Kyoto University

Kyoto-Math 2012-07

KO-THEORY OF EXCEPTIONAL FLAG MANIFOLDS

by

Daisuke Kishimoto and Akihiro Ohsita

August 2012

京都大学理学部数学教室 Department of Mathematics Faculty of Science Kyoto University Kyoto 606-8502, JAPAN

KO-THEORY OF EXCEPTIONAL FLAG MANIFOLDS

DAISUKE KISHIMOTO AND AKIHIRO OHSITA

ABSTRACT. The KO-theory of the flag manifold G/T is determined by calculating the Atiyah-Hirzebruch spectral sequence when G is one of the exceptional Lie groups G_2, F_4, E_6 , where T is a maximal torus of G.

1. Introduction

This work is a continuation of [KH1], [KH2], [KKO] and [K] in which the KO-theory of various homogeneous spaces are calculated by the Atiyah-Hirzebruch spectral sequence. In [KKO], Kono and the authors calculated the KO-theory of the classical flag manifolds. Here, we mean by the classical (resp. exceptional) flag manifold the compact classical (resp. exceptional) group divided by its maximal torus. We will denote a maximal torus of a compact, connected Lie group G by T. We will calculate the KO-theory of the exceptional flag manifold G/T for $G = G_2, F_4, E_6$. Recently, a connection between Witt groups and KO-theory of homogeneous spaces such as Grassmannians and flag manifolds was found [Z], [Y1], [Y2], and so our calculation has applications not only in topology but also in this direction. Our main result is the following.

Theorem 1.1. The KO-theory of G/T for $G = G_2, F_4, E_6$ is given as

$$KO^{2n-1}(G/T) \cong (\mathbb{Z}/2)^{s_n}$$
 and $KO^{2n}(G/T) \cong (\mathbb{Z}/2)^{s_{n+1}} \oplus \mathbb{Z}^t$

for $n \in \mathbb{Z}/4$, where t, s_n are as in the following table.

$$egin{array}{c|ccccc} G & t & s_0 & s_{-1} & s_{-2} & s_{-3} \\ \hline G_2 & 6 & 1 & 2 & 1 & 0 \\ F_4 & 576 & 2 & 4 & 6 & 4 \\ E_6 & 25920 & 2 & 4 & 6 & 4 \\ \hline \end{array}$$

The organization of the paper is as follows. In §2, we recall from [KH1] and [KH2] useful lemmas in calculating the Atiyah-Hirzebruch spectral sequence converging to the KO-theory. We also recall some basic facts on the self-conjugate K-theory. In §3, we consider the homotopy fiber of a certain cohomology class BT^6 studied in [KI1] and related spaces. Results in this section will be used in calculating the KO-theory of F_4/T and E_6/T . In §4, we determine the KO-theory of G_2/T . In §5, we first calculate the KO-theory of F_4/T for some maximal rank subgroup U of F_4 . After this, we determine the KO-theory of F_4/T . In §6, we calculate the KO-theory of E_6/T in a similar method for E_4/T .

2. Atiyah-Hirzebruch spectral sequence

2.1. KO-theory. Recall that the coefficient of KO-theory is given as

$$KO^* = \mathbb{Z}[\eta, \lambda, \beta, \beta^{-1}]/(2\eta, \eta^3, \eta\lambda, \lambda^2 - 4\beta)$$

for $|\eta| = -1, |\lambda| = -4, |\beta| = -8$. Let $(E_r(X), d_r)$ be the Atiyah-Hirzebruch spectral sequence

$$E_2^{p,q}(X) \cong H^p(X; KO^q) \Longrightarrow KO^*(X).$$

It is shown in [F] that the second differential d_2 is given as

(2.1)
$$d_2^{p,q} = \begin{cases} \operatorname{Sq}^2 \pi_2 & q \equiv 0 \mod 8 \\ \operatorname{Sq}^2 & q \equiv -1 \mod 8 \\ 0 & \text{otherwise,} \end{cases}$$

where π_2 is the modulo 2 reduction. We now suppose the following condition of a space X.

(2.2)
$$H^{2n}(X; \mathbb{Z})$$
 is a free abelian group and $H^{2n+1}(X; \mathbb{Z}) = 0$ for $n \ge 0$.

Then for $\operatorname{Sq^2Sq^2} = \operatorname{Sq^3Sq^1} = 0$, $(H^*(X; \mathbb{Z}/2), \operatorname{Sq^2})$ is a chain complex. We denote the cohomology of $(H^*(X; \mathbb{Z}/2), \operatorname{Sq^2})$ by $H^*(X; \operatorname{Sq^2})$ and call it the $\operatorname{Sq^2}$ -cohomology of X. It follows from (2.1) that there is an isomorphism

(2.3)
$$\iota: E_3^{p,-1}(X) \xrightarrow{\cong} H^p(X; \operatorname{Sq}^2).$$

The following useful lemma is proved in [KH1] and [KH2].

Lemma 2.1. Let X be a CW-complex satisfying (2.2). Suppose r is the smallest integer such that $d_r \neq 0$ for $r \geq 3$. Then the following holds.

- (1) $r \equiv 2 \mod 8$.
- (2) If p is the smallest integer such that $d_r^{p,q} \neq 0$, there exists $x \in E_r^{p,0}(X)$ satisfying that $d_r(\eta x) \neq 0$ and $\iota(\eta x)$ is indecomposable in $H^p(X; \operatorname{Sq}^2)$.
- (3) Let x be as in (2). Suppose there is a map $X \times X \to X$ by which $H^*(X; \operatorname{Sq}^2)$ becomes a Hopf algebra. Then $d_r x$ is primitive in $H^*(X; \operatorname{Sq}^2)$.

Let us consider an extension of $E_{\infty}(X)$ to $KO^*(X)$.

Lemma 2.2. Let X be a finite CW-complex satisfying (2.2). Then there exist integers s_n, t_n for $n \in \mathbb{Z}/4$ and isomorphisms

$$KO^{2n-1}(X) \cong (\mathbb{Z}/2)^{s_n}$$
 and $KO^{2n}(X) \cong (\mathbb{Z}/2)^{s_{n+1}} \oplus \mathbb{Z}^{t_n}$.

Proof. By assumption, the complex K-theory $K^{-1}(X) = 0$, and by the Atiyah-Hirzebruch spectral sequence $(E_r(X), d_r)$, one sees that $KO^{2n-1}(X)$ is a torsion group. Then since the composite $KO^*(X) \xrightarrow{\mathbf{c}} K^*(X) \xrightarrow{\mathbf{r}} KO^*(X)$ is the 2-power map for the complexification \mathbf{c} and

the realization \mathbf{r} , it follows that $KO^{2n-1}(X) \cong (\mathbb{Z}/2)^{s_n}$ for some integer s_n . There is the Bott exact sequence

$$\cdots \to K^{*-1}(X) \to KO^{*+1}(X) \xrightarrow{\eta} KO^*(X) \xrightarrow{\mathbf{c}} K^*(X) \to \cdots$$

Since $K^0(X)$ is a free abelian group and $K^{-1}(X) = 0$ by assumption, $\eta : KO^{2n-1}(X) \to KO^{2n}(X)$ is an isomorphism on the torsion part. Thus the proof is completed.

We calculate integers s_n, t_n in Lemma 2.2. Define formal series $f_X(t)$ and $g_X(t)$ as

(2.4)
$$f_X(t) = \sum_{p>0} \dim_{\mathbb{Q}} H^p(X; \mathbb{Q}) t^p \text{ and } g_X(t) = \sum_{p>0} \dim_{\mathbb{Z}/2} E_{\infty}^{p,-1}(X) t^p.$$

By [MT], the polynomial $f_X(t)$ for $G = G_2/T$, F_4/T , E_6/T is given as

(2.5)
$$f_X(t) = \begin{cases} \frac{(1-t^4)(1-t^{12})}{(1-t^2)^2} & X = G_2/T, \\ \frac{(1-t^4)(1-t^{12})(1-t^{16})(1-t^{24})}{(1-t^2)^4} & X = F_4/T, \\ \frac{(1-t^4)(1-t^{10})(1-t^{12})(1-t^{16})(1-t^{18})(1-t^{24})}{(1-t^2)^6} & X = E_6/T. \end{cases}$$

Lemma 2.3. Let X be a finite CW-complex satisfying (2.2), and let s_n, t_n be as in Lemma 2.2 Then it holds that

$$t_0 = t_{-2} = \frac{f_X(1) + f_X(\sqrt{-1})}{2}, \quad t_{-1} = t_{-3} = \frac{f_X(1) - f_X(\sqrt{-1})}{2}$$

and

$$\begin{pmatrix} s_0 \\ s_{-1} \\ s_{-2} \\ s_{-3} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 & 1 & 2 & 0 \\ 1 & -1 & 0 & -2 \\ 1 & 1 & -2 & 0 \\ 1 & -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} g_X(1) \\ g_X(\sqrt{-1}) \\ \operatorname{Re} g_X(\frac{1+\sqrt{-1}}{\sqrt{2}}) \\ \operatorname{Im} g_X(\frac{1+\sqrt{-1}}{\sqrt{2}}) \end{pmatrix}.$$

Proof. Since the Atiyah-Hirzebruch spectral sequences for rationalized cohomology theories are trivial, we have

$$t_0 = t_{-2} = \sum_{n \ge 0} \dim_{\mathbb{Q}} H^{4n}(X; \mathbb{Q})$$
 and $t_{-1} = t_{-3} = \sum_{n \ge 0} \dim_{\mathbb{Q}} H^{4n+2}(X; \mathbb{Q}),$

and then the first two equalities follow. Notice that Lemma 2.2 implies that the extension of $\bigoplus_{p+q=2n-1} E^{p,q}_{\infty}(X)$ to $KO^{2n-1}(X)$ is trivial. Then by Bott periodicity and $E^{p,q}_{\infty}(X)=0$ for odd q with $q \not\equiv -1 \mod 8$, we have

$$KO^{2n-1}(X) \cong \bigoplus_{p+q=2n-1} E_{\infty}^{p,q}(X) \cong \bigoplus_{4k+n>0} E_{\infty}^{8k+2n,-1}(X).$$

On the other hand, we have

$$g_X(t) = \sum_{n=0}^{3} \sum_{k>0} \dim_{\mathbb{Z}/2} E_{\infty}^{8k+2n,-1}(X) t^{8k+2n}.$$

Then for $\omega = \frac{1+\sqrt{-1}}{\sqrt{2}}$, a primitive 8th root of unity, we get

$$g_X(\omega^{\ell}) = \sum_{n=0}^{3} \omega^{2\ell n} s_n = \begin{cases} s_0 + s_{-1} + s_{-2} + s_{-3} & \ell = 0 \\ s_0 - \sqrt{-1}s_{-1} - s_{-2} + \sqrt{-1}s_{-3} & \ell = 1 \\ s_0 - s_{-1} + s_{-2} - s_{-3} & \ell = 2 \end{cases}$$

and thus the last equality follows.

2.2. **Self-conjugate** K-theory. Let us next consider self-conjugate K-theory. Our basic reference is [A]. We denote the self-conjugate K-theory of a space X by $KSC^*(X)$. The coefficient of self-conjugate K-theory is periodic by multiplication by a generator of KSC^{-4} . Moreover, there is an exact sequence

$$\cdots \to KO^{*+2}(X) \xrightarrow{\eta^2} KO^*(X) \xrightarrow{\mathbf{c}} KSC^*(X) \to KO^{*+3}(X) \to \cdots$$

where \mathbf{c} is the complexification. Then it follows that

$$KSC^* \cong \begin{cases} \mathbb{Z} & * \equiv 0, -3 \mod 4 \\ \mathbb{Z}/2 & * \equiv -1 \mod 4 \\ 0 & * \equiv -2 \mod 4 \end{cases}$$

and $\mathbf{c}: KO^* \to KSC^*$ is an isomorphism for $* \equiv 0, -1 \mod 8$. Let $('E_r, 'd_r)$ be the Atiyah-Hirzebruch spectral sequence

$${}'E_2^{p,q} \cong H^p(X; KSC^q) \Longrightarrow KSC^*(X).$$

Lemma 2.4. Let X be a CW-complex satisfying (2.2).

(1) The complexification

$$\mathbf{c}: E_3^{p,q}(X) \to {}'E_3^{p,q}(X)$$

is an isomorphism for $q \equiv 0 \mod 8$ and a monomorphism for $q \equiv -1 \mod 8$.

(2) If r is the least integer such that $d_r \neq 0$ for $r \geq 3$, then

$$r \equiv 2 \mod 8$$
 and $d_r^{*,0} \neq 0$.

Proof. (1) This follows from the above observation on $\mathbf{c}: KO^* \to KSC^*$.

(2) Quite similarly to the proof of Lemma 2.1, we see that $r \equiv 2 \mod 4$ and $d_r^{*,0} \neq 0$. By (1), we further see that $r \equiv 2 \mod 8$, completing the proof.

Remark 2.5. All results in this section hold if we localized at the prime 2 and will be used in the proof of Theorem 3.7 below.

3. KO-THEORY OF A SPACE RELATED WITH A TORUS

In [KI1], the cohomology of BT^6 in connection with the Weyl group action of E_6 is given as

$$H^*(BT^6; \mathbb{Z}) = \mathbb{Z}[t, t_1, \dots, t_6]/(t_1 + \dots + t_6 - 3t), \quad |t| = |t_i| = 2.$$

Generalizing, we may put

$$H^*(BT^N; \mathbb{Z}) = \mathbb{Z}[t, t_1, \dots, t_N]/(t_1 + \dots + t_N - 3t), \quad |t| = |t_i| = 2$$

for $N \geq 6$, which respects the above case of N = 6. Let c_i be the elementary symmetric function in t_1, \ldots, t_N , and let $y_4 = c_2 - 4t^2 \in H^4(BT^N; \mathbb{Z})$. Define $B\widetilde{T}^N$ as the homotopy fiber of

$$y_4:BT^N\to K(\mathbb{Z},4),$$

where $B\widetilde{T}^6$ is the 4-connective cover of BT^6 in the sense of [KI1]. Let us calculate the mod 2 cohomology of $B\widetilde{T}^N$ following [KI1]. Define $\bar{c}_{2^i+1} \in \mathbb{Z}/2[t_1,\ldots,t_N]$ for $i \geq 0$ inductively as

$$\bar{c}_2 = c_2$$
 and $\bar{c}_{2^{i+1}} = \operatorname{Sq}^{2^i} \bar{c}_{2^{i-1}+1}$.

Proposition 3.1. The mod 2 cohomology of $B\widetilde{T}^N$ is given as

$$H^*(B\widetilde{T}^N; \mathbb{Z}/2) = \mathbb{Z}/2[t_1, \dots, t_N, \gamma_{2^{i+1}} \mid i \ge 1]/(\bar{c}_{2^{i+1}} \mid i \ge 0)$$

for $* \le 2N$, where $|\gamma_{2^{i+1}}| = 2(2^{i} + 1)$.

Proof. Let us consider the Serre spectral sequence of a homotopy fiber sequence

$$K(\mathbb{Z},3) \to B\widetilde{T}^N \to BT^N.$$

Recall that the mod 2 cohomology of $K(\mathbb{Z},3)$ is given as

$$H^*(K(\mathbb{Z},3);\mathbb{Z}/2) = \mathbb{Z}/2[u_{2^{i+1}} \mid i \ge 1],$$

where u_3 is the modulo 2 reduction of the fundamental class and $u_{2^i+1} = \operatorname{Sq}^{2^{i-1}} u_{2^{i-1}+1}$ for $i \geq 2$. By definition of $B\widetilde{T}^N$, the transgression τ satisfies $\tau(u_3) = c_2 \, (= \bar{c}_2)$ and then $\tau(u_{2^i+1}) = \bar{c}_{2^i+1}$ for $i \geq 0$. Inductively, one sees that \bar{c}_{2^i+1} includes the term c_{2^i+1} , implying that $\{\bar{c}_{2^i+1} \mid 2 \leq 2^i+1 \leq n\}$ is a regular sequence in $\mathbb{Z}/2[t_1,\ldots,t_N]$. On the other hand, since u_3^2 is a permanent cycle, there exists $\gamma_3 \in H^6(B\widetilde{T}^N;\mathbb{Z}/2)$ which restricts to u_3^2 . Put

$$\gamma_{2^i+1} = \operatorname{Sq}^{2^i} \gamma_{2^{i-1}+1}$$

for $i \geq 2$. By the Cartan formula, we have that $\gamma_{2^{i+1}}$ restricts to $u_{2^{i+1}}^2$. Summarizing the above calculation, we obtain the desired result, where we need the condition $* \leq N$ for regularity of $\{\bar{c}_{2^{i+1}} \mid i \geq 0\}$.

There is a sequence of natural maps

$$B\widetilde{T}^N \to B\widetilde{T}^{N+1} \to B\widetilde{T}^{N+2} \to \cdots$$

We denote the colimit of this sequence by $B\widetilde{T}^{\infty}$. Then by Proposition 3.1, the Milnor exact sequence shows the following. Let R be a graded algebra over $\mathbb{Z}/2$ consisting of finite sums of homogeneous formal power series in t_1, t_2, \ldots with $|t_i| = 2$.

Corollary 3.2. The mod 2 cohomology $B\widetilde{T}^{\infty}$ is given as

$$H^*(B\widetilde{T}^{\infty}; \mathbb{Z}/2) = R \otimes \mathbb{Z}/2[\gamma_{2^{i+1}} \mid i \ge 1]/(\bar{c}_{2^{i+1}} \mid i \ge 0).$$

In particular, for $n \geq 0$, $H^{2n}(B\widetilde{T}^{\infty}; \mathbb{Z}_{(2)})$ is a free $\mathbb{Z}_{(2)}$ -module and $H^{2n+1}(B\widetilde{T}^{\infty}; \mathbb{Z}_{(2)}) = 0$.

Let us next calculate the $\operatorname{Sq^2}$ -cohomology of $B\widetilde{T}^N$ up to a certain dimension. To this end, we recall from [KH1] a special cohomology calculation.

Lemma 3.3. Let (A, d) be a differential graded algebra over a field.

(1) Suppose that for $a \in A^n$, da is a non-zero-divisor and $a^2 = db$ for some $b \in A^{2n-1}$. Then it holds that

$$H^*(A/(da)) \cong \Lambda(a) \otimes H^*(A).$$

(2) Suppose that for $a \in A^n$, $\{a, da\}$ is a regular sequence and $a^2 = db, b^2 = dc$ for some $b \in A^{2n-1}, c \in A^{4n-3}$. Then it holds that

$$H^*(A/(a,da)) \cong \Lambda(b) \otimes H^*(A).$$

Proof. (1) Since da is a non-zero-divisor, there is a short exact sequence

$$0 \to A \xrightarrow{\cdot da} A \to A/(da) \to 0$$

which induces a long exact sequence

$$\cdots \to H^*(A) \xrightarrow{\cdot H^*(da)} H^{*+n+1}(A) \to H^{*+n+1}(A/(da)) \xrightarrow{\delta} H^{*+1}(A) \to \cdots,$$

where A/(da) is, of course, a differential graded algebra. Obviously, $H^*(da) = 0$ and $\delta(a) = 1$. Then it follows that $H^*(A/(da))$ is a free $H^*(A)$ -module with a basis $\{1, a\}$. Since $a^2 = db$, we obtain the desired result.

(2) Since $\{a, da\}$ is a regular sequence, there is an exact sequence

$$\cdots \to H^*(A/(da)) \xrightarrow{\cdot H^*(a)} H^{*+n}(A/(da)) \to H^{*+n}(A/(a,da)) \xrightarrow{\delta} H^{*+1}(A/(da)) \to \cdots$$

as well as above, in which $\delta(b)=a$. Since $H^*(A/(da))\cong \Lambda(a)\otimes H^*(A)$ by (1), we see that $H^*(A/(a,da))$ is a free $H^*(A)$ -module with a basis $\{1,b\}$. For $b^2=dc$, the proof is completed.

Proposition 3.4. For * < 2N - 2,

$$H^*(B\widetilde{T}^N; \operatorname{Sq}^2) = \Lambda(x_3, x_7, x_{2^i} \mid i \ge 3), \ |x_j| = 2j,$$

where N can be ∞ .

Proof. Put $A = \mathbb{Z}/2[t_1, \dots, t_N]$ (or the above R for $N = \infty$). Notice that since A is acyclic under Sq^2 , for any $x \in A^+$, there exists $y \in A$ satisfying $x^2 = dy$.

By Lemma 3.3, we have

$$H^*(A/(\bar{c}_2,\bar{c}_3)) = \Lambda(x_3),$$

where $x_3 = \sum_{i < j} t_i t_j^2$ satisfying $\operatorname{Sq}^2 x_3 = c_2^2$. The Adem relation $\operatorname{Sq}^2 \operatorname{Sq}^{2^i} = \operatorname{Sq}^{2^{i+2}} + \operatorname{Sq}^{2^{i+1}} \operatorname{Sq}^1$ implies that

(3.1)
$$\operatorname{Sq}^{2} \bar{c}_{2^{i+1}} = \bar{c}_{2^{i-1}+1}^{2}$$

for $i \geq 2$. On the other hand, as is noted in the proof of Proposition 3.1, $\{\bar{c}_{2^i+1} \mid 2 \leq 2^i + 1 \leq N\}$ is a regular sequence in A. Then, applying Lemma 3.3 repeatedly, one gets

$$H^*(A/(\bar{c}_{2^i+1} \mid i \ge 0)) = \Lambda(x_3, x_{2^i} \mid i \ge 2)$$

for $* \leq 2N$, where $\operatorname{Sq}^2 x_{2^i} \equiv \bar{c}_{2^i+1} \mod (\bar{c}_{2^j+1} \mid 0 \leq j \leq i-1)$. Notice here that since $H^{2(2^{i+1}+1)}(A/(\bar{c}_{2^j+1} \mid j \geq 0)) = 0$, we can apply Lemma 3.3 repeatedly. Since $\operatorname{Sq}^2 c_4 = \bar{c}_5 \mod (\bar{c}_2, \bar{c}_3)$, we may take $x_4 = c_4$.

Put $F_0 = A/(\bar{c}_{2^i+1} \mid i \geq 0)$ and $F_n = A/(\bar{c}_{2^i+1} \mid i \geq 0) \otimes \mathbb{Z}/2[\gamma_{2^i+1} \mid i \leq n-1]$ for $n \geq 1$. It is proved in [KI1] that $\operatorname{Sq}^2\gamma_3 = c_4$. Consider the spectral sequence associated with a filtration $F_0 \subset F_1$. Then we get

$$H^*(F_1) = \Lambda(x_3, x_7, x_{2^i} \mid i \ge 3) \otimes \mathbb{Z}/2[\gamma_3^2],$$

where $x_7 = \gamma_3 c_4 + d_7$ for $d_7 \in A$ with $\operatorname{Sq}^2 d_7 = c_4^2$. Similarly to (3.1), we have $\operatorname{Sq}^2 \gamma_{2^{i+1}} = \gamma_{2^{i-1}+1}$. Then by considering the spectral sequence associated with a filtration $F_n \subset F_{n+1}$ for $n \geq 1$ inductively, we obtain

$$H^*(F_{n+1}) = \Lambda(x_3, x_7, x_{2^i} \mid i \ge 3) \otimes \mathbb{Z}/2[\gamma_{2^{n+1}}^2].$$

Thus the proof is completed.

Let us next consider the homotopy fiber F of the cohomology class $t: B\widetilde{T}^{\infty} \to K(\mathbb{Z},2)$. Let $\alpha: F \to B\widetilde{T}^{\infty}$ be the natural map.

Proposition 3.5. For $n \geq 0$, $H^{2n}(F; \mathbb{Z}_{(2)})$ is a free $\mathbb{Z}_{(2)}$ -module and $H^{2n+1}(F; \mathbb{Z}_{(2)}) = 0$.

Proof. By Proposition 3.1, for $* \leq 2N$, the same claim is true for $B\widetilde{T}^N$, and then also for $B\widetilde{T}^\infty$ by sending N to ∞ . Since the map $t: B\widetilde{T}^\infty \to K(\mathbb{Z},2)$ is injective in the $\mathbb{Z}_{(2)}$ -cohomology, $\alpha^*: H^*(B\widetilde{T}^\infty; \mathbb{Z}_{(2)}) \to H^*(F; \mathbb{Z}_{(2)})$ is surjective, and thus the proof is completed.

Define a map $\mu: BT^{\infty} \times BT^{\infty} \to BT^{\infty}$ by the equation

$$\mu^*(t_{2i}) = 1 \otimes t_i$$
 and $\mu^*(t_{2i-1}) = t_i \otimes 1$

for $i \geq 1$ in cohomology. Then by an easy inspection we see that μ lifts to a map $\tilde{\mu} : F \times F \to F$.

Proposition 3.6. The natural map $\alpha: F \to B\widetilde{T}^{\infty}$ induces an isomorphism in the Sq^2 cohomology. Moreover, $H^*(F; \operatorname{Sq}^2)$ becomes a Hopf algebra by $\widetilde{\mu}$ in which $\alpha^*(x_{2^i})$ is not primitive
for $i \geq 4$, where x_i is as in Proposition 3.4.

Proof. The first assertion easily follows from a direct calculation.

Computing the Sq²-cohomology of the subring $\mathbb{Z}/2[c_1, c_2, c_3, \ldots]/(c_1, \bar{c}_2, \bar{c}_3, \ldots)$ of $H^*(F; \mathbb{Z}/2)$, we see that $\alpha^*(x_{2^i})$ can be chosen as an element of this subring for $i \geq 3$. Then for

(3.2)
$$\tilde{\mu}^*(\alpha^*(c_n)) = \sum_{i=0}^n \alpha^*(c_i) \otimes \alpha^*(c_{n-i}),$$

we obtain

$$\tilde{\mu}^*(\alpha^*(x_{2^i})) = \alpha^*(x_{2^i}) \otimes 1 + 1 \otimes \alpha^*(x_{2^i}) + \cdots$$

Choose representatives of x_3, x_7 as in the proof of Proposition 3.4. As in [KKO], it is straightforward to see that $\tilde{\mu}^*(\alpha^*(x_3)) = x_3 \otimes 1 + 1 \otimes x_3$. By definition, we have $\tilde{\mu}^*(\alpha^*(\gamma_3)) = \alpha^*(\gamma_3) \otimes 1 + 1 \otimes \alpha^*(\gamma_3) + \cdots$. Then by an easy calculation analogous to $\alpha^*(x_3)$, we see that $\tilde{\mu}^*(\alpha^*(x_7)) = \alpha^*(x_7) \otimes 1 + 1 \otimes \alpha^*(x_7)$. Thus we have obtained that $H^*(F; \operatorname{Sq}^2)$ is a Hopf algebra by the map $\tilde{\mu}$.

Since $\bar{c}_{2^i+1} = c_{2^i+1} + \cdots$ as above, we have $x_{2^i} = c_{2^i} + \cdots$ for $i \geq 3$. Then by (3.2), the last assertion follows.

We now aim at proving the following.

Theorem 3.7. The Atiyah-Hirzebruch spectral sequence $E_r(B\widetilde{T}^{\infty})_{(2)}$ collapses at E_3 -term.

Proof. By Corollary 3.2, $B\widetilde{T}^{\infty}$ satisfies the condition (2.2) at the prime 2. Let \bar{x}_j be an element of $\operatorname{Ker}\{\operatorname{Sq}^2: H^*(B\widetilde{T}^{\infty}; \mathbb{Z}_{(2)}) \to H^*(B\widetilde{T}^{\infty}; \mathbb{Z}/2)\} \cong E_3^{*,0}(B\widetilde{T}^{\infty})_{(2)}$ whose modulo 2 reduction is $x_j \in H^*(B\widetilde{T}^{\infty}; \operatorname{Sq}^2)$ for $j = 3, 7, 2^i$ $(i \geq 3)$. Then by Lemma 2.1, our aim is to prove that \bar{x}_j is a permanent cycle for $j = 3, 7, 2^i$ $(i \geq 3)$.

Consider the natural map $\alpha: F \to B\widetilde{T}^{\infty}$. Then it follows from Lemma 2.1, Proposition 3.5 and Proposition 3.6 that it is sufficient to show that $\alpha^*(\bar{x}_3) \in \text{Ker}\{\text{Sq}^2: H^*(F; \mathbb{Z}_{(2)}) \to H^*(F; \mathbb{Z}/2)\} \cong E_3^{*,0}(F)_{(2)}$ is a permanent cycle. We next consider the complexification $\mathbf{c}: E_r(F)_{(2)} \to {}'E_r(F)_{(2)}$. Then by Lemma 2.4, we only have to prove $\mathbf{c}(\alpha^*(\bar{x}_3)) \in {}'E_3(F)_{(2)}$ is a permanent cycle.

Let u be a generator of $K_{(2)}^{-2}$ satisfying $(1-\mathbf{t})(u)=0$ for the complex conjugation \mathbf{t} , and let H_i be the pullback of the Hopf bundle on BT^1 by the composite $F \to BT^{\infty} \to BT^1$ in which the first arrow is the natural map and the second arrow corresponds to the cohomology class t_i . Put $\xi_3 = u^{-3} \sum_{i < j} H_i H_j^2 \in K^6(B\widetilde{T}^{\infty})_{(2)}$. Then for $(1-\mathbf{t})(\xi_3) = 0$, ξ_3 lies in $KSC^6(F)_{(2)}$. Obviously, ξ_3 corresponds to $\mathbf{c}(\alpha^*(\bar{x}_3))$, and thus $\mathbf{c}(\alpha^*(\bar{x}_3))$ is a permanent cycle as is desired.

4.
$$KO$$
-THEORY OF G_2/T

The mod 2 cohomology of G_2/T including the action of the Steenrod operations is calculated as

$$H^*(G_2/T; \mathbb{Z}/2) = \mathbb{Z}/2[t_1, t_2, \gamma_3]/(\rho_2, \rho_3, \gamma_3^2), \quad |t_i| = 2, |\gamma_3| = 6, \quad \operatorname{Sq}^2 \gamma_3 = 0,$$

where

$$\rho_2 = t_1^2 + t_1 t_2 + t_2^2$$
 and $\rho_3 = t_1^2 t_2 + t_1 t_2^2$.

Proposition 4.1. The Sq^2 -cohomology of G_2/T is given as

$$H^*(G_2/T; \operatorname{Sq}^2) = \Lambda(x_3, \gamma_3),$$

where $x_3 = t_1^3 + t_1 t_2^2 + t_2^3$.

Proof. Since $Sq^2\rho_2=\rho_3$, we obtain the desired result by Lemma 3.3.

Corollary 4.2. The Atiyah-Hirzebruch spectral sequence $E_r(G_2/T)$ collapses at E_3 -term. In particular, we have

$$g_{G_2/T}(t) = (1+t^6)^2$$
.

Proof. The result follows from Lemma 2.1 and Proposition 4.1.

Proof of Theorem 1.1 for G_2 . The result follows from (2.5), Lemma 2.2 (1) and Corollary 4.2.

5. KO-THEORY OF F_4/T

Recall that the Dynkin diagram of F_4 is given as follows.

$$\alpha_1$$
 α_2 α_3 α_4

It is shown in [IT] that the centralizer of the circle in F_4 defined by $\alpha_2 = \alpha_3 = \alpha_4 = 0$ is isomorphic to $T^1 \cdot \operatorname{Sp}(3)$. Let U be the centralizer of the torus defined by $\alpha_2 = 0$. Then $U \cong T^3 \times \operatorname{Sp}(1)$ as a space, implying that the homology of U is torsion free. Note that F_4/U satisfies the condition (2.2). Then we calculate the Atiyah-Hirzebruch spectral sequence converging to $KO^*(F_4/U)$ from which we deduce the one converging to $KO^*(F_4/T)$.

5.1. KO-theory of F_4/U . We first calculate the mod 2 cohomology of F_4/U . Let ω_i (i = 1, 2, 3, 4) be the fundamental weight of F_4 as in [TW], and put

$$t = \omega_1, \quad y_1 = \omega_2 - \omega_3, \quad y_2 = \omega_3 - \omega_4, \quad y_4 = \omega_4.$$

Then it is clear that

$$H^*(BT; \mathbb{Z}) = \mathbb{Z}[t, y_1, y_2, y_3].$$

As in [IT], the Weyl group of U is generated by a single element R satisfying

$$R(t) = t$$
, $R(y_1) = t - y_1$, $R(y_2) = y_2$, $R(y_3) = y_3$.

Since $H^*(BU; \mathbb{Z})$ is torsion free as noted above, $H^*(BU; \mathbb{Z})$ is the invariant ring of $H^*(BT; \mathbb{Z})$ under the action of the Weyl group of U. Then one gets

$$H^*(BU; \mathbb{Z}) = \mathbb{Z}[t, y_2, y_3, q], \quad q = y_1(t - y_1).$$

On the other hand, the mod 2 cohomology of F_4 is given as

$$H^*(F_4; \mathbb{Z}/2) = \mathbb{Z}/2[a_3]/(a_3^4) \otimes \Lambda(a_5, a_{15}, a_{23}), \quad |a_i| = i, \quad \beta a_5 = a_3^2.$$

Then by a result of Toda [T], we can calculate the $\mathbb{Z}_{(2)}$ -coefficient cohomology of F_4/U as follows.

Proposition 5.1. There is a regular sequence $\bar{\rho}_2, \bar{\rho}_6, \bar{\rho}_8, \bar{\rho}_{12}$ in $\mathbb{Z}_{(2)}[t, y_2, y_3, q]$ with $|\bar{\rho}_i| = 2i$ such that

$$H^*(F_4/U; \mathbb{Z}_{(2)}) = \mathbb{Z}_{(2)}[t, y_2, y_3, q, \gamma_3]/(\bar{\rho}_2, \bar{\rho}_6, \bar{\rho}_8, \bar{\rho}_{12}, 2\gamma_3 + \bar{\rho}_3),$$

where $\bar{\rho}_3$ is defined by the equation $\operatorname{Sq}^2\bar{\rho}_2 = \bar{\rho}_3$.

We now determine the mod 2 cohomology of F_4/U . Define $q_i \in \mathbb{Z}[t, y_2, y_3, q]$ $(|q_i| = 4i)$ as

$$1 + q_1 + q_2 + q_3 = (1+q)(1+y_2(t-y_2))(1+y_3(t-y_3)).$$

By definition, one has

(5.1)
$$\operatorname{Sq}^2 q_1 = tq_1, \quad \operatorname{Sq}^2 q_2 = 0, \quad \operatorname{Sq}^2 q_3 = tq_3.$$

A calculation in [IT] implies that the rational cohomology of F_4/U is given as

(5.2)
$$H^*(F_4/U; \mathbb{Q}) = \mathbb{Q}[t, y_2, y_3, q]/(\sigma_2, \sigma_6, \sigma_8, \sigma_{12}),$$

where

$$(5.3) \sigma_2 = -t^2 + q_1, \sigma_6 = -t^6 + 4t^2q_2 - 8q_3, \sigma_8 = 3t^2q_3 - q_2^2, \sigma_{12} = -q_2^3 + 27q_3^2.$$

Let $\bar{\rho}_i$ (i=2,6,8,12) be as in Proposition 5.1. Then by (5.1) and (5.3), we may put

$$\bar{\rho}_2 = -t^2 + q_1$$
 and $\bar{\rho}_3 = tq_1$.

Put

$$R = \mathbb{Z}_{(2)}[t, y_2, y_3, q, \gamma_3]/(\bar{\rho}_2, \bar{\rho}_3, -\gamma_3^2 + t^2q_2 - 2q_3, \sigma_8, \sigma_{12}).$$

Since $\sigma_6 \equiv 4(-\gamma_3^2 + t^2q_2 - 2q_3) \mod (\bar{\rho}_2, \bar{\rho}_3)$ and the natural map $H^*(F_4/U; \mathbb{Z}_{(2)}) \to H^*(F_4/U; \mathbb{Q})$ is injective, there is a surjection $R \to H^*(F_4/U; \mathbb{Z}_{(2)})$ which induces a surjection

$$\phi: R/2 \to H^*(F_4/U; \mathbb{Z}/2).$$

We now put

(5.4)
$$\rho_2 = t^2 + q_1, \quad \rho_3 = tq_1, \quad \rho_6 = \gamma_3^2 + t^2 q_2, \quad \rho_8 = t^2 q_3 + q_2^2, \quad \rho_{12} = q_2^3 + q_3^2.$$

Then since the Poincaré series of F_4/U over \mathbb{Q} and $\mathbb{Z}/2$ are the same, we have

$$R/2 = \mathbb{Z}/2[t, y_2, y_3, q, \gamma_3]/(\rho_2, \rho_3, \rho_6, \rho_8, \rho_{12}),$$

here in the Poincaré series, γ_3 is cancelled by ρ_3 . One can easily verify that ρ_2 , ρ_3 , ρ_6 , ρ_8 , ρ_{12} is a regular sequence in $\mathbb{Z}/2[t, y_2, y_3, q, \gamma_3]$, implying that the Poincaré series of R/2 is $\frac{(1-t^{12})(1-t^{16})(1-t^{24})}{(1-t^2)^3}$. On the other hand, the Poincaré series of $H^*(F_4/U; \mathbb{Z}/2)$ is equal to that of $H^*(F_4/U; \mathbb{Q})$ which is $\frac{(1-t^{12})(1-t^{16})(1-t^{24})}{(1-t^2)^3}$ by (5.2). Then we conclude that Poincaré series of R/2 and $H^*(F_4/U; \mathbb{Z}/2)$ are the same, and thus the map ϕ is an isomorphism. Summarizing, we obtain the following.

Proposition 5.2. The mod 2 cohomology of F_4/U is given as

$$H^*(F_4/U; \mathbb{Z}/2) = \mathbb{Z}/2[t, y_2, y_3, q, \gamma_3]/(\rho_2, \rho_3, \rho_6, \rho_8, \rho_{12}),$$

where $|t| = |y_2| = |y_3| = 2$, |q| = 4, $|\gamma_3| = 6$ and ρ_i is as in (5.4).

Corollary 5.3. The Sq^2 -cohomology of F_4/U is given as

$$H^*(F_4/U; \operatorname{Sq}^2) = \Lambda(x_7, x_{11}, \bar{\gamma}_3), \quad |x_i| = 2i, |\bar{\gamma}_3| = 6,$$

where $\operatorname{Sq}^2 x_7 \equiv \rho_8 \mod (\rho_2, \rho_3)$, $\operatorname{Sq}^2 x_{11} = \rho_{12}$, $\bar{\gamma}_3 = \gamma_3 + \delta_3$ and $\operatorname{Sq}^2 \delta_3 = q_2$ for $\delta_3 \in \mathbb{Z}/2[t, y_2, y_3, q]$.

Proof. Considering the projection $F_4/T \to F_4/U$, one sees from [KI2] that

$$\mathrm{Sq}^2\gamma_3=q_2.$$

Let A be a differential graded algebra $\mathbb{Z}/2[t, y_2, y_3, q]$ with $|t| = |y_i| = 2, |q| = 4$ and $dt = t^2, dy_i = y_i^2, dq = tq$, where the degree of the differential is 2. Then by Proposition 5.2, our aim is to determine the cohomology of a differential graded algebra

$$A \otimes \mathbb{Z}/2[\gamma_3]/(\rho_2, \rho_3, \rho_6, \rho_8, \rho_{12}),$$

where $|\gamma_3| = 6$, $d\gamma_3 = q_2$ and ρ_i is as in (5.4). By definition, we have

$$A/(\rho_2, \rho_3) = \mathbb{Z}/2[y_2, y_3] \otimes \langle 1, t, t^2 \rangle$$

as a $\mathbb{Z}/2[y_2, y_3]$ -module, and then $H^*(A/(\rho_2, \rho_3)) = 0$. Hence for $d\rho_8 \equiv 0 \mod (\rho_2, \rho_3)$ and $d\rho_{12} = 0$, it follows from (3.3) that

$$H^*(A/(\rho_2, \rho_3, \rho_8, \rho_{12})) = \Lambda(x_7, x_{11}), \quad |x_i| = 2i.$$

Since $dq_2 = 0$ and $H^*(A) = 0$, there exists $\delta_3 \in H^6(A)$ satisfying $d\delta_3 = q_2$. Put $\bar{\gamma}_3 = \gamma_3 + \delta_3$. Then one has

$$A \otimes \mathbb{Z}/2[\gamma_3]/(\rho_2, \rho_3, \rho_8, \rho_{12}) = A \otimes \mathbb{Z}/2[\bar{\gamma}_3]/(\rho_2, \rho_3, \rho_8, \rho_{12})$$

and $\rho_6 \equiv \bar{\gamma}_3^2 + d(t^2\delta_3 + \delta_5) \mod (\rho_2, \rho_3)$, where $\delta_5 \in H^{10}(A)$ is given by $d\delta_5 = \delta_3^2$. Thus for $d\bar{\gamma}_3 = 0$, we obtain

$$H^*(A \otimes \mathbb{Z}/2[\gamma_3]/(\rho_2, \rho_3, \rho_6, \rho_8, \rho_{12})) = \Lambda(x_7, x_{11}, \bar{\gamma}_3),$$

completing the proof.

Theorem 5.4. The Atiyah-Hirzebruch spectral sequence $E_r(F_4/U)$ collapses at E_3 -term. In particular, we have

$$g_{F_4/U}(t) = (1+t^6)(1+t^{14})(1+t^{22}).$$

Proof. The result follows from Lemma 2.1 (1), (2) and Corollary 5.3.

Theorem 5.5. The KO-theory of F_4/U is given as

$$KO^{2n-1}(F_4/U) \cong (\mathbb{Z}/2)^{s_n}$$
 and $KO^{2n}(F_4/U) \cong (\mathbb{Z}/2)^{s_{n+1}} \oplus \mathbb{Z}^t$

for $n \in \mathbb{Z}/4$, where

$$t = 144$$
, $s_0 = s_{-3} = 1$, $s_{-1} = s_{-2} = 3$.

Proof. As is noted above, we have $f_{F_4/U}(t) = \frac{(1-t^{12})(1-t^{16})(1-t^{24})}{(1-t^2)^3}$. Then the proof is completed by Lemma 2.2, 2.3 and Theorem 5.4.

5.2. KO-theory of F_4/T . Let $\rho_i \in \mathbb{Z}/2[t, y_1, y_2, y_3, \gamma_3]$ be as in (5.4), where $q = y_1(t - y_1)$. In [KI2], the mod 2 cohomology of F_4/T is calculated as

$$H^*(F_4/T; \mathbb{Z}/2) = \mathbb{Z}/2[t, y_1, y_2, y_3, \gamma_3]/(\rho_2, \rho_3, \rho_6, \rho_8, \rho_{12})$$

and $\operatorname{Sq}^2 \gamma_3 = q_2$. Then the induced map from the projection $\pi: F_4/T \to F_4/U$ in the mod 2 cohomology satisfies

(5.5)
$$\pi^*(t) = t \text{ and } \pi^*(y_i) = y_i \quad (i = 1, 2, 3).$$

Define a map $\lambda: F_4/T \to BT^6$ by $\lambda^*(t_i) = t - y_{4-i}$ and $\lambda^*(t_{i+3}) = y_i$ for i = 1, 2, 3. Then $\lambda^*(c_2 - 4t^2) = -t^2 + q_1 = 0$, implying that there is a lift $\tilde{\lambda}: F_4/T \to B\widetilde{T}^6$ satisfying

(5.6)
$$\tilde{\lambda}^*(t_i) = t - y_{4-i}$$
, $\tilde{\lambda}^*(t_{i+3}) = y_i$ $(i = 1, 2, 3)$ and $\tilde{\lambda}^*(\gamma_3) = \gamma_3$,

where the last equality is shown in [KI2].

Proposition 5.6. The Sq^2 -cohomology of F_4/T is given as

$$H^*(F_4/T; \operatorname{Sq}^2) = \Lambda(x_3, x_7, x_{11}, \bar{\gamma}_3), \quad |x_i| = 2i, |\bar{\gamma}_3| = 6,$$

where $\tilde{\lambda}^*(x_3) = x_3$, $\pi^*(x_7) = x_7$, $\pi^*(x_{11}) = x_{11}$ and $\pi^*(\bar{\gamma}_3) = \bar{\gamma}_3$.

Proof. Let A be a differential graded algebra $\mathbb{Z}/2[t, y_1, y_2, y_3]$ with $|t| = |y_i| = 2$ and $dt = t^2, dy_i = y_i^2$. Then the desired Sq²-cohomology is equal to the cohomology of

$$A \otimes \mathbb{Z}/2[\gamma_3]/(\rho_2, \rho_3, \rho_6, \rho_8, \rho_{12}),$$

where $d\gamma_3 = q_2$. Since $H^*(A) = 0$, $d\rho_2 = \rho_3$, $d\rho_8 \equiv 0 \mod (\rho_2, \rho_3)$ and $d\rho_{12} = 0$, it follows from Lemma 3.3 that

$$H^*(A/(\rho_2, \rho_3, \rho_8, \rho_{12})) = \Lambda(x_3, x_7, x_{11}),$$

where $dx_3 = q_2$ and x_7, x_{11} are as in Proposition 5.3. Then by defining $\bar{\gamma}_3$ as in the proof of Proposition 5.3, the first assertion follows. The second assertion follows from (5.5) and (5.6).

Remark 5.7. Since $H^*(F_4/T; \operatorname{Sq}^2)$ is an exterior algebra generated by four generators of degree $-2 \mod 8$ as in Proposition 5.6, we cannot directly see that $E_r(F_4/T)$ collapses at E_3 -term by Lemma 2.1. On the other hand, $H^*(F_4/U; \operatorname{Sq}^2)$ can be thought as a subalgebra of $H^*(F_4/T; \operatorname{Sq}^2)$ generated by three of its four generators, and then we can apply Lemma 2.1 to see that $E_r(F_4/U)$ collapses at E_3 -term as above.

Theorem 5.8. The Atiyah-Hirzebruch spectral sequence $E_r(F_4/T)$ collapses at E_3 -term. In particular, we have

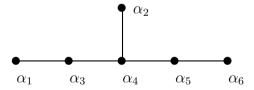
$$g_{F_4/T}(t) = (1+t^6)^2(1+t^{14})(1+t^{22}).$$

Proof. By Theorem 3.7 and Proposition 5.6, $\iota^{-1}(x_3)$ in the 2-localized spectral sequence $E_3^{6,-1}(F_4/T)_{(2)}$ is a permanent cycle. Then since the 2-localization $E_3^{p,q}(F_4/T) \to E_3^{p,q}(F_4/T)_{(2)}$ is injective, $\iota^{-1}(x_3)$ in the integral spectral sequence $E_3^{6,-1}(F_4/T)$ is also a permanent cycle. By Theorem 5.4 and Proposition 5.6, $\iota^{-1}(x_7), \iota^{-1}(x_{11}), \iota^{-1}(\bar{\gamma}_3) \in E_3^{*,-1}(F_4/T)$ are also permanent cycles. Thus the proof is completed by Lemma 2.1 (2).

Proof of Theorem 1.1 for F_4 . The result follows from (2.5), Lemma 2.2 and Corollary 5.8. \square

6.
$$KO$$
-Theory of E_6/T

Our method of computing the Atiyah-Hirzebruch spectral sequence $E_r(E_6/T)$ is similar to the case of F_4/T . Namely, we first calculate the Atiyah-Hirzebruch spectral sequence converging to $KO^*(E_6/U)$ for an appropriate maximal rank subgroup U and then deduce that of $KO^*(E_6/T)$. We know that the Dynkin diagram of E_6 is given as follows.



In [IT], it is proved that the centralizer of the circle in E_6 defined by $\alpha_1 = \alpha_3 = \alpha_4 = \alpha_5 = \alpha_6 = 0$ is isomorphic to $T^1 \cdot SU(6)$. Then the identity component of the centralizer of the torus defined by $\alpha_5 = \alpha_6 = 0$ is isomorphic to $T^1 \cdot (T^2 \times U(3))$ which we denote by U. It is clear that the homology of U is torsion free and E_6/U satisfies the condition (2.2).

6.1. KO-theory of E_6/U . Let us calculate the $\mathbb{Z}_{(2)}$ -coefficient cohomology of F_4/U . We set some notation. Let ω_i (i = 1, ..., 6) be the fundamental weight of E_6 as in [TW]. Put

$$t_1 = -\omega_1 + \omega_2$$
, $t_2 = \omega_1 + \omega_2 - \omega_3$, $t_3 = \omega_2 + \omega_3 - \omega_4$, $t_4 = \omega_4 - \omega_5$, $t_5 = \omega_5 - \omega_6$, $t_6 = \omega_6$.

Then as in $\S 2$, we have

$$H^*(BT; \mathbb{Z}) = \mathbb{Z}_{(2)}[t, t_1, \dots, t_6]/(c_1 - 3t).$$

As in [TW], the Weyl group of U is generated by two elements R_1, R_2 satisfying

$$R_1(t_i) = t_i$$
 $(i = 1, 2, 3, 6),$ $R_1(t_4) = t_5,$ $R_1(t_5) = t_4,$ $R_2(t_i) = t_i$ $(i = 1, 2, 3, 4),$ $R_2(t_5) = t_6,$ $R_2(t_6) = t_5.$

Then it follows that

$$H^*(BU; \mathbb{Z}_{(2)}) = \mathbb{Z}_{(2)}[t_1, t_2, t_3, \hat{c}_1, \hat{c}_2, \hat{c}_3],$$

where $\hat{c}_1 = t_4 + t_5 + t_6$, $\hat{c}_2 = t_4t_5 + t_5t_6 + t_6t_4$ and $\hat{c}_3 = t_4t_5t_6$.

As in [MT], the mod 2 cohomology of E_6 is given as

$$H^*(E_6; \mathbb{Z}/2) = \mathbb{Z}/2[a_3]/(a_3^4) \otimes \Lambda(a_5, a_9, a_{15}, a_{17}, a_{23}), \quad |a_i| = i, \quad \beta a_5 = a_3^2.$$

Then by [T], we obtain the following.

Proposition 6.1. There is a regular sequence $\bar{\rho}_2$, $\bar{\rho}_5$, $\bar{\rho}_6$, $\bar{\rho}_8$, $\bar{\rho}_9$, $\bar{\rho}_{12}$ in $\mathbb{Z}_{(2)}[t_1, t_2, t_3, \hat{c}_1, \hat{c}_2, \hat{c}_3]$ with $|\bar{\rho}_i| = 2i$ satisfying

$$H^*(E_6/U;\mathbb{Z}_{(2)}) = \mathbb{Z}_{(2)}[t_1, t_2, t_3, \hat{c}_1, \hat{c}_2, \hat{c}_3, \gamma_3]/(\bar{\rho}_2, \bar{\rho}_5, \bar{\rho}_6, \bar{\rho}_8, \bar{\rho}_9, \bar{\rho}_{12}, 2\gamma_3 + \bar{\rho}_3),$$

where $\bar{\rho}_3$ is defined by the equation $\operatorname{Sq}^2\bar{\rho}_2 = \bar{\rho}_3$.

Let us compute the mod 2 cohomology of E_6/U . Let c_i be the i^{th} symmetric function in t_1, \ldots, t_6 for $i = 1, \ldots, 6$. Obviously, c_i is a polynomial in $t_1, t_2, t_3, \hat{c}_1, \hat{c}_2, \hat{c}_3$. A calculation in [TW] implies that the rational cohomology of E_6/U is given as

(6.1)
$$H^*(E_6/U; \mathbb{Q}) = \mathbb{Q}[t_1, t_2, t_3, \hat{c}_1, \hat{c}_2, \hat{c}_3]/(\sigma_2, \sigma_5, \sigma_6, \sigma_8, \sigma_9, \sigma_{12}),$$

where

$$\sigma_2 = c_2 - \frac{4}{3^2}c_1^2, \qquad \sigma_5 = c_5 - \frac{1}{3}c_4c_1 + \frac{1}{3^2}c_3c_1^2 - \frac{2}{3^5}c_1^5,$$

$$\sigma_6 = 8c_6 + c_3^2 - \frac{4}{3^2}c_4c_1^2 - \frac{4}{3^6}c_1^6, \qquad \sigma_8 = -3c_6c_1^2 + c_4^2 - c_4c_3c_1 + \frac{19}{3^4}c_4c_1^4 - \frac{5}{3^4}c_3c_1^5 + \frac{31}{3^8}c_1^8.$$

By Proposition 6.1, we may put

$$\bar{\rho}_2 = c_2 - \frac{4}{3^2}c_1^2$$
 and $\bar{\rho}_3 = c_3 + c_2c_1$.

Put

$$R_1 = \mathbb{Z}_{(2)}[t_1, t_2, t_3, \hat{c}_1, \hat{c}_2, \hat{c}_3, \gamma_3]/(\bar{\rho}_2, \bar{\rho}_5, 2\gamma_3 + \bar{\rho}_3)$$

Then since the natural map $H^*(E_6/U; \mathbb{Z}_{(2)}) \to H^*(E_6/U; \mathbb{Q})$ is injective, there is a surjection $R_1 \to H^*(E_6/U; \mathbb{Z}_{(2)})$ which reduces to a surjection

$$\phi_1: R_1/2 \to H^*(E_6/U; \mathbb{Z}/2).$$

Put

(6.2)
$$\rho_2 = c_2, \quad \rho_3 = c_3 + c_2 c_1, \quad \rho_5 = c_5 + c_4 c_1.$$

Then ρ_2, ρ_3, ρ_5 is a regular sequence in $\mathbb{Z}/2[t_1, t_2, t_3, \hat{c}_1, \hat{c}_2, \hat{c}_3]$ and

$$R_1/2 = \mathbb{Z}/2[t_1, t_2, t_3, \hat{c}_1, \hat{c}_2, \hat{c}_3, \gamma_3]/(\rho_2, \rho_3, \rho_5),$$

implying that the Poincaré series of $R_1/2$ is $\frac{1-t^{10}}{(1-t^2)^4(1-t^6)}$. On the other hand, the Poincaré series of $H^*(E_6/U;\mathbb{Z}/2)$ and $H^*(E_6/U;\mathbb{Q})$ are the same, which is $\frac{(1-t^{10})(1-t^{12})(1-t^{16})(1-t^{18})(1-t^{24})}{(1-t^2)^4(1-t^6)}$ by (6.1). Then ϕ_1 is an isomorphism in dimension ≤ 11 .

Note that $\sigma_6 \equiv 4(2c_6 + \gamma_3^2 + \frac{4}{3^2}\gamma_3c_1^3 - \frac{1}{3^2}c_4c_1^2 + \frac{35}{3^6}c_1^6) \mod (\bar{\rho}_2, 2\gamma_3 + \bar{\rho}_3)$. Then since $H^*(E_6/U; \mathbb{Z}_{(2)}) \to H^*(E_6/U; \mathbb{Q})$ is injective, if we put

$$R_2 = R_1/(2c_6 + \gamma_3^2 + \frac{4}{3^2}\gamma_3c_1^3 - \frac{1}{3^2}c_4c_1^2 + \frac{35}{3^6}c_1^6, \sigma_8),$$

 ϕ_1 induces a surjection

$$\phi_2: R_2/2 \to H^*(E_6/U; \mathbb{Z}/2).$$

Put

(6.3)
$$\rho_6 = \gamma_3^2 + c_4 c_1^2 + c_1^6, \quad \rho_8 = c_6 c_1^2 + c_4^2 + c_4 c_1^4 + c_1^8.$$

Then one sees that

$$R_2/2 = \mathbb{Z}/2[t_1, t_2, t_3, \hat{c}_1, \hat{c}_2, \hat{c}_3, \gamma_3]/(\rho_2, \rho_3, \rho_5, \rho_6, \rho_8).$$

Since $\rho_2, \rho_3, \rho_5, \rho_6, \rho_8$ is a regular sequence in $\mathbb{Z}/2[t_1, t_2, t_3, \hat{c}_1, \hat{c}_2, \hat{c}_3, \gamma_3]$, one can calculate the Poincaré series of $R_2/2$. Then comparing the Poincar'e series as above, we obtain that ϕ_2 is an isomorphism in dimension ≤ 35 .

Put

(6.4)
$$\rho_9 = c_6 c_1^3, \quad \rho_{12} = c_6^2 + c_6 c_4 c_1^2 + c_4^2 c_1^4 + c_4 c_1^8.$$

Since $\operatorname{Sq}^2 \phi_2(\rho_8) = \phi_2(\rho_9)$ and $\operatorname{Sq}^8 \phi_2(\rho_8) = \phi_2(\rho_{12})$, there is also a surjection

$$\phi_3: R_3 \to H^*(E_6/U; \mathbb{Z}/2),$$

where

$$R_3 = R_2/(2, \rho_8, \rho_{12}).$$

Since ρ_2 , ρ_3 , ρ_5 , ρ_6 , ρ_8 , ρ_9 , ρ_{12} is a regular sequence in $\mathbb{Z}/2[t_1, t_2, t_3, \hat{c}_1, \hat{c}_2, \hat{c}_3, \gamma_3]$, one can calculate the Poincaré series of R_3 . Comparing it with the Poincaré series of $H^*(E_6/U; \mathbb{Z}/2)$, we conclude that ϕ_3 is an isomorphism. Summarizing, we obtain the following.

Proposition 6.2. The mod 2 cohomology of E_6/U is given as

$$H^*(E_6/U; \mathbb{Z}/2) = \mathbb{Z}/2[t_1, t_2, t_3, \hat{c}_1, \hat{c}_2, \hat{c}_3, \gamma_3]/(\rho_2, \rho_3, \rho_5, \rho_6, \rho_8, \rho_9, \rho_{12}),$$

where $|t_i| = 2$, $|\hat{c}_i| = 2i$, $|\gamma_3| = 6$ and ρ_i is as in (6.2), (6.3) and (6.4).

Corollary 6.3. The Sq^2 -cohomology of E_6/U is given as

$$H^*(E_6/U; \operatorname{Sq}^2) = \Lambda(x_7, x_{11}, x_{15}), \quad |x_i| = 2i,$$

where $\operatorname{Sq}^2 x_{11} \equiv \rho_{12} \mod (\rho_2, \rho_3, \rho_5, \rho_9)$, $\operatorname{Sq}^2 x_{15} = \rho_8^2$, $x_7 = \gamma_3 c_4 + \delta_7$ and $\operatorname{Sq}^2 \delta_7 = c_4^2$ for $\delta_7 \in \mathbb{Z}/2[t_1, t_2, t_3, \hat{c}_1, \hat{c}_2, \hat{c}_3]$.

Proof. As in the proof of Corollary 5.3, we see that $\operatorname{Sq}^2 \gamma_3 = c_4$. Put $A = \mathbb{Z}/2[t_1, t_2, t_3, \hat{c}_1, \hat{c}_2, \hat{c}_3]$. Then our aim is to calculate the cohomology of a differential graded algebra

$$A \otimes \mathbb{Z}/2[\gamma_3]/(\rho_2, \rho_3, \rho_5, \rho_6, \rho_8, \rho_9, \rho_{12}).$$

Obviously, $A/(\rho_2, \rho_3) \cong \mathbb{Z}/2[t_1, t_2, t_3] \otimes \langle 1, \hat{c}_1, \hat{c}_1^2 \rangle$ as a $\mathbb{Z}/2[t_1, t_2, t_3]$ -module, implying $H^*(A/(\rho_2, \rho_3)) = 0$. Then since $dc_4 = \rho_5$ and $d\rho_8 = \rho_9$, it follows from Lemma 3.3 that

$$H^*(A/(\rho_2, \rho_3, \rho_5, \rho_8, \rho_9)) = \Lambda(c_4, x_{15}), \quad |x_i| = 2i,$$

where $\operatorname{Sq}^2 x_{15} = \rho_8^2$. For $d\rho_{12} \equiv 0 \mod (\rho_5, \rho_9)$ and $H^{24}(A/(\rho_2, \rho_3, \rho_5, \rho_8, \rho_9)) = 0$, we get

$$H^*(A/(\rho_2, \rho_3, \rho_5, \rho_8, \rho_9, \rho_{12})) = \Lambda(c_4, x_{11}, x_{15}), \quad |x_i| = 2i,$$

where $\operatorname{Sq}^2 x_{11} \equiv \rho_{12} \mod (\rho_2, \rho_3, \rho_5, \rho_9)$. By the spectral sequence associated with a filtration

$$A/(\rho_2, \rho_3, \rho_5, \rho_8, \rho_{12}) \subset A \otimes \mathbb{Z}/2[\gamma_3]/(\rho_2, \rho_3, \rho_5, \rho_8, \rho_9, \rho_{12}),$$

we get

$$H^*(A \otimes \mathbb{Z}/2[\gamma_3]/(\rho_2, \rho_3, \rho_5, \rho_8, \rho_9, \rho_{12})) = \Lambda(x_7, x_{11}, x_{15}) \otimes \mathbb{Z}/2[\gamma_3^2],$$

where $x_7 = \gamma_3 c_4 + \delta_7$ and $\delta_7 \in \mathbb{Z}/2[t_1, t_2, t_3, \hat{c}_1, \hat{c}_2, \hat{c}_3]$ is given by $d\delta_7 = c_4^2$. Since $\rho_6 = \gamma_3^2 + d(\gamma_3 c_1^2 + c_1^5)$, we obtain

$$H^*(A \otimes \mathbb{Z}/2[\gamma_3]/(\rho_2, \rho_3, \rho_5, \rho_6, \rho_8, \rho_9, \rho_{12})) = \Lambda(x_7, x_{11}, x_{15}),$$

completing the proof.

Theorem 6.4. The Atiyah-Hirzebruch spectral sequence $E_r(E_6/U)$ collapses at E_3 -term. In particular, we have

$$g_{E_6/U}(t) = (1+t^{14})(1+t^{22})(1+t^{30}).$$

Proof. From Lemma 2.1 and Proposition 6.3, the result follows.

Theorem 6.5. The KO-theory of E_6/U is given as

$$KO^{2n-1}(E_6/U) \cong (\mathbb{Z}/2)^{s_n}$$
 and $KO^{2n}(E_6/U) \cong (\mathbb{Z}/2)^{s_{n+1}} \oplus \mathbb{Z}^t$

for $n \in \mathbb{Z}/4$, where

$$t = 4320, \quad s_0 = s_{-3} = 1, \quad s_{-1} = s_{-2} = 3.$$

Proof. By (6.1), we have $f_{E_6/U}(t) = \frac{(1-t^{10})(1-t^{12})(1-t^{16})(1-t^{18})(1-t^{24})}{(1-t^2)^4(1-t^6)}$. Then the proof is completed by Lemma 2.2 and Theorem 6.4.

6.2. KO-theory of E_6/T . Let $\rho_i \in \mathbb{Z}/2[t_1, \ldots, t_6, \gamma_3]$ be as in (6.2), (6.3) and (6.4). The mod 2 cohomology of E_6/T is calculated in [KI2] as

$$H^*(E_6/T; \mathbb{Z}/2) = \mathbb{Z}/2[t_1, \dots, t_6, \gamma_3]/(\rho_2, \rho_3, \rho_5, \rho_6, \rho_8, \rho_9, \rho_{12}),$$

where $\operatorname{Sq}^2 \gamma_3 = c_4$. For the projection $\pi : E_6/T \to E_6/U$, we have (6.5)

$$\pi^*(t_i) = t_i \quad (i = 1, 2, 3), \quad \pi^*(\hat{c}_1) = t_4 + t_5 + t_6, \quad \pi^*(\hat{c}_2) = t_4 t_5 + t_5 t_6 + t_6 t_4, \quad \pi^*(\hat{c}_3) = t_4 t_5 t_6.$$

Define a map $\lambda: (E_6/T)_{(2)} \to BT_{(2)}^6$ by $\lambda^*(t_i = t_i)$ for i = 1, ..., 6. Then there is a lift $\tilde{\lambda}: (E_6/T)_{(2)} \to B\widetilde{T}_{(2)}^6$ satisfying

(6.6)
$$\tilde{\lambda}^*(t_i) = t_i \quad (i = 1, \dots, 6), \quad \tilde{\lambda}^*(\gamma_3) = \gamma_3,$$

where the second equality is shown in [KI1].

Proposition 6.6. The Sq^2 -cohomology of E_6/T is given as

$$H^*(E_6/T; \operatorname{Sq}^2) = \Lambda(x_3, x_7, x_{11}, x_{15}), \quad |x_i| = 2i,$$

where
$$\tilde{\lambda}^*(x_3) = x_3$$
, $\pi^*(x_7) = x_7$, $\pi^*(x_{11}) = x_{11}$ and $\pi^*(x_{15}) = x_{15}$.

Proof. Define a differential graded algebra A as $A = \mathbb{Z}/2[t_1, \ldots, t_6]$ with $|t_i| = 2$ and $dt_i = t_i^2$. Then we calculate the cohomology of a differential graded algebra $A \otimes \mathbb{Z}/2[\gamma_3]/(\rho_2, \rho_3, \rho_5, \rho_6, \rho_8, \rho_9, \rho_{12})$, where $d\gamma_3 = c_4$. This is done quite similarly to the proof of Proposition 6.3. The second assertion follows from (6.5) and (6.6).

Theorem 6.7. The spectral sequence $E_r(E_6/T)$ collapses at E_3 -term. In particular, we have

$$g_{E_6/T}(t) = (1+t^6)(1+t^{14})(1+t^{22})(1+t^{30}).$$

Proof. By Theorem 3.7 and Proposition 6.6, $\iota^{-1}(x_3)$ in the 2-localized spectral sequence $E_3^{6,-1}(E_6/T)_{(2)}$ is a permanent cycle, implying that $\iota^{-1}(x_3)$ in the integral spectral sequence $E_3^{6,-1}(E_6/T)$ is also a permanent cycle since the 2-localization $E_3^{p,q}(E_6/T) \to E_3^{p,q}(E_6/T)$ is injective. By Theorem 6.4 and Proposition 6.6, $\iota^{-1}(x_i) \in E_3^{*,-1}(E_6/T)$ is also a permanent cycle for i=7,11,15. Thus the result follows from Lemma 2.1.

*Proof of Theorem 1.1 for E*₆. The result follows from (2.5), Lemma 2.2 and Corollary 6.7. \square

Remark 6.8. We can not apply the same calculation method to E_7/T and E_8/T for which there is no control on elements γ_5, γ_9 in their mod 2 cohomology [KI2].

References

- [A] M.F. Atiyah, K-theory and reality, Quart. J. Math. Oxford Ser. 17 (1966), 367-386.
- [F] M. Fujii, KO-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149.
- [IT] K. Ishitoya and H. Toda, On the cohomology of irreducible symmetric spaces of exceptional type, J. Math. Kyoto Univ. 17 (1977), no. 2, 225-243.
- [K] D. Kishimoto, KO-theory of complex Stiefel manifolds, J. Math. Kyoto Univ. 44 (2004), no. 3, 669-674.

- [KKO] D. Kishimoto, A. Kono and A. Ohsita, KO-theory of flag manifolds, J. Math. Kyoto Univ. 44 (2004), no. 1, 217-227.
- [KH1] A. Kono and S. Hara, KO-theory of complex Grassmannians, J. Math. Kyoto Univ. 31 (1991), no. 3, 827-833.
- [KH2] A. Kono and S. Hara, KO-theory of Hermitian symmetric spaces, Hokkaido Math. J. 21 (1992), no. 1, 103-116.
- [KI1] A. Kono and K. Ishitoya, Squaring operations in the 4-connective fibre spaces over the classifying spaces of the exceptional Lie groups, Publ. Res. Inst. Math. Sci. 21 (1985), no. 6, 1299-1310.
- [KI2] A. Kono and K. Ishitoya, Squaring operations in mod 2 cohomology of quotients of compact Lie groups by maximal tori, Algebraic topology, Barcelona, 1986, 192-206, Lecture Notes in Math. 1298, Springer, Berlin, 1987.
- [MT] M. Mimura and H. Toda, *Topology of Lie groups. I, II*, Translations of Mathematical Monographs **91**, American Mathematical Society, Providence, RI, 1991.
- [T] H. Toda, On the cohomology ring of some homogeneous spaces, J. Math. Kyoto Univ. 15 (1975), 185-199.
- [TW] H. Toda and T. Watanabe, The integral cohomology ring of F_4/T and E_6/T , J. Math. Kyoto Univ. 14 (1974), 257-286.
- [Y1] N. Yagita, A note on the Witt group and the KO-theory of complex Grassmannians, J. K-theory 9 (2012), 161-175.
- [Y2] N. Yagita, Witt groups of algebraic groups, preprint.
- [Z] M. Zibrowius, Witt groups of complex cellular varieties, Doc. Math. 16 (2011), 465-511.

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY, KYOTO, 606-8502, JAPAN *E-mail address*: kishi@math.kyoto-u.ac.jp

FACULTY OF ECONOMICS, OSAKA UNIVERSITY OF ECONOMICS, OSAKA 533-8533, JAPAN *E-mail address*: ohsita@osaka-ue.ac.jp