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LARGE DYNAMICS OF YANG–MILLS THEORY: MEAN DIMENSION
FORMULA

MASAKI TSUKAMOTO

Abstract. This paper studies the Yang–Mills ASD equation over the cylinder as a non-
linear evolution equation. We consider a dynamical system consisting of bounded orbits
of this evolution equation. This system contains many chaotic orbits, and moreover
it becomes an infinite dimensional and infinite entropy system. We study the mean
dimension of this huge dynamical system. Mean dimension is a topological invariant
of dynamical systems introduced by Gromov. We prove the exact formula of the mean
dimension by developing a new technique based on the metric mean dimension theory of
Lindenstrauss–Weiss.

1. Introduction

1.1. Main result. This paper explores a large chaotic dynamics of Yang–Mills gauge

theory. Yang–Mills theory is the study of special connections (Yang–Mills connections,

ASD connections and its perturbations) on principal fiber bundles over manifolds. Its

origin is quantum physics, and it has been intensively studied in differential/algebraic

geometry, low-dimensional topology and representation theory. Many astonishing results

have been obtained for more than 30 years. But its dynamical aspect has been largely

neglected. The purpose of the paper is to reveal a new rich dynamical structure of Yang–

Mills theory.

Traditionally most researchers in Yang–Mills theory have been interested in highly con-

centrated special connections called instantons. Probably this is a reason why dynamical

aspect of the theory has not attract their attentions for a long time. When we look at

only concentrated solutions, we don’t need a dynamical point of view. Dynamics appears

only when we are interested in a very long term phenomena. For example, calculating

geodesics on Riemannian manifolds is the simplest problem in calculus of variations. But

when we look at very long geodesics (i.e. geodesic flow), we face a complicated dynamical

problem.

To explain our viewpoint more concretely, we recall a familiar picture of instanton

Floer homology (Floer [8] and Donaldson [4]). Let Y be a closed oriented Riemannian
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3-manifold, and we consider the cylinder R × Y with the product metric. We denote its

R-coordinate by t. Let E be a principal SU(2) bundle over R × Y . A connection A on

E is said to be anti-self-dual (ASD) if its curvature FA is anti-self-dual with respect to

the Hodge star operation:

∗FA = −FA.

It is a crucial point in Floer theory that this equation can be expressed as a non-linear

evolution equation. Suppose A is expressed in the temporal gauge, i.e. it has no dt-part.

Then the ASD equation becomes

(1.1)
∂A(t)

∂t
= − ∗3 F (A(t)),

where A(t) is the restriction of A to the section {t}×Y . Fixed points of the equation (1.1)

are flat connections, and connecting orbits between fixed points correspond to instantons.

Floer homology is constructed by using these objects. Generators of Floer chain complex

are flat connections, and the differentials involve instanton counting. Therefore we can

say that Floer homology uses some dynamics of the evolution equation (1.1).

But the equation (1.1) also contains more complicated dynamical objects other than

fixed points and connecting orbits. Firstly the equation (1.1) admits many periodic orbits.

Periodic points of period T > 0 correspond to instantons over (R/TZ) × Y , and a lot of

such solutions can be constructed by using the gluing theorem of Taubes [23]. Secondly,

and more importantly, the above evolution equation contains many chaotic orbits similar

to ones in the Bernoulli shift {0, 1}Z. This can be shown by using infinite gluing

technique [25, 27] as follows. Pick up two sufficiently concentrated instantons A0 and A1

over the Euclidean space R4. We consider the gluing of infinitely many copies of A0 and

A1 over R × Y . Take a point x = (xn)n in the Bernoulli shift {0, 1}Z. For each n ∈ Z
we glue A0 or A1 in a neighborhood of {t = n} depending on whether xn = 0 or xn = 1.

Then, in a rough expression, the resulting ASD connection Ax looks like

Ax = · · · "Ax−1"Ax0"Ax1" · · · .

The dynamical behavior of Ax imitates that of the point x in the Bernoulli shift, and it

is generically chaotic.

Indeed the dynamics of (1.1) is much more complicated than the Bernoulli shift. Sup-

pose A0 and A1 admit non-trivial deformation. Then each Axn can be deformed. So the

ASD connection Ax has infinitely many deformation parameters. This means that the

equation (1.1) contains a dynamics like [0, 1]Z (the shift action on the Hilbert cube).

[0, 1]Z is an infinite dimensional dynamical system of infinite topological entropy. So this

is much larger than the Bernoulli shift.

We have explained that the ASD equation (1.1) contains a huge dynamics. The purpose

of the paper is to develop this unexplored aspect of gauge theory. One motivation of this

study comes from the work of Gromov [11]. He introduced a new topological invariant of
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dynamical systems called mean dimension. This provides a non-trivial information for

infinite dimensional and infinite entropy systems. For example the Z-action on the Hilbert

cube [0, 1]Z has mean dimension 1. Mean dimension has been attracting researchers in

several areas such as topological dynamics [19, 17, 12, 13, 18, 14], function theory [2, 21, 26]

and operator algebra [16, 7]. We review the definition of mean dimension in Section 2.1.

While the idea of mean dimension is related to various subjects, Gromov’s original

motivation is geometric. When we study geometric PDE (holomorphic/harmonic maps,

complex/minimal subvarieties, etc.) in a non-compact manifold without any asymptotic

boundary condition, we often encounter a very large dynamical system (as we have seen

above). Gromov proposed the study of such large dynamical systems from the viewpoint

of mean dimension. Very little has been known in this direction yet. But here we report

one progress of this program in the case of Yang–Mills theory: We get the exact formula

of the mean dimension. Probably our method can be also applied to other equations. We

will discuss this point again in the end of this subsection.

From now on we concentrate on the simplest case: the 3-manifold Y is the sphere

S3 = {x2
1 + x2

2 + x2
3 + x2

4 = 1} with the standard metric. Set X := R×S3. The important

point is that X (endowed with the product metric) is an anti-self-dual manifold with

a uniformly positive scalar curvature. Here the anti-self-duality means that the Weyl

conformal curvature of X is ASD. This metrical condition will be used via a certain

Weitzenböck formula. Let E = X × SU(2) be the product principal SU(2) bundle. All

principal SU(2) bundles over X are isomorphic to the product bundle E. Let A be

a connection on E. Its curvature FA is a 2-form valued in the adjoint bundle adE =

X × su(2). Hence for each point p ∈ X we can identify (FA)p as a linear map

(FA)p : Λ2(TpX) → su(2).

Let |(FA)p|op be its operator norm, and set ||FA||op := supp∈X |(FA)p|op.
Let d be a non-negative real number. We define Md as the space of the gauge equiva-

lence classes of ASD connections A on E satisfying

(1.2) ||FA||op ≤ d.

This condition (1.2) means that we consider only bounded orbits of the evolution equa-

tion (1.1). The space Md is endowed with the topology of C∞ convergence over compact

subsets: The sequence [An] in Md converges to [A] if and only if there exist gauge trans-

formations gn satisfying gn(An) → A in C∞ over every compact subset of X. The space

Md is compact and metrizable by the Uhlenbeck compactness (Uhlenbeck [30], Wehrheim

[31]).

We introduce a continuous action of R on Md. This corresponds to the natural time-

shift A(t) '→ A(t + s) in the evolution equation (1.1). R acts on X = R × S3 by the

shift on the R-factor : R × X → X, (s, (t, θ)) '→ (t + s, θ). This lifts to the action on
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E = X × SU(2) by R × E → E, (s, (t, θ, u)) '→ (t + s, θ, u). Then R acts on Md by

(1.3) R ×Md → Md, (s, [A]) '→ [s∗(A)],

where s∗(A) is the pull-back of A by s : E → E. We study the dynamics of this action.

This means that we are interested in the asymptotic behavior (as t → ±∞) of bounded

orbits of the evolution equation (1.1).

It is known that Md for d < 1 is the one-point space consisting only of the flat connec-

tion (Tsukamoto [29]). So this is uninteresting. But when d > 1, Md becomes an infinite

dimensional and infinite topological entropy system (Matsuo–Tsukamoto [22]). So this

is a relevant object of mean dimension theory. We denote the mean dimension of the

action (1.3) by dim(Md : R). The mean dimension dim(Md : R) is a non-negative real

number. Its rough intuitive meaning is as follows. Suppose we try to store on computer

the orbits of Md over the time −T < t < T up to an error ε > 0. How many memory

(/bit) do we need? It can be estimated by the mean dimension (more precisely metric

mean dimension): We need at least

| log2 ε| (2T ) dim(Md : R) + o(T ) (T → +∞).

This is one expression of a fundamental theorem of Lindenstrauss–Weiss [19]. See Theorem

2.3 and discussions around it for more precise explanations.

Our main result is the formula of the mean dimension dim(Md : R). Our formula

involves an energy density ρ(d) introduced by Matsuo–Tsukamoto [20]. For [A] ∈ Md

we define the energy density ρ(A) by

(1.4) ρ(A) := lim
T→+∞

(
1

8π2T
sup
t∈R

∫

(t,t+T )×S3

|FA|2dvol

)
.

This limit always exists (Section 2.2). We denote by ρ(d) the supremum of ρ(A) over

[A] ∈ Md. The energy density ρ(d) is always non-negative and finite. It is positive for

d > 1 and goes to infinity as d → +∞ ([22]).

The main task of the paper is to prove the upper bound estimate on the mean dimension:

Theorem 1.1.

dim(Md : R) ≤ 8ρ(d).

The lower bound on the mean dimension was already proved by Matsuo–Tsukamoto

[22, Theorem 1.2]. Let D ⊂ [0, +∞) be the set of left-discontinuous points of the function

ρ(d):

D = {d ∈ [0, +∞)| lim
ε→+0

ρ(d − ε) *= ρ(d)}.

This set is at most countable because ρ(d) is a monotone function. From [22, Theorem

1.2] (see also Remark 1.3 below)

(1.5) dim(Md : R) ≥ 8ρ(d), (d ∈ [0, +∞) \ D).
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Therefore we get:

Corollary 1.2. For d ∈ [0, +∞) \ D,

dim(Md : R) = 8ρ(d).

Since D is at most countable, we get the formula of the mean dimension dim(Md : R) for

almost every d ≥ 0. This formula can be seen as a dynamical analogue of the pioneering

work of Atiyah–Hitchin–Singer [1, Theorem 6.1]. Here we briefly recall their result. Let A

be an irreducible ASD connection on a principal SU(2) bundle P over a compact ASD 4-

manifold M of positive scalar curvature. Atiyah–Hitchin–Singer calculated the number of

the deformation parameters of A by using the Atiyah–Singer index theorem. The answer

is given by

8c2(P ) − 3(1 − b1(M)) where c2(P ) =
1

8π2

∫

M

|FA|2dvol.

Corollary 1.2 is clearly analogous to this dimension formula. The energy density (1.4) is

an “averaged” second Chern number.

Remark 1.3. [22, Theorem 1.2] asserts

dimloc(Md : R) = 8ρ(d), (d ∈ [0, +∞) \ D).

Here dimloc(Md : R) is the local mean dimension of Md. Local mean dimension is a

variant of mean dimension, and it is always a lower bound on the original mean dimension.

Therefore we get (1.5).

Corollary 1.2 is the second success of non-trivial calculation of mean dimension in

geometric analysis. The first one was found by Matsuo–Tsukamoto [21, Corollary 1.2].

They proved the formula of the mean dimension of the system of Lipschitz holomorphic

curves in the Riemann sphere. In the case of holomorphic curves the Nevanlinna theory

provides a very simple method for obtaining the upper bound on mean dimension ([26]).

So the difficult part of [21, Corollay 1.2] is the proof of the lower bound. But, in the

Yang–Mills case, the upper bound (Theorem 1.1) is also difficult because we don’t have a

“Nevanlinna theory” for ASD equation. We need to develop a entirely new technique to

obtain the upper bound, and this is the main task of the paper. The outline of the proof is

explained in Section 1.3. Here we emphasize a key idea of the proof; using metric mean

dimension. Metric mean dimension is a notion introduced by Lindenstrauss–Weiss [19].

It is a bridge between topological entropy theory and mean dimension theory. We review

its definition in Section 2.1. In this paper we show that metric mean dimension is a very

flexible tool for obtaining a good upper bound on mean dimension. Probably no one

has expected that metric mean dimension is useful in geometric analysis. So this is the

most important point of the paper. Hopefully this idea has a potential to be applied

to many other problems. For example, Gromov [11, Chapter 4] studied a dynamical
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system consisting of complex subvarieties in Cn. He proved an upper bound on the mean

dimension [11, p. 408, Corollary]. But his estimate is very crude. So he proposed the

problem of proving a better bound [11, p. 409, Remarks and open questions (a)]. It seems

difficult to reach a good estimate by improving Gromov’s argument directly. Metric mean

dimension might shed a new light on this problem.

1.2. Application to dynamical embedding problem. Here we discuss one applica-

tion of Theorem 1.1 in order to illustrate a dynamical importance of mean dimension. In

this subsection we restrict the R-action (1.3) to the subgroup Z ⊂ R, and we consider Md

as a space endowed with a continuous action of Z. The mean dimension dim(Md : Z) of

this Z-action is equal to dim(Md : R). So we get (Theorem 1.1)

dim(Md : Z) ≤ 8ρ(d).

Let D be a natural number, and let ([0, 1]D)Z be the Z-shift on the D-dimensional cube

(i.e. the “D-dimensional version” of the Hilbert cube). Z naturally acts on this space, and

its mean dimension is D. The following embedding problem is a long-standing question in

topological dynamics.

Problem 1.4. Let M be a Z-system, i.e. a compact metric space endowed with a con-

tinuous action of Z. Decide whether there exists a Z-equivariant topological embedding

from M into the shift ([0, 1]D)Z.

This problem goes back to the Ph.D. thesis of Jaworski [15] in 1974. But here we skip

the history and present only a current development. If we can equivariantly embed M into

([0, 1]D)Z then the mean dimension dim(M : Z) is less than or equal to D. Lindenstrauss–

Tsukamoto [18] conjectured that the following partial converse holds.

Conjecture 1.5. Let Mn (n ≥ 1) be the space of periodic points of period n in M .

Suppose

dim(M : Z) <
D

2
,

dim Mn

n
<

D

2
(∀n ≥ 1).

Then we can embed M into ([0, 1]D)Z equivariantly.

Roughly speaking, we conjectured that mean dimension and periodic points are the

only essential obstructions to the embedding. This conjecture itself is widely open, but

Gutman–Tsukamoto [14] found that we can solve the problem if we sightly extend the

system M by using an aperiodic symbolic subshift. Let {1, 2, . . . , l}Z be the symbolic

shift, and let Z ⊂ {1, 2, . . . , l}Z be a subsystem without periodic points. We consider the

product system M × Z, which naturally admits a Z-action and becomes an extension of

the original system M . The mean dimension of M ×Z is equal to the mean dimension of

M . From [14, Corollary 1.8], we get:
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Theorem 1.6. If the mean dimension dim(M : Z) is strictly smaller than D/2, then we

can embed the product system M × Z into ([0, 1]D)Z equivariantly.

Here the condition dim(M : Z) < D/2 is known to be optimal ([14, Proposition 4.2]).

By applying this theorem to Md, we get the following corollary.

Corollary 1.7. Suppose ρ(d) < D/16. Then Md × Z can be Z-equivariantly embedded

into ([0, 1]D)Z.

This is a manifestation that the energy density ρ(d) properly controls the size of Md.

If Conjecture 1.5 is proved, then we will be able to show that Md itself can be embedded

into ([0, 1]D)Z under the same condition ρ(d) < D/16. Here it is worth to point out that

we have no idea how to construct concretely the embedding given in Corollary 1.7. The

above is a pure existence theorem. It is very interesting to find an explicit construction

of such an embedding because it will give a new way to obtain an upper bound on the

mean dimension; if Md × Z can be equivariantly embedded into ([0, 1]D)Z, then we get

dim(Md : Z) ≤ D.

1.3. Ideas of the proof. In this subsection we explain a rough strategy of the proof of

Theorem 1.1. Our argument here is intuitive and non-rigorous.

The most important idea is the use of metric mean dimension as we explained in the

end of Section 1.1. Metric mean dimension is always an upper bound on mean dimension

(Theorem 2.3). So we want to estimate the metric mean dimension of Md. Intuitively this

means that we estimate how many memory (/bit) we need in order to store on computer

the orbits of Md over the time −T < t < T up to an error ε > 0. We want to know its

asymptotics as T → ∞ and ε → 0. Our argument has the following three steps.

Step 1: Decomposition of Md. We decompose the space Md into appropriately

small pieces:

Md = U1 ∪ · · · ∪ Un.

We try to memorize each Ui separately. This is an advantage of metric mean dimension

over original mean dimension. Mean dimension does not behave smoothly for a decom-

position of a space. Metric mean dimension is flexible for such a decomposition if we

appropriately control the number n of the pieces. So we can localize the argument by

using metric mean dimension.

Step 2: Instanton approximation. The above Ui are infinite dimensional in general.

We construct their finite dimensional approximations by using the technique of instanton

approximation. Instanton approximation is an analogue of the famous Runge theorem

in complex analysis; for any meromorphic function in C and any compact subset K ⊂ C
we can construct a rational function which approximates the given function over K. In

the same spirit, for any ASD connection A on E and any compact subset K ⊂ X, we

can construct an instanton (finite energy ASD connection) which approximates A over K.
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Instanton approximation technique was first introduced by Taubes [24] and Donaldson

[3], and it was used by Matsuo–Tsukamoto [20] in the context of mean dimension. Here

we apply this technique to our present situation. For each Ui we construct a map

Ui → Vi, [A] '→ [A′],

such that A′ is an instanton which approximates A over −T < t < T . We can control the

energy of A′ so that Vi becomes a finite dimensional space. Vi is a good approximation of

Ui over −T < t < T . So we only need to memorize Vi instead of Ui.

Step 3: Quantitative deformation theory. We investigate Vi by constructing a de-

formation theory of instantons. Instanton deformation theory is a quite standard subject,

but our main emphasis is on its quantitative aspect. We need to develop a deformation

theory with estimates independent of several parameters (e.g. second Chern number,

etc.). A key ingredient is a decomposition of R into “good intervals” and “bad intervals”.

(Indeed this decomposition will be also important in Step 1.) We fix a sufficiently small

number ν > 0. Take an ASD connection A on E, and let n ∈ Z. If the L∞-norm of the

curvature FA over n < t < n + 1 is greater than or equal to ν, then we call the interval

(n, n+1) good. Otherwise we call it bad. If A is an instanton, then there are only finitely

many good intervals. The meaning of this good/bad dichotomy is as follows. If (n, n + 1)

is good, then for any gauge transformation g of E over n < t < n + 1 we have

min
±

||g ± 1||L∞((n,n+1)×S3) ≤ const(ν) · ||dAg||L2
2,A((n,n+1)×S3) .

(See Lemma 4.2.) This means that we have a good control of gauge transformations over

good intervals. If (n, n + 1) is bad, then A is close to a trivial flat connection (which is

reducible) over n < t < n + 1. So we lose the above control of gauge transformations

there. This apparently causes a difficulty. But if A is close to a trivial flat connection,

then its structure is simple. So A has little information over bad intervals. (This means

that bad intervals are “not so bad”.) We need to analyze these two different behaviors

separately. This can be done by introducing appropriate weighted norms, and we alway

have to care effects of the weight on our estimates.

Our quantitative deformation theory tells us how many memory we need in order to

memorize Vi. Then we combine this with the results in the previous steps, and we can

get the desired estimate on the metric mean dimension.

Organization of the paper: In Section 2.1 we explain the basic definitions of mean

dimension and metric mean dimension. In Section 2.2 we prepare a lemma on the energy

density ρ(d). In Section 2.3 we explain some notations which are used in the rest of the

paper.

In Section 3.1 we introduce weighted norms which reflect the good/bad decomposition

structure. In Section 3.2 we state three main propositions (Propositions 3.2, 3.3 and 3.4)
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and prove Theorem 1.1 by assuming them. Propositions 3.2, 3.3 and 3.4 correspond to

the above three steps respectively, and their proofs occupy the rest of the paper.

In Section 4 we prove Proposition 3.2. In Section 5 we prepare several estimates on

instanton approximation and prove Proposition 3.3. In Section 6 we develop a quantitative

study of instanton deformation theory in detail and prove Proposition 3.4.

Acknowledgement. I wish to thank Professor Kenji Fukaya and Professor Elon Lin-

denstrauss. I came up with the idea of using metric mean dimension through conversations

with them.

2. Some preliminaries

2.1. Review of mean dimension. In this subsection we review the basic facts on the

mean dimension theory. For the details, see Gromov [11] and Lindenstrauss–Weiss [19].

Let (M, dist) be a compact metric space. Here dist is a distance function of M . We

introduce some metric invariants of (M, dist). Let N be a topological space. For ε > 0, a

continuous map f : M → N is called an ε-embedding if Diamf−1(y) < ε for all y ∈ N .

We define the ε-width dimension Widimε(M, dist) as the minimum integer n ≥ 0 such

that there exist an n-dimensional finite polyhedron P and an ε-embedding f : M → P .

The covering dimension dim M is obtained by

dim M = lim
ε→0

Widimε(M, dist).

For ε > 0 we set

#(M, dist, ε) = min{ |α| |α is an open covering of M with DiamU < ε for all U ∈ α},

#sep(M, dist, ε) = max{n ≥ 1|∃x1, . . . , xn ∈ M with dist(xi, xj) > ε (i *= j)}.

These are almost equivalent to each other: For 0 < δ < ε/2

#sep(M, dist, ε) ≤ #(M, dist, ε) ≤ #sep(M, dist, δ).

The next lemma will be useful.

Lemma 2.1. Let (M, dist) and (N, dist′) be metric spaces. Let ε > 0 and δ > 0. Suppose

there exists a map (not necessarily continuous) f : M → N satisfying

dist′(f(x), f(y)) ≤ δ ⇒ dist(x, y) ≤ ε.

Then #sep(M, dist, ε) ≤ #sep(N, dist′, δ).

Proof. Obvious. !
The following example is important. This was used by Li–Liang [16, Lemma 7.4].

Example 2.2. Let (V, ||·||) be an n-dimensional Banach space over R. Let Br(V ) be the

closed r-ball of V around the origin. For any ε > 0

#sep(Br(V ), ||·|| , ε) ≤
(

ε + 2r

ε

)n

.
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Proof. Let µ be the translation invariant measure (i.e. Haar measure) on V normalized so

that µ(B1(V )) = 1. Then for any r > 0 we have µ(Br(V )) = rn. Choose {x1, . . . , xN} ⊂
Br(V ) with ||xi − xj|| > ε for i *= j. Let Bi be the closed ε/2-ball centered at xi. These

Bi are disjoint and their union is contained in Br+ε/2(V ). Hence

N(ε/2)n = µ

(
N⋃

i=1

Bi

)
≤ µ(Br+ε/2(V )) = (r + ε/2)n.

!

Suppose the Lie group R continuously acts on a compact metric space (M, dist). For a

subset Ω ⊂ R we define a new distance distΩ on M by

distΩ(x, y) := sup
t∈Ω

dist(t.x, t.y).

We define the mean dimension dim(M : R) by

dim(M : R) := lim
ε→0

(
lim

T→+∞

Widimε(M, dist(−T,T ))

2T

)
.

This is independent of the choice of a distance function dist. So the mean dimension is a

topological invariant. If dimM < +∞, then the mean dimension dim(M : R) is zero.

Next we introduce metric mean dimension (Lindenstrauss–Weiss [19, Section 4]). For

ε > 0 we define S(M, dist, ε) by

S(M, dist, ε) = lim
T→+∞

log #(M, dist(−T,T ), ε)

2T
.

This is the entropy of M “at the scale ε”. The above limit always exists because of the

natural subadditivity:

#(M, distΩ1∪Ω2 , ε) ≤ #(M, distΩ1 , ε) + #(M, distΩ2 , ε), (Ω1, Ω2 ⊂ R).

The topological entropy of M is defined by htop(M : R) = limε→0 S(M, dist, ε). We define

the metric mean dimension dimM(M, dist : R) by

(2.1) dimM(M, dist : R) := lim inf
ε→0

S(M, dist, ε)

| log ε| .

The metric mean dimension dimM(M, dist : R) depends on the choice of a distance. If the

topological entropy is finite, then the metric mean dimension is zero. Lindenstrauss–Weiss

[19, Theorem 4.2] proved the following fundamental theorem.

Theorem 2.3. Metric mean dimension is always an upper bound on mean dimension:

dim(M : R) ≤ dimM(M, dist : R).

In particular if the topological entropy is finite, then the mean dimension is zero.
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2.2. Energy density. In this subsection we prepare a lemma on the energy density ρ(d)

introduced in (1.4). First of all, the limit in the definition (1.4) always exists because we

have the natural subadditivity:

sup
t∈R

∫

(t,t+T1+T2)×S3

|FA|2dvol ≤ sup
t∈R

∫

(t,t+T1)×S3

|FA|2dvol + sup
t∈R

∫

(t,t+T2)×S3

|FA|2dvol.

Lemma 2.4.

(2.2) ρ(d) = lim
T→+∞

(
1

16π2T
sup

[A]∈Md

∫

(−T,T )×S3

|FA|2dvol

)
.

The limit of the right-hand-side exists because of the subadditivity.

Proof. This can be proved by the method of [28, Theorem 1.3]. But here we give a simpler

proof based on the ergodic theorem. In this proof we restrict the R-action (1.3) to the

subgroup Z ⊂ R as in Section 1.2. We denote by ρ1(d) the right-hand-side of (2.2).

ρ(d) ≤ ρ1(d) is obvious. We define a continuous function ϕ : Md → R by

ϕ([A]) =
1

8π2

∫

(0,1)×S3

|F (A)|2dvol.

Then for [A] ∈ Md and positive integers n we have the following equation:

1

8π2n

∫

(0,n)×S3

|F (A)|2dvol =
1

n

n−1∑

k=0

ϕ(k[A]).

Here k[A] = [k∗A] is the pull-back of [A] by (t, θ) '→ (t + k, θ). We can choose a sequence

[A1], [A2], . . . in Md so that

1

n

n−1∑

k=0

ϕ(k[An]) =
1

8π2n

∫

(0,n)×S3

|F (An)|2dvol → ρ1(d) (n → ∞).

We define a Borel probability measure µn on Md by

µn :=
1

n

n−1∑

k=0

δk[An]

where δk[An] is the delta measure concentrated at the point k[An]. Then

∫

Md

ϕ dµn =
1

n

n−1∑

k=0

ϕ(k[An]) → ρ1(d).

The space of Borel probability measures is weak∗-compact. So we can pick up an accumu-

lation point µ∞ of {µn}. µ∞ is a Z-invariant Borel probability measure (Einsiedler–Ward

[6, Theorem 4.1]) and satisfies
∫

Md

ϕ dµ∞ = ρ1(d).
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By the ergodic decomposition [6, Theorem 4.8], we can choose an ergodic component µ

of µ∞ satisfying ∫

Md

ϕ dµ ≥ ρ1(d).

By the pointwise ergodic theorem [6, Theorem 2.30], for µ-a.e. [A] ∈ Md

1

n

n−1∑

k=0

ϕ(k[A]) →
∫

Md

ϕ dµ ≥ ρ1(d).

This implies ρ(A) ≥ ρ1(d) for µ-a.e. [A] ∈ Md. In particular we get ρ(d) ≥ ρ1(d). !

2.3. Notations. • In most of the arguments the variable t means the natural projection

t : R × S3 → R.

• The value of d (which is the parameter of Md) is fixed in the rest of the paper. So

we treat it as a constant and omit to write the dependence on d in various estimates. For

two quantities x and y we write

x " y

if there exists a universal positive constant C (which might depend on d) satisfying x ≤
Cy. We also use the following notation:

x "a,b,c,...,k y

This means that there exists a positive constant C(a, b, c, . . . , k) which depends only on

parameters a, b, c, . . . , k satisfying x ≤ C(a, b, c, . . . , k)y.

• Let A be a connection on E. Let k ≥ 0 be an integer, and let p ≥ 1. For ξ ∈ Ωi(adE)

(0 ≤ i ≤ 4) and a subset U ⊂ X, we define a norm ||ξ||Lp
k,A(U) by

||ξ||Lp
k,A(U) :=

(
k∑

j=0

∣∣∣∣∇j
Aξ

∣∣∣∣p
Lp(U)

)1/p

.

For α < β we often denote the norm ||ξ||Lp
k,A((α,β)×S3) by ||ξ||Lp

k,A(α,β).

3. Main propositions and the proof of Theorem 1.1

3.1. Setting of the weighted norms. The following lemma is a basis of our good/bad

decomposition argument.

Lemma 3.1. We can choose ν > 0 so that the following statement holds. Let T > 1

(possibly T = ∞) and let A be an ASD connection on E over (0, T ) × S3 satisfying

||FA||L∞(0,T ) < ν. Then

(1) |FA| " exp(2|t − T/2|− T ) over 1/3 < t < T − 1/3. Moreover ||FA||L2(0,T ) < 1.

(2) There exists a bundle trivialization g of E over 0 < t < T such that

• g is a temporal gauge, i.e. the connection matrix g(A) has no dt-component.

• |∇kg(A)| "k exp(2|t − T/2|− T ) over 1/3 < t < T − 1/3 for all integers k ≥ 0.
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Proof. This can be proved in the same way as in Donaldson–Kronheimer [5, Chapter 7.3,

Proposition 7.3.3] or Donaldson [4, Proposition 4.4]. But here we briefly explain how to

deduce the above statement from these references.

(1) By [4, Proposition 4.4] we can find L > 0 and ν > 0 such that if an ASD connection

A over −L < t < L satisfies ||FA||L∞(−L,L) < ν then

∫

−1<t<1

|FA|2dvol <
1

10

(∫

−L<t<−L+1

|FA|2dvol +

∫

L−1<t<L

|FA|2dvol

)
.

Using this estimate iteratively, we can show that the condition ||FA||L∞(0,T ) < ν 1 1

implies ||FA||L2(0,T ) " ν (the implicit constant is independent of T ). Then we can prove

the exponential decay of the condition (1) by [5, Proposition 7.3.3].

(2) The derivatives of FA also satisfy the same exponential decay condition. Then we

can choose a bundle trivialization g of E over {t = T/2} so that |∇kg(A)| "k e−T . We

extend it to −T < t < T by the temporal gauge condition. This satisfies the required

properties. !

For a real number t and a subset G of Z we define |t−G| as the infimum of |t−n| over

n ∈ G. Let A be a connection on E. We set

G(A) = {n ∈ Z| ||FA||L∞(n,n+1) ≥ ν}.

Here ν is the positive constant introduced in Lemma 3.1. For a positive integer T we set

G(A, T ) = G(A) ∪ {−T, T}. For r > 0 we define Ur(A, T ) ⊂ Md as the set of [B] ∈ Md

such that there exists a gauge transformation g of E over −T < t < T satisfying

e|n−G(A,T )| ||g(B) − A||L2
10,A(n,n+1) ≤ r for all integers −T ≤ n ≤ T − 1.

Let A be a non-flat instanton (finite energy ASD connection) on E. Here “finite energy”

means ∫

X

|FA|2dvol < +∞.

By [4, Theorem 4.2] the curvature FA decays exponentially as t → ±∞. We define G′(A)

as the set of integers n satisfying ||FA||L∞(n,n+1) ≥ ν/2. This is a non-empty finite set. Fix

0 < α < 1 and we define a smooth function WA : R → (0, +∞) as a smoothing of the

function

exp(α|t − G′(A)|).

The function exp(α|t−G′(A)|) has finitely many non-differentiable points. So we smooth

them out. Details of the smoothing are not important. We construct WA so that it

satisfies

eα|t−G′(A)| " WA(t) " eα|t−G′(A)|, W (k)
A "k WA,

where the implicit constants are independent of t ∈ R. W (k)
A is the k-th derivative of WA.
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Let G′(A) = {n1 < n2 < · · · < nG}, and set n0 = −∞ and nG+1 = +∞. For

u ∈ Ωi(adE) and k ≥ 0 we define a norm

(3.1) |||u|||k,A = max
0≤j≤G

||WAu||L2
k,A(nj ,nj+1) .

For r > 0 we define Vr(A) as the set of gauge equivalence classes of ASD connections B

on E such that there exists a gauge transformation g of E satisfying

|||g(B) − A|||2,A ≤ r.

3.2. Main propositions and the proof of Theorem 1.1.

Proposition 3.2. For any δ > 0 and any integer T > 1 there exist [A1], . . . , [An] ∈ Md

satisfying

log n "δ T, Md =
n⋃

i=1

Uδ(Ai, T ).

Proposition 3.3. For any r > 0 we can choose δ0 = δ0(r) > 0 satisfying the following

statement. For any [A] ∈ Md and any integer T > 1 there exists a non-flat instanton A′

on E and a map

Uδ0(A, T ) → Vr(A
′), [B] '→ [B′]

such that

(1)

||FA′ ||L∞(X) ≤ D0,

∣∣∣∣
∫

X

|FA′|2dvol −
∫

(−T,T )×S3

|FA|2dvol

∣∣∣∣ " 1.

Here D0 is a universal constant independent of r.

(2) For any [B] ∈ Uδ0(A, T ) there exists a gauge transformation g of E over |t| < T − 1

satisfying

|g(B′) − B| " e−
√

2|t−T | + e−
√

2|t+T | (|t| < T − 1).

For two connections A1 and A2 on E, we set

distL∞([A1], [A2]) = inf
g:E→E

||g(A1) − A2||L∞(X) ,

where g runs over all gauge transformations of E.

Proposition 3.4. For any D > 0 there exist positive numbers r0 = r0(D) and C0 = C0(D)

satisfying the following statement. Let A be a non-flat instanton on E with ||FA||L∞(X) ≤
D. Then for any 0 < ε < 1

#sep(Vr0(A), distL∞ , ε) ≤ (C0/ε)
8c2(A)+3,

where

c2(A) =
1

8π2

∫

X

|FA|2dvol.
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The proofs of the above three propositions occupy the rest of the paper. Here we prove

Theorem 1.1, assuming them.

Proof of Theorem 1.1. We define a distance on Md by

dist([A], [B]) = inf
g:E→E

||g(A) − B||L∞(0,1) ,

where g runs over all gauge transformations of E. This is compatible with the given

topology of Md. Recall that for a subset Ω ⊂ R we denote by distΩ([A], [B]) the supremum

of dist([s∗A], [s∗B]) over s ∈ Ω. We will prove the upper bound on the metric mean

dimension: dimM(Md, dist : R) ≤ 8ρ(d). Then we get dim(Md : R) ≤ 8ρ(d) since the

metric mean dimension is an upper bound on the mean dimension (Theorem 2.3).

Let D0 > 0 be the universal constant introduced in Proposition 3.3 (1), and let r0 =

r0(D0) be the positive constant introduced in Proposition 3.4 with respect to D0. Moreover

let δ0 = δ0(r0(D0)) be the positive constant introduced in Proposition 3.3 with respect to

r0(D0).

Claim 3.5. There exists C1 > 0 satisfying the following statement. For any 0 < ε < 1

there exists an integer L0 = L0(ε) > 1 such that for any integer T > L0 and any [A] ∈ Md

we have

log #sep(Uδ0(A, T ), dist(−T+L0,T−L0), ε) ≤ (| log ε| + C1)

(
1

π2

∫

(−T,T )×S3

|FA|2dvol + C1

)
.

Proof. By Proposition 3.3 for any [A] ∈ Md and any integer T > 1 there exist a non-flat

instanton [A′] and a map

Uδ0(A, T ) → Vr0(A
′), [B] '→ [B′]

satisfying the conditions (1) and (2) of the statement there. If we choose L0 = L0(ε) > 0

sufficiently large, then (by the condition (2)) for any [B] ∈ Uδ0(A, T ) there exists a gauge

transformation g of E over |t| < T − 1 satisfying

|g(B′) − B| < ε/3 (|t| < T − L0 + 1).

Then for any [B1], [B2] ∈ Uδ0(A, T ) with T > L0 we get

distL∞([B′
1], [B

′
2]) ≤ ε/3 =⇒ dist(−T+L0,T−L0)([B1], [B2]) ≤ ε.

By Lemma 2.1

#sep(Uδ0(A, T ), dist(−T+L0,T−L0), ε) ≤ #sep(Vr0(A
′), distL∞ , ε/3)

≤ (3C0/ε)
8c2(A′)+3 (by Proposition 3.4).

By the condition (1) of Proposition 3.3

8c2(A
′) + 3 ≤ 1

π2

∫

(−T,T )×S3

|FA|2dvol + const,

where const is a universal constant. Thus we get the conclusion. !
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Take 0 < ε < 1 and let L0 = L0(ε) > 0 be the positive number introduced in the above

claim. By Proposition 3.2 for any integer T > 1 there exist [A1], . . . , [An] ∈ Md satisfying

log n " T + L0, Md =
n⋃

i=1

Uδ0(Ai, T + L0).

Then #(Md, dist(−T,T ), ε) is bounded by

n∑

i=1

#(Uδ0(Ai, T + L0), dist(−T,T ), ε) ≤
n∑

i=1

#sep(Uδ0(Ai, T + L0), dist(−T,T ), ε/3).

By Claim 3.5, log #(Md, dist(−T,T ), ε) is bounded by

log n + (| log ε| + log 3 + C1)

(
1

π2
sup

[A]∈Md

∫

(−T−L0,T+L0)×S3

|FA|2dvol + C1

)
.

Since log n " T + L0 and L0 does not depend on T , we get (by using Lemma 2.4)

S(Md, dist, ε) = lim
T→∞

log #(Md, dist(−T,T ), ε)

2T
≤ const + (| log ε| + log 3 + C1)8ρ(d).

Here const and C1 are independent of ε. Thus

dimM(Md, dist : R) = lim inf
ε→0

S(Md, dist, ε)

| log ε| ≤ 8ρ(d).

!

4. Decomposition of Md: proof of Proposition 3.2

We prove Proposition 3.2 in this section. A theme of this section is a problem of gluing

gauge transformations. A simplified situation is the following: Let [A], [B] ∈ Md. Let

U1, U2 ⊂ X be open sets, and let gi be gauge transformations of E over Ui (i = 1, 2).

Suppose |gi(B) − A| are very small over Ui for both i = 1, 2. Can we find a gauge

transformation h of E over U1 ∪U2 satisfying |h(B)−A| 1 1? Unfortunately the answer

is No in general. If A and B are very close to flat connections over U1 ∩U2, then we have

to consider a gluing parameter over U1 ∩U2 and cannot find such a gauge transformation

h. (This phenomena appears in constructions of gluing instantons. See [5, Chapter 7.2].)

In Lemmas 4.4 and 4.5 below we formulate situations where the answer to the above

question becomes Yes.

The following is a basis of the argument. This is proved in [20, Corollary 6.3].

Lemma 4.1. Let A be a non-flat ASD connection on E with ||FA||L∞ < ∞. Then A is

irreducible, i.e. if a gauge transformation g satisfies g(A) = A then g = ±1.

Proof. We give a sketch of the proof for the convenience of readers. Suppose A is reducible.

Then A is reduced to a U(1) connection. In particular FA is a u(1)-valued anti-self-dual
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2-form. Using the Yang–Mills equation d∗
AFA = 0 and the Weitzenböck formula (see (5.2)

in Section 5), we get

(∇∗∇ + 2)FA = 0.

Here we have used the fact that the curvature FA does not contribute to the formula

because it is u(1)-valued. Then ||FA||L∞ < ∞ implies FA = 0 all over X. See discussions

around (5.3). !
The next lemma means that we have a good control of gauge transformations over

“good intervals”.

Lemma 4.2. Let κ > 0 and let [A] ∈ Md with ||FA||L∞(0,1) ≥ κ. For any gauge transfor-

mation g of E over 0 < t < 1 we have

min
±

||g ± 1||L∞(0,1) "κ ||dAg||L2
2,A(0,1) .

Proof. It is standard that we can deduce this kind of statement from the following lin-

earized one. (For the detail, see [22, Lemma 3.2].)

Claim 4.3. Let u be a section of adE over 0 < t < 1. Then

||u||L∞(0,1) "κ ||dAu||L2
2,A(0,1) .

Proof. Suppose the contrary. Then there exist [An] ∈ Md with ||FAn||L∞(0,1) ≥ κ and

un ∈ Γ((0, 1) × S3, adE) (n ≥ 1) satisfying

||dAnun||L2
2,An

(0,1) <
1

n
, ||un||L∞(0,1) = 1.

Since Md is compact, we can assume that An converges to some A with ||FA||L∞(0,1) ≥ κ in

C∞ over every compact subset. Then {un} is bounded in L2
3,A((0, 1)×S3). By choosing a

subsequence, we can assume that un weakly converges to some u in L2
3,A((0, 1)×S3) with

dAu = 0. We have ||u||L∞(0,1) = 1 because the Sobolev embedding L2
3,A((0, 1) × S3) →

L∞((0, 1) × S3) is compact. This means that A is reducible over 0 < t < 1. By the

unique continuation theorem (Donaldson–Kronheimer [5, Chapter 4, Lemma 4.3.21]) A

is reducible all over X. This contradicts Lemma 4.1. !
!

In the next two lemmas we formulate situations where we can glue two gauge transfor-

mations. In the first lemma, an overlapping region is “good”. The argument is straight-

forward. In the second lemma, an overlapping region is “bad”. Our formulation have to

be more involved.

Lemma 4.4. For any κ, δ > 0 we can choose ε1 = ε1(κ, δ) > 0 so that the following

statement holds. Let [A], [B] ∈ Md, and let g1 and g2 be gauge transformations of E over

0 < t < 2 and 1 < t < 3 respectively. Suppose

||FA||L∞(1,2) ≥ κ, ||gi(B) − A||L2
10,A(1,2) < ε1 (i = 1, 2).
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Then there exists a gauge transformation h of E over 0 < t < 3 such that h = g1 over

0 < t < 1, h = ±g2 over 2 < t < 3 and

||h(B) − A||L2
10,A(1,2) < δ.

Proof. Set w = g2g
−1
1 over 1 < t < 2. We have dAw = w · (g1(B) − A) + (A − g2(B)) · w.

Hence ||dAw||L2
10,A(1,2) " ε1. By Lemma 4.2 we get min± ||w ± 1||L∞(1,2) "κ ε1. We can

assume ||w − 1||L∞(1,2) ≤ ||w + 1||L∞(1,2). Then ||w − 1||L∞(1,2) "κ ε1 1 1. Thus w is

expressed as w = eu with ||u||L2
11,A(1,2) "κ ε1. Take a cut-off ϕ : R → [0, 1] such that

supp(dϕ) ⊂ (0, 1), ϕ(0) = 0 and ϕ(1) = 1. We set h = eϕug1. If we choose ε1 sufficiently

small, then this satisfies the statement. !

In the rest of this section we take and fix a point θ0 ∈ S3. Recall that we introduced

the positive constant ν in Lemma 3.1.

Lemma 4.5. For any δ > 0 we can choose positive numbers ε2 = ε2(δ) and L1 = L1(δ)

so that the following statement holds. Take [A], [B] ∈ Md, an integer T ≥ 2L1 and gauge

transformations g1 and g2 over −1 < t < L1 and T −L1 < t < T +1 respectively. Suppose

the following three conditions.

• ||FA||L∞(0,T ) , ||FB||L∞(0,T ) < ν, ||FA||L∞(−1,0) , ||FA||L∞(T,T+1) ≥ ν.

• ||g1(B) − A||L2
10,A(0,L1) , ||g2(B) − A||L2

10,A(T−L1,T ) < ε2.

• Set p = (L1 − 1, θ0), q = (T − L1 + 1, θ0) ∈ X and define g′
2(q) : Ep → Ep by the

following commutative diagram:

Ep
parallel translation by B−−−−−−−−−−−−−→ Eq*g′2(q)

*g2(q)

Ep
parallel translation by A−−−−−−−−−−−−−→ Eq

Here the horizontal arrows are the parallel translations by B and A along the

minimum geodesic between p and q. Under these settings, we have

min
±

distSU(2)(g1(p),±g′
2(q)) < ε2,

where distSU(2) is the distance on SU(2) defined by the standard Riemannian struc-

ture.

Then there exists a gauge transformation h of E over −1 < t < T + 1 such that h = g1

over −1 < t < 0, h = ±g2 over T < t < T + 1 and

emin(n+1,T−n) ||h(B) − A||L2
10,A(n,n+1) < δ

for all integers 0 ≤ n ≤ T − 1.

Proof. Let gA and gB be the temporal gauges of A and B over 0 < t < T intro-

duced in Lemma 3.1. The connection matrices A′ := gA(A) and B′ := gB(B) satisfy
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|∇kA′|, |∇kB′| "k exp(2|t − T/2| − T ). Set w1 = gA ◦ g1 ◦ g−1
B over 0 < t < L1 and

w2 = gA ◦ g2 ◦ g−1
B over T − L1 < t < T . They satisfy ||w1(B′) − A′||L2

10,A′ (0,L1) < ε2 and

||w2(B′) − A′||L2
10,A′ (T−L1,T ) < ε2. Moreover we can assume distSU(2)(w1(p), w2(q)) < ε2.

Here we regard w1 and w2 as SU(2)-valued functions over 0 < t < L1 and T −L1 < t < T

respectively.

We get |dw1| " ε2 + e−2L1 and |dw2| " ε2 + e−2L1 over L1 − 2 < t < L1 and T − L1 <

t < T − L1 + 2 respectively. Then w1 and w2 are expressed as w1 = w1(p)eu1 over

L1 − 2 < t < L1 and w2 = w2(q)eu2 over T − L1 < t < T − L1 + 2 such that

||u1||L2
11(L1−2,L1) " ε2 + e−2L1 , ||u2||L2

11(T−L1,T−L1+2) " ε2 + e−2L1 .

We take a path v : R → SU(2) such that v(t) = w1(p) for t ≤ L1 − 1, v(t) = w2(q)

for t ≥ L1 and |∇kv| "k ε2. We also take a cut-off ϕ : R → [0, 1] so that supp(dϕ) ⊂
(L1 − 2, L1 − 1)∪ (T −L1 + 1, T −L1 + 2), ϕ(t) = 1 over {t ≤ L1 − 2}∪ {t ≥ T −L1 + 2}
and ϕ = 0 over L1 − 1 ≤ t ≤ T − L1 + 1. We define a gauge transformation h of E over

−1 < t < T + 1 by

h =





g−1

A ◦ (veϕu1) ◦ gB (t ≤ T/2),

g−1
A ◦ (veϕu2) ◦ gB (t > T/2).

Then |∇k
A(h(B)−A)| "k exp(2|t−T/2|−T ) over L1 < t < T −L1, ||h(B) − A||L2

10,A(0,L1) "
ε2 + e−2L1 and ||h(B) − A||L2

10,A(T−L1,T ) " ε2 + e−2L1 . We can choose L1 and ε2 so that h

satisfies the statement. !

Using Lemmas 4.4 and 4.5, we can provide a sufficient condition for a given connection

[B] to be contained in Uδ(A, T ):

Lemma 4.6. For any δ > 0 we can choose ε3 = ε3(δ) > 0 and an integer R1 = R1(δ) >

L1(δ) (L1(δ) is the constant introduced in Lemma 4.5) so that the following statement

holds. Take [A], [B] ∈ Md and an integer T > 1. If they satisfy the following two

conditions, then [B] ∈ Uδ(A, T ).

• G(A)∩ [−T −R1, T +R1] = G(B)∩ [−T −R1, T +R1]. Let n1 < n2 < · · · < nG be

the elements of this set, and we set pk = (nk + L1, θ0) and qk = (nk − L1 + 1, θ0)

for 1 ≤ k ≤ G.

• For each 1 ≤ k ≤ G there exists a gauge transformation gk of E over nk − R1 <

t < nk + R1 satisfying

||gk(B) − A||L2
10,A(nk−R1,nk+R1) < ε3 (1 ≤ k ≤ G),

min
±

distSU(2)(gk(pk),±g′
k+1(qk+1)) < ε3 (1 ≤ k < G).
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Here g′
k+1(qk+1) is defined by the following commutative diagram.

Epk

parallel translation by B−−−−−−−−−−−−−→ Eqk+1*g′k+1(qk+1)

*gk+1(qk+1)

Epk

parallel translation by A−−−−−−−−−−−−−→ Eqk+1

Proof. First let’s consider the case G(A)∩[−T−R1, T+R1] = G(B)∩[−T−R1, T+R1] = ∅.
By Lemma 3.1 we can choose trivializations gA and gB of E over −T − R1 < t < T + R1

such that the connection matrices gA(A) and gB(B) satisfy

|∇kgA(A)|, |∇kgB(B)| "k e2(|t|−T−R1) (|t| < T + R1 − 1).

Then h := g−1
A ◦ gB satisfies (if R1 5 1)

e|n−G(A,T )| ||h(B) − A||L2
10,A(n,n+1) ≤ e|n−{±T}| ||h(B) − A||L2

10,A(n,n+1) < δ

for all −T ≤ n ≤ T − 1. Hence [B] ∈ Uδ(A, T ).

Next suppose G(A)∩ [−T −R1, T +R1] *= ∅. From the compactness of Md we can find

κ > 0 so that if [C] ∈ Md satisfies ||FC ||L∞(0,1) ≥ ν then ||FC ||L∞(n,n+1) ≥ κ for all integers

|n| ≤ L1 + 1. Let ε1 = ε1(κ, δe−L1−1) and ε2 = ε2(δ) be the positive constants introduced

in Lemmas 4.4 and 4.5. We take ε3 > 0 and R1 > 0 so that

ε3 < min(ε1, ε2), R1 > L1 + 2, ε3e
R1 < δ.

We inductively define gauge transformations hk of E over n1 − R1 < t < nk + R1 for

k = 1, 2, . . . , G so that the following two conditions hold:

• hk = g1 over n1 − R1 < t < n1 and hk = ±gk over nk < t < nk + R1.

• e|n−G(A,T )| ||hk(B) − A||L2
10,A(n,n+1) < δ for all integers n1 ≤ n < nk.

h1 := g1 obviously satisfies the conditions. Suppose we have constructed hk (k < G).

Case 1. Suppose nk+1 −nk − 1 < 2L1. Set m = 6nk+nk+1

2 7. From the definition of κ we

have ||FA||L∞(m,m+1) ≥ κ. We also have ||hk(B) − A||L2
10,A(m,m+1) , ||gk+1(B) − A||L2

10,A(m,m+1) <

ε3 < ε1. Then we can glue hk and gk+1 over m < t < m + 1 by Lemma 4.4 and get hk+1.

This satisfies the required conditions.

Case 2. Suppose nk+1 − nk − 1 ≥ 2L1. Then we can apply Lemma 4.5. We glue hk

and gk+1 over nk + 1 < t < nk+1 and get hk+1.

Therefore we get hG over n1 − R1 < t < nG + R1. If (−T, T ) ⊂ (n1 − R1, nG + R1),

then it satisfies

(4.1) e|n−G(A,T )| ||hG(B) − A||L2
10,A(n,n+1) < δ

for all integers −T ≤ n < T . Hence [B] ∈ Uδ(A, T ).

So the remaining case is (−T, T ) *⊂ (n1 − R1, nG + R1). Suppose −T < n1 − R1.

Then ||FA||L∞(−T−R1,n1) < ν and ||FB||L∞(−T−R1,n1) < ν. Hence by Lemma 3.1 there are

trivializations gA and gB of E over −T − R1 < t < n1 such that the connection matrices
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gA(A) and gB(B) satisfy appropriate exponential decay conditions. We glue g−1
A ◦ gB to

hG as in the proof of Lemma 4.5. In the case of T > nG +R1, we proceed in the same way

over nG + 1 < t < T + R1. Then we get a gauge transformation h of E over −T < t < T

satisfying (4.1) for all integers −T ≤ n < T . Thus [B] ∈ Uδ(A, T ) !

By using Lemma 4.6 we prove Proposition 3.2. We write the statement again for the

convenience of readers.

Proposition 4.7 (= Proposition 3.2). For any δ > 0 and any integer T > 1 there exist

[A1], . . . , [An] ∈ Md satisfying

log n "δ T, Md =
n⋃

i=1

Uδ(Ai, T ).

Proof. Let ε3 = ε3(δ) and R1 = R1(δ) be the positive constants introduced in Lemma 4.6.

Let ε = ε(δ) < ε3 be a small positive number which will be fixed later. For each subset

Ω ⊂ Z ∩ [−T − R1, T + R1] we define

MΩ
d = {[A] ∈ Md|G(A) ∩ [−T − R1, T + R1] = Ω}.

Md is decomposed into these MΩ
d , and the number of the choices of Ω ⊂ Z ∩ [−T −

R1, T + R1] is equal to 22(T+R1)+1 "δ 4T .

We choose an open cover α of Md such that if [A], [B] ∈ Md is contained in the same

open set U ∈ α then there exists a gauge transformation g of E over −R1 < t < R1

satisfying

||g(B) − A||L2
10,A(−R1,R1) < ε.

Note that the choice of α depends on δ and ε.

Take Ω = {n1 < n2 < · · · < nG} ⊂ Z ∩ [−T −R1, T + R1]. We define an open covering

U of Md by

U =
G∨

k=1

(−nk) · α.

Here (−nk)·α is the translation of α by (−nk), and U is the set of open subsets U1∩· · ·∩UG

(Uk ∈ (−nk) · α). The cardinality of U is bounded by |α|G ≤ |α|2T+2R1+1.

We choose V ∈ U and consider MΩ
d ∩ V . Let A be the set of connections A on E

satisfying [A] ∈ MΩ
d ∩ V . Take and fix one A0 ∈ A. For every A ∈ A and 1 ≤ k ≤ G

there exists a gauge transformation gA,k over nk − R1 < t < nk + R1 satisfying

||gA,k(A0) − A||L2
10,A(nk−R1,nk+R1) < ε.

Let L1 = L1(δ) > 0 be the positive constant introduced in Lemma 4.5, and set pk =

(nk + L1, θ0) and qk = (nk − L1 + 1, θ0) for 1 ≤ k ≤ G. We consider the map:

A → SU(2)G−1, A '→ (gA,k(pk)
−1g′

A,k+1(qk+1))
G−1
k=1 .
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Here g′
A,k+1(qk+1) is defined by the commutative diagram:

Epk

parallel translation by A0−−−−−−−−−−−−−−→ Eqk+1*g′A,k+1(qk+1)

*gA,k+1(qk+1)

Epk

parallel translation by A−−−−−−−−−−−−−→ Eqk+1

Considering a covering of SU(2) by ε-balls, we can construct a decomposition A = A1 ∪
· · · ∪AN such that

• log N "ε G "δ T .

• If A,B ∈ A is contained in the same Ai then

distSU(2)(gA,k(pk)
−1g′

A,k+1(qk+1), gB,k(pk)
−1g′

B,k+1(qk+1)) < ε (∀1 ≤ k ≤ G).

Claim 4.8. For any 1 ≤ i ≤ G and A,B ∈ Ai we get [B] ∈ Uδ(A, T ).

Proof. We check the conditions of Lemma 4.6. The condition G(A)∩ [−T −R1, T +R1] =

G(B) ∩ [−T − R1, T + R1] is satisfied. For each 1 ≤ k ≤ G we set gk = gA,k ◦ g−1
B,k over

nk − R1 < t < nk + R1. They satisfy

distSU(2)(gk(pk), g
′
k+1(qk+1)) < ε < ε3 (∀1 ≤ k ≤ G − 1).

We have

gk(B) − A = gk(B − gB,k(A0)) + gA,k(A0) − A.

Hence we can choose ε = ε(δ) > 0 so small that

||gk(B) − A||L2
10,A(nk−R1,nk+R1) < ε3.

Then we can apply Lemma 4.6 to A and B, and we get [B] ∈ Uδ(A, T ). !

Pick up A1 ∈ A1, . . . , AN ∈ AN . Then by the above claim

MΩ
d ∩ V ⊂ Uδ(A1, T ) ∪ · · · ∪ Uδ(AN , T ).

We have the following bounds on several parameters: log N "δ T . The number of the

choices of V ∈ U is "δ |α|2T . Note that |α| is now a constant depending only on δ. The

number of the choices of Ω ⊂ Z∩ [−T −R1, T +R1] is "δ 4T . Combining these estimates,

we get the conclusion. !

5. Instanton approximation: Proof of Proposition 3.3

We develop instanton approximation technique and prove Proposition 3.3 in this sec-

tion. First we prepare some facts concerning a Green kernel function. Let ∆ = ∇∗∇
be the Laplacian on functions in X. Our sign convention of ∆ is geometric ( ∆ =

−∂2/∂x2
1 − ∂2/∂x2

2 − ∂2/∂x2
3 − ∂2/∂x2

4 over R4). Let g(x, y) be the Green kernel of ∆ + 2

over X. This satisfies

(∆y + 2)g(x, y) = δx(y)
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in the distributional sense, i.e. for any compactly supported smooth function ϕ over X

ϕ(x) =

∫

X

g(x, y)(∆y + 2)ϕ(y)dvol(y).

g(x, y) is positive everywhere. It is smooth outside the diagonal, and its singularity along

the diagonal is dist(x, y)−2:

dist(x, y)−2 " g(x, y) " dist(x, y)−2 (dist(x, y) ≤ 1).

It decays exponentially in a long range:

(5.1) g(x, y) " e−
√

2 dist(x,y) (dist(x, y) > 1).

A detailed construction of g(x, y) is explained in [20, Appendix].

For u ∈ Ωi(adE) we define its Taubes norm ||u||Tau by

||u||Tau = sup
x∈X

∫

X

g(x, y)|u(y)|dvol(y).

This was introduced by Taubes [24] and Donaldson [3]. An importance of this norm is

linked to the following Weitzenböck formula. Let A be a connection on E. For φ ∈
Ω+(adE) we have ([9, Chapter 6]):

d+
Ad∗

Aφ =
1

2
∇∗

A∇Aφ +

(
S

6
− W+

)
φ + F+

A · φ,

where S is the scalar curvature of X and W+ is the self-dual part of the Weyl curvature.

Since X = R × S3 is conformally flat, we have W+ = 0. The scalar curvature S is

constantly equal to 6. So we get

(5.2) d+
Ad∗

Aφ =
1

2
(∇∗

A∇A + 2)φ + F+
A · φ.

For any smooth η ∈ Ω+(adE) with ||η||L∞(X) < ∞ there uniquely exists smooth φ ∈
Ω+(adE) satisfying

(∇∗
A∇A + 2)φ = η, ||φ||L∞(X) < ∞.

We sometimes denote φ by (∇∗
A∇A + 2)−1η. It satisfies

(5.3) |φ(x)| ≤
∫

X

g(x, y)|η(y)|dvol(y), ||φ||L∞(X) ≤ ||η||Tau .

Moreover it satisfies the following. (Indeed this is the most spectacular property of the

Taubes norm).

(5.4)
∣∣∣∣(d∗

Aφ ∧ d∗
Aφ)+

∣∣∣∣
Tau

≤ 10 ||η||2Tau .

For the detailed proofs of the above estimates, see [20, Section 4, Appendix].

We define A as the set of connections A on E such that

F+
A is compactly supported,

∣∣∣∣F+
A

∣∣∣∣
Tau

≤ 1

1000
, ||FA||C5

A
:= max

0≤k≤5

∣∣∣∣∇k
AFA

∣∣∣∣
L∞(X)

< ∞.
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Here 1/1000 has no special meaning. Any sufficiently small number will do. The last

condition is connected to the following fact: Take any point p ∈ X. Let g be the expo-

nential gauge of radius π/2 around p. (The injectivity radius of X is equal to π.) Then

the connection matrix g(A) satisfies

|∇kg(A)| " ||FA||Ck
A

.

We summarize the results of [20, Sections 4 and 5] in the following proposition.

Proposition 5.1. We can construct a gauge equivariant map

A 9 A '→ φA ∈ Ω+(adE)

satisfying the following conditions.

(1) A + d∗
AφA is an ASD connection.

(2) φA is smooth and

|φA(x)| "
∫

X

g(x, y)|F+
A (y)|dvol(y), ||φA||L∞(X) "

∣∣∣∣F+
A

∣∣∣∣
Tau

, ||∇AφA||L∞(X) < ∞.

(3) If FA is compactly supported, then
∫

X

|F (A + d∗
AφA)|2dvol =

∫

X

tr(F 2
A).

(4) For any A,B ∈ A, ||φA − φB||L∞(X) " ||A − B||C1
A
.

Proof. We roughly explain the construction of φA for the convenience of readers. Let

Ω+(adE)0 be the set of smooth η ∈ Ω+(adE) satisfying limx→±∞ |η(x)| = 0. Take η ∈
Ω+(adE)0 and set φ = (∇∗

A∇A + 2)−1η ∈ Ω+(adE)0. We want to solve the equation

F+(A + d∗
Aφ) = 0. This is equivalent to

η = −2FA − 2F+
A · φ − 2(d∗

Aφ ∧ d∗
Aφ)+.

We denote the right-hand-side by Φ(η). By using the estimates (5.3) and (5.4), we can

prove that Φ becomes a contraction map with respect to the Taubes norm over
{

η ∈ Ω+(adE)0| ||η||Tau ≤ 3

1000

}
.

Therefore the sequence ηn defined by

η0 = 0, ηn+1 = Φ(ηn)

is a Cauchy sequence with respect to the Taubes norm. Then φn := (∇∗
A∇A + 2)−1ηn

is a convergent sequence in L∞(X). Let φA be the limit of φn. We can prove that

φA is smooth and φn converges to φA in C∞ over every compact subset of X. Then it

satisfies F+(A + d∗
AφA) = 0. The conditions (2), (3) and (4) can be checked by a detailed

investigation of the above construction. !
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We need some more detailed estimates on φA. They are established in the next two

lemmas.

Lemma 5.2. We can choose 0 < τ < 1/1000 so that the following statement holds. If

A ∈ A satisfies
∣∣∣∣F+

A

∣∣∣∣
Tau

≤ τ then φA satisfies

||∇AφA||L∞(X) ≤ 1 + ||FA||C1
A

.

Proof. Suppose the statement is false. Then for any n > 0 there exists An ∈ A such that

||F+(An)||Tau ≤ 1/n and

Rn := ||∇AnφAn||L∞(X) > 1 + ||F (An)||C1
An

.

Take pn ∈ X satisfying |∇AnφAn(pn)| > Rn/2. We consider the geodesic coordinate and

the exponential gauge (w.r.t. An) of radius π/2 around pn. Then the connection matrix

of An in this gauge (also denoted by An) satisfies

|An| + |∇An| " ||F (An)||C1
An

< Rn.

We have the ASD equation

(∇∗
An
∇An + 2)φAn = −2F+(An) − 2F+(An) · φAn − 2(d∗

An
φAn ∧ d∗

An
φAn)+

and the estimates ||φAn||L∞ " ||F+(An)||Tau ≤ 1/n and ||F+(An)||L∞ < Rn. Then
∣∣∣∣∣
∑

i,j

gij(x)∂i∂jφAn

∣∣∣∣∣ " R2
n (|x| ≤ π/2).

Here x is the geodesic coordinate around pn. Set φn(y) = φAn(y/Rn) for |y| ≤ π/2. This

satisfies

|∇φn(0)| > 1/2,

∣∣∣∣∣
∑

i,j

gij(y/Rn)∂i∂jφn

∣∣∣∣∣ " 1.

From the latter condition and ||φn||L∞ " 1/n, φn converges to 0 in C1 over |y| ≤ π/3. But

this contradicts |∇φn(0)| > 1/2. !

For T > 1 and K > 0 we define A(T, K) ⊂ A as the set of connections A on E satisfying
∣∣∣∣F+

A

∣∣∣∣
Tau

≤ τ, supp(F+
A ) ⊂ {(t, θ) ∈ R × S3|T − 1 < |t| < T}, ||FA||C5

A
≤ K.

Here τ is the positive constant introduced in Lemma 5.2. For x = (t, θ) ∈ R × S3 we set

gT (x) = gT (t) = e−
√

2|t−T | + e−
√

2|t+T |,

ĝT (x) = ĝT (t) = (1 + |t − T |)e−
√

2|t−T | + (1 + |t + T |)e−
√

2|t+T |.

From the exponential decay estimate (5.1), the Green kernel g(x, y) satisfies
∫

T−1<|t|<T

g(x, y)dvol(y) " gT (x),

∫

X

g(x, y)gT (y)dvol(y) " ĝT (x).
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Lemma 5.3. (1) For any A ∈ A(T, K) and 0 ≤ k ≤ 5, |∇k
AφA(x)| "K gT (x).

(2) There exists L2 = L2(K) > 1 such that every A ∈ A(T, K) satisfies
∣∣∣∣
∫

T−L2<t<T+L2

|F (A + d∗
AφA)|2dvol −

∫

T−L2<t<T+L2

tr(F 2
A)

∣∣∣∣ ≤ 1/10,

∣∣∣∣
∫

−T−L2<t<−T+L2

|F (A + d∗
AφA)|2dvol −

∫

−T−L2<t<−T+L2

tr(F 2
A)

∣∣∣∣ ≤ 1/10.

(3) For any A,B ∈ A(T, K) and 0 ≤ k ≤ 5

|∇k
AφA(x) −∇k

BφB(x)| "K ĝT (x) ||A − B||C5
A

.

Proof. (1) From Proposition 5.1 (2), |φA(x)| "K gT (x). By Lemma 5.2, ||∇AφA||L∞ "K 1.

Set R = supt∈R gT (t)−1 ||φA||L2
2,A(t,t+1). We have the ASD equation

(∇∗
A∇A + 2)φA = −2F+

A − 2F+
A · φA − 2(d∗

AφA ∧ d∗
AφA)+.

From the elliptic estimate

||φA||L2
2,A(t,t+1) "K ||φA||L2(t−1,t+2) + ||(∇∗

A∇A + 2)φA||L2(t−1,t+2)

"K gT (t) + ||d∗
AφA ∧ d∗

AφA||L2(t−1,t+2)

"K gT (t) + ||d∗
AφA||L2(t−1,t+2) (||∇AφA||L∞ "K 1).

Let ε = ε(K) > 0 be a small number which will be fixed later. From the interpolation

(Gilbarg–Trudinger [10, Theorem 7.28]),

||d∗
AφA||L2(t−1,t+2) ≤ C(ε, K) ||φA||L2(t−1,t+2) + ε ||φA||L2

2,A(t−1,t+2) .

Hence

||φA||L2
2,A(t,t+1) ≤ C ′(ε, K)gT (x) + C ′′(K)ε ||φA||L2

2,A(t−1,t+2) .

Then

R ≤ C ′(ε, K) + C ′′′(K)εR.

We choose ε so that C ′′′(K)ε < 1/2. Then R "K 1, i.e. ||φA||L2
2,A(t,t+1) "K gT (x). The rest

of the argument is a standard bootstrapping.

(2) Set a = d∗
AφA and csA(a) = tr(2a ∧ FA + a ∧ dAa + 2

3a
3). We have tr(F (A + a)2) −

trF 2
A = dcsA(a). Then by the Stokes theorem

∫

T−L2<t<T+L2

|F (A + a)|2dvol −
∫

T−L2<t<T+L2

trF 2
A =

∫

t=T+L2

csA(a) −
∫

t=T−L2

csA(a).

By (1), the right-hand-side goes to zero (uniformly in A and T ) as L2 → ∞.

(3) From (1), |∇k
AφA(x)|, |∇k

BφB(x)| "K gT (x) for 0 ≤ k ≤ 5. Set a = B − A. It is

enough to prove the statement under the assumption ||a||C5
A

< 1. From the ASD equation,

(∇∗
A∇A + 2)(φA − φB) = 2(F+

B − F+
A ) + 2(F+

B · φB − F+
A · φA)

+ 2
{
(d∗

BφB ∧ d∗
BφB)+ − (dAφ∗

A ∧ d∗
AφA)+

}
+ a ∗ ∇BφB + (∇Aa) ∗ φB + a ∗ a ∗ φB.

(5.5)
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For any t ∈ R, by the elliptic estimate

(5.6)

||φA − φB||L2
2,A(t,t+1) "K ||φA − φB||L2(t−1,t+2)+gT (t) ||a||C1

A
+gT (t) ||d∗

AφA − d∗
AφB||L2(t−1,t+2) .

From Proposition 5.1 (4) we have ||φA − φB||L∞ " ||a||C1
A
. So we get

||φA − φB||L2
2,A(t,t+1) "K ||a||C1

A
+ ||d∗

AφA − d∗
AφB||L2(t−1,t+2) .

By using the interpolation as in (1), we get

||φA − φB||L2
2,A(t,t+1) "K ||a||C1

A
.

Then the bootstrapping shows ||φA − φB||C1
A

"K ||a||C1
A
. By this estimate, the modulus of

the right-hand-side of (5.5) is "K gT (x) ||a||C1
A
. Then by the Green kernel estimate (5.3)

|φA(x) − φB(x)| "K ĝT (x) ||a||C1
A

.

Using this and ||φA − φB||C1
A

"K ||a||C1
A

in (5.6), we get ||φA − φB||L2
2,A(t,t+1) "K ĝT (t) ||a||C1

A
.

The rest of the proof is a bootstrapping. !

The next lemma is a preliminary version of Proposition 3.3. Here we connect the set

Uδ(A, T ) to A(T, K) above.

Lemma 5.4. There exist positive numbers δ1 and K such that for any [A] ∈ Md, any

integer T > 1 and 0 < δ ≤ δ1 we can construct a (not necessarily continuous) map

Uδ(A, T ) → A(T, K), [B] '→ B̂,

satisfying the following conditions.

(1) There exists a gauge transformation g of E over |t| < T − 1 satisfying g(B̂) = B.

(2) There exists a gauge transformation h of E satisfying

sup
n∈Z

e|n−G(Â)|
∣∣∣
∣∣∣h(B̂) − Â

∣∣∣
∣∣∣
L2

10,Â
(n,n+1)

" δ.

(3) The curvature F (Â) is supported in |t| < T . Moreover
∣∣∣∣
∫

X

tr(F (Â)2) −
∫

−T<t<T

|FA|2dvol

∣∣∣∣ " 1,

∫

T−1<t<T

tr(F (Â)2) ≥ 10,

∫

−T<t<−T+1

tr(F (Â)2) ≥ 10.

Proof. Choose a representative A of [A]. First we define Â. We take a cut-off ϕ : R → [0, 1]

such that supp(dϕ) ⊂ {T − 1/2 < |t| < T}, ϕ = 1 over |t| ≤ T − 1/2 and ϕ = 0 over

|t| ≥ T . We can choose a trivialization u of E over T −1 < |t| < T so that the connection

matrix u(A) satisfies ||u(A)||C10 " 1. We define a connection A0 by A0 = u−1(ϕu(A)).

A0 = A over |t| ≤ T − 1/2, and A0 is flat over |t| ≥ T . The self-dual curvature F+(A0) is

supported in T − 1/2 < |t| < T . We try to reduce its Taubes norm by gluing sufficiently

many concentrated instantons to A0 over T − 1/2 < |t| < T . This is a rather standard
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technique for specialists of gauge theory. For the detail, see Donaldson [3, pp. 190-199].

After this gluing procedure, we get a connection Â such that Â = A over |t| ≤ T − 1/2,

F (Â) is supported in |t| < T and

supp(F+(Â)) ⊂ {T − 1/2 < |t| < T},
∣∣∣
∣∣∣F+(Â)

∣∣∣
∣∣∣
Tau

≤ τ/2,
∣∣∣
∣∣∣F (Â)

∣∣∣
∣∣∣
C5

Â

" 1.

We can also assume that Â satisfies the condition (3) of the statement. The last condition

of (3) can be achieved by increasing the number of gluing instantons. Moreover, by

the same reasoning, we can assume
∣∣∣
∣∣∣F (Â)

∣∣∣
∣∣∣
L∞(T−1,T )

,
∣∣∣
∣∣∣F (Â)

∣∣∣
∣∣∣
L∞(−T,−T+1)

≥ ν. Hence

−T, T − 1 ∈ G(Â). This fact together with Â = A over |t| ≤ T − 1/2 implies

(5.7) |n − G(Â)| ≤ |n − G(A, T )| (−T ≤ n ≤ T − 1).

Next we take [B] ∈ Uδ(A, T ) (δ ≤ δ1) different from [A]. We can choose a representative

B of [B] satisfying

e|n−G(A,T )| ||B − A||L2
10,A(n,n+1) ≤ δ (−T ≤ n ≤ T − 1).

We take a cut-off ψ : R → [0, 1] such that supp(dψ) ⊂ {T − 1 < |t| < T − 1/2}, ψ = 1

over |t| ≤ T − 1 and ψ = 0 over |t| ≥ T − 1/2. Set B̂ = ψB + (1−ψ)Â. This satisfies the

condition (1) because B̂ = B over |t| ≤ T − 1. F+(B̂) is supported in {T − 1 < |t| < T}
and ∣∣∣

∣∣∣F+(B̂)
∣∣∣
∣∣∣
Tau

≤ const · δ1 +
∣∣∣
∣∣∣F+(Â)

∣∣∣
∣∣∣
Tau

≤ τ

if we choose δ1 sufficiently small. We can find a universal constant K > 0 so that∣∣∣
∣∣∣F (B̂)

∣∣∣
∣∣∣
C5

B̂

≤ K for all [B] ∈ Uδ1(A, T ). Then B̂ ∈ A(T, K).

We want to check the condition (2). B̂ − Â = 0 over |t| ≥ T − 1/2. For |t| < T − 1/2

we have Â = A and B̂ − Â = ψ(B − A). Using (5.7), for −T ≤ n ≤ T − 1

e|n−G(Â)|
∣∣∣
∣∣∣B̂ − Â

∣∣∣
∣∣∣
L2

10,Â
(n,n+1)

≤ e|n−G(A,T )| ||ψ(B − A)||L2
10,A(n,n+1) " δ.

If n < −T or n > T − 1 then e|n−G(Â)|
∣∣∣
∣∣∣B̂ − Â

∣∣∣
∣∣∣
L2

10,Â
(n,n+1)

is zero. This shows (2). !

Then we can prove the main result of this section.

Proposition 5.5 (= Proposition 3.3). For any r > 0 we can choose δ0 = δ0(r) > 0

satisfying the following statement. For any [A] ∈ Md and any integer T > 1 there exists

a non-flat instanton A′ on E and a (not necessarily continuous) map

Uδ0(A, T ) → Vr(A
′), [B] '→ [B′]

such that

(1)

||FA′ ||L∞(X) ≤ D0,

∣∣∣∣
∫

X

|FA′|2dvol −
∫

(−T,T )×S3

|FA|2dvol

∣∣∣∣ " 1.
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Here D0 is a universal constant independent of r.

(2) For any [B] ∈ Uδ0(A, T ) there exists a gauge transformation h of E over |t| < T − 1

satisfying

|h(B′) − B| " gT (t) (|t| < T − 1).

Proof. Let 0 < δ0 = δ0(r) ≤ δ1 (δ1 is the positive constant introduced in Lemma 5.4). δ0

will be fixed later. Take [B] ∈ Uδ0(A, T ) and set B′ = B̂ + d∗
B̂
φB̂. Here B̂ is constructed

by Lemma 5.4, and φB̂ is constructed by Proposition 5.1. B′ is an ASD connection. F (Â)

is compactly supported, and hence Proposition 5.1 (3) implies

(5.8)

∫

X

|F (A′)|2dvol =

∫

X

tr(F (Â)2) < ∞.

Thus A′ is an instanton. We will show [B′] ∈ Vr(A′) and the above conditions (1) and

(2).

First we check (1). We have F (A′) = F (Â) + dÂd∗
Â
φÂ + (dÂφÂ)2. Since Â ∈ A(T, K),

we get ||F (A′)||L∞(X) " 1 by Lemma 5.3 (1). Moreover by (5.8) and Lemma 5.4 (3)
∣∣∣∣
∫

X

|FA′|2dvol −
∫

−T<t<T

|FA|2dvol

∣∣∣∣ =

∣∣∣∣
∫

X

tr(F (Â)2) −
∫

−T<t<T

|FA|2dvol

∣∣∣∣ " 1

Thus we have proved the condition (1).

Next we check (2). From Lemma 5.4 (1) we can assume B̂ = B over |t| < T − 1. Then

B′ − B = d∗
B̂
φB̂ over |t| < T − 1. By Lemma 5.3 (1) we have |d∗

B̂
φB̂| " gT (t). Thus

|B′ − B| " gT (t) over |t| < T − 1. This shows the condition (2).

The rest of the task is to show that A′ is non-flat and [B′] ∈ Vr(A′). From lemma 5.3

(2) and Lemma 5.4 (3)
∫

T−L2<t<T+L2

|F (A′)|2dvol > 9,

∫

−T−L2<t<−T+L2

|F (A′)|2dvol > 9.

This implies that A′ is not flat. Moreover by Lemma 3.1 the L∞-norms of F (A′) over

T − L2 < t < T + L2 and −T − L2 < t < −T + L2 are both bounded from below by ν.

Hence

(5.9) G′(A′) ∩ [T − L2, T + L2] *= ∅, G′(A′) ∩ [−T − L2,−T + L2] *= ∅.

From Lemma 5.3 (1) A′ = Â + d∗
Â
φÂ satisfies

|F (A′) − F (Â)| " gT (t).

Then we can find a universal constant L > L2 so that

t ∈ G(Â) =⇒ (t − L, t + L) ∩ G′(A′) *= ∅.

Then for all n ∈ Z

(5.10) |n − G′(A′)| ≤ |n − G(Â)| + L.
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From Lemma 5.4 (2) we can assume

(5.11) sup
n∈Z

e|n−G(Â)|
∣∣∣
∣∣∣B̂ − Â

∣∣∣
∣∣∣
L2

10,Â
(n,n+1)

" δ0.

B′ − A′ = B̂ − Â + d∗
B̂
φB̂ − d∗

Â
φÂ. From Lemma 5.3 (1) we have

∣∣∣
∣∣∣A′ − Â

∣∣∣
∣∣∣
C4

Â

" 1. Then

e|n−G′(A′)| ||B′ − A′||L2
2,A′ (n,n+1) " e|n−G′(A′)|

∣∣∣
∣∣∣B̂ − Â

∣∣∣
∣∣∣
L2

2,Â
(n,n+1)

+ e|n−G′(A′)| ∣∣∣∣d∗
B̂
φB̂ − d∗

Â
φÂ

∣∣∣∣
L2

2,Â
(n,n+1)

.

From (5.10) and (5.11)

e|n−G′(A′)|
∣∣∣
∣∣∣B̂ − Â

∣∣∣
∣∣∣
L2

2,Â
(n,n+1)

" δ0.

From Lemma 5.3 (3),
∣∣∣
∣∣∣d∗

B̂
φB̂ − d∗

Â
φÂ

∣∣∣
∣∣∣
L2

2,Â
(n,n+1)

" ĝT (n)
∣∣∣
∣∣∣B̂ − Â

∣∣∣
∣∣∣
C5

Â

. By (5.11) and the

Sobolev embedding,

e|n−G′(A′)| ∣∣∣∣d∗
B̂
φB̂ − d∗

Â
φÂ

∣∣∣∣
L2

2,Â
(n,n+1)

" e|n−G′(A′)|ĝT (n)δ0.

Recall ĝT (n) = (1+|n−T |)e−
√

2|n−T |+(1+|n+T |)e−
√

2|n+T | and (5.9). So e|n−G′(A′)|ĝT (n) "
e|n−{±T}|ĝT (n) " 1. Combining the above estimates, we conclude

sup
n∈Z

e|n−G′(A′)| ||B′ − A′||L2
2,A′ (n,n+1) " δ0.

Recall the definition of the norm |||·|||2,A′ in (3.1). It uses the weight function WA′ , and

this satisfies WA′(t) " eα|t−G′(A′)|. Since α < 1 we get

|||B′ − A′|||2,A′ " sup
n∈Z

e|n−G′(A′)| ||B′ − A′||L2
2,A′ (n,n+1) " δ0.

Thus we can choose δ0 1 r so that |||B′ − A′|||2,A′ ≤ r and hence [B′] ∈ Vr(A′). !

6. Quantitative deformation theory: proof of Proposition 3.4

The purpose of this section is to prove Proposition 3.4. Let D > 0 be a positive number,

and let A be a non-flat instanton on E satisfying ||FA||L∞(X) ≤ D. First we recall some

notations. We denote

G′(A) = {n ∈ Z| ||FA||L∞(n,n+1) ≥ ν/2} = {n1 < n2 < · · · < nG}.

Let WA be the weight function introduced in Section 3.1. It is a smoothing of the function

eα|t−G′(A)| (0 < α < 1). For u ∈ Ωi(adE) we define (n0 = −∞ and nG+1 = +∞)

|||u|||k,A = max
0≤j≤G

||WAu||L2
k,A(nj ,nj+1) .

The connection A is fixed throughout this section. So we usually abbreviate |||u|||k,A and

|||u|||0,A to |||u|||k and |||u||| respectively. We also abbreviate the weight function WA to W . We
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define L2,W
k (Ωi(adE)) as the Banach space of locally L2

k sections u ∈ Ωi(adE) satisfying

|||u|||k < ∞. Our main object is the space

Vr(A) = {[B] : ASD on E|∃g : E → E s.t. |||g(B) − A|||2 ≤ r} (r > 0).

First we prepare a lemma concerning Ω0(adE). Here we essentially use our good/bad

decomposition structure.

Lemma 6.1. (1) For u ∈ L2,W
3 (Ω0(adE)),

||u||L∞(X) "D |||dAu|||2 .

(2) For u ∈ L2,W
k (Ω0(adE)) with k ≥ 1, |||u|||k "A |||dAu|||k−1. Note that the implicit

constant here depends on A. Hence this is less effective than (1).

Proof. (1) This follows from the Sobolev embedding and

(6.1) ||u||L2(t,t+1) "D |||dAu||| (∀t ∈ R).

By the same argument as in Claim 4.3,

(6.2) ||u||L2(n,n+1) "D ||dAu||L2(n,n+1) (∀n ∈ G′(A)).

Take t ∈ (n1, n2) with |t − n1| ≤ |t − n2| (other cases can be treated in the same way).

For each n1 < s < n1 + 1

|u(t, θ)| ≤ |u(s, θ)| +
∣∣∣∣
∫ t

s

|∇Au|dτ

∣∣∣∣ ≤ |u(s, θ)| +
∫ t

n1

|∇Au|dτ.

∫ t

n1

|∇Au|dτ =

∫ t

n1

e−α(τ−n1)eα(τ−n1)|∇Au|dτ ≤

√∫ t

n1

e−2α(τ−n1)dτ

√∫ t

n1

e2α(τ−n1)|∇Au|2dτ .

Since eα|t−G′(A)| " W (t), we get

∫ t

n1

|∇Au|dτ "
√∫ t

n1

W 2|∇Au|2dτ ,

|u(t, θ)|2 " |u(s, θ)|2 +

∫ t

n1

W 2|∇Au|2dτ.

Integrating over (s, θ) ∈ (n1, n1 + 1) × S3,
∫

S3

|u(t, θ)|2dvolS3(θ) "
∫

(n1,n1+1)×S3

|u|2dvol +

∫

(n1,t)×S3

W 2|∇Au|2dvol.

Using (6.2) ∫

S3

|u(t, θ)|2dvolS3(θ) " |||dAu|||2 .

The desired estimate (6.1) follows from this.

(2) It is enough to prove |||u||| "A |||dAu|||, and this follows from (6.1) and
∫

{t<n1}∪{t>nG}
W 2|u|2dvol " |||dAu|||2 .
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For simplicity we assume nG = 0 and prove
∫

t>0

W 2|u|2dvol " |||dAu|||2 .

We can assume that u is smooth and compactly supported. Let t > 0.

|u(t, θ)| ≤
∫ ∞

t

|∇Au(s, θ)|ds =

∫ ∞

t

W (s)−1W (s)|∇Au(s, θ)|ds.

For 0 < t < s we have W (t)W (s)−1 " eα(t−s). Hence

W (t)|u(t, θ)| "
∫ ∞

t

eα(t−s)W (s)|∇Au(s, θ)|ds,

W (t)2|u(t, θ)|2 "
∫ ∞

t

eα(t−s)ds

∫ ∞

t

eα(t−s)W (s)2|∇Au(s, θ)|2ds

=
1

α

∫ ∞

t

eα(t−s)W (s)2|∇Au(s, θ)|2ds.

Therefore ∫ ∞

0

W (t)2|u(t, θ)|2dt "
∫ ∞

0

(∫ s

0

eα(t−s)dt

)
W (s)2|∇Au(s, θ)|2ds

≤ 1

α

∫ ∞

0

W (s)2|∇Au(s, θ)|2ds.

Thus ∫

t>0

W 2|u|2dvol "
∫

t>0

W 2|∇Au|2dvol ≤ |||dAu|||2 .

!
Let d∗,W

A : Ω1(adE) → Ω0(adE) be the formal adjoint of dA : Ω0(adE) → Ω1(adE) with

respect to the weighted inner product: For compactly supported smooth u ∈ Ω0(adE)

and a ∈ Ω1(adE) ∫

X

W 2〈dAu, a〉dvol =

∫

X

W 2〈u, d∗,W
A a〉dvol.

The following lemma studies the Coulomb gauge condition.

Lemma 6.2. (1) For u ∈ L2,W
1 (Ω0(adE)) and a ∈ L2,W (Ω1(adE)) with d∗,W

A a = 0 (in the

distributional sense)

|||dAu||| + |||a||| "D |||dAu + a||| .
(2) Let k ≥ 0. For u ∈ L2,W

k+1(Ω
0(adE)) and a ∈ L2,W

k (Ω1(adE)) with d∗,W
A a = 0

|||dAu|||k + |||a|||k "k,D |||dAu + a|||k .

Proof. (1) We can suppose that u is smooth and compactly supported. Let N = N(D) > 0

be a sufficiently large integer which will be fixed later. It is very important that several

implicit constants below do not depend on N . Recall G′(A) = {n1 < · · · < nG}. Let

G = qN + r with 0 ≤ r < N . We decompose R as follows:

R = (−∞, nN ] ∪ [nN , n2N ] ∪ · · · ∪ [n(q−1)N , nqN ] ∪ [nqN ,∞).
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We call these intervals I0, I1, . . . , Iq respectively. If q = 0, then we simply set I0 = R. We

set I−1 = Iq+1 = ∅. For 0 ≤ k ≤ q we take a cut-off function ϕk : R → [0, 1] such that

ϕk = 1 on Ik, supp(ϕk) ⊂ Ik−1 ∪ Ik ∪ Ik+1 =: Jk and

(6.3) supp(dϕk) ⊂
⋃

n∈G′(A)

(n, n + 1), |dϕk| " 1

N
.

From d∗,W
A a = 0

∫

X

W 2〈dAu + a, dA(ϕku)〉dvol =

∫

X

W 2〈dAu, dA(ϕku)〉dvol.

∣∣∣∣
∫

X

W 2〈dAu, dA(ϕku)〉dvol

∣∣∣∣ #
∫

Ik

W 2|dAu|2dvol − 1

N

∫

supp(dϕk)

W 2|dAu||u|dvol

≥
∫

Ik

W 2|dAu|2dvol − 1

N

√∫

Jk

W 2|dAu|2dvol

√∫

supp(dϕk)

W 2|u|2dvol.

∣∣∣∣
∫

X

W 2〈dAu + a, dA(ϕku)〉dvol

∣∣∣∣ ≤

√∫

Jk

W 2|dAu + a|2dvol

√∫

X

W 2|dA(ϕku)|2dvol

"
√∫

Jk

W 2|dAu + a|2dvol

√∫

supp(dϕk)

W 2|u|2dvol +

∫

Jk

W 2|dAu|2dvol.

From (6.2) in the proof of Lemma 6.1 and the above (6.3),
∫

supp(dϕk)

W 2|u|2dvol "
∫

supp(dϕk)

|u|2dvol "D

∫

Jk

|dAu|2dvol "
∫

Jk

W 2|dAu|2dvol.

Combining these estimates,
∫

Ik

W 2|dAu|2dvol

"D

√∫

Jk

W 2|dAu|2dvol

(√∫

Jk

W 2|dAu + a|2dvol +
1

N

√∫

Jk

W 2|dAu|2dvol

)
.

Set

R = max
k

√∫

Ik

W 2|dAu|2dvol, S = max
k

√∫

Ik

W 2|dAu + a|2dvol.

Then we get

R2 ≤ C(D)

(
S +

R

N

)
R, i.e. R ≤ C(D)S +

C(D)

N
R.

We choose N = N(D) so that C(D)/N < 1/2. Then R ≤ 2C(D)S. We have |||dAu||| ≤ R

and S "D |||dAu + a|||. Thus |||dAu||| "D |||dAu + a|||. Then |||a||| "D |||dAu + a|||.
(2) Let k ≥ 1. By the elliptic regularity of the operator d∗,W

A + d+
A,

|||dAu|||k "k,D |||dAu||| +
∣∣∣
∣∣∣
∣∣∣(d∗,W

A + d+
A)dAu

∣∣∣
∣∣∣
∣∣∣
k−1

.
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We have (d∗,W
A + d+

A)dAu = d∗,W
A dAu = d∗,W

A (dAu + a). Hence by (1)

|||dAu|||k "k,D |||dAu||| + |||dAu + a|||k "D |||dAu + a|||k .

!

Recall the Weitzenböck formula (5.2):

d+
Ad∗

Aφ =
1

2
(∇∗

A∇A + 2)φ (φ ∈ Ω+(adE)).

Here d∗
A and ∇∗

A are the formal adjoints of dA and ∇A with respect to the standard

(non-weighted) inner products. For any smooth η ∈ Ω+(adE) with ||η||L∞(X) < ∞ there

uniquely exists a smooth φ ∈ Ω+(adE) satisfying ||φ||L∞(X) < ∞ and d+
Ad∗

Aφ = η. We

denote this φ by (d+
Ad∗

A)−1η. (See Section 5 and [20, Appendix].) We need to study the

behavior of (d+
Ad∗

A)−1 under the weighted norms.

Lemma 6.3. For any k ≥ 0 and any compactly supported smooth η ∈ Ω+(adE)
∣∣∣∣∣∣(d+

Ad∗
A)−1η

∣∣∣∣∣∣
k+2

"k,D |||η|||k .

So we can uniquely extend the operator (d+
Ad∗

A)−1 to a bounded linear map from L2,W
k (Ω+(adE))

to L2,W
k+2(Ω

+(adE)). We set

PA := d∗
A(d+

Ad∗
A)−1 : L2,W

k (Ω+(adE)) → L2,W
k+1(Ω

1(adE)).

This satisfies ||PAη||k+1 "k,D |||η|||k.

Proof. Set φ = (d+
Ad∗

A)−1η. It is enough to prove |||φ||| " |||η|||. By the Green kernel estimate

(5.3)

|φ(x)| "
∫

X

g(x, y)|η(y)|dvol(y).

We have
∫

X g(x, y)dvol(y) " 1 (uniformly in x) and g(x, y) " e−
√

2 dist(x,y) for dist(x, y) >

1. Set h(x, y) = W (x)W (y)−1g(x, y).

W (x)|φ(x)| "
∫

X

h(x, y)W (y)|η(y)|dvol(y).

Since eα|t−G′(A)| " W (t) " eα|t−G′(A)|

W (x)W (y)−1 " eα dist(x,y).

Hence (noting α < 1 <
√

2)
∫

X

h(x, y)dvol(y) " 1 (uniformly in x), h(x, y) " e(α−
√

2)dist(x,y) (dist(x, y) > 1).

From the former condition

W (x)2|φ(x)|2 "
∫

X

h(x, y)W (y)2|η(y)|2dvol(y).
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We denote by t and s the R-coordinates of x, y ∈ R × S3 respectively.
∫

ni<t<ni+1

W (x)2|φ(x)|2dvol(x) "
∫

X

(∫

ni<t<ni+1

h(x, y)dvol(x)

)
W (y)2|η(y)|2dvol(y)

=

∫

ni−1≤s≤ni+1+1

(∫

ni<t<ni+1

h(x, y)dvol(x)

)
W (y)2|η(y)|2dvol(y)

︸ ︷︷ ︸
(I)

+

∫

{s<ni−1}∪{s>ni+1+1}

(∫

ni<t<ni+1

h(x, y)dvol(x)

)
W (y)2|η(y)|2dvol(y)

︸ ︷︷ ︸
(II)

.

We have
∫

ni<t<ni+1
h(x, y)dvol(x) " 1. So the term (I) is " |||η|||. When s < ni − 1 or

s > ni+1 + 1,
∫

ni<t<ni+1

h(x, y)dvol(x) "
∫ ni+1

ni

e(α−
√

2)|t−s|dt " max
(
e(α−

√
2)|s−ni|, e(α−

√
2)|s−ni+1|

)
.

Then the term (II) is also " |||η|||. Thus we conclude |||φ||| " |||η|||. !

We define H1,W
A as the space of a ∈ Ω1(adE) satisfying d∗,W

A a = d+
Aa = 0 and |||a||| < ∞.

All the norms |||·|||k,A (k ≥ 0) are equivalent over H1,W
A by the elliptic regularity.

Lemma 6.4.

dim H1,W
A = 8c2(A) + 3, c2(A) :=

1

8π2

∫

X

|FA|2dvol.

Proof. We set DA = d∗,W
A + d+

A : L2,W
1 (Ω1(adE)) → L2,W (Ω0(adE) ⊕ Ω+(adE)). H1,W

A is

the kernel of DA. We will show that DA is surjective. The map

d∗,W
A dA : L2,W

2 (Ω0(adE)) → L2,W (Ω0(adE))

is injective and has a closed range by Lemma 6.1 (2). So it is an isomorphism by the

principle of orthogonal projection. (See the proof of Lemma 6.5 (2) below.) Let (u, η) ∈
L2,W (Ω0(adE) ⊕ Ω+(adE)). We can find v ∈ L2,W

2 (Ω0(adE)) satisfying d∗,W
A dAv = u −

d∗,W
A PAη. By d+

APA = 1

DA(dAv + PAη) = (d∗,W
A dAv + d∗,W

A PAη, η) = (u, η).

Thus DA is surjective. Therefore dim H1,W
A = dim Ker(DA) is equal to the index of

DA. The calculation of index(DA) is standard, and we get index(DA) = 8c2(A) + 3 by

Donaldson [4, Proposition 3.19]. !

Lemma 6.5. (1) Let k ≥ 1. For any u ∈ L2,W
k+1(Ω

0(adE)), a ∈ H1,W
A and η ∈ L2,W

k−1(Ω
+(adE))

|||dAu|||k + |||a||| + |||η|||k−1 "k,D |||dAu + a + PAη|||k .

(2) Let k ≥ 1. We define a map

Φ : L2,W
k+1(Ω

0(adE)) ⊕ H1,W
A ⊕ L2,W

k−1(Ω
+(adE)) → L2,W

k (Ω1(adE))
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by Φ(u, a, η) = −dAu + a + PAη. Then Φ is an isomorphism.

Proof. (1) Set b = dAu + a + PAη. d+
Ab = η. So |||η|||k−1 "k,D |||b|||k. By Lemma 6.2 (2)

|||dAu|||k + |||a||| "k,D |||dAu + a|||k ≤ |||b|||k + |||PAη|||k "k,D |||b|||k + |||η|||k−1 "k,D |||b|||k .

(2) It is enough to prove that Φ is surjective. Take b ∈ L2,W
k (Ω1(adE)). Set η = d+

Ab and

b′ = b−PAη. This satisfies d+
Ab′ = 0. By Lemma 6.1 (2), the space dA(L2,W

1 (Ω0(adE))) is

closed in L2,W (Ω1(adE)). So let b′ = −dAu + a (u ∈ L2,W
1 (Ω0(adE))) be the orthogonal

decomposition with respect to the weighted inner product:
∫

X

W 2〈dAv, a〉dvol = 0 (∀v ∈ L2,W
1 (Ω0(adE))).

Then d∗,W
A a = 0. Moreover d+

Aa = d+
A(b′ + dAu) = 0. Hence a ∈ H1,W

A . We have

dAu = a − b′ ∈ L2,W
k . So u ∈ L2,W

k+1. b = −dAu + a + PAη = Φ(u, a, η). Thus Φ is

surjective. !

Let a ∈ H1,W
A . The connection A + a is an approximate solution of the ASD equation.

In the next lemma, we perturb it and construct a genuine solution.

Lemma 6.6. We can choose r1 = r1(D) > 0 so that the following statements hold.

(1) For any a ∈ H1,W
A with |||a||| ≤ r1 there uniquely exists η ∈ L2,W

1 (Ω+(adE)) satisfying

F+(A + a + PAη) = 0, |||η|||1 ≤ r1.

We denote this η by ηa and set ã = a + PAηa.

(2) For any a, b ∈ H1,W
A with |||a||| , |||b||| ≤ r1

∣∣∣
∣∣∣ã − b̃

∣∣∣
∣∣∣
L∞(X)

"D |||a − b||| .

Proof. (1) F+(A + a + PAη) = η + {(a + PAη)2}+. Set Q(η) = −{(a + PAη)2}+ for

η ∈ L2,W
1 (Ω+(adE)). If η1, η2 ∈ L2,W

1 (Ω+(adE)) satisfy |||η1|||1 , |||η2|||1 ≤ r1, then

|||Q(η1)|||1 "D r2
1, |||Q(η1) − Q(η2)|||1 "D r1 |||η1 − η2|||1 .

Here we have used L2,W
2 ×L2,W

2 → L2,W
1 . So if we choose r1 > 0 sufficiently small, then Q

becomes a contraction map over {η ∈ L2,W
1 (Ω+(adE))| |||η|||1 ≤ r1}. Thus the statement

(1) follows.

(2) We have ηa = −{(a + PAηa)2}+ and ηb = −{(b + PAηb)2}+. Hence

|||ηa − ηb|||1 "D r1 (|||a − b||| + |||ηa − ηb|||1) .

If r1 is sufficiently small, then |||ηa − ηb|||1 "D |||a − b|||. The rest of the argument is a

bootstrapping. !

The next lemma is a conclusion of analytic arguments in this section. This is a non-

linear version of Lemma 6.5.
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Lemma 6.7. We can choose r0 = r0(D) > 0 so that the following statement holds. For

any connection B on E with |||B − A|||2 ≤ r0 there exists (u, a, η) ∈ L2,W
3 (Ω0(adE)) ⊕

H1,W
A ⊕ L2,W

1 (Ω+(adE)) satisfying

B = eu(A + a + PAη), |||dAu|||2 + |||a||| + |||η|||1 < r1.

Here r1 is the positive constant introduced in Lemma 6.6.

Proof. Let r0 = r0(D) and r2 = r2(D) be two positive numbers which will be fixed later.

They will satisfy 0 < r0 1 r2 < r1 We use a continuity method. The crucial point is that

by Lemma 6.1 (1)

(6.4) ||u||L∞(X) "D |||dAu|||2 (u ∈ L2,W
3 (Ω0(adE))).

Set B = A + b with |||b|||2 ≤ r0. We define T ⊂ [0, 1] as the set of 0 ≤ t ≤ 1 such that

there exists (ut, at, ηt) ∈ L2,W
3 (Ω0(adE)) ⊕ H1,W

A ⊕ L2,W
1 (Ω+(adE)) satisfying

(6.5) A + tb = eut(A + at + PA(ηt)), |||dAut|||2 + |||at||| + |||ηt|||1 < r2.

The origin 0 is contained in T . We will shows that T is closed and open. Then 1 ∈ T
and the proof is completed.

Step 1. We show that T is closed. Take t ∈ T and (ut, at, ηt) satisfying the above

(6.5). We want to derive a priori bound.

tb = − dAut + at + PAηt − (dAeut)(e−ut − 1) − dA(eut − 1 − ut)

+ (eut − 1)(at + PAηt)e
−ut + (at + PAηt)(e

−ut − 1).

By (6.4) we get |||−dAut + at + PAηt|||2 "D r0 + r2
2. By Lemma 6.5 (1), we can choose r0

and r2 so that

(6.6) |||dAut|||2 + |||at||| + |||ηt|||1 ≤
r2

2
.

Then the rest of the argument is standard. Suppose {ti} ⊂ T is a sequence converging

to t∞ ∈ [0, 1]. Then by Lemma 6.1 (2) the sequence (uti , ati , ηti) is bounded in L2,W
3 ⊕

H1,W
A ⊕ L2,W

1 . So we can assume that it weakly converges to some (ut∞ , at∞ , ηt∞). From

the above bound (6.6) we get

|||dAut∞ |||2 + |||at∞||| + |||ηt∞ |||1 ≤
r2

2
< r2.

Hence it satisfies (6.5) for t = t∞. Thus t∞ ∈ T .

Step 2. We show that T is open in [0, 1]. Take t ∈ T . We want to show that t is an

inner point. Consider the map

(6.7) f : L2,W
3 (Ω0(adE)) ⊕ H1,W

A ⊕ L2,W
1 (Ω+(adE)) → L2,W

2 (Ω1(adE))

defined by f(u, a, η) = eu(A + a + PAη) − A. It is enough to prove that the derivative

(df)(0,at,ηt) is an isomorphism.

(df)(0,at,ηt)(u, a, η) = −dAu + a + PAη − [at + PAηt, u].
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Here it is convenient to consider that the left-hand-side of (6.7) is endowed with the

norm |||dAu|||2 + |||a||| + |||η|||1. By Lemma 6.5 the map Φ(u, a, η) := −dAu + a + PAη is an

isomorphism from L2,W
3 ⊕H1,W

A ⊕L2,W
1 to L2,W

2 with |||dAu|||2+ |||a|||+ |||η|||1 "D |||Φ(u, a, η)|||2.
By (6.4) and (6.5)

|||[at + PAηt, u]|||2 "D r2 |||dAu|||2 .

So if r2 is chosen sufficiently small, then the derivative (df)(0,at,ηt) is isomorphic. !

Then we can prove Proposition 3.4. Recall that for connections B1 and B2 on E we

defined

distL∞([B1], [B2]) = inf
g:E→E

||g(B1) − B2||L∞(X) .

Proposition 6.8 (= Proposition 3.4). There exists C0 = C0(D) > 0 such that for any

0 < ε < 1

#sep(Vr0(A), distL∞ , ε) ≤ (C0/ε)
8c2(A)+3.

Here r0 = r0(D) is the positive constant introduced in Lemma 6.7.

Proof. Set Br1(H
1,W
A ) = {a ∈ H1,W

A | |||a||| ≤ r1}.

Claim 6.9. There exist C2 = C2(D) > 0 and a map f : Vr0(A) → Br1(H
1,W
A ) such that

for any [B1], [B2] ∈ Vr0(A)

distL∞([B1], [B2]) ≤ C2 |||f([B1]) − f([B2])||| .

Proof. Take [B] ∈ Vr0(A). By Lemma 6.7 we can find (a, η) ∈ H1,W
A ⊕ L2,W

1 (Ω+(adE))

satisfying

[B] = [A + a + PAη], |||a||| + |||η|||1 < r1.

Since B is ASD, F+(A + a + PAη) = 0. Then by Lemma 6.6 (1) we have η = ηa and

[B] = [A + ã]. We set f([B]) = a.

Take [B1], [B2] ∈ Vr0(A) and set a1 = f([B1]) and a2 = f([B2]). We have [B1] = [A+ ã1]

and [B2] = [A + ã2]. By Lemma 6.6 (2)

distL∞([B1], [B2]) ≤ ||ã1 − ã2||L∞(X) "D |||a1 − a2||| .

!

By Lemma 2.1 and Example 2.2

#sep(Vr0(A), distL∞ , ε) ≤ #sep(Br1(H
1,W
A ), |||·||| , ε/C2) ≤

(
1 + 2r1C2

ε

)dim H1,W
A

.

By Lemma 6.4, dim H1,W
A = 8c2(A) + 3. Thus we get the conclusion. !

We have completed all the proofs of Theorem 1.1.
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Remark 6.10. By the same argument we can prove the following more general result:

Let M ⊂ Md be an R-invariant closed subset. Then

dim(M : R) ≤ 8 sup
[A]∈M

ρ(A).

But we don’t have any reasonable lower bound on the mean dimension for general M.
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