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THE CANONICAL ARITHMETIC HEIGHT OF SUBVARIETIES
OF AN ABELIAN VARIETY
OVER A FINITELY GENERATED FIELD

ATSUSHI MORIWAKI

INTRODUCTION

This paper is the sequel of [2]. In [4], S. Zhang defined the canonical height of subvarieties
of an abelian variety over a number field in terms of adelic metrics. In this paper, we
generalize it to an abelian variety defined over a finitely generated field over Q. Our way is
slightly different from his method. Instead of using adelic metrics directly, we introduce an
adelic sequence and an adelic structure (cf. §83.1).

Let K be a finitely generated field over Q with d = tr. dego(K), and B = (B; Hy, ... , Hy)
a polarization of K, i.e., B is a projective arithmetic variety whose function field is K and
Hy,...,H, are nef C>- hermltlan line bundles on B. Let A be an abelian variety over K,
and L a symmetric ample line bundle on A. Fix a projective arithmetic variety A over B
and a nef C*°-hermitian Q-line bundle £ on A such that A is the generic fiber of A — B and
L is isomorphic to L on A. Then we can assign the naive height h X) to a subvariety

X of Az. Indeed, if X is defined over K, h& 7 (X) is given by

(Aﬁ)(

deg (1(£] ) X418 (mi(H)) - @ (w2 (Ha)))
(dim X 4 1) deg(L|§ng)
where X is the Zariski closure of X in A and wy : X — B is the canonical morphism.

The canonical height ﬁ?(X ) of X with respect to L and B is characterized by the following
properties:

(a) hB(X) > 0 for all subvarieties X of Az
(b) There is a constant C' such that

WP (X)) — hf;w)(X) <C

Y

for all subvarieties X of Ag.
(c) hP([N](X)) = N2hB(X) for all subvarieties X of A% and all non-zero integers N.
The main result of this paper is the following theorem, which is a generalization of [§].

Theorem (cf. Theorem 5.1). If the polarization B is big (i.e., Hy, ..., Hq are nef and big),
then, for a subvariety X of Az, the following are equivalent.
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(1) X is a translation of an abelian subvariety by a torsion point.
(2) The set {x € X(K) | hi(x) < €} is Zariski dense in X for every e > 0.
(3) The canonical height of X with respect to L and B is zero, i.e., h?(X) = 0.

Next let us consider a case where a curve and its Jacobian. Let X be a smooth projective
curve of genus g > 2 over K, and J the Jacobian of X. Let © be a symmetric theta
divisor on J, and j : X — J a morphism given by j(z) = wx — (29 — 2)z. Then, since
(04(0)) = W (0= we can assign the canonical adelic structure W% towyx. Asa corollary
of the above theorem, we have the following, which is a generalization of [3].

Corollary (cf. Corollary 5.4). If the polarization B is big, then the adelic self intersection

number of WS with respect to B is positive, i.e., (W% - W% )5 > 0.

1. PRELIMINARIES

For the basic notation of Arakelov Geometry, we follow the paper [2].
Let X be a projective arithmetic variety with d = dim Xq, and L a C*°-hermitian Q-line
bundle on X. First we review several kinds of positivity of L.

eample: We say L is ample if L is ample, ¢;(L) is a semipositive form on X (C), and, for
a sufficiently large n, H°(X, L®") is generated by {s € HY(X, L") | ||s]|sup < 1}.

enef: We say L is nef if ¢; (L) is a semipositive form on X (C) and, for all one-dimensional
integral closed subschemes I' of X, deg (Z}F) > 0.

ebig: L is said to be big if tky H°(X, L®™) = O(m?), and there is a non-zero section s of
HO(X, L®™) with ||s||sup < 1 for some positive integer n.

eQ-effective: We say L is Q-effective, denote by L = 0, if there are a positive integer
n and a non-zero section s € H(X, L®") with ||s|/sup < 1. Moreover, if U is a non-empty
Zariski open set of X with div(s) € X \ U, then we use the notation L 7Zy 0. Let M be

another C'**-hermitian Q-line bundle on X. If Lo =0 (resp. L ® e v 0), then
we denote this by L 77 M (resp. L my M).

Proposition 1.1. (1) If L is a nef C*-hermitian Q-line bundle and A is an ample C°°-
hermatian Q-line bundle, then L + €A 1s ample for all positive rational numbers €.
(2) If Ly, ..., Lay1 are nef C*°-hermitian Q-line bundles, then

deg (@1(L1) - -+ @1 (Tasr)) > 0.

(3) If Ly, ..., Ly are nef C>®-hermitian Q-line bundles and M is a Q-effective C*°-hermitian
Q-line bundle, then

deg (&1(Ly) -+ @ (La) - & (M) > 0.

(4) Let Ly,...,Lgy1 and My, ..., Mg, be nef C®-hermitian line bundles on X. If M;
L; for every i, then

ae\g (El(Ml) o -El(MdH)) > ae\g (El(fl) o -51(Zd+1)) :
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Proof. (1), (2) and (3) was proved in [2, Proposition 2.3]. (4) follows from the following
equation:

deg (&1(1) -+ @ (M) — deg (@1(T0) - @1(Lasn)
= Z deg (@1(L1) - &(Tia) - (@ (My) = &(Ly)) - & (Mia) -+ & (Mapa)) -

a

Moreover, the following lemmas will be used in the later sections.

Lemma 1.2. Let X be a projective arithmetic variety, and L a big C™-hermitian Q-line
bundle on X. Let x be a (not necessarily closed) point of X. Then, there are a positive
number n and a non-zero section s € H°(X, L®™") with s(x) =0 and [|||sup < 1.

Proof.  Since rkz H(X, L®™) = O(m?), there are a positive number ny and a non-zero
section sg € H°(X, L®™) with so(z) = 0. On the other hand, there is a non-zero section
s1 € HY(X, L®™) with [|s1]|sup < 1 for some positive integer n;. Let ns be a positive integer
with

Isollspllss 122, < 1.

Thus, if we set s = 5o @ ;"2 € HO(X, L®+mn2) then we have the desired assertion. O

Lemma 1.3. Let B be a projective arithmetic variety and K the function field of B. Let
X be a projective variety over K, and L an ample line bundle on X. Then, there are a

projective arithmetic variety X over B, and an ample C™-hermitian Q-line bundle £ on X
such that X is the generic fiber of X — B and L coincides with L in Pic(X) ® Q.

Proof.  Choose a sufficiently large integer n such that ¢ en| gives rise to an embedding
X — PX¥. Let X be the Zariski closure of X in Py = PY x B. Since Opn (1) is relative
ample, there is an ample line bundle @ on B such that A = Opn (1) ® 7%(Q) is ample, where
7 is the natural projection P§ — B. We choose a C*-hermitian metric of A such that

A= (A, | is ample. Thus, if we set £ = (X}X)@/n, then we have our assertion. O

Next, let us consider the following relative positivity.

em-nef (nef with respect to a morphism): Let 7 : X — B be a morphism of projective
arithmetic varieties, and L a C'*®-hermitian Q-line bundle on X. We say L is nef with respect
to X — B (or m-nef) if the following properties are satisfied:

(1) For any analytic maps h : M — X(C) from a complex manifold M to X(C) with
m(h(M)) being a point, ¢;(h*(L)) is semipositive.
(2) For every b € B, the restriction L|X3 of L to the geometric fiber over b is nef.

Then, we have the following lemma.

Lemma 1.4. Let m : X — B be a morphism of projective arithmetic varieties with d =
dim Bg and e = dim(X/B). Let Hy,...,Hg be nef C®-hermitian Q-line bundles on B.
Then, we have the following.
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(1) Let Ly,. .., L. be m-nef C®-hermitian Q-line bundles on X, and L a C*>-hermitian
Q;L—lz'ne bundle on X. If there is a non-empty Zariski open set U of B with L -1 0,
then

deg (1(Lh) - a(Le) - & (L) - & (nHy) - - (" Ha)) > 0.
(2) Let Ly,... ,Leyy and fll, . 7Z;+1 be m-nef C*°-hermitian Q-line bundles on X. If
there is a Zariski open set U of B such that L; T () f; for all @, then
deg (A1(L1) - @(Leyr) - & (nHy) - - &1 (n"Hy))
> deg (A1(T)) - au(Trn) -6 H) -6 (r ' Hy) )

Proof. (1) By our assumption, there are a positive integer n and a non-zero section
s € HY(X,L®") such that ||s|]lsup < 1 and Supp(div(s)) € X \ 7 (U). Let div(s) =
a1A1 + -+ + a, A, be the decomposition as cycles. Then,

(1.4.1) ndeg (&(L1)--- & (L) - &(L) - & (xHy) - - &1 (n Hy))

=Y aideg (a(Ta] ) a(Te

=1

First, by the Fubini’s theorem,

/ — log(HsH)cl(fl) Ao A cl(fe) A cl(ﬂ*ﬁl) A A Cl(’/T*ﬁd)
X(C)

B /B<<c) (/X(C)/B(C) ~logllsihern) Ao CI@)) aH) A AoH)

Here, by the property (1) of “m-nef”,
[ ol A na(L)
X(C)/B(C)

is a non-negative locally integrable function on B(C). Thus, the integral part of (1:4.1) is
non-negative. Let b; be the generic point of 7(A;). Then, by the projection formula, we can
see

deg (61@1}&) 8Ly ) E(n ) .al(w*ﬁd}Ai))
0 if codim(m(4A;))
— {deg(m(&)bi ...Le|(Ai)Bi)d/eg (El(ﬁl}mi))"'El(ﬁdhmi))) if codim(m(4;))
Therefore, we get (1) because

deg(L1|(Ai)Bi o Le|(Ai)Bi) 20 and deg (/C\l(ﬁl}ﬂ'(Ai)) - ./C\l(ﬁd}ﬂ'(Ai))) 2 0.

v

2
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(2) Since

e+1
=Y Al o) - (@) ~a@)) &) - alu),
=1
(2) is a consequence of (1). O

Finally, let us consider the following lemma.

Lemma 1.5. Let 7 : X — B be a morphism of projective arithmetic varieties, and L a
C*-hermitian line bundle on X. Let U be a non-empty Zariski open set of B such that
B\ U = Supp(D) for some effective Cartier divisor D on B. If there is a non-zero rational
section s of L with Supp(div(s)) C X \ 7= (U), then there are a positive integer n and a
C>®-metric || - ||np of Op(nD) with

T (Op(nD), || - [1n0)* ™" Zar0) L Zamr oy 7 (Op(nD), || - ).
Moreover, if D is ample, then we can choose || - ||.p such that (Op(nD),| - ||.p) is ample.

Proof.  First, we fix a hermitian metric || - ||p of Og(D). If D is ample, then we choose
| - [|p such that (Op(D),| - ||p) is ample. Find a positive integer n with

—nf*(D) < div(s) < nf*(D).

Let [ be a section of Oy (nD) with div(l) =nD. Weset t; =l ® s and t, = ®s. Then, t;
and t, are global sections of Ox(nf*(D))® L™! and Ox(nf*(D))® L respectively. Choose a
sufficiently small positive number ¢ such that if we give a norm of Og(nD) by ¢| - ||}, then
t1]]sup < 1 and ||t2]|sup < 1. Thus we get our lemma. O

2. ARITHMETIC HEIGHT OF SUBVARIETIES

Let K be a finitely generated field over Q with d = tr. degg(K), and B=(B;Hy,... ,H,)
a polarization of K. Let X be a projective variety over K, and L a nef line bundle on X. Let
X be a projective arithmetic variety over B such that X is the generic fiber of X — B, and
let £ be a C®-hermitian Q-line bundle on X" such that £ coincides with L in Pic(X) ® Q.
The pair (X, L) is called a C*-model of (X, L). We assume that £ is nef with respect to
X — B. Note that if L is ample, then there is a C*=-model (X, L) of (X, L) such that £ is
ample by Lemma 13.

Let Y be a subvariety of X7z. We assume that Y is defined over a finite extension field
K’ of K. Let BX' be the normalization of B in K’, and let p% : BX" — B be the induced
morphism. Let X%’ be the main component of X x g BX'. We set the induced morphisms
as follows.
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Let Y be the Zariski closure of Y in X%, Then the naive height ha —)(Y) of Y with respect
to (X, L) and B is defined by

h(BX,_) (Y)

o)™ o) )

(K" K](dimY + 1) deg(L|3™")
Note that the above definition does not depend on the choice of K’ by the projection formula.
Here we have the following proposition. By this proposition, we may denote by h? the class
of haZ) modulo the set of bounded functions. Moreover, we say h? is the height function
associated with L and B.

Proposition 2.1. Let (X’,Z/) be another model of (X, L) over B such that C s nef with
respect to X' — B. Then, there is a constant C such that

hiy s (V) — hfx/z/)(Y) <C

for all subvarieties Y of X4

Proof. Let U be a Zariski open set of B with Ay = &}, and Ly = L, in Pic(Xy) @ Q. Let
A be an ample line bundle on B and [ the defining ideal of B\ U. Then, there is a non-zero
section ¢ of H°(B, A®™ ® I) for some positive integer m. Thus, B\ U C Supp(div(s)).
Therefore, shrinking U, we may assume that there is an effective ample Cartier divisor D on
B with Supp(D) = B\ U.

Let p : Z — X and ¢/ : Z — X’ be birational morphisms of projective arithmetic

varieties such that p and y' are the identity map over Ay. Then, ha Z)(Y) = h(z, - (Z))(Y)
and hP _, (V) = hB (V') for all subvarieties Y of X3. Thus, to prove our proposition,

(x'.C) Tz
we may assume that X' = A”. B
First of all, by Lemma 135, there is a nef C*°-hermitian line bundle 7" on B such that

— — — -1 —
(2.1.1) (TP 2y LOL Zwry o (T,
where 7 : X — B is the canonical morphism. Let Y be a subvariety of X7. We assume that

Y is defined over a finite extension field K’ of K. Let BX' be the normalization of B in K”,
and XX’ the main components of X x5 BX'. Let Y be the closure of Y in X%, Then,

. <A (24,) """ (7)o (ﬁfj)y))

(X.I) (K" K](dim Y + 1) deg( L|5™Y)

L w(a(E) e () (7))

hB/—/ Y = i
(X,L)( ) (K’ K](dimY + 1) deg(L|$™")

and
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where ZK/, £ and ﬁf{/’s are pullbacks of L, L and H;’s to XX respectively. Here, by
virtue of (2.1.1),

_ K’ r®—1 K g
" er ¥ 3" oT"

Therefore, by (2) of Lemma 1.4, we can see that

o o -dimY +1 K K
aog (@ (2] fﬁ)ufﬁ))
eg <C1 ( y) C1 ( 1 y) €1 ( d |y,
, -dimY+1 o
—deg (El (Z/K )y) ol (Hf

< [K': K)(dimY + 1) deg(L|3™Y)deg (T - H, --

).

Thus we get our proposition. O

3. ADELIC SEQUENCE AND ADELIC STRUCTURE

3.1. Adelic sequence, adelic structure and adelic line bundle. Let K be a finitely
generated field over Q with d = tr. degg(K), and B = (B; Hy,... , Hg) a polarization of K.
Let X be a projective variety over K, and L a nef line bundle on X.

A sequence of C*-models {(X,,, £,)} of (X, L) is called an adelic sequence of (X, L) (with
respect to B) if £,, is nef with respect to X,, — B for every n, and there is a non-empty
Zariski open set U of B with following properties:

(1) Xuly = Xnly (say Xy) and L,|, = L]y in Pic(Xy) ® Q for all n,m.

(2) For each n,m, there are a projective arithmetic variety X, ,, over B, birational mor-
phisms w0 Xy — &y and pt,, 0 Xym — X, and a nef C*°-hermitian Q-line
bundle En,m on B such that

* -1 n * (T m w1 * )
ﬂ_n,m(Dn,m ) jﬂ—;}m(U) (:un,m) (‘Cn) ® (:un,m) (‘Cm ) jw;}m(U) ﬂ_n,m(Dnam)
and that
deg (/C\l(bn,m) . /C\l(ﬁl) s /C\l (ﬁd)) — 0
as n, m — 00, where 7, ,, is the natural morphism &, ,, — B.

The open set U as above is called a common base of the sequence {(X,,, L,)}. Note that if
U’ is a non-empty Zariski open set of U, then U’ is also a common base of {(X,, L)}

Let {(Vn, M)} be another adelic sequence of (X, L). We say {(X,, L)} is equivalent to
{(Vn, M)}, denoted by {(X,, £,)} ~ {(Vn, M,,)}, if the concatenated sequence

(X17£1)7(y17 1)7"' >(Xn>zn)7(ynamn)>“'

is adelic. In other words, if we choose a suitable common base U, then, for each n, there
are a projective arithmetic variety Z, over B, birational morphisms u, : Z, — X, and
Up : Z, — Yy, and a nef C'°-hermitian Q-line bundle D,, on B such that

He-1 * 2,91 x (7
7z, (D, ) —<7r§711(U) 1 (Ln) @ vp(M,, ) —<7r§711(U) 7z, (Dn)
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and that

where 7z is the natural morphism Z, — B.

An equivalent class of adelic sequences of (X, L) is called an adelic structure of L (with
respect to B). Further, a line bundle L with an adelic structure is called an adelic line
bundle and is often denoted by L for simplicity. If an adelic line bundle L is given by an
adelic sequence {(X,, L)}, then we denote this by L = lim,, (X, £,). Moreover, we say
L is nef if L = lim,, .o (X, £,,) and L,, is nef for n > 0.

Let g : Y — X be a morphism of projective varieties over K, and L an adelic line
bundle on X. We assume that L is given by an adelic sequence {(Xn,ﬁ )}. Let us fix
a morphism g, : )V, — A&, of projective arithmetic varieties over B for each n with the
following properties:

(a) gn : Yo — X, coincides with g : Y — X over K for every n.
(b) There is a non-empty Zariski open set U of B such that V.|, = V|, Xuly = Xuly,
and gn|y; = gm|y for all n,m

Then it is not difficult to see that {(Vs,g;(Ln))} is an adelic sequence of (Y, g*(L)). We
denote by g*(L) the adelic structure given by {(J,, g:(£,))}. Note that this adelic structure

does not depend on the choice of the adelic sequence {(X,,L,)} and the morphisms g, :
yn - XTL‘

3.2. Adelic sequence by an endomorphism. Let K be a finitely generated field over Q
with d = tr. deggy(K), and B=(B;Hy,...,H,) apolarization of K. Let X be a projective
variety over K, and L an ample line bundle on X. We assume that there is a surjective
morphism f : X — X and an integer d > 2 with L®? ~ f*(L). Let (X, £) be a C*-model
of (X, L) such that £ is nef with respect to X — B. Note that the existence of a C*-model
(X, L) of (X, L) with £ being nef with respect to X — B is guaranteed by Lemma 173. Then,
there is a Zariski open set U of B such that f extends to fy : Xy — Xy and L3¢ = fH(Ly)

in Pic(Xy) ® Q. Let X, be the normalization of Ay LN Xy — X, and f, : X, — X the
induced morphism. Then, we have the following proposition.

Proposition 3.2.1. (1) {(Xn,f (£)®d " )} is an adelic sequence of (X, L). Moreover, if

L is nef, then the adelic line bundle lim,, .o (X,, f5(£)24") is nef.
(2) Let f': X — X be another surjective morphism with L& ~ f*(L) for some d' > 2.

Let (X’,Z/) be another C*°-model of (X, L) such that L is nef with respect to X' — B.
LetU' be a non—empty Zariski open set of B such that f" extends to fi;, X(’]/ — X[, and

fi
Lty od L) in Pic(XL) @Q. Let X! be the normalization of Xy 2 Xl — X,
and Il X/L — X' the induced morphism. [ff f'=1f"-f, then

{0 @)} ~ {7 @)
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Definition 3.2.2 (f-adelic structure). The adelic sequence {(Xn, L)z n)} in the above
proposition gives rise to the adelic structure on L, which is called the f-adelic struc-
ture of L. The line bundle L with this adelic structure is denoted by ff, ie., ' =

Iy, o0 (X, fr(£)®4"). Considering a case “f = f” in (2), we can see that I’ does not
depend on the choice of the C*°-model (X, £). Moreover, (2) says us that if f- f' = f'- f,

then T = 7. Further, L’ is nef by the second assertion of (1) and Lemma 1.3.
Proof of Proposition 8:2.1, In the same way as in the proof of Proposition 2T, shrinking

U if necessarily, we may assume that there is an effective ample Cartier divisor D on B with
Supp(D) = B\ U.

(1) For simplicity, we denote f*(£)®? " by L£,. From now on, we treat the group structure
of the Picard group additively. Note that Xy = X and £y = L. Let ) be a projective
arithmetic variety over B such that there are birational morphisms py : YV — &) and p; :
Y — X, which are the identity map over U. We fix n > m > 0. Let Z be a projective
arithmetic variety over B with the following properties:

(a) ZU = XU.

(b) For each m < i < n, there is a birational morphism p; : Z — X, which is the identity
map over U.

(c) For each m < j < n, there is a morphism ¢g; : Z — ) which is an extension of

f(]] . ZU — yU'
Here we claim the following.

Claim 3.2.3. (i) 3y, (Lj41) = d g5 (pi(L1)) for each m < j < n.
(ii) w5 (Ly) = d77 g (ps(Lo)) for each m < j < n.

(i) g5 (Ln) = 15, (L) = D d7 g5 (p1 (L) = p5(L0)-
(i) Let us consider the following two morphisms between Z and Ajp:

zUy oy and 248, 22 A

These are same over U. Thus, so are over B. Therefore, g;pj f7 (L) = ey +1(Z), which
shows us the assertion of (i).

(ii) In the same way as above, we can see ;- f; = po - g;. Thus we get (ii).
iii) Since L) — 15 (L) ,u Li1) — w5 (L), this is a consequence of (i) and
,Un m 3+1 J i\~
(ii).
By Lemma 175, there is an ample C*°-hermitian line bundle A on B such that

~1(B) B AL — (L) By D).
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Hence, by (iii) of the above claim, we get

n—1 n—1
- (Z d‘j> TE(B) Bty #n(Ln) = 150 (L) Znzi) (Z d—j) 5(A).
j=m

J=m

Thus, we obtain the first assertion of (1). The second assertion is obvious.

(2) Let us consider the following cases:
Case 1: f=f.
Case2: X=X and L="CL.
Clearly, it is sufficient to check (2) under the assumption Case 1 or Case 2.

Case 1 : In this case, we assume f = f’. Shrinking U and U’, we may assume that U = U’,
Xy = X/, and Ly = L}, in Pic(Xy) ® Q. For each n > 0, let Z, be a projective arithmetic
variety over B such that there are birational morphisms v, : Z, — X, and v, : Z, — &,
which are the identity map over U. We may assume that there is a morphism g, : Z, — 2
such that the following diagrams are commutative:

Zb Fi@—— EZL 2% *:ﬁ—_ 2%
uol l ual l
Xy I x, x, I x

Then,

V(D) = (L) = d g (vi(2) = (D).
By Lemma 175, there is an ample C*°*-hermitian line bundle A on B such that
—TZz, () ngé(U) vy (L) — V(’)*(Z/) ngé(U) Tz, (D).
Therefore, we have
—

A7 (B) 2oy dVASD) — (L) Bty A7, (),

Nﬂ'Z
which shows us our assertion in this case.

Case 2 : In this case, we assume that X = X’ and £ = £. We denote f(£)® " and
(L)% " by L, and Z; respectively. Let ) be a projective arithmetic variety over B such
that there are birational morphisms p : Y — &', p1 : Y — &), and p| : Y — AX{, which are
the identity map over U. We fix n > 0. Let Z be a projective arithmetic variety over B
with the following properties:

(a) ZU = XU.

(b) For each 0 < i < n, there are birational morphisms y; : 2 — A and u; : 2 — A],
which are the identity map over U.

(c) For each 0 < j < n, there are morphisms g; : £ — ) and g; : Z — ) which are
extensions of fé : Zy — Yy and f’{] : Zy — Yy respectively.
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Note that 1o = p5. Then, in the same way as in (1) ((iii) of Claim B.2.3), we can see

(3.2.4) (L) - Zd 19301 (L) — (L)
and

(3.2.5) o (L) — ZZd’ ’ L) - p"(L)).

Let Z, (resp. Z]) be the normalization of Z Jo, Zy — Z (resp. Zy fo, Zy — Z) and
let hy, : Z, — Z (resp. h, : Z/ — Z) be the induced morphism. Moreover, let 7 be a
projective arithmetic variety over B such that there are birational morphisms 7 : 7 — Z,,,
T - Z,0:7T — X, and o' : T — X, which are the identity map over U. Now
we have a lot of morphisms, so that we summarize them. The following morphisms are

birational and the identity map over U.

y 2 x ztx T 52z T 252X
yL‘X p/ l“/' ! p

Moreover, the following morphisms are extensions of the power of f or f’.

X, x (f" over U) zZ 2y (f7 over U) 2, —

Z (f" over U)
X! f—’/l>/'\f'(f’"overU) Z g—;>y(f'jOVerU) z, L Z (f" over U)
Here, f, - pin - hl, - 7' = f] -
T — X. Thus,
7N (L) = (D)) = d 7 b (2,) = (D))
= d " hypg (L) —d " g (L)

- hy - T over U because f - f' = f'- f. Hence, so is over B as

Moreover, since p - by, - 7 = fp -0 and po - b, - 7" = f} - o', by the above equation, we have

!

(3.2.6)  d "R (ui(Ln) — (L)) — d TR (M;;(z;) - M;;(Z)) = 0*(L,) — 0" (L))

On the other hand, by Lemma 1.5, we can find ample C*™-hermitian Q-line bundles A and
A such that

~13(B) Ry A~ 0°(D) Sy 73(B)

and

Therefore, if we set
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then, by (8:2.4) and (B.2.5),
—dn’/TT(Z) d/ " /*h/* (un(z ) (Z)) _1(U) d ’/TT(Z)

and
/

—drr(B) 3y d T, ( (L) — (Z)) S dumr(R).

Hence, using (3.2.0),

4

— — = % — —
- (dnA +d A ) 30y 0" (L) — 0" (L) Sy 71 (dnA T dA ) .

Therefore, we have this case because lim,, .o d,, = lim,, .o d,, = 0. O

4. ADELIC INTERSECTION NUMBER AND ADELIC HEIGHT

4.1. Adelic intersection number. Let K be a finitely generated field over Q with d =
tr.degg(K), and B = (B; Hy,. .., Hg) a polarization of K.

Proposition 4.1.1. Let X be an e-dimensional projective variety over K, and let Ly, ... , Leiq
be nef line bundles on X. Let {(X,E”,fo))} be an adelic sequence of (X, L;) for each

1 <i<e+1 Let Z, be a projective arithmetic variety over B such that there are bi-
rational morphisms pS) : Z, — X\ (t=1,...,e+1). Then, the limit

5 (A0 ()5 (T -, ) -5, ()
as n — oo exists, where wz, : Z, — B is the natural morphism. Moreover, if{( fj’,ﬂfﬁ )}
is another adelic sequence of (X, L;) for each 1 <i <e+ 1, and {(qui),z,(f))} is equivalent
to {( S),Mff))} for each i, then the limit by {(qui),z,(f))} coincides with the limit by

{0 M)}

Proof. Let Z,,, be a projective arithmetic variety over B such that there are birational

morphisms 2, ,, — Z, and Z,,, — Z,. By abuse of notation, we denote birational mor-

phisms Z,, ,, — X,gi) and Z,,, — X,(nj) by ,uq(f) and ,u%) respectively. First of all, we can

see
~ * —(1 e —(e+1) —~ * —(1 e —(e+1)
& (D () - (D)) 2 (D) @ (e (2 )
e+1
~ * —(1) ~ N* () —~ N* () e —(e+1)
= > @@ @) (@ (@) = @) (@) - ast @)
=1

Therefore, it is sufficient to show that, for any positive ¢, there is a positive integer N such
that if n,m > N, then

deg (D (w5, (L) (s, (Ha) < e

) G o (i)* Al (e 1)* A(et]
where Ap s = & (10 (ZM))-- (cl(uw Z)) =2 (6 (.cf,}))) A ). By

m

the definition of adelic sequences, there are a projective arithmetic variety &, ,, over B, a
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birational morphism vy, ,,, : X — Z5m, and a nef C'*°-hermitian Q-line bundle 5n’m on B
such that

o D) 3 Vi (10" E)) = 1" () 3 7 (D)

Here, since Z,(:)’s are nef with respect to X\’ — B and H,’s are nef, by using Lemma 1.4
together with the projection formula, we can see

08 (B, (), () )|

<deg(Li---Li—1-Lit1 -+ Ley1)

deg (¢1(Dnm) - 21 (H1) -+ @ (Ha))|

Thus we get the first assertion. The second one is obvious by the definition of equivalence.

O
Definition 4.1.2 (Adelic intersection number). Let Ly, ..., Leqy be adelic line bundles on
X. Then, by the above proposition, the limit of intersection numbers does not depend on the
choice of adelic sequences representing each L;. Thus, we may define the adelic intersection
number (L; - -+ Ley1)5 to be the limit in Proposition 4.T.1.

Here let us consider the following two propositions. The second proposition is a property
concerning the specialization of adelic intersection number.

Proposition 4.1.3. Let L,... , Ley1 be adelic line bundles on X. Then, we have the fol-
lowing.
(1) If Ly, ..., Loy are nef, then (Ly-+- Leiy)m > 0.
(2) Let ﬁll, e ,ﬁ; be nef C*°-hermitian line bundles on B with ﬁ; = H; for all i. If
Ly,..., Ley1 are nef, then

(Ly-- 'Ze+1>(3;ﬁ/1’...’ﬁ;) > (Ly - Le+1>(3;ﬁ1’...’ﬁd)-
(3) Let g: Y — X be a generically finite morphism of projective varieties over K. Then,
(9" (zl) g (ze+1)>§ = deg(9)<fl - 'Ze+1>§

Proof. (1) is a consequence of (2) of Proposition 1.7. (2) follows from (4) of Proposi-
tion 1.1. (3) is a consequence of the projection formula. 0

Proposition 4.1.4. Let {(X,,L,)} be an adelic sequence of (X, L) such that L, is nef for
every n, and let L be a nef adelic line bundle on X given by the adelic sequence {(X,,L,)}.
Let U be a common base of the adelic sequence {(X,,L,)} (cf. the definition of adelic
sequences in §83.1). Let v be a point of codimension one in Uy such that Xy is flat over ~
and the fiber X, of Xy — U over vy is integral. Then, X, is a projective variety over the
residue field r(v) at vy, and L, = L|x_ is a line bundle on X,. Let I" be the Zariski closure of

{7} in B, and Z, the Zariski closure of X, in X,. If Hg is big, then we have the following.
(1) {(Zn, Z”}zn)} is an adelic sequence of (X, L) with respect to (F; ﬁl}r e ﬁd_l}r).
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If we denote by L the adelic line bundle arising from the adelic sequence L, ,
Zn
then <L dlmX+1> = 0 implies <L = 0.

dim X, +1

) i,

(B;Hi,...,Hy)

Proof. First of all, by using Lemma 1.2, we fix a positive integer N and a non-zero section
s € H(B, HY™) with s(y) = 0 and ||s|jsup < 1. Then, div(s) = I' + X for some effective
divisor X..

(1) To prove (1), it is sufficient to show that
lim deg (&( Do) - & (Hi|o) & (Han|,) =0,

n,Mm— 00

where D,,,, is a nef C*°-hermitian Q-line bundle on B appeared in the definition of adelic
sequences (cf. §83.1). First of all,

Ndeg (¢1(Dnm) - &(Hy) -+ &1(Ha))
= 068 (&(Drnly) 5 () -5 ()
+ge\g(61(5”1m} G Hl}z Cl(ﬁd—l}z))
s [ —togllsherDun) Acr(F) Ao A (Far),
B(C)

Here every term is non-negative. Thus, we can see that

lim deg (& (Do) - & (Hi|.) & (Haon|p) =0

(
:geTg(Al(zn}Zn).eH 2, ()], a(wj{n(ﬁd_l)}zn))
+ deg (a(Zn}An)'eH ai(mh (Hy) }A . 51(7chn(ﬁd—1)un))

[ gy (e T Aes(mi, () A+ her(mi, (i)
' (C)
Since the last two terms of the above equation are non-negative, we have
Ndeg (&1(L,) " - a(Hy) - - @1 (Ha))

> dog (Ll ;)" - B, (A1) ) -+ @a(m, (a5,

Thus, taking n — oo,
—dim X, +1

__=(T )P
(BiHy,....Hy) ! (D5H| e Ha | )

Therefore, we get (2). O
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4.2. Adelic height. Let K be a finitely generated field over Q with d = tr. degg(K), and
B = (B;H,,...,H,) a polarization of K. Let X be a projective variety over K, and L an
ample line bundle on X.

Let L be an adelic line bundle given by an adelic sequence {(&,,L,)}. Let K’ be a
finite extension of K, B’ the normalization of B in K’, and let p : B’ — B be the induced
morphism. Let X be the main component of &,, xp B’. We set the induced morphisms as
follows.

X, <« X!

B - pB
Then, {X), 7;(L,)} is an adelic sequence of (Xg/, Lgs). We denote by L the adelic line
bundle induced by {X],7*(L,)}. With this notation, if Ly, ..., L.y are adelic line bundles
on X, then we can see
(4.2.1) (L) (Ler)) k), = K+ (L1 L),

by virtue of the projection formula, where By, = (B'; p*(H1), - -, p*(Hy)).

Let Y be a subvariety of X7. We assume that Y is defined over K'. Let };, be the closure
of Y in X]. Then, {)), T*(En)}y/ } is an adelic sequence of (Y, Lx/|y). We denote by Ly/|,,

the adelic line bundle given by {J), 7t (Zn)}y, }. We define the height of Y with respect to
L to be
- -dimY+1
B < (LK/ }Y) >§/
hf(y) - . dimY
(K" K](dimY + 1) deg (LK/ a )

Note that by virtue of (4.2.1), the above does not depend on the choice of K’. We call h%(Y)
the adelic height of Y with respect to L and B.

Proposition 4.2.2. Let X be a projective variety over K, and L an ample line bundle on
X. We assume that there is a surjective morphism f : X — X and an integer d > 2 with

L® ~ f*(L). Let I’ be the adelic line bundle with the f-adelic structure. Then, we have
the following.

(1) hgf(Y) > 0 for all subvarieties Y of X3.
(2) For a C*-model (X, L) of (X, L) with L being nef with respect to X — B, there is a
constant C such that

W2 (V) = hiyp (V)| < C

for any subvarieties Y of Xt.
(3) hgf(f(Y)) = dhgf(Y) for any subvarieties Y of X4.

Moreover, hg is characterized by the above properties (1), (2) and (3).



16 ATSUSHI MORIWAKI

Proof. (1) Since I’ is nef by Proposition 8.2.1, (1) is a consequence of (1) of Proposi-
tion 4.1.3.

(2) We choose a Zariski open set U of B such that f extends to fy : Xy — Ay and

£Ed = f+(Ly) in Pic(Xy) ® Q. Let X, be the normalization of Xy % Xy — X, and
fu : X, — X the induced morphism. We denote f*(£)®* " by L,. Then, as in proof
of (1) of Proposition 8.2.1, there are a projective arithmetic variety Z,, over B, birational
morphisms p, : 2, — &, and v, : Z, — X (which are the identity map over U), and an
ample C*-hermitian line bundle D on B such that

—dnTz, (D) ﬁngl %) fin (L) — v (L) ﬁngl(U) dnTz, (D),

where d, = ") d .

Let Y be a subvariety of X7. We assume that Y is defined over a finite extension field K’
of K. Let B’ be the normalization of B in K’, and let p : B* — B be the induced morphism.
We denote by &’, X/ and Z, the main components of X xp B, X, xp B" and Z,, xp B’
respectively. We set the induced morphisms as follows.

X —— X X, —— X Z, — Z
7r)(J/ J,WX/ WX"J/ J/ny/l ﬂznl lﬂzh
B 2 _ p B « _ p B £ p

We also have the induced morphisms p), : Z) — X and v, : Z] — X’. Then,
—dnmz,, (0"D) ﬁngl(U) i (1o Ln) — v (T7L) ngi(U) dnTz, (0" D),
On the other hand, since

/C\l (M;*(T;Zn))dim}’—f—l - /C\l( /*(T*Z))dimY—f—l

n

X

dim Y +1

= N A L) @ (L) — ) (D) @ ) (D)

=1

by using Lemma 1.4, we have

)EeTg (81(7;Zn}yn)dimy+1 (my, ptHy) -6 (Wik;np*ﬁd))
_aég (Cl *ﬁ}y d1mY+1 A (ﬂ_yp Hl) 7Typ Hd ))
< dp[K": K)(dimY + 1) deg(L|dle)deg @(D)-a(H)---a(Hy)),

where ) and ), are the Zariski closures of Y in X’ and X&), respectively. Thus we get (2).

(3) Clearly, we may assume Y is defined over K. Let (X, L) be a C* model of (X, L).
Let us consider a sequence of morphisms of projective arithmetic varieties over B:

.<ﬁl_—1;\gn1<f_";\g f"i;\{nﬂf’i...

X:X0<f—1.)(1<f—2
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such that X is the generic fiber of X,, — B for every n, and that f, : X, — X,,_1 is an
extension of f for each n. Let ), be the Zariski closure of Y in &,,. Then, f,,+1(V,41) is the
Zariski closure of f(Y) in X,,. By the definition of the height,

(4.2.21) hZ,(Y)

o e @S R @y, () 6, (Ha) - . 0)
e (dimY + 1) deg( L|™ Y )dr+D(dimy+1) :

On the other hand, by the projection formula,
(4.2.2.2)
deg @ (S fr-- L) ™ B frpam, (H)) - B (S, (Ha)) - (Pt 0)
eg(fly)deg (@1(f; -+ f1 (L) ™ @y (w3, (H)) -+ 8(7%, (Ha)) - (fass Var1), 0))

Here, since L®? ~ f*(L), we have L®d} (fly)* L|f(Y)), which implies
im dimY im

(4.2.2.3) d™Y deg(LIy™") = deg(fly) deg( Ly, ).

Moreover,

(4.2.2.4) hE(f(Y))

iy QB @ D) Y, () B, () - (i D), 0))

e (dle +1) deg(L|;h(H;Y)dn(dlm Y+1)

_______________________

h§f<f<Y>> — B, ().
Finally, the last assertion is obvious. For, by (2) and (3), we can see

h5, (V) = lim " L)(f.n(y)).

n—oo dr

5. THE CANONICAL HEIGHT OF SUBVARIETIES OF AN ABELIAN VARIETY OVER FINITELY
GENERATED FIELDS

Let K be a finitely generated field over Q with d = tr. degg (K), and B=(B;Hy,... ,H,)
a polarization of K. Let A be an abelian variety over K, and L a symmetric ample line

bundle on A. Since [2]*(L) ~ L®*, we have an adelic line bundle I with the [2]-adelic
structure. Let f : A — A be an endomorphism with f*(L) ~ L®¢ for some d > 2. Then,
since f - [2] = [2] - f, by (2) of Proposition 8.2.1, ' =17 Thus, the adelic structure does

not depend on the choice of the endomorphism. In this sense, we have the line bundle L™"
with the canonical adelic structure.
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Let X be a subvariety of Az We denote by hZ(X) the adelic height hZ.on(X) of X with re-
spect to the line bundle ™" with the canonical adelic structure. Then, by Proposition #.2.2,
we can see the following:

(a) hB(X) > 0 for all subvarieties X of Az.
(b) For a C*®-model (A, L) of (A, L) with £ being nef with respect to A — B, there is a
constant C' such that

WP (X) = bz (X)| < C

for all subvarieties X of Ag.
(c) hP([N](X)) = N2hB(X) for all subvarieties X of A% and all non-zero integers N.

The purpose of this section is to prove the following theorem.

Theorem 5.1. Let A be an abelian variety over K, and L a symmetric ample line bundle
on A. Let X be a subvariety of Az. If the polarization B is big, then the following are
equivalent.

(1) X is a translation of an abelian subvariety by a torsion point.

(2) The set {x € X(K) | hB(x) < €} is Zariski dense in X for every e > 0.

(3) hB(X) =0.

Proof. Let us begin with the following two lemmas.

Lemma 5.2. Let A be an abelian subvariety over K, C an abelian subvariety of A, and
p:A— A = A/C the natural homomorphism. Let X be a subvariety of A such that
X = pH(p(X)). Let L and L' be symmetric ample line bundles on A and A’ respectively. If

hB(X) =0, then hB.(Y) =0, where Y = p(X).

Proof. Replacing L by L®" (n > 0), we may assume that L ® p*(L')®~! is generated by
global sections. Let (A, L) and (A, L) be C*-models of (A, L) and (A’, ') over B with the
following properties:

(1) £ and £ are nef and big.
(2) There is a morphism A — A’ over B as an extension of p : A — A’. (By abuse of
notation, the extension is also denoted by p.)

Let 7 : A — B be the canonical morphism. Replacing £ by £ ® 7*(Q) for some ample
line bundle @ on B, we may assume that m. (£ ® p*(L)®7!) is generated by global sections.
Thus, there are sections si,...,s, of H(L ® p*(L£)®7!) such that {si,...,s,} generates
L®p*(L)®! on A. Moreover, replacing the metric of £, we may assume that s, ... , s, are

small sections, i.e., ||s;]|sup < 1 for all .

Let A, (resp. A]) be the normalization of A Ly (resp. A’ Boare A’). Then,

we have the following commutative diagram:

A oa,

0| [+

A e A
!
n
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where f, and f! are extension of [2"]. Here the adelic structure of L (resp. L) is induced
by {4 f*(L)} (resp. {47 f.*(C)}). Let X, (resp. V,) be the Zariski closure of X in A,
(resp. Y in A!). Then, since f*(s1),..., f (s;) generate f*(L ® p*(L')®*') on A, we can
find f;(s;) such that f:(s;) # 0 on X,. This means that f;(L)|, ® p,’;(f,’z*(zl))‘@_l) is

Xn
effective. Therefore, if we denote dim X and dimY by e and €’ respectively, then, by virtue

of (4) of Proposition 1.1 together with the projection formula,

deg (G1(£3(D)] ) - @rlmy, H) -+ (s, Ho)

> @ (a1 ),

n

) B

P ) (o T - -a<p;;7r§ﬁd>)

—/

= 4 deg( Ll )deg (51<f;*<£ )|, ), ) <7r§ﬁd>) |
Hence,
N / 1)d I/ e d L e—e’ o
h%(X) Z (6 + ) eg< |Y) e%( |C )hE/(Y)
(e+1)deg(L|%) L
Thus we get our assertion. O

Lemma 5.3. Let A and S be algebraic varieties over a field of characteristic zero, and let
f+A— S be an abelian scheme. Let X be a subvariety of A such that f|y : X — B is
proper and flat. Let s be a point of S. If X5 is a translation of an abelian subvariety of As,
then there is a Zariski open set U of S such that (1) s € U and (2) Xj is a translation of
an abelian subvariety of Ag for allt € U. In particular, the geometric generic fiber X5 is a
translation of an abelian subvariety.

Proof. Since X5 is smooth and ¢(X;) = dim(X/S), there is a Zariski open set U of S
such that s € U, Xy is smooth over U, and that ¢(X;) < dim(X/S) for all t € U. By Ueno’s
theorem (cf. I, Theorem 10.12]), ¢(X7) > dim(X/S) and the equality holds if and only if
X7 is a a translation of an abelian subvariety. Thus we get our lemma. a

Let us start the proof of Theorem 5.1. First of all, we may assume that X is defined over
K.

“(1) = (2)” is obvious. “(2) == (1)” is nothing more than Bogomolov’s conjecture
solved in [2].

“(1) = (3)”: Weset X = A'+x, where A’ is an abelian subvariety of A% and x is a torsion
point. Let N be a positive integer with Nz =0 and N > 2. Then, [N](X) = A" = [N]|(4').
Thus, by Proposition 4.2.2,

WP (X) = (1/N*)RE(N)(X)) = (1/N?)hZ(IN](A")) = hE(A").
On the other hand,

Therefore, hZ(X) = hB(A’) = 0.
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“(3) = (1)”: Let H be an ample C™-hermitian line bundle on B. Then, there is a positive
integer n such that ﬁz@n o H 7~ 0. for all i. Then, by using (4) of Proposition 1.1, we
can see that an adelic sequence with respect to (B; Hy, ... , Hy) is an adelic sequence with
respect to (B; H, ..., H), and that

0 < ASEI-ID (x) < Bl Ha) (xy

Thus, we may assume that H, ..., Hy are ample. We prove the assertion “(3) = (1)” by
induction on d = tr. degg (k). If d = 0, then this was proved by Zhang [3]. We assume d > 0.
Then, by the above lemma together with hypothesis of induction and Proposition 4.1.4, X
is a translation of an abelian subvariety C'. Let us consider 7 : A — A’ = A/C. Then, 7(X)
is a point, say P. Then, by Lemma 5.9, izf/(P) = 0 for a symmetric ample line bundle L’
on A’. Thus, P is a torsion point by [2, Proposition 3.4.1]. Therefore, we can see that X is
a translation of C' by a torsion point. a

Let X be a smooth projective curve of genus g > 2 over K. Let J be the Jacobian of
X and Le a line bundle given by a symmetric theta divisor © on J, i.e., Lo = O;(0).
Let j : X — J be a morphism given by j(z) = wx — (29 — 2)z. Then, it is well known
that j*(Le) = w?Qg(g_l). Let Ly be the canonical adelic structure of Lg. Thus, we have
the adelic line bundle j*(Lg ) on X. In terms of this, we can give the canonical adelic
structure on wy. We denote this by @%. Then, as a corollary of Theorem 5.1 and (3) of
Proposition 4.1.3, we have the following.

Corollary 5.4. If the polarization B is big, then (0% -w%)m > 0.
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