

N (�) � 2N exp [�S (�)N ] ;

and we would get
f (�) = sup

�
f�� � S (�)g+ log 2;

where the supremum is restricted to � where N (�) 6= 0: In order to determine N (�),
one splits

� =
X
J2P

�J ;

and tries to evaluate for � = f�JgJ2S

N (�) := #
�
� : XJ

�J
� �JN; 8J 2 P

	
;

and optimizes over �. One restriction to have N (�) 6= 0 is certainly

�2J
2�2J

� jJ j
K
log 2;

as otherwise, there are simply not enough �J�s. However, this is not su¢ cient. One
needs that for all B � [K] ; not just for the ones in P, one has

X
J2P; J�B

�2J
2�2J

� jBj
K
log 2:

We write �+ for the set of � = f�JgJ2P satisfying �J � 0 and the above restriction.
Somewhat surprisingly, these restrictions are enough in the N !1 limit, and one gets

Lemma 7.2

f (�) = sup
�2�+

�X
J2P

�
��J �

�2J
2�2J

��
+ log 2:

The proof of this lemma resembles the proof in the REM case.
At �rst sight, the right hand side does not give any indication of ultrametricity.

However, one gets at least upper bounds by relaxing the conditions in �+: For any
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nested sequence T of B�s (which not necessarily belong to P) as de�ned above in (7.3),
de�ne

�+T :=

8<:� 2�+ :
X

J2P; J�B

�2J
2�2J

� jBj
K
log 2; 8B 2 T

9=; :

Evidently, �+ � �+T for all nested sequences, and therefore

f (�) � f (�;T) = sup
�2�+T

�X
J2P

�
��J �

�2J
2�2J

��
+ log 2:

The proof of Theorem 7.1 therefore follows from the following result:

Lemma 7.3
There exists a nested sequence T such that

sup
�2�+

�X
J2P

�
��J �

�2J
2�2J

��
= sup

�2�+T

�X
J2P

�
��J �

�2J
2�2J

��
(7.4)

As this lemma is really the crucial fact behind the ultrametricity (at least the one in
�weak�form), we give the construction of T.

For B � [K] write
� (B) :=

X
J2P; J�B

�2J ;

and for B � A

� (B;A) :=

s
K�1 (jAj � jBj)
� (A)� � (B) ;

�̂ (B) := min
A:B�A; B 6=A

� (B;A) :

We construct recursively an increasing sequence

A0 = ; � A1 � � � � � AM = [K] ; (7.5)

and numbers
�0 := 0 < �1 < �2 < � � � < �M <1

such that for any 0 � k �M the following properties hold:

C1(k)
�j = �̂ (Aj�1) ; j � k;

C2(k) For all j � k and any A � Aj�1 which satis�es �j = � (Aj�1; Aj), one has A �
Aj�1. In other words, Aj is the unique maximal set � Aj�1 achieving the minimum
over � (Aj�1; A) :
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For k = 0; the conditions are void. We now assume that A1; : : : ; Ak have been
constructed on the two conditions C1(k) and C2(k) are satis�ed. If Ak = [K] ; then the
construction is �nished. Otherwise, we prove the existence of Ak+1 such that C1(k+1)
and C2(k+1) are satis�ed. We put �k+1 := �̂ (Ak) : First remark that C1(k) and
C2(k) imply that for any A � Ak; A 6= Ak; one has

K�1 (jAj � jAkj) > � (A)� � (Ak) :

The construction of Ak+1 is �nished by proving that for any two sets A;A0 � Ak satis-
fying

� (Ak; A) = �
�
Ak; A

0� = �k+1; (7.6)

one also has
�
�
Ak; A [A0

�
= �k+1: (7.7)

Of course, by the very de�nition of �k+1, one has � (Ak; A [A0) � �k+1.
The crucial property is

�
�
A [A0

�
+ �

�
A \A0

�
� � (A) + �

�
A0
�
; (7.8)

which implies

jA [A0j � jAkj
K

� �2k+1
�
�
�
A [A0

�
� � (Ak)

�
� jAj+ jA0j � jA \A0j � jAkj

K
� �2k+1

�
� (A) + �

�
A0
�
� �

�
A \A0

�
� � (Ak)

�
= �2k+1

�
�
�
A \A0

�
� � (Ak)

�
� jA \A

0j � jAkj
K

� 0;

the �rst inequality by (7.8), and the equality by (7.6). The �nal inequality by the
de�nition of �k+1: We have therefore proved (7.7) which �nishes the construction of the
nested sequence (7.5).

It is then easy to prove that for � � 0; and with this nested sequence, one has (7.4).

7.2 In�nite overlap structures

We come now back to models of the Sherrington-Kirkpatrick type.
For mean-�eld models, there is no concept of an in�nite Gibbs measure, and therefore,

strictly speaking, also no mathematically sound de�nition of �pure states�. However,
for SK-type models, there is a way out, which was developed by a number authors,
Aizenman, Arguin, Ghirlanda, Guerra, and others, and �nally most successfully by
Panchenko. The basic observation is that essential all relevant information is encoded
in the law of the overlaps of replicas under the P-average of the in�nite product of the
Gibbs measure. To be precise: Consider an arbitrary random probability measure GN;!
on �N = f�1; 1gN , where we assume that the map ! ! GN;! (�) is measurable for any
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� 2 �N . The in�nite product G
NN;! is a probability measure on �

N
N , depending still

(measurably) on !. Then we de�ne the averaged measure by

� (d�)
def
=

Z
G
NN;! (d�)P (d!)

on �
NN , the latter equipped with the in�nite product �-�eld.
Next, we consider overlaps from �replicas�: Given

�
�`
	
`2N 2 �


N
N ; �` =

�
�`1; : : : ; �

`
N

�
;

we de�ne the in�nite matrix RN of overlaps with components

RN`;`0
def
=

1

N

NX
i=1

�`i�
`0
i :

The matrix elements are in [�1; 1], and the diagonal elements are 1. Evidently, the
matrix is symmetric and positive semide�nite. We write �N for the distribution of RN

under �. The set M of in�nite, symmetric, positive semi-de�nite matrices with entries
2 [�1; 1] is clearly a compact space under the topology of componentwise convergence.
The set of probability measures P (M) on this space is therefore a compact space, too,
under weak convergence. The sequence f�Ng has therefore convergent subsequences,
and one can consider the set of possible limits of subsequences, as N !1.

This concept is very ingenious: In classical (short range) systems, one would try to
consider limits limN!1 GN . This does not make sense for mean �eld models, as the
interactions between di¤erent sides vanish in the N ! 1 limit. The above concept
of limits limN!1 �N , maybe along subsequences, makes however perfectly sense, and
there is a beautiful structure theorem for the possible limits. It turns out that all
possible limits are generated in an abstract way similarly as the �nite N laws. The
limits can in fact be described through a randomization, as will be explained now. This
randomization acts as a kind of an �in�nite Gibbs measure�, but it is not constructed
from the original Gibbs measure, but only through the distribution of the overlaps, and
an abstract representation theorem.

The distribution �N has an important symmetry property: If � : N! N is a permu-
tation of �nitely many elements, let �̂ : M ! M be the mapping which exchanges the
indices of the matrices accordingly. Evidently �

�N �̂
�1 = �N where �N �̂�1 denotes the induced measure under the mapping �̂ . Let

P inv (M) be the set of probability measures on M which have this invariance property.
P inv (M) is a closed subset of P (M). We formulate now the key abstract representation
property for elements of P inv (M) : For that, let H be one of the standard (real) in�nite
dimensional separable Hilbert spaces with Borel-�-�eld H.

Theorem 7.4 (Dovbysh-Sudakov)
Any � 2 P inv (M) can be represented in the following way. There exist a probability
space (
;F ;P) and a Markov kernel G from (
;F) to (H � R+;H
 BR+) such that �
is the law of (H � R+)N 3 ((h`; a`))`2N !

�
hh`; h`0i

�
1� �`;`0

�
+ a`�`;`0

�
`;`0

2 M underR
P (d!)G
N (!; �) : (h�; �i is the inner product in H:)
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Essentially, the Dovbysh-Sudakov theorem says that any measure in P inv (M) is the
law of the matrix of inner products under the averaged in�nite product of a random
probability on H. There is a slight modi�cation on the diagonal, as this applies only to
the o¤-diagonal part of the random matrix, and the diagonal elements are produced by
a separate random mechanism, as described above.

For the case of the overlap distribution �N , the representation is already given by
the Gibbs distribution, as we can regard �N as a subset of a Hilbert space. The theorem
therefore constructs a kind of a substitute for the limit of the Gibbs measures.

7.3 The Ghirlanda-Guerra identities imply ultrametricity

The chapter here is based on Panchenko�s book [38] and the overview in [17].
As remarked in the last section, we consider a Markov kernel G from a probability

space (
;F ;P) to the unit ball of a separable real Hilbert space H. This means that
G (!; �) is for every ! 2 
 a probability measure on the unit ball of the Hilbert space,
and there is a measurable dependence on !: Consider then � to be the measure � :=R
G (!; �)
N P (d!) on HN.
It will occasionally be necessary to integrate functions � de�ned on 
�HN:Z �Z

� (!; �)G
N (!; d�)
�
P (d!) :

By an abuse of notation, we also write
R
�d� for that. For � =

�
�1; �2; : : :

�
2 HN, de�ne

the overlap Rij
def
=


�i; �j

�
. R = (Rij) is a random symmetric matrix which is positive

semide�nite. From the very de�nition of �, one sees that the distribution of (Rij) is the
same as that of

�
R�(i);�(j)

�
for any permutation � of �nitely many elements.

De�nition 7.5
We say that the pair (P;G) satis�es the Ghirlanda�Guerra identity, if

�
�
R1;N+1 2 Aj (Rij)i;j�N

�
=
1

N

NX
j=2

1A (R1;j) +
1

N
� (R12 2 A) : (7.9)

The main result of Panchenko is

Theorem 7.6
Assume (7.9). Then

� (R1;2 � min (R1;3; R2;3)) = 1: (7.10)

Theorem 7.7
Assume (7.9). Then the distribution of R under � is completely characterized by the
Parisi measure

� := � (R1;2 2 �) :

In the case where � is supported by a �nite set, the �-law of R is that coming from the
Ruelle cascades with this Parisi measure.
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Remark 7.8
a) That ultrametricity, Ghirlanda-Guerra and a �nite support imply that the distri-
bution of R is that of a Ruelle cascade is not very di¢ cult, and was well known
before. The really important step was the proof of the ultrametricity.

b) Using the coalescent process introduced in Section 4.3, the Ruelle overlap model
can directly be de�ned with an arbitrary Parisi measure, and without taking re-
course to a �nite support of �: There are however many steps, also in the second
part of [10], which use an approximation procedure by �nite stage cascades. It
would certainly be valuable to have this point cleared up, and have proofs avoid-
ing this approximation procedure.

There are a number of relatively easy properties one can draw from the Ghirlanda-
Guerra identities. For a proof of the following result, see [38], Theorem 2.15 and 2.16:

Proposition 7.9
If (P; G) satis�es the Ghirlanda-Guerra identities, then

a) (Talagrand�s positivity result)

� (R1;2 � 0) = 1:

b) There exists a constant q� � 1 such that

�
�

�i

2

H
= q�

�
= 1:

b) says that the self-overlaps are all constant. The matrix

R(3)
def
=

0@ R1;1 R1;2 R1;3
R2;1 R2;2 R2;3
R3;1 R3;2 R3;3

1A
therefore takes values in the set of symmetric positive semide�nite matrices with q� on
the diagonal. Denote by S(n) the compact support of the distribution of (Rij)i;j�n under
�. The ultrametricity claim (7.10) is equivalent with the statement that if0@ q� a b

a q� c
b c q�

1A
are in the support, then none of a; b; c is strictly smaller than the other two (among
a; b; c). Without loss of generality, we may assume that a � b � c. So, by a slight abuse
of notation, we write S(3) for the set of such triples (a; b; c) such that the above matrix
is in the support. Ultrametricity is violated if we �nd an (a; b; c) 2 S(3) with a < b. One
easily sees that one needs only to consider c < q�: If (a; b; q�) 2 S(3) then for any " > 0,
the �-probability to �nd �(2); �(3) with



�(2); �(3)

�
� q� � " is positive. But this implies
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(because


�(1)

2 = 

�(2)

2 = q�), that �(2); �(3) can be chosen arbitrarily close. This

easily implies that (a; b; q�) with a < b cannot be in S(3). Therefore, the di¢ cult task
remains to prove

a < b � c < q� =) (a; b; c) =2 S(3): (7.11)

Panchenko�s proof relies an the following replication property

Proposition 7.10
Assume that (a; b; c) 2 S(3), and that the Ghirlanda-Guerra identities are satis�ed.
Then for every m, there exists a 3m�3m matrix (rij)i;j�3m 2 S(3m) which satis�es with
Ik := f(k � 1)m+ 1; : : : ; kmg ; k = 1; 2; 3:

�
rij � c; 8i 6= j (7.12)

�

rij =

8<:
a for i 2 I1; j 2 I2
b for i 2 I1; j 2 I3
c for i 2 I2; j 2 I3

(7.13)

It is not di¢ cult to see that the above proposition implies a = b if a � b � c < q�:
Put

��i :=
1

m

X
j2Ik

�j

If �i 2 H satisfy


�i; �j

�
= rij and the rij satisfy (7.13), then

��1; ��2

�
= a;



��1; ��3

�
= b;



��2; ��3

�
= c:

Furthermore 


��k


2
H
=
q�

m
+

1

m2

X
i6=j; 2Ik



�i; �j

�
� q� � c

m
+ c:

Therefore, 

��2 � ��3

2
H
=


��2

2

H
+


��3

2

H
� 2



��2; ��3

�
� 2q

� � c
m

+ 2c� 2c = 2 (q� � c)
m

;

On the other hand

b� a =


��1; ��3

�
�


��1; ��2

�
�


��1



H



��2 � ��3


H
� 2 (q� � c)

m

for any m, implying b = a:
Therefore, in order to prove ultrametricity under Ghirlanda-Guerra, the crucial step

is to prove the replication property of Proposition 7.10.
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The basis of the proof of this proposition is a proof that the Ghirlanda-Guerra iden-
tities imply a sophisticated invariance property of �. Let f : R! R be bounded and
measurable and de�ne Ff : 
�H ! R by

Ff (!; �) :=

Z
exp

�
f
�

�; �0

���
G
�
!; d�0

�
: (7.14)

Proposition 7.11
Let N 2 N and � be a measurable real valued function on the space of n � n-matrices
with entries bounded by 1, and let f; F be as above. If the Ghirlanda-Guerra identities
are satis�ed, then

� (�) = �

0@�exp
hPn�1

i=1 f (Ri;n) + � (f (R1;2))
i

Ff (�n)
n

1A :

Here as usual Rik =


�i; �k

�
:

Remark 7.12
We are stressing here a bit the notation. The function which is integrated on the right
hand side is not a function of � alone as Ff also depends explicitly on !. So the
integral on the right hand side is an integral with respect to the semi-direct product
measure P (d!)G(n)! (d�). The somewhat puzzling point is that such an equation can be
a consequence of the Ghirlanda-Guerra identities which refer only to

R
G(n)! P (d!) :

Proof. It seems to be di¢ cult to get the identity directly out from Ghirlanda-
Guerra. The trick is to replace f by tf; t 2 [0; 1] ; and compute derivatives. It turns
out that of the expression on the right hand side, arbitrary derivatives at t = 0 can
then be expressed in terms of � expectations, and are all 0 by Ghirlanda-Guerra. Using
analyticity in t, on the obtains that as a function of t; the expression is constant, at
least in some interval containing 0: Using some additional bounds, one obtains that it is
constant for all t 2 [0; 1]. For the details, see the monograph by Panchenko [38].

The computation of the derivatives is a bit messy but not di¢ cult. I do it for the
�rst derivative. The reader will have no di¢ culty to do the higher orders. Put

' (t) := �

0@�exp
h
t
Pn�1

i=1 f (Ri;n) + t� (f (R1;2))
i

Ftf (�n)
n

1A :

d' (t)

dt
= �

0@��R(n)�"n�1X
i=1

f (Ri;n) + � (f (R1;2))

#
exp

h
t
Pn�1

i=1 f (Ri;n) + t� (f (R1;2))
i

Ftf (�n)
n

1A
� n�

0@��R(n)� exp
h
t
Pn�1

i=1 f (Ri;n) + t� (f (R1;2))
i

Ftf (�n)
n+1

dFtf (�
n)

dt

1A ;
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dFtf (�
n)

dt
=

Z
f
�

�n; �0

��
exp

�
tf
�

�; �0

���
G
�
!; d�0

�
:

This leads to

d' (t)

dt

����
t=0

= �

 
�
�
R(n)

� n�1X
i=1

f (Ri;n) + � (f (R1;2))

!!
� n�

�
�
�
R(n)

�
f
�

�n; �n+1

���
;

which is 0 by Ghirlanda-Guerra.

Corollary 7.13
Let w : R! R be a bounded measurable function, and f; F;� as above. De�ne

Sw (!; �) :=

Z
w
�

�; �0

��
G! (d�) ;

Tw (!; �) := Ff (!; �)
�1
Z
w
�

�; �0

��
ef(h�;�

0i)G! (d�) :

Then, for a measurable function  : R! R

�
�
�
�
R(n)

�
 (S (�n))

�
= �

0@��R(n)� (T (�n)) exp
hPn�1

i=1 f (Ri;n) + � (f (R1;2))
i

F (�n)n

1A :

Proof. It su¢ ces to prove the statement for polynomials  . So, we take  (x) = xk.

�
�
R(n)

�
T (�n)k =

�
�
R(n)

�
F (�n)k

Z
exp

�Xk

j=1
f (Rn;n+j)

�

�
kY
j=1

w (Rn;n+j)G
�
�; d�n+j

�
:

Therefore, if we put

�0
�
R(n+k)

�
def
= �

�
R(n)

� kY
j=1

w (Rn;n+j) ;

the right hand side of the claimed equation is

�

0@�0 �R(n+k)� exp
hPn�1

i=1 f (Ri;n) +
Pn+k

i=n+1 f (Ri;n) + � (f (R1;2))
i

F (�n)n+k

1A
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which, by the previous proposition, equals

�

0@��R(n)� kY
j=1

w (Rn;n+j)

1A = �
�
�
�
R(n)

�
S (�n)k

�
:

Proof of Proposition 7.10. The replication property follows by induction of the
following statement:

Claim 7.14
Let A 2 S(n) satisfy a�n

def
= max (a1;n; : : : ; an�1;n) < q�: Then there exists an extension

A0 2 S(n+1) of A such that ai;n+1 = ai;n for i � n� 1; and an;n+1 � a�n: (Extension here
means that A is the n � n-matrix obtained from removing the last column and row of
A0.)

To prove the claim, we will prove for all " > 0, one has

�
�
R(n) 2 U" (A) ; jRi;n+1 � ai;nj � "; i � n� 1; Rn;n+1 < a�n + "

�
> 0; (7.15)

where U" (A) denotes the componentwise "-neighborhood of A, which proves the claim.
The argument is best done indirectly, by assuming that for some " > 0

�
�
R(n) 2 U" (A) ; jRi;n+1 � ai;nj � "; i � n� 1; Rn;n+1 < a�n + "

�
= 0 (7.16)

De�ne
�
�
�(n�1)

�
def
=
�
� 2 H :

��
�; �i�� ai;n�� � "; i � n� 1
	
;

and let A0 be the matrix obtained from A by erasing the last row and the last column.
A reformulation of (7.16) gives

�
�
R(n�1) 2 U"

�
A0
�
; �n; �n+1 2 �

�
�(n�1)

�
;


�n; �n+1

�
< a�n + "

�
= 0:

We use Corollary 7.13 with w (x) = 1x�a�n+", and f = tw with t � 0 which will be
chosen later. Then

Sw (!; �
n)

def
= G (!; f� : h�; �ni � a�n + "g) :

A 2 S(n) implies that given " > 0, there exist � > 0, 0 < p < 1=2; such that

�
�
R(n) 2 U" (A) ; p � S (�n) � 1� p

�
� �: (7.17)

F according to (7.14) is:

F (!; �n) = S (!; �n)
�
et � 1

�
+ 1 � 1:
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By Corollary 4.2, applied to  (x) = 1p�x�1�p, we get

�

 
e
Pn�1
i=1 f(Ri;n)+�(f(R1;2))

F (�n)n
;R(n) 2 U" (A) ; p � T (�n) � 1� p

!
� �:

Evidently, f (Ri;n) = 0 on R(n) 2 U" (A) ; and

� (f (R1;2)) = t� (R1;2 � a�n + ") = t
;

where 
 < 1: Therefore, as F (�n) � 1; we get

�
�
R(n) 2 U" (A) ; T (�n) � 1� p

�
� �e�
t: (7.18)

An elementary computation gives that T (!; �n) � 1� p implies

S (!; �n) � 1� p
p
e�t:

Consider now

�
�
!; �(n�1)

�
def
=
n
�n 2 H : �n 2 �

�
�(n�1)

�
; T (!; �n) � 1� p

o
;

and
�
def
=
n�
!; �(n�1)

�
2 
�Hn�1 : G

�
!;�

�
!; �(n�1)

��
> 0
o

Then

�
�
R(n) 2 U" (A) ; T (�n) � 1� p

�
=

Z
P (d!)

Z
U"(A0)

G
(n�1)
�
!; d�(n�1)

�
G
�
!;�

�
!; �(n�1)

��
:

For any
�
!; �(n�1)

�
2 �; we can choose a �0 2 �

�
!; �(n�1)

�
for which one has

T
�
!; �0

�
� 1� p =) S

�
!; �0

�
� 1� p

p
e�t:

However, �xing this �0, almost all �n 2 �
�
�(n�1)

�
satisfy h�0; �ni � a�n + " by (7.16),

and therefore, for any
�
!; �(n�1)

�
2 �; one has

G
�
!;�

�
!; �(n�1)

��
� G

�
!;�

�
�(n�1)

��
� S

�
!; �0

�
� 1� p

p
e�t:

Therefore

�
�
R(n) 2 U" (A) ; T (�n) � 1� p

�
�
Z �

P
G
(n�1)
��

d
�
!; �(n�1)

��
1�

��
!; �(n�1)

��
G
�
!;�

�
!; �(n�1)

��
� 1� p

p
e�t:
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As the left hand side is � �e�
t, by (7.18), it follows that

� � 1� p
p
e
te�t;

which leads to a contradiction when choosing t large enough, as 
 < 1:

8 Ultrametricity implies the Parisi formula

Panchenko�s proof of ultrametricity sketched in the last section gives a proof of ultra-
metricity for the SK- and related models, not quite in the form given in (7.1), but for a
model with a slightly perturbed Hamiltonian. The reason is that the Ghirlanda-Guerra
identities can be proved only for the SK-model with a perturbed Hamiltonian. We give
a rough outline of the chain of arguments. Unfortunately, it is still technically quite
involved.

The argument is based on (5.3) with M = 1 and the �� given by the SK Gibbs
distribution G0N with slightly changed temperature parameter which gives

AN := E logZN+1 � E logZN
= Elog

X
�2�N ; �2�1

G0N (�) exp [(�y�;i + h) � ] (8.1)

� Elog
X

�2�N
G0N (�) exp

h
�
p
1=2��

i
Remark, that we can represent �� as

�� = �N;�: =
1p

N (N + 1)

X
1�i<j�N

g0ij�i�j

with new independent g0ij : Therefore,

AN = E log E
0
N cosh (�yN )� E log E

0
N exp [�yN ] + log 2;

and
1

N
E logZN =

1

N

N�1X
j=0

Aj

leading to

f (�) = lim
N!1

1

N
E logZN � lim inf

N!1
AN : (8.2)

This is the basis for getting a lower bound by relating (8.1) to the Parisi expression.
Of course, if one could prove the existence of limN!1AN , and identify it with the Parisi
expression, one would have �nished the proof of the Parisi formula. This seems not to
be possible. However, the upper bound for f is known by the Guerra�s interpolation
technique.
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The task which remains is to prove that the right-hand side of (8.2) is bounded
from below by the Parisi expression. This is based on the fact that a slightly perturbed
SK-model GpertN satis�es the Ghirlanda-Guerra identities as explained in Section 6.

It then follows that any weak limit of the distribution under �pert def=
R
Gpert
NN;� dP

of the overlaps, where P governs the laws of the Gaussian interaction variables, along a
subsequence,

RNi;j
def
=

1

N

NX
k=1

�ik�
j
k;

has the exchangeability property, which, by the Dovbysh-Sudakov theorem, implies the
representation as the law of the inner products in a Hilbert space H, under the law
given by a random measure GDS on H, with an abstract probability space behind, which
we denoted by

�

;F ;PDS

�
. The fact that RN under �pert satis�es approximative form

of Ghirlanda-Guerra implies that
�
GDS;PDS

�
satis�es Ghirlanda-Guerra exactly, and

therefore, by the Theorems 7.6 and 7.7, is ultrametric, and determined by the Parisi
measure � (dx) = �DS (R1;2 2 dx). In case � has �nite support, the distribution is that
coming from the Ruelle cascade with this Parisi measure. As we don�t know anything
about convergence along the original sequence, there can be arbitrarily many of such
Dovbysh-Sudakov pairs, and Parisi measures.

It�s now tempting to apply this to the evaluation of AN for large N: We �rst choose
a subsequence, such that ANk !k!1 lim infN!1AN . Then we choose a further sub-
sequence of fANkg such that the law of RN along this subsequence converges to the
law of the inner products under �DS. We would like to conclude that lim infN!1AN
can be expressed through �DS. This is not quite obvious as the AN cannot directly be
expressed through the overlaps. It requires an additional approximation argument. The
basic observation is that the covariances of yN (�), and �N (�) are expressed in terms
of the overlaps of �. This implies that AN can be approximated by functions of �nite
restrictions of the overlap matrix. In case the Parisi measure � has �nite support, one
can conclude in this way, using Lemma 5.7 that

lim inf
N!1

AN = P (�) � inf�P (�) :

In the case of a general Parisi measure, appearing through the limits along the subse-
quences de�ned above, an additional approximation is needed, but one concludes that

lim inf
N!1

AN � inf�P (�) :

Together with Guerra�s upper bound, this �nally proves the Parisi formula.

9 Appendix: The Curie-Weiss model

Given a �nite set � and a function H : �! R, non-random for the moment, i.e. H (�)
is just a number not a random variable, then the Gibbs measure on � with inverse

95



temperature � > 0 is de�ned by

G� (�) :=
exp [�H (�)]

Z�
;

with the partition function

Z� :=
X
�

exp [�H (�)] :

As remarked before, the physicists would write exp [��H (�)] ; but that would mean that
all the time we would have to put a minus sign before our Hamiltonians to compensate
for that, so I don�t do it.

One of the simplest non-trivial mean-�eld models in classical statistical mechanics
is the Curie-Weiss model which has a non-random Hamiltonian, de�ned on �N :=
f�1; 1gN by

HN (�) :=
1

2N

NX
i;j=1

�i�j =
1

2N

 
NX
i=1

�i

!2
; � = (�1; : : : ; �N )

The diagonal term
P

i=j is just 1; and this cancels out with the normalization and does
not in�uence the Gibbs measure. We could therefore as well just take the sum

P
i6=j

which is often done. The key point is that this Hamiltonian re�ects an interaction of
any individual spin �i with the average of the other spins �j:j 6=i�j= (N � 1) : The total
�interaction energy�is then

1

2

X
i

�i
�j:j 6=i�j
N � 1 =

1

2

1

N � 1
X
i6=j

�i�j :

That there is N � 1 instead of N is of no importance for large N:
Occasionally, one also has a so-called external �eld which give the �i a global tilt.

Then the Hamiltonian is

HN (�) :=
1

2N

NX
i;j=1

�i�j + h
NX
i=1

�i:

h 2 R is an additional parameter. The Curie-Weiss Gibbs measure is de�ned by

G�;h;N (�) :=
1

Z�;h;N
exp

24 �

2N

NX
i;j=1

�i�j + �h

NX
i=1

�i

35 ;
where

Z�;h;N :=
X
�2�N

exp

24 �

2N

NX
i;j=1

�i�j + �h

NX
i=1

�i

35 : (9.1)
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This model can easily be analyzed by Stirling�s formula. The point is that the
Hamiltonian is a function of ��N := 1

N

PN
i=1 �i :

HN (�) = N

�
1

2
��2N + h��N

�
;

and Z can be written as expectation under standard coin tossing:

ZN = 2
NECTN exp

�
N�

�
��2N=2 + h��N

��
:

The coin tossing expectation ECT can be computed in terms of Stirling�s formula up to
any precision one likes. The rough large deviation behavior, in the usual large deviation
jargon, is

PCTN (��N � x) � exp [�NI (x)]
with the entropy function

I (x) =

�
1+x
2 log (1 + x) + 1�x

2 log (1� x) if x 2 [�1; 1]
1 if x =2 [�1; 1] : (9.2)

Therefore,

f (�; h) = lim
N!1

1

N
logZN = log 2 + sup

x

�
�

2
x2 + �hx� I (x)

�
:

For those who are not familiar with these type of arguments, I leave it as an exercise to
derive it from Stirling�s formula.

The function x! I (x) = 1+x
2 log (1 + x) + 1�x

2 log (1� x) looks as follows

­1.0 ­0.8 ­0.6 ­0.4 ­0.2 0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

x

y

It is of course even. Furthermore, the function is continuous on the full interval [�1; 1]
with

lim
x!�1

I (x) = log 2;

but the tangent diverges as x ! �1: The behavior of the Curie-Weiss model is deter-
mined by the function x ! g�;h (x) :=

�
2x

2 + �hx � I (x) : This depends heavily on �
and h:
Case h = 0 : In this case the above function is even, but there is a crucial di¤erence
depending on whether � � 1 or � > 1: Below there are plots for � = 1=2; and � = 3=2:
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The crucial di¤erence is coming from the second derivative:

dg

dx
= �x�

�
1

2
log (1 + x)� 1

2
log (1� x)

�
;

d2g

dx2
= � � 1

2 (1 + x)
� 1

2 (1� x) :

For � < 1; the second derivative is negative everywhere, and therefore the function is
strictly concave with a unique maximum at 0: This remains true for � = 1; where the
second derivative is 0 at 0; but negative for x 6= 0: However, for � > 1; the second
derivative is positive at 0; and negative for x su¢ ciently close to �1: Therefore, 0 is a
local minimum, and the maxima of the function are elsewhere. Setting the �rst derivative
0; one gets the equation m = tanh (�m) for the maximum m. For � � 1; there is just
the solution 0 for this equation, but for � > 1; there are 2 other solutions �m�:

The free energy f (�; 0) is log 2 for � � 1; and starts to increase for � > 1:
Case h 6= 0 : In that case, 0 is never a maximum. The curve still depends on the value of
�; but it has always one unique global maximum, although it may have a local maximum
besides that. Below are two examples, both with h = 1=20; and the �rst with � = 1=2;
while the second with � = 3=2 :
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It is easily checked that there is a unique m�;h 6= 0;�1, such that

g�;h (m�;h) = max
x2[�1;1]

g�;h (x) :

This value m�;h satis�es the mean-�eld equation

m = tanh (�h+ �m) ; (9.3)

as is easily checked.
We summarize the basic results:

Theorem 9.1
a) Let Z�;h;N be the partition function of the Curie-Weiss model as de�ned in (9.1).
Then

f (�; h) = lim
N!1

1

N
logZ�;h;N

exists is given by
f (�; h) = sup

x2[�1;1]
g (�; h) + log 2:
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b) If h 6= 0; then ��N converges in P�;h;N -probability to m�;h; i.e. for any " > 0 one
has

lim
N!1

G�;h;N
�����SNN �m�;h

���� � "

�
= 0:

c) If h = 0 and � � 1; then ��N converges in P�;0;N -probability to 0: If � > 1; then
the P�;0;N -law of SN=N converges to

1

2
�m�

+
1

2
��m�

:

This means that for any 0 < " < m�; one has

lim
N!1

G�;0;N
�����SNN �m�

���� � "

�
= 1=2;

lim
N!1

G�;0;N
�����SNN +m�

���� � "

�
= 1=2:

Proof. Left as an exercise. All the statements follow easily from Stirling�s formula.

m�;h is the mean magnetization ��N in the N ! 1 limit under the Gibbs measure.
In physics literature, the equation (9.3) is usually derived via a �cavity�argument. For
that, one argues that m should be the Gibbs expectation for a single spin. By symmetry,
it doesn�t matter which one takes, so we take the last one:

m � E�;h;N (�N ) =

P
� �N exp

h
���N 1

N

PN�1
j=1 �j � �h�N � �HN�1

�
�(N�1)

�i
P

� exp
h
���N 1

N

PN�1
j=1 �j � �h�N � �HN�1

�
�(N�1)

�i ;

where �(N�1) = (�1; : : : ; �N�1) ; and HN�1 is the Hamiltonian on the �rst N � 1 spins.
Summing �rst �N out in this expression, and the other ones afterwards, one gets

E�;h;N (�N ) =
E�;h;N�1 sinh

�
� 1
N

PN�1
j=1 �j + �h

�
E�;h;N�1 cosh

�
� 1
N

PN�1
j=1 �j + �h

� :
Under the Gibbs measure on the �rst N � 1 spin variables, one should have

1

N

N�1X
j=1

�j �
1

N � 1

N�1X
j=1

�j � m;

the last approximation by disregarding possible �uctuations around the mean. By this
chain of arguments, one gets

E�;h;N (�N ) � tanh (�h+ �m) ;
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which leads in the N !1 limit to (9.3). In spin glass theory, there are similar equations,
the TAP (for Thouless, Anderson, Palmer) equations, which however are much more
delicate to discuss and prove. We come to that later on.

It is not di¢ cult to get more information than in Theorem 9.1 out with some re�ne-
ments of the arguments. For instance one can prove that in the �one-phase region�, i.e.
either h 6= 0 or h = 0 and � � 1; the spins under G�;h;N behave like i.i.d. spins with
possibly tilted mean. To be precise, for m 2 (�1; 1) consider Bernoulli measure with
mean, i.e. pm (1) := (1 +m) =2; pm (�1) = 1� pm (1) = (1�m) =2:

Proposition 9.2
Under the above conditions, one has for any K 2 N :

lim
N!1

G�;h;N (�1 = i1; : : : ; �K = iK) =
YK

j=1
pm (ij) ;

where m = 0 for h = 0; � � 1; and m = m�;h for h 6= 0:

Proof. Left as an exercise.
The proposition states that in the one-phase region, the Gibbs-measure under the

N !1 limit is simply coin tossing with possibly tilted mean. There is a similar state-
ment also in the two-phase region, i.e. � > 1; h = 0: In that case the Gibbs distribution
converges to a mixture of two tilted Bernoulli measures. Here is the statement, the proof
is left is also left as an exercise:

Proposition 9.3
Assume � > 1 and h = 0; and let m� be the positive solution of m = tanh (�m) : Then
for any K; and any i1; : : : ; iK 2 f�1; 1g :

lim
N!1

G�;0;N (�1 = i1; : : : ; �K = iK) =
1

2

YK

j=1
pm�

(ij) +
1

2

YK

j=1
p�m�

(ij) :

These properties of the Curie-Weiss model are coming under the name �symmetry
breaking�. The coin tossing measures are the so-called �pure states�. If h 6= 0 or h = 0
and � � 1; the Gibbs measure converges to a �pure state�. In the case h = 0; � > 1; the
Gibbs measure converges to a mixture of two symmetric pure states. As in that case,
the relevant pure states, namely coin tossing with mean m� and �m� are not symmetric
under sign change, one says that the model �breaks�the symmetry, although, of course,
the limiting measure is still symmetric.

Even the very simplest mean �eld spin glasses have a much more complicated sym-
metry breaking.
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