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NOTE ON THE COHOMOLOGY OF FINITE CYCLIC COVERINGS

YASUHIRO HARA AND DAISUKE KISHIMOTO

Abstract. We introduce the height of a normal cyclic p-fold covering and show a cohomological
relation between the base and the total spaces of the covering in terms of the height.

1. Statement of results

The purpose of this note is to show a cohomological property of a normal cyclic p-fold covering

with respect to a certain cup-length type invariant of the covering. Let p be a prime and let

E → B be a normal cyclic p-fold covering where B is path connected. Suppose p = 2. In [Ko],

Kozlov defined the height of the covering h(E) as the maximum n such that w1(E)n 6= 0, where

w1(E) is the first Stiefel-Whitney class of the covering. By a chain level consideration, he proved

Hh(E)(E; Z/2) 6= 0.

This also follows immediately from the Gysin sequence of the double covering E → B. We would

like to generalize this result to any prime p. Let p be an arbitrary prime. Let Cp be a cyclic group

of order p and let ρ : B → BCp be the classifying map of the covering E → B. The height of the

covering can be generalized as

h(E) = max{n | ρ∗ : Hn(BCp; Z/p) → Hn(B; Z/p) is non-trivial}.

We remark here that the height of a normal cyclic p-fold covering is closely related with the

ideal-valued cohomological index theory of Fadell and Husseini [FH1] and hence the Borsuk-Ulam

theorem. We will interpret the height in terms of the category weight introduced by Fadell and

Husseini [FH2] and studied further by Rudyak [Ru] and Strom [S]. The most difficult point in

generalizing the result of Kozlov is the non-existence of the Gysin sequence for the covering E → B

when p is odd. However, we define the corresponding spectral sequence by which we prove:

Theorem 1.1. Let E → B be a normal cyclic p-fold covering, where B is path-connected. Then

Hh(E)(E; Z/p) 6= 0.

As an immediate corollary, we have:

Corollary 1.2. Let E → B be a normal cyclic p-fold covering, where B is path-connected. If

h(E) ≥ n and Hn(E; Z/p) = 0, it holds that h(E) ≥ n + 1.

In section 2, we construct a spectral sequence for a normal cyclic p-fold covering which calculate

the mod p cohomology of the total space from the base space whose differential is shown to be

given as a certain higher Massey product of Kraines [Kr]. Using this spectral sequence, we prove
1
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Theorem 1.1. In section 3, we interpret the height of a normal cyclic p-fold covering in terms of

the category weight introduced by Fadell and Husseini [FH2] and elaborated by [Ru] and [S].

Acknowledgement. The authors are grateful to the referee for leading them to the proof using

the spectral sequence. In the first version of the paper, the proof is done in a quite elementary

but lengthy way using the Smith special cohomology. (cf. [B])

2. Proof of Theorem 1.1

Throughout this section, let p be an odd prime and the coefficient of cohomology is Z/p.

2.1. Spectral sequence. Let E → B be a normal p-fold covering where B is path-connected.

In this subsection, we introduce a spectral sequence which calculates the mod p cohomology of E

from B. Analogous spectral sequences were considered in [F] and [Re]. We first set notation. Let

ρ : B → BCp be the classifying map of the covering E → B. Recall that the mod p cohomology

of BCp is given as

H∗(BCp) = Λ(u) ⊗ Z/p[v], βu = v, |u| = 1,

where β is the Bockstein operation. We denote the cohomology classes ρ∗(u) and ρ∗(v) of B by ū

and v̄, respectively. Let R[Cp] denote the group ring of Cp over a ring R. Note that the singular

chain complex S∗(E) is a free Z[Cp]-module. We regard Z/p[Cp] and Z/p as Z[Cp]-modules by the

modulo p reduction and the trivial Cp-action, respectively. Then there are natural isomorphisms

(2.1) H∗(HomZ[Cp](S∗(E), Z/p[Cp])) ∼= H∗(E) and H∗(HomZ[Cp](S∗(E), Z/p)) ∼= H∗(B).

We now fix a generator g of Cp and put τ = 1−g ∈ Z/p[Cp]. Observe that Z/p[Cp] = Z/p[τ ]/(τ p).

Consider the filtration

0 ⊂ τ p−1Z/p[Cp] ⊂ τ p−2Z/p[Cp] ⊂ · · · ⊂ τZ/p[Cp] ⊂ Z/p[Cp].

Then there is a spectral sequence (Er, dr) associated with the induced filtration of the cochain

complex HomZ[Cp](S∗(E), Z/p[Cp]). By (2.1), we have

(2.2) Es,t
1

∼=

{
H t(B) 0 ≤ s ≤ p − 1

0 otherwise
⇒ H∗(E)

and the degree of the differential dr is (−r, 1), where the total degree of Es,t
r is t. Let us identify

the differential of this spectral sequence. To this end, we calculate the induced coboundary map

δ̄ of the associated graded cochain complex

p−1⊕
i=0

HomZ[Cp](S∗(E), τ iZ/p[Cp]/τ
i−1Z/p[Cp]) ∼=

p−1⊕
i=0

τ iHomZ(S∗(B), Z/p).

In the special case of the universal bundle ECp → BCp, we may put

δ̄(1) = τu1 + · · · + τ p−1up−1, ui ∈ HomZ(S1(B), Z/p)
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for 1 ∈ HomZ(S0(B), Z/p). Consider the map E
ρ̃×π−−→ ECp ×B, where ρ̃ is a lift of ρ and π is the

projection. Then we see that

(2.3) δ̄x = δx + τρ∗(u1)x + · · · + τ p−1ρ∗(up−1)x.

for any x ∈ HomZ(S∗(B), Z/p) in general. If [u1] = 0, 1 ∈ E1,0 becomes a permanent cycle

in the spectral sequence (2.2) for the universal bundle ECp → BCp, which contradicts to the

contractibility of ECp. Then by normalizing u if necessary, we may assume

(2.4) [u1] = u.

Applying (2.3) in turn to u1, . . . , up−1, we inductively see from the equality δ̄2 = 0 that

(2.5) δui = −
∑
j<i

ujui−j for i ≥ 2.

Let 〈x1, . . . , xn〉n stand for the n-fold Massey product in the sense of Kraines [Kr], where 〈x1, x2〉 =

±x1x2. Then by (2.3), (2.4) and (2.5), we obtain that drx is represented by an element of

±〈ū, . . . , ū, x〉r+1 whose defining system {xij}1≤i≤j≤r+1 satisfies xij = ρ∗(uj−i+1) for j ≤ r, where

xi,r+1 can be an arbitrary cochain satisfying the condition of defining systems. Hence by [Kr],

{xij}1≤i≤j≤r is the pullback of a defining system for

(2.6) 〈u, . . . , u〉k =

{
{0} k < p

{v} k = p.

Recall the following associativity formula of higher Massey products [May]. Suppose a defining

system for 〈x1, . . . , xn−1〉n−1 extends to those of 〈xk+1, . . . , xn〉n−k. Put {x′
ij}1≤i≤j≤k+1

(2.7) x′
ij = ±xij for j ≤ k and x′

i,k+1 =
n−1∑

l=k+1

±xilxln for 2 ≤ i ≤ k + 1.

Then {x′
ij}1≤i≤j≤k+1 is a defining system for 〈x1, . . . , xk, 〈xk+1, . . . , xn〉n−k〉k+1 and the resulting

element x satisfies

x = ±yxn

for some y ∈ 〈x1, . . . , xn−1〉n−1. Consider the defining system of 〈ū, . . . , ū〉r+r′ given by ρ∗(ui) for

r + r′ ≤ p. By the above observation on dr′x, we can extend this defining system to that for

〈ū, . . . , ū, x〉r′+1 as (2.7) so that the resulting element x′ represents dr′x. Moreover, by (2.6) and

the above associativity formula, we have

(2.8) drx
′ =

{
0 r + r′ < p

±v̄x r + r′ = p.
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2.2. Proof of Theorem 1.1. We prove the result by calculating the spectral sequence (2.2). We

first consider the case h(E) = 2m + 1. We can easily see that in the spectral sequence for the

universal bundle ECp → BCp, it holds that dp−1,2m+1
r uvm = 0 and avm+1 according as r < p − 1

and r = p − 1, where a ∈ (Z/p)×. Then it follows from naturality of the spectral sequence that

dp−1,2m+1
r ūv̄m = ρ∗(dp−1,2m+1

r uvm) =

{
0 r < p − 1

ρ∗(avm+1) = 0 r = p − 1,

implying that H2m+1(E) 6= 0.

We next consider the case h(E) = 2m. Let r be the maximum integer such that v̄m ∈ Es,2m
1

survives at the Er-term for all 0 ≤ s ≤ p− 1. Suppose that ds,2m
r v̄m 6= 0 for some s. Then we have

(2.9) dr,2m
r v̄m 6= 0.

If v̄m ∈ Er−1,2m
1 survives at the Er′-term for r ≤ r′ and satisfies dr+r′−1,2m−1

r′ x = v̄m for some x,

we have

dr,2m
r v̄m ∈ ±〈ū, . . . , ū, v̄m〉r+1, v̄m ∈ ±〈ū, . . . , ū, x〉r′+1 and r + r′ ≤ p,

where defining systems for both higher Massey products are described above. Then it follows from

(2.8) that

(2.10) dr,2m
r v̄m =

{
0 r + r′ < p

±v̄x r + r′ = p

in the Er-term. The upper case contradicts to (2.9). Let us consider the lower case. If r′ = 1,

ūx = v̄ and then β(ūx) = 0. If r′ ≥ 2, ūx = 0 and so β(ūx) = 0. Then in both cases, we have

v̄x = ū(βx), and so v̄x turns out to be trivial in the Er-term, which contradicts to (2.9). Therefore

we obtain that v̄m ∈ Er−1,2m
1 is a permanent cycle, implying that H2m(E) 6= 0. Suppose next that

ds,2m−1
r x = v̄m for some s. Then for any r + r′ ≤ p, we can choose a representative of dr+1,2m

r′ v̄m

as above, and hence by an argument similar to the above case, we see that v̄m ∈ Er+1,2m
1 is a

permanent cycle, implying that H2m(E) 6= 0. Therefore the proof of Theorem 1.1 is completed.

3. Height and category weight

In this section, we interpret the height of a normal cyclic p-fold covering in terms of the category

weight introduced by Fadell and Husseini [FH2] and studied further by Rudyak [Ru] and Strom

[S]. As a consequence, the relation between the height of a normal cyclic p-fold covering and the

Lusternik-Schnirelmann (L-S, for short) category of the classifying map of the covering becomes

clear. Recall that the L-S category of a space X, denoted by cat(X), is the minimum n such that

there is a cover of X by (n + 1)-open sets each of which is contractible in X. In [BG], the L-S

category of a space was generalized to a map: The L-S category of a map f : X → Y , denoted by

cat(f), is the minimum integer n such that there exists an open cover X = U0 ∪ · · · ∪ Un where

the restriction of f to Ui is null-homotopic for all i. Observe that

cat(f) ≤ cat(1X) = cat(X).



NOTE ON THE COHOMOLOGY OF FINITE CYCLIC COVERINGS 5

It is useful to evaluate cat(f) by the so-called Ganea spaces. Let Gn(Y ) be the nth Ganea space of

Y and let πn : Gn(Y ) → Y be the projection. See [CLOT] for definition. We know that cat(f) ≤ n

if and only if there is a map g : X → Gn(Y ) satisfying πn ◦g ' f . The homotopy invariant version

of the category weight of a space X due to Rudyak [Ru] and Strom [S] is a lower bound for the L-S

category of X which refines the cup-length. As in [IK], cohomologically, the idea of the homotopy

invariant version of the category weight due to Rudyak and Strom is summarized as

wgt(X; R) = max{n |π∗
n : H

∗
(X; R) → H

∗
(Gn(X); R) is injective},

where R is a ring and H
∗

denotes the reduced cohomology. By definition, wgt(X; R) is bounded

above by cat(X). Given a map f : X → Y , we can easily generalize the above definition for a

space to a map as

wgt(f ; R) = max{n | there exists y ∈ H
∗
(Y ; R) satisfying f∗(y) 6= 0,

and π∗
n(z) 6= 0 whenever f∗(z) 6= 0 for z ∈ H

∗
(Y ; R)}.

Notice that wgt(1X ; R) = wgt(X; R) analogously to the L-S category. Obviously, we have

cat(f) ≥ wgt(f ; R).

Let us consider the relation between the height of a normal cyclic covering and the category

weight. Suppose a space Y is path-connected. In general, since the homotopy fiber of the pro-

jection πn : Gn(Y ) → Y has the homotopy type of the join of (n + 1)-copies of ΩY which is

n-connected, the induced map π∗
n : Hk(Y ; R) → Hk(Gn(Y ); R) is an isomorphism for k < n and

is injective for k = n. See [CLOT]. We specialize to the case Y = BCp. Recall that Gn(BCp) has

the homotopy type of the quotient of the join of the (n + 1)-copies of Cp by the diagonal free Cp-

action, implying that Gn(BCp) has the homotopy type of an n-dimensional CW-complex. Then

the induced map π∗
n : Hk(BCp; R) → Hk(Gn(BCp); R) is the zero map for k > n. Summarizing,

the induced map π∗
n : Hk(BCp; Z/p) → Hk(Gn(BCp); Z/p) is injective for k ≤ n and is the zero

map for k > n, and hence for a map f : X → BCp, we have

wgt(f ; Z/p) = min{n | f∗ : Hn(BCp; Z/p) → Hn(X; Z/p) is non-trivial}.

Therefore we obtain:

Proposition 3.1. Let E → B be a normal cyclic p-fold covering with the classifying map ρ : B →
BCp, where B is path-connected. Then

h(E) = wgt(ρ; Z/p) ≤ cat(ρ) ≤ cat(B).
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