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HOM COMPLEXES AND HYPERGRAPH COLORINGS

KOUYEMON IRIYE AND DAISUKE KISHIMOTO

Abstract. Babson and Kozlov [BK] studied Hom-complexes of graphs with a focus on graph
colorings. In this paper, we generalize Hom-complexes to r-uniform hypergraphs (with multi-
plicities) and study them mainly in connection with hypergraph colorings. We reinterpret a
result of Alon, Frankl and Lovász [AFL] by Hom-complexes and show a hierarchy of known
lower bounds for the chromatic numbers of r-uniform hypergraphs (with multiplicities) using
Hom-complexes.

1. Introduction

1.1. Hom-complexes of graphs. Since Lovász solved the famous Kneser conjecture by relating

the chromatic number of a given graph to connectivity of its neighborhood complex [Lo], it is a

standard method to study combinatorial properties of graphs by relating them with topological

properties of appropriately constructed polyhedral complexes from graphs. Then as is seen in

[Jo], a plenty of complexes have been constructed from graphs. Among others, let us consider

Hom-complexes which were first introduced by Lovász and studied further by Babson and Kozlov

[BK], [Ko1], [Ko2]. Compared to other complexes of graphs, the construction of Hom-complex

Hom(G, H) for graphs G, H is quite natural; it is a space of maps from G to H . Moreover, some

complexes of graphs concerning colorings are realized by special Hom-complexes [BK], [Ko1] by

which one can easily understand related construction. For example, a result of Lovász [Lo] can

be reproved easily by using Hom-complexes as follows.

Let us start with a standard observation. Recall that an n-coloring of a graph G is a labelling

of vertices of G by n colors in such a way that adjacent vertices have distinct colors. Then if

Kn denotes the complete graph with n vertices, there is a one-to-one correspondence between

n-colorings of G and homomorphisms of G into Kn. Suppose G admits an n-coloring. Then

since the Hom-complex Hom(G, H) is natural with respect to G, H , there is a map

(1.1) Hom(T, G) → Hom(T, Kn)

for any graph T . Specialize T to the complete graph K2 with 2 vertices. Then a natural C2-

action on K2 yields C2-actions on both Hom(T, G) and Hom(T, Kn), and furthermore, the map

(1.1) is a C2-map for T = K2, where Ck denotes the cyclic group of order k. One can easily see

that the C2-actions are free and can also easily count the dimension of Hom(K2, Kn) as n − 2

by definition. Then it follows from the Borsuk-Ulam theorem that

conn Hom(K2, G) ≤ n − 3,
1
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where conn X denotes connectivity of a space X. Finally, since Hom(K2, G) has the homotopy

type of the neighborhood complex of G as in [BK], we obtain the result of Lovász [Lo]. The

point of this proof is that we can get C2-actions and a C2-map quite naturally, which is often

the most difficult part of the above mentioned topological method for graphs.

1.2. Generalization to r-graphs. Let us now generalize graphs to r-uniform hypergraphs.

Recall that an r-uniform hypergraph (or an r-graph, for short) G consists of the vertex set

and the edge set which is a collection of r elements subsets of the vertex set. Then 2-graphs

are simple graphs, for instance. Homomorphisms of r-graphs are obviously defined. In [Ko2],

Kozlov suggested a recipe to construct a space of a collection of maps between finite sets. Then

one can define Hom-complexes for r-graphs as well. We would like to study colorings of r-graphs

by using Hom-complexes as in the above case of graphs. Colorings of graphs are generalized

to r-graphs as follows. An n-coloring of an r-graph is a labelling of vertices by n colors such

that each edge contains more than 2 colors. Then for r ≥ 3, colorings of r-graphs cannot

be realized as homomorphisms. Then in order to study r-graph colorings by Hom-complexes,

we must extend the category of r-graphs so that colorings become homomorphisms. If we

extend the category of r-graphs to that of all hypergraphs, colorings become homomorphisms.

However, this category is too big to control objects. So we need a much smaller extension of

the category of r-graphs. For this purpose, we will consider r-graphs with multiplicities which

were first introduced by Lange [La] in a different context. Then we will study colorings of

r-graphs with multiplicities through Hom-complexes. More precisely, we will give a lower bound

for the chromatic numbers of r-graphs with multiplicities using group actions on special Hom-

complexes. Alon, Frankl and Lovász [AFL] defined certain simplicial complexes of r-graphs

(without multiplicities) and gave a lower bound for the chromatic numbers by a rather tricky

construction. We will show that these complexes are essentially the same as the above special

Hom-complexes, and then we can interpret their construction in terms of Hom-complexes, which

will make things clear. We will also consider Hom+-complexes of r-graphs with multiplicities

(cf. [Ko2]) and show a hierarchy among lower bounds for the chromatic numbers.

1.3. Organization. The organization of the paper is as follows. In §2, we introduce r-graphs

with multiplicities generalizing r-graphs by which we can study colorings of r-graphs as special

homomorphisms. In §3, we recall a general construction of Hom-complexes of classes of maps

between finite sets and then apply it to r-graphs with multiplicities. We show analogy of

results of Babson and Kozlov [BK] for Hom-complexes of r-graphs with multiplicities and give

a lower bound for the chromatic number by special Hom-complexes. In §4, we show that the

box-edge complexes of Alon, Frankl and Lovász [AFL] are realized by the above special Hom-

complexes, by which we see that the above lower bound is the same as the one given by Alon,

Frankl and Lovász [AFL]. In §5, we consider Hom+-complexes of r-graphs with multiplicities

and give another lower bound for the chromatic number. By comparing Hom-complexes and

Hom+-complexes, we show a hierarchy among the above two lower bounds.
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2. r-graphs with multiplicities

2.1. r-graphs. Let us explain in detail why we introduce r-graphs with multiplicities. Recall

that an r-uniform hypergraph (r-graph, for short)G is a pair of a finite set V (G) and a collection

E(G) of r elements subsets of V (G). V (G) and E(G) are respectively called the vertex set and

the edge set of G. For r-graphs G, H , a homomorphism f : G → H is a map f : V (G) → V (H)

satisfying f∗(E(G)) ⊂ E(H). Our objects are colorings of r-graphs. An n-coloring of an r-

graph G is a map c : V (G) → [n] such that if {v1, . . . , vr} ∈ E(G), {c(v1), . . . , c(vr)} ⊂ [n] is

not a singleton, where [n] = {1, 2, . . . , n}. Then one sees that colorings cannot be realized by

homomorphisms in general as in the case of graphs. Then generalizing r-graphs, we introduce

r-graphs with multiplicities among which colorings are homomorphisms.

2.2. r-graphs with multiplicities. Recall that the nth symmetric product of a set V is defined

as

SPn(V ) = V × · · · × V
︸ ︷︷ ︸

n

/Σn,

where the action of the symmetric group Σn is given as σ(v1, . . . , vn) = (vσ(1), . . . , vσ(n)) for

σ ∈ Σn and v1, . . . , vn ∈ V . We denote an element of SPn(V ) by v1 · · · vn for v1, . . . , vn ∈ V . In

[La], Lange used multisets which are naturally identified with elements of symmetric products.

We now define r-graphs with multiplicities and their homomorphisms and colorings.

Definition 2.1. (1) An r-graph with multiplicities G consists of a finite set V (G) and a

subset E(G) of SPr(V (G)) \∆, where ∆ = {v · · · v ∈ SPr(V (G))}. V (G) and E(G) are

called the vertex set and the edge set of G, respectively.

(2) Let G, H be r-graphs with multiplicities. A homomorphism f : G → H is a map

g : V (G) → V (H) satisfying f∗(E(G)) ⊂ E(H).

(3) An n-coloring of an r-graph with multiplicities G is a map c : V (G) → [n] such that if

v1 · · · vr ∈ E(G), {c(v1), . . . , c(vr)} ⊂ [n] is not a singleton.

(4) The chromatic number χ(G) of an r-graph with multiplicities G is the minimum integer

n such that G admits an n-coloring.

Remark 2.2. If we allow r-graphs with multiplicities to have diagonal edges in ∆, some r-graphs

do not admit any colorings. Since we will study colorings, we have omitted diagonal edges from

r-graphs with multiplicities.

Since r elements subsets of a set V may be regarded as elements of SPr(V ) \ ∆, r-graphs

with multiplicities and their homomorphisms and colorings include r-graphs and their homo-

morphisms and colorings.

Define an r-graph with multiplicities K
(r)
n as the maximum r-graph with multiplicities with

n vertices. Namely,

V (K(r)
n ) = [n] and E(K(r)

n ) = SPr([n]) \ ∆.

It is clear that there is the desired property as follows.
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Proposition 2.3. There is a one-to-one correspondence between n-colorings of an r-graph with

multiplicities G and homomorphisms from G to K
(r)
n .

3. Hom-complexes of r-graphs with multiplicities

3.1. General Hom-complexes. Let us first recall a recipe of general Hom-complexes suggested

by Kozlov [Ko2]. Let S, T be finite sets. Then a map S → T is identified with an element of

T S. Let ∆T be the simplex whose vertex set is T . Since T S is the vertex set of a direct product
∏

S ∆T , a map S → T is identified with a vertex of
∏

S ∆T . This simple observation leads us

to the following definition of Hom-complexes which may be regarded as spaces of given maps

between finite sets.

Definition 3.1. Let S, T be finite sets and C be a class of maps from S to T . The Hom-complex

Hom
C(S, T ) is the maximum subcomplex of

∏

S ∆T whose vertex set is C.

Let S, T be finite sets and C be a class of maps from S to T . Given a map f : T → T ′ with

T ′ finite and a class D of maps from S to T ′. If f∗(C) ⊂ D, we can define a map of polyhedral

complexes

f∗ : HomC(S, T ) → Hom
D(S, T ′)

by sending h ∈ C to f ◦ h ∈ D. Dually, given a map g : S ′ → S and a class E of maps from S ′

to T satisfying g∗(C) ⊂ E, we can also define a map of polyhedral complexes

g∗ : HomC(S, T ) → Hom
E(S ′, T )

by sending h ∈ E to h ◦ g ∈ C.

By definition of the above induced maps, we have the following functoriality.

Proposition 3.2. Let S, T be finite sets and C be a class of maps from S to T .

(1) Let T1, T2 be finite sets and D1, D2 be classes of maps from S to T1 and T2, respectively.

If maps f1 : T → T1 and f2 : T1 → T2 satisfy (f1)∗(C) ⊂ D1 and (f2)∗(D1) ⊂ D2, the

induced maps on Hom-complexes satisfy

(f2 ◦ f1)∗ = (f2)∗ ◦ (f1)∗.

(2) Let S1, S2 be finite sets and E1, E2 be classes of maps from S1 and S2 to T , respectively.

If maps g1 : S1 → S and g2 : S2 → S1 satisfy (g1)
∗(C) ⊂ E1 and (g2)

∗(E1) ⊂ E2, the

induced maps on Hom-complexes satisfy

(g2 ◦ g1)
∗ = (g1)

∗ ◦ (g2)
∗.

3.2. Hom-complexes of r-graphs with multiplicities. Let us return to r-graphs with multi-

plicities. Homomorphisms of r-graphs with multiplicities are maps between vertices satisfying

certain properties. Since we are assuming vertex sets of r-graphs with multiplicities to be finite,

we can apply the above general construction of Hom-complexes to r-graphs with multiplicities.

Definition 3.3. Let G, H be r-graphs with multiplicities and C be the set of homomorphisms

from G to H . The Hom-complex Hom(G, H) is defined as HomC(V (G), V (H)).
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By Proposition 3.2, we have the following.

Proposition 3.4. Let Graph(r) and Poly be the categories of r-graphs with multiplicities and

polyhedral complexes, respectively. Then

(Graph(r))op × Graph(r) → Poly, (G, H) 7→ Hom(G, H)

is a functor.

By Proposition 2.3, the Hom-complex Hom(G, K
(r)
n ) for an r-graph with multiplicities G is

considered as a space of n-colorings of G. Then Hom(G, K
(r)
n ) is especially important, and hence

we here give some easy examples. Let L
(r)
n denote the line r-graph with n vertices. Namely,

L
(r)
n is defined as

V (L(r)
n ) = [n] and E(L(r)

n ) = {{i, i + 1, . . . , i + r − 1} | i = 1, . . . , n − r + 1}.

Then Hom(L
(3)
n , K

(3)
2 ) for n = 3, 4, 5 are given as follows.
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Hom(L
(3)
3 , K

(3)
2 ) Hom(L

(3)
4 , K

(3)
2 ) Hom(L

(3)
5 , K

(3)
2 )

Note that Hom(L
(3)
n , K

(3)
2 ) for n = 3, 4, 5 have the same homotopy type. This will be justified

below in a more general setting.

Let C
(r)
n be the cyclic r-graph with n vertices. That is, C

(r)
n is given as

V (C(r)
n ) = Z/n and E(C(r)

n ) = {{i, i + 1, . . . , i + r − 1} | i ∈ Z/n}.

Let us next consider Hom(C
(3)
n , K

(3)
2 ). Since C

(3)
3 = L

(3)
3 , Hom(C

(3)
3 , K

(3)
2 ) is a hexagon. One can

easily see that Hom(C
(3)
4 , K

(3)
2 ) consists of discrete six points and that Hom(C

(3)
5 , K

(3)
2 ) is the outer

polygon of Hom(L
(3)
5 , K

(3)
2 ). Then their homotopy types are not the same.

3.3. Lower bound for the chromatic number. By functoriality of Hom(G, H), group actions

on G and H induce those on Hom(G, H). We next consider these group actions for special G.

Let K
(r)
n be the maximum r-graph with n vertices. Namely,

V (K(r)
n ) = [n] and E(K(r)

n ) = SPr([n]) \ ∆n,

where ∆n = {v1 · · · vr ∈ SPr([n]) | vi 6= vj for i 6= j}. Notice that by a cyclic permutation of

vertices, the cyclic group Cn acts on K
(r)
n .

Lemma 3.5. If r is a prime, the induced Cr-action on Hom(K
(r)
r , G) is free.
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Proof. Any face of Hom(K
(r)
r , G) is of the form ∆S1 × · · · × ∆Sr such that each (v1, . . . , vr) ∈

S1×· · ·×Sr satisfies v1 · · · vr ∈ E(G). Then in particular, there is no diagonal element (v, . . . , v)

in S1 × · · · × Sr. Let g be a non-trivial element of Cr. Then by renumbering if necessary, we

have

g · (v1, . . . , vr) = (vr, v1, . . . , vr−1)

for (v1, . . . , vr) ∈ S1×· · ·×Sr since r is a prime. Suppose g(∆S1 ×· · ·×∆Sr) = ∆S1 ×· · ·×∆Sr .

Then we have observed that elements of S1 belong to all S1, . . . , Sr, a contradiction. �

Using the index of the above free group action [M], we give a lower bound for the chromatic

numbers of r-graphs with multiplicities. We set some notation. Let Γ be a non-trivial finite

group (with the discrete topology). Let EnΓ be the join of n + 1 copies of Γ on which Γ acts

diagonally. Then this Γ-action on EnΓ is free and EnΓ has the homotopy type of a wedge of n

dimensional spheres. For a free Γ-complex X, the Γ-index of X is defined as

indΓX = min{n | there is a Γ-map X → EnΓ}.

Let us list basic properties of indΓX.

Proposition 3.6. Let Γ be a non-trivial finite group and let X, Y be free Γ-complexes.

(1) If there is a Γ-map from X to Y , we have

indΓX ≤ indΓY.

(2) The join X ∗ Y is a free Γ-space by the diagonal Γ-action for which it holds that

indΓ(X ∗ Y ) ≤ indΓX + indΓY + 1.

(3) It holds that

conn X + 1 ≤ indΓX ≤ dim X.

Proof. (1) follows from definition and (2) follows from the fact that EnΓ = EmΓ ∗ En−m−1Γ.

By the Borsuk-Ulam theorem due to Dold [D], we have indΓEnΓ = n. Then (3) is shown by an

easy obstruction argument. �

Put BnΓ = EnΓ/Γ, BΓ =
⋃

n≥1 BnΓ and EΓ =
⋃

n≥1 EnΓ. Then the natural projection

EΓ → BΓ is the well-known Milnor’s universal principal Γ-bundle. Let ϕ : X/Γ → BΓ be the

classifying map of a free Γ-complex X. Then it follows that indΓX coincides with the minimum

integer n such that ϕ factors through the inclusion BnΓ → BΓ, up to homotopy. By [Ja], we

obtain that indΓX is equal to the LS-category of the classifying map ϕ, implying that there

are a lot of quantities estimating indΓX other than connectivity and dimension.

We now give a lower bound for the chromatic number of r-graphs with multiplicities.

Theorem 3.7. Let G be an r-graph with multiplicities. If r is a prime, there holds

χ(G) ≥
indCr

Hom(K
(r)
r , G) + 1

r − 1
+ 1.
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Proof. By Lemma 3.5, Hom(K
(r)
r , H) is a free Cr-complex for any r-graph with multiplicities

H . Suppose there is an n-coloring of G, or equivalently, a homomorphism f : G → K
(r)
n . By

Proposition 3.4, the induced map f∗ : Hom(K
(r)
r , G) → Hom(K

(r)
r , K

(r)
n ) is a Cr-map, implying

indCr
Hom(K(r)

r , G) ≤ dim Hom(K(r)
r , K(r)

n )

by Proposition 3.6. We then count the dimension of Hom(K
(r)
r , K

(r)
n ). Any face of Hom(K

(r)
r , K

(r)
n )

is given as ∆S1 × · · · × ∆Sr such that S1, . . . , Sr ⊂ [n] and S1 ∩ · · · ∩ Sr = ∅. The maximum of

|S1|+· · ·+|Sr| is nr−n and then the dimension of Hom(K
(r)
r , K

(r)
n ) is nr−n−r = (r−1)(n−1)−1,

completing the proof. �

By Proposition 3.6, we obtain the following.

Corollary 3.8. Let G be an r-graph with multiplicities. If r is a prime, we have

χ(G) ≥
conn Hom(K

(r)
r , G) + 2

r − 1
+ 1.

3.4. Homotopy lemmas. Let us recall three lemmas from [BK] and [Ko2] which will be used

below. We first set some notation. Let P be a poset. We denote the order complex of P by

∆(P ). That is, ∆(P ) is a simplicial complex whose n-simplices are chains in P of length n+1.

For p ∈ P , let

P≤p = {q ∈ P | q ≤ p} and P≥p = {q ∈ P | q ≥ p}.

We first state the famous Quillen fiber lemma.

Lemma 3.9 (cf. [Ko2]). Let ϕ : P → Q be a poset map between finite posets. If ∆(ϕ−1(Q≤q))

is contractible for any q ∈ Q, then ∆(ϕ) : ∆(P ) → ∆(Q) is a homotopy equivalence.

We next state a variant of the Quillen fiber lemma proved in [BK].

Lemma 3.10 ([BK]). For a poset map ϕ : P → Q between finite posets, suppose the following

conditions.

(1) ∆(ϕ−1(q)) is contractible for any q ∈ Q.

(2) For any q ∈ Q and p ∈ ϕ−1(Q≥q), the poset ϕ−1(q) ∩ P≤p has the maximum.

Then ∆(ϕ) : ∆(P ) → ∆(Q) is a homotopy equivalence.

Finally, we recall the generalized nerve lemma which is frequently used in combinatorial

algebraic topology. Let A be a covering of a space X by non-empty subspaces A1, . . . , An.

Then we associate to A a poset whose elements are non-empty intersections of A1, . . . , An and

the order is defined by inclusions. The nerve of A is by definition the order complex of this

poset associated to A.

Lemma 3.11 (cf. [Ko2]). Let A be a covering of a polyhedral complex K by non-empty sub-

complexes A1, . . . , An. Suppose that for any i1 < · · · < it, there exists k such that Ai1 ∩· · ·∩Ait

is either empty or (k − t + 1)-connected. Then K is k-connected if and only if so is the nerve

of A.
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3.5. Homotopy type of Hom(K
(r)
m , K

(r)
n ). As is mentioned above, for an r-graph with mul-

tiplicities G, the Hom-complex Hom(G, K
(r)
n ) is especially important. Then we determine the

homotopy type of this Hom-complex in the special case G = K
(r)
m .

For t = (t1, . . . , tn) with non-negative integers t1, . . . , tn, we define a polyhedral complex

∆m(t) as the subcomplex of ∆[n] × · · · × ∆[n]

︸ ︷︷ ︸

m

whose faces are ∆S1 × · · · ×∆Sm such that |{k ∈

[m] | i ∈ Sk}| ≤ ti for i = 1, . . . , n. Note that if t
′ = (t′1, . . . , t

′
n) satisfies tk, t

′
k ≥ m for

some k and ti = t′i for i 6= k, then ∆m(t) = ∆m(t′). As in the proof of Theorem 3.7, for

s = (r − 1, . . . , r − 1) ∈ [m]n, we have

∆m(s) = Hom(K(r)
m , K(r)

n ).

We determine the homotopy type of ∆m(t) and, consequently, the homotopy type of Hom(K
(r)
m , K

(r)
n ).

For a polyhedral complex K, let F(K) denote the face poset of K.

Theorem 3.12. For t = (t1, . . . , tn) with 0 ≤ ti ≤ m, ∆m(t) has the homotopy type of a wedge

of (t1 + · · · + tn − m)-dimensional spheres.

Proof. Put |t| = t1 + · · · + tn. As in the proof of Theorem 3.7, one can easily deduce that the

dimension of ∆m(t) is |t|−m. Then we only have to show that ∆m(t) is (|t|−m−1)-connected.

For F ⊂ [n], put t − F = (t′1, . . . , t
′
n) such that

t′i =

{

max{ti − 1, 0} i ∈ F

ti i 6∈ F.

Then if F ⊂ F ′ ⊂ [n], we have ∆ℓ(t − F ) ⊃ ∆ℓ(t − F ′). We also have that if |t| − |F | − ℓ < 0

for F ⊂ [n], ∆ℓ(t − F ) = ∅. We now define a functor

ρ : F(sk|t|−m∆[n])op → Poly

by ρ(F ) = ∆m−1(t−F ) and inclusions ∆m−1(t−F ) ⊃ ∆m−1(t−F ′) for F ⊂ F ′ ∈ F(sk|t|−m∆[n]),

where skkK denotes the k-skeleton of a polyhedral complex K. By definition, ∆m(t) is the union

of ∆F × ∆m−1(t − F ) for all non-empty F ∈ F(sk|t|−m∆[n]). Namely, we have

∆m(t) = hocolim ρ.

Since ρ maps every arrow to a cofibration, we get a homotopy equivalence

hocolim ρ
≃
−→ colim ρ.

See [Ko2]. Notice that colim ρ is covered by subcomplexes ∆m−1(t − {i}) for i ∈ [n] and that

∆m−1(t − F ) ∩ ∆m−1(t − F ′) = ∆m−1(t − F ∪ F ′) for F, F ′ ∈ F(sk|t|−m∆[n]).

If |t| = m, ∆m(t) is a discrete finite set. Apply Lemma 3.11 to the above covering of colim ρ

inductively on |t| − m. Thus we obtain the desired result. �

Corollary 3.13. Hom(K
(r)
m , K

(r)
n ) has the homotopy type of a wedge of ((r−1)n−m)-dimensional

spheres.
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3.6. Vertex deletion and Hom-complexes. In [BK], a relation between vertex deletion of G

and the homotopy type of Hom(G, H) is considered when G, H are graphs. We prove analogy

for r-graphs with multiplicities here by a quite similar way. In [BK], a condition for vertex

deletion is given by a neighborhood of a vertex. As for graphs, a neighborhood of a vertex v is

considered as both the set of vertices adjacent to v and the set of edges with the end v. As for

r-graphs with multiplicities, these two sets cannot be identified for r ≥ 3, and then we define

two kinds of neighborhoods of vertices.

Let G be an r-graph with multiplicities. For a vertex v of G, we define N(v) as the set of

v1 · · · vs ∈ SPs(V (G)) for some 1 ≤ s ≤ r − 1 satisfying v · · · v
︸ ︷︷ ︸

r−s

v1 · · · vs ∈ E(G) and v1, . . . , vs 6=

v. For v1 · · · vs ∈ SPs(V (G)) with 1 ≤ s ≤ r− 1, we also define Ň(v1 · · · vs) as the set of vertices

w of G satisfying w · · ·w
︸ ︷︷ ︸

r−s

v1 · · · vs ∈ E(G).

For a vertex v of G, let G\ v denote the maximum r-subgraph with multiplicities of G whose

vertex set is V (G) \ v. We now state our result.

Theorem 3.14. Let G, H be an r-graph with multiplicities. Suppose that there are vertices u, v

of G satisfying N(u) ⊃ N(v). Then the inclusion i : G \ v → G induces a homotopy equivalence

i∗ : Hom(G, H)
≃
−→ Hom(G \ v, H).

Proof. As is mentioned above, the proof is quite analogous to [BK, Proposition 5.1]. Note that

any face of Hom(T, H) for an r-graph with multiplicities T is identified with a map V (T ) →

2V (H)\∅. For η ∈ F(Hom(G\v, H)), the fiber F(i∗)−1(η) is the set of τ ∈ F(Hom(G, H)) satisfying

τ |V (G)\v = η.

Since
⋂

v1···vs∈N(v)

⋂

(w1,...,ws)∈η(v1)×···×η(vs)

Ň(w1 · · ·ws) ⊃
⋂

v1···vs∈N(u)

⋂

(w1,...,ws)∈η(v1)×···×η(vs)

Ň(w1 · · ·ws)

⊃ η(u) 6= ∅,

we can define ν ∈ F(i∗)−1(η) by

ν(v) =
⋂

v1···vs∈N(v)

⋂

(w1,...,ws)∈η(v1)×···×η(vs)

Ň(w1 · · ·ws)

and ν|V (G)\v = η. By definition, ν is the maximum of F(i∗)−1(η), and thus in particular, the

order complex ∆(F(i∗)−1(η)) is contractible.

Choose τ ∈ F(Hom(G, H)) and η ∈ F(Hom(G\v, H)) satisfying τ(w) ⊃ η(w) for w ∈ V (G)\v.

Observe that F(i∗)−1(η)∩F(Hom(G, H))≤τ consists of σ ∈ F(Hom(G, H)) satisfying σ(v) ⊂ τ(v)

and σ|V (G)\v = η. Then it has the maximum µ such that µ(v) = τ(v) and µ|V (G)\v = η. We

have seen that Lemma 3.10 can be applied to F(i∗) : F(Hom(G, H)) → F(Hom(G \ v, H)), which

completes the proof. �

We generalize the above observation on the homotopy type of Hom(L
(3)
n , K

(3)
2 ).
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Corollary 3.15. Let L
(r)
n be the line r-graph with n vertices as above, and let G be an r-graph

with multiplicities. Then for n ≥ r, we have

Hom(L(r)
n , G) ≃ Hom(L(r)

r , G).

Proof. If n > r, we have N(n) ⊂ N(n − r). Then by Theorem 3.14, it holds that Hom(L
(r)
n , G) ≃

Hom(L
(r)
n−1, G). Thus the result follows by induction on n. �

4. Relation between box-edge complexes and Hom-complexes

4.1. Box-edge complexes. Let G be an r-graph (without multiplicities). In [AFL], Alon,

Frankl and Lovász introduced a simplicial complex Bedge(G) with a Cr-action which we call the

box-edge complex of G, where we follow the name and the notation of [MZ]. By an ad-hoc and

tricky construction concerning Bedge(G), they gave a lower bound for the chromatic number of

G. We will show that this construction is realized by special Hom-complexes of r-graphs with

multiplicities, by which we can reprove and interpret a result of Alon, Frankl and Lovász [AFL]

in a quite natural way.

Let π : V n → SPn(V ) denote the projection for a set V . Originally, the box-edge complexes

were defined only for r-graphs (without multiplicities). However, their definition can be applied

to r-graphs with multiplicities straightforwardly.

Definition 4.1. Let G be an r-graph with multiplicities. The box-edge complex of G is an

abstract simplicial complex defined as

(4.1) Bedge(G) = {F ⊂ V (G)r | π(F ) ⊂ E(G)}

on which the cyclic group Cr acts as the restriction of the permutation action on V (G)r.

Notice here that as is shown in [AFL], if r is a prime, the Cr-action on Bedge(G) is free.

4.2. Result of Alon, Frankl and Lovász. We prove that the box-edge complex Bedge(G) is

given by a special Hom-complex.

Theorem 4.2. For an r-graph with multiplicities G, there is a Cr-map

Bedge(G) → Hom(K(r)
r , G)

which is a homotopy equivalence. In particular, if r is a prime, it is a Cr-homotopy equivalence.

Proof. The face poset of Hom(K
(r)
r , G) is given as

(4.2) F(Hom(K(r)
r , G)) = {F1 × · · · × Fr | F1, . . . , Fr ⊂ V (G) and π(F1 × · · · × Fr) ⊂ E(G)},

where the order is given by inclusions. Then as the face poset of Bedge(G) is given in (4.1), we

can define a map

ϕ : F(Bedge(G)) → F(Hom(K(r)
r , G)), F 7→ π1(F ) × · · · × πr(F ),

where πi : V (G)r → V (G) is the ith projection. Then by definition, ϕ is a Cr-map and hence

so is ∆(ϕ).
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Take any F1 × · · · × Fr ∈ F(Hom(K
(r)
r , G)). Then the poset ϕ−1(Hom(K

(r)
r , G)≤F1×···×Fr

) has

the maximum F1×· · ·×Fr, implying that ∆(ϕ−1(Hom(K
(r)
r , G)≤F1×···×Fr

)) is contractible. Thus

by Lemma 3.9, ∆(ϕ) is a homotopy equivalence. The desired map is the composite

Bedge(G)
∼=
−→ ∆(F(Bedge(G)))

∆(ϕ)
−−−→ ∆(F(Hom(K(r)

r , G)))
∼=
−→ Hom(K(r)

r , G),

where the first and the last arrows are the natural homeomorphisms between polyhedral com-

plexes and their barycentric subdivision. Therefore we have established the first assertion.

Suppose r is a prime. Then the Cr-action on Hom(K
(r)
r , G) is free by Lemma 3.5. Moreover, the

Cr-action on Bedge(G) is also free as is noted above. Thus the second assertion follows from the

first one. �

Remark 4.3. Recently, Thansri [T] showed that Bedge(G) and Hom(K
(r)
r , G) has the same Σr-

equivariant simple homotopy type for an r-graph (without multiplicities) G.

By Corollary 3.8, we obtain a result of Alon, Frankl and lovász [AFL].

Corollary 4.4. Let G be an r-graph with multiplicities. If r is a prime, we have

χ(G) ≥
conn Bedge(G) + 2

r − 1
+ 1.

Alon, Frankl and Lovász [AFL] proved Corollary 4.4 by constructing a map from Bedge(G)

into a Euclidean space with a certain Cr-action, which seems quite ad-hoc and tricky. Using

Hom-complexes, this construction will turn out to be the induced map between Hom-complexes

from a given coloring.

Let Mr,n(R) be the space of r × n real matrices. We let Cr act on Mr,n(R) as the cyclic

permutation of rows. Let Y be a subspace of Mr,n(R) consisting of matrices (aij) satisfying

r∑

i=1

aik = 0,
n∑

j=1

aℓj = 0 and
∑

i,j

a2
ij 6= 0

for k = 1, . . . , n and ℓ = 1, . . . , r. Then Y is also a Cr-subspace of Mr,n(R). Let G be an

r-graph with multiplicities which admits an n-coloring, say c. Alon, Frankl and Lovász [AFL]

defined a Cr-map

c̄ : Bedge(G) → Mr,n(R)

by sending a vertex (v1, . . . , vr) of Bedge(G) to a matrix
∑r

i=1(Ei,c(i) − Ei,c(i)+1), where Ei,j is

the matrix whose (i, j) entry is 1 and other entries are 0 and Ei,n+1 means Ei,1. They showed

that c̄ has its image in Y and applied a special generalization of the Borsuk-Ulam theorem to

obtain Corollary 4.4.

We now define a map g : Hom(K
(r)
r , K

(r)
n ) → Mr,n(R) by sending a vertex (i1, . . . , ir) ∈ [n]r to

a matrix
∑r

k=1(Ek,ik − Ek,ik+1). Then one can easily see that g is a Cr-map and has is image

in Y . By definition, we have the following.



12 KOUYEMON IRIYE AND DAISUKE KISHIMOTO

Proposition 4.5. Let G be an r-graph with multiplicities which has an n-coloring c. Then

there is a commutative diagram

Hom(K
(r)
r , G)

c∗
//

≃

��

Hom(K
(r)
r , K

(r)
n )

g

��

Bedge(G)
c̄

// Y

where the left vertical arrow is as in Theorem 4.2.

We close this section by remarking that the complex of an r-graph (without multiplicities)

introduced by Kř́ıž [Kr] is the barycentric subdivision of Hom(K
(r)
r , G) and then essentially the

same as the box-edge complex Bedge(G).

5. Hom+-complexes and colorings

5.1. General Hom+-complexes. In [Ko2], Hom+-complexes of graphs were introduced which

are variants of Hom-complexes. As in the case of Hom-complexes, we can give a general recipe

for Hom+-complexes of partial maps between finite sets and will apply it to r-graphs with

multiplicities.

Let S, T be finite sets. A partial map from S to T is a map from a non-empty subset of S

into T . Then a partial map from S to T is identified with an element of

(T ∪ {∅})S \ (∅, . . . , ∅).

Let K, L be abstract simplicial complexes. Recall that the join K ∗ L is an abstract simplicial

complex whose simplices are of the form (σ, τ) where σ ∈ K, τ ∈ L and either σ or τ is

not empty. Then a partial map from S to T is identified with a vertex of the join ∗s∈S∆T .

Analogously to Hom-complexes, we are led to the following definition.

Definition 5.1. Let S, T be finite sets and C be a class of partial maps from S to T . The

Hom+-complex Hom
C

+(S, T ) is defined as the maximum subcomplex of ∗s∈S∆T whose vertex set

is C.

Analogously to Hom-complexes, we can define induced maps between Hom+-complexes under

certain conditions and see that these induced maps satisfy naturality corresponding to Propo-

sition 3.2.

5.2. Hom+-complexes of r-graphs with multiplicities. Let G, H be r-graphs with multi-

plicities. A partial homomorphism from G to H is a map from a subset V of V (G) into V (H)

which is a homomorphism from the maximum r-subgraph with multiplicities of G whose vertex

set is V into H . We now define Hom+-complexes of r-graphs with multiplicities.

Definition 5.2. Let G, H be r-graphs with multiplicities. The Hom+-complex Hom+(G, H) is

defined as HomC
+(V (G), V (H)) for the set C of all partial homomorphisms from G to H .

Similarly to Proposition 3.4, we have the following.
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Proposition 5.3. Let Graph(r) and Poly be the categories of r-graphs with multiplicities and

polyhedral complexes, respectively. Then

(Graph(r))op ×Graph(r) → Poly, (G, H) 7→ Hom+(G, H)

is a functor.

Then as in the case of Hom-complexes, we can construct group actions on Hom+-complexes

by those on r-graphs with multiplicities. For instance, the natural Cr-action on K
(r)
r induces a

Cr-action on Hom+(K
(r)
r , G) for an r-graph with multiplicities G. Analogously to Lemma 3.5,

we can prove the following.

Lemma 5.4. Let G be an r-graph with multiplicities. If r is a prime, the Cr-action on

Hom+(K
(r)
r , G) is free.

Using this Cr-action, we obtain a lower bound for the chromatic numbers.

Theorem 5.5. Let G be an r-graph with multiplicities. If r is a prime, it holds that

χ(G) ≥
indCr

Hom+(K
(r)
r , G) + 1

r − 1
.

Proof. Note that the dimension of Hom+(K
(r)
r , K

(r)
n ) is nr − n − 1 = (r − 1)n − 1. Then the

result follow quite similarly to Theorem 3.7. �

Corollary 5.6. Let G be an r-graph with multiplicities. If r is a prime, we have

χ(G) ≥
conn Hom+(K

(r)
r , G) + 2

r − 1
.

In [La], Lange defined a complex B0(G) for an r-graph with multiplicities and gave a lower

bound for the chromatic number of G by using B0(G). By definition, B0(G) coincides with

Hom+(K
(r)
r , G) and a lower bound in Theorem 5.5 is the same as the one given by Lange.

As in §3, let us consider the homotopy type of Hom+(K
(r)
m , K

(r)
n ). In the case of Hom+-

complexes, one can describe Hom+(K
(r)
m , K

(r)
n ) explicitly by Sarkaria’s formula [S] as follows.

Theorem 5.7 (cf. [S]). We have

Hom+(K(r)
m , K(r)

n ) ∼= ∗nskr−2∆
[m].

In particular, Hom+(K
(r)
m , K

(r)
n ) has the homotopy type of a wedge of

(
m−1
r−1

)n
copies of ((r−1)n−

1)-dimensional spheres.

5.3. Hierarchy of lower bounds for the chromatic number. Let G be an r-graph with

multiplicities. We have obtained so far two kinds of lower bounds for the chromatic number

of G, one is given by Hom(K
(r)
r , G) in Theorem 3.7 and the other is given by Hom+(K

(r)
r , G)

in Theorem 5.5. We have also seen that these lower bounds are related to formerly known

ones [AFL], [La]. We describe Hom+(K
(r)
r , G) by using Hom(K

(r)
r , G) and then get an inequality

between the above lower bounds.
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Theorem 5.8. For an r-graph with multiplicities G, there is a Cr-map

Hom+(K(r)
r , G) → ∂∆[r] ∗ Hom(K(r)

r , G)

which is a homotopy equivalence, where Cr acts diagonally on ∂∆[r] ∗ Hom(K
(r)
r , G).

Proof. Let P, Q be finite posets. Recall that the join P ∗ Q is a poset whose underlying set is

P ⊔ Q and order is defined as x < y if either x, y ∈ P with x < y, x, y ∈ Q with x < y or

x ∈ P, y ∈ Q. Then it follows that

∆(P ∗ Q) = ∆(P ) ∗ ∆(Q).

Note that the face poset of Hom+(K
(r)
r , G) is the disjoint union of F(Hom(K

(r)
r , G)) in (4.2)

and

{F1 × · · · × Fr | F1, . . . , Fr ⊂ V (G), Fi = ∅ for some i and
r⋃

i=1

Fi 6= ∅},

where the order is given by inclusions and F1 × · · · × Fn with Fi1 , . . . , Fik 6= ∅ and Fj = ∅ for

j 6= i1, . . . , ik means Fi1 × · · · × Fik . We then define a poset map

ϕ : F(Hom+(K(r)
r , G)) → F(∂∆[r]) ∗ F(Hom(K(r)

r , G))

as

ϕ(F1 × · · · × Fr) =

{

{i1, . . . , ik} ∈ F(∂∆[r])
⋃

i6=i1,...,ik
Fi = ∅ and Fi1 , . . . , Fik 6= ∅

F1 × · · · × Fr ∈ F(Hom(K
(r)
r , G)) F1, . . . , Fr 6= ∅.

By definition, ϕ is a Cr-map. For F1×· · ·×Fr ∈ F(Hom(K
(r)
r , G)) ⊂ F(∂∆[r])∗F(Hom(K

(r)
r , G)),

ϕ−1((F(∂∆[r]) ∗ F(Hom(K
(r)
r , G)))≤F1×···×Fr

) has the maximum F1 × · · · × Fr. For {i1, . . . , ik} ∈

∂∆[r] ⊂ F(∂∆[r])∗F(Hom(K
(r)
r , G)), ϕ−1((F(∂∆[r])∗F(Hom(K

(r)
r , G)))≤{i1,...,ik}) has the maximum

F1 × · · · × Fr, Fi1 = · · · = Fik = [n] and
⋃

i6=i1,...,ik

Fi = ∅.

Then for any x ∈ F(∂∆[r])∗F(Hom(K
(r)
r , G)), ∆((F(∂∆[r])∗F(Hom(K

(r)
r , G)))≤x) is contractible,

and it follows from Lemma 3.9 that ∆(ϕ) is a homotopy equivalence. Thus the composite

Hom+(K(r)
r , G)

∼=
−→ ∆(F(Hom+(K(r)

r , G)))
∆(ϕ)
−−−→ ∆(F(∂∆[r]) ∗ F(Hom(K(r)

r , G)))

= ∆(F(∂∆[r])) ∗ ∆(F(Hom(K(r)
r , G)))

∼=
−→ ∂∆[r] ∗ Hom(K(r)

r , G)

is the desired homotopy equivalence, where the first and the last arrows are the natural home-

omorphisms. �

Corollary 5.9. Let G be an r-graph with multiplicities. If r is a prime, there holds

χ(G) ≥
indCr

Hom(K
(r)
r , G) + 1

r − 1
+ 1 ≥

indCr
Hom+(K

(r)
r , G) + 1

r − 1
≥

indCr
Hom(K

(r)
r , G) + 1

r − 1

≥
conn Hom(K

(r)
r , G) + 1

r − 1
=

conn Hom+(K
(r)
r , G) + 1

r − 1
− 1.
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Proof. The first inequality follows from Theorem 3.7 and the second from Proposition 3.6 and

Theorem 5.8. As in the proof of Theorem 5.8, F(Hom(K
(r)
r , G)) is a subposet of F(Hom+(K

(r)
r , G))

including the Cr-actions. Then there is a Cr-map Hom(K
(r)
r , G) → Hom+(K

(r)
r , G), implying the

third inequality by Proposition 3.6. The fourth inequality follows from Proposition 3.6 and the

last equality from Theorem 5.8. �
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[M] J. Matoušek, Using the Borsuk-Ulam Theorem, Lectures on Topological Methods in Combinatorics and

Geometry, Universitext, Springer-Verlag, Heidelberg, 2003.
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