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EQUILIBRIUM MEASURES FOR THE HÉNON MAP AT THE FIRST
BIFURCATION: UNIQUENESS AND GEOMETRIC/STATISTICAL

PROPERTIES

SAMUEL SENTI AND HIROKI TAKAHASI

Abstract. For strongly dissipative Hénon maps at the first bifurcation where the uniform
hyperbolicity is destroyed by the formation of tangencies, we establish a thermodynamic
formalism, i.e., prove the existence and uniqueness of an invariant probability measure which
minimizes the free energy associated with a non continuous geometric potential −t log Ju,
where t ∈ R is in a certain large interval and Ju is the Jacobian in the unstable direction. We
obtain geometric and statistical properties of these measures.

1. Introduction

In this paper we study the first bifurcation of the Hénon family

(1) fa : (x, y) 7→ (1− ax2 +
√
by,±

√
bx), 0 < b� 1.

There exists a parameter a∗ near 2 such that the non-wandering set of fa is a uniformly
hyperbolic horseshoe for a > a∗, and (fa) generically unfolds a quadratic tangency at a = a∗ [1,
2, 8]. We study the dynamics of fa∗ from the viewpoint of ergodic theory and thermodynamic
formalism.

Write f for fa∗ . Let

K = {z ∈ R2 : {fnz}n∈Z is bounded}.
This set is a compact set and it coincides with the transitive non-wandering set [7]. LetM(f)
denote the space of all f -invariant Borel probability measures endowed with the topology of
weak convergence. For a potential function ϕ : K → R the associated free energy function
Fϕ : M(f)→ R is given by

Fϕ(µ) = h(µ) + µ(ϕ),

where h(µ) denotes the entropy of µ and µ(ϕ) =
∫
ϕdµ. An equilibrium measure associated

to the potential ϕ is a measure µϕ ∈M(f) which maximizes Fϕ, i.e.

Fϕ(µϕ) = sup{Fϕ(µ) : µ ∈M(f)}.
The main example of potential functions to which our theory applies is the family of potential
functions

ϕt = −t log Ju t ∈ R,
where Ju denotes the Jacobian along the unstable direction that is defined as follows. At a
point z ∈ R2, let Eu(z) denote the one-dimensional subspace such that

(2) lim
n→∞

1

n
log ‖Df−n|Eu(z)‖ < 0.
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Since f−1 expands area, Eu(z) is unique when it makes sense. We call Eu an unstable direction.
Let Ju(z) = ‖Df |Eu(z)‖ and ϕt = −t log Ju.

This family of potentials was studied in [30] where it is proved [30, Proposition 4.1] that
Eu is well-defined and is measurable on a Borel set with total probability, and it is continuous
except at the fixed saddle Q near (−1, 0). The particular equilibrium measure for the potential
ϕt is called a t-conformal measure. We are concerned with the existence and uniqueness of
t-conformal measures, and their geometric and statistical properties.

Define
P (t) := sup{Fϕt(µ) : µ ∈M(f)}.

The pressure function t 7→ P (t) is convex, and so is continuous. Let

t0 := inf{t ∈ R : P (s) > −(s/3) log(4− ε) for any s < t}.
Considering the two fixed saddles (see FIGURE 1) we have 1 < t0 <∞.

Theorem. [30, Theorem] For any small ε > 0 there exists b0 > 0 such that if b < b0 and
t < t0, then there exists a t-conformal measure.

The uniqueness of t-conformal measures does not follow from the argument in [30]. In
addition, the range of positive t for which t-conformal measures exist is far from optimal.
We show the existence and uniqueness of t-conformal measure with t in a certain interval
containing much larger positive t.

Theorem A. For any ε > 0 there exists b1 ∈ (0, b0) such that if b < b1, then there exists a
unique t-conformal measure for all t ∈ (−1 + ε, 1/ε).

Since entropies of invariant probability measures are written as linear combinations of the
entropies of the ergodic components, and the same property holds for unstable Lyapunov
exponents, all the t-conformal measures in the statement of Theorem A are ergodic. In
addition, it follows from our construction and from transitivity that any t-conformal measure
is supported on K, i.e. it gives positive weight to any open set intersecting K.

Our construction used in the proof of Theorem A leads to a version of Manning & Mc-
Clusky’s formula [16] (see [15, 34] for related results), which evaluates how substantial the set
K is in terms of Hausdorff dimension. Given a C1 one-dimensional submanifold γ of R2 and
p ∈ (0, 1], the Hausdorff p-measure of a set A ⊂ γ is given by

mp(A) = lim
δ→0

(
inf
∑
U∈U

`(U)p

)
,

where ` denotes the length and the infimum is taken over all coverings U of A by open sets in
γ with diameter ≤ δ. The Hausdorff dimension of A on γ, simply denoted by HD(A), is the
unique number such that

HD(A) = sup{p : mp(A) =∞} = inf{p : mp(A) = 0}.
One has P (0) > 0, and Ruelle’s inequality [23] gives P (1) ≤ 0. Since f has no SRB measure

[33], P (1) < 0 holds. Hence the equation P (t) = 0 has a unique solution in (0, 1), which we
denote by tu.

Theorem B. For any relatively open curve γ in the unstable manifold of the fixed saddle such
that γ ∩K 6= ∅, one has HD(γ ∩K) = tu. In addition, tu → 1 as b→ 0.
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Let us here mention results of Leplaideur and Rios [14, 15] closely related to ours, in which
a thermodynamical formalism for certain horseshoes with three branches and a single orbit of
tangency was established. See [13] for a related result. However, their specific assumptions
on the map, including the linearity and the balance between expansion/contraction rates, do
not hold for the Hénon map f . Our argument is novel but exploits the well known line for
the study of Hénon-like systems [3, 4, 18, 35].

A powerful approach in ergodic theory of dynamical systems is to “code” orbits of a system
into symbolic sequences, by following their histories on a partition of the phase space. If this
defines a nice shift system, then the construction of interesting invariant measures and the
study of their properties can be carried out on the symbolic level. For uniformly hyperbolic
systems, Markov partitions are used to code orbits with symbolic sequences with finite sym-
bols. The existence and uniqueness of equilibrium measures for Hölder continuous potentials
was established in [5, 24, 31].

However, at the first bifurcation the Hénon map f lacks such a nice partition. Indeed
the natural partition of K into the “left” and the “right” of the point of tangency near the
origin, constructed in [30] to prove the existence of equilibrium measures including t-conformal
measures, only defines a semi-conjugacy between f |K and the full shift on two symbols. In
order to avoid the discontinuity of ϕt at Q, we must consider a (non-compact) subset of K
which does not contain Q. We code the dynamics on this subset with a countable alphabet
to establish the uniqueness (countable partitions were also constructed in [10, 15] albeit for
other purposes/maps).

Our strategy for proving the uniqueness of the equilibrium measures is to construct an
invariant measure as a candidate, and then show that it is indeed a unique measure which
minimizes the free energy. The main step is to build an inducing scheme (S, τ). Here S is
a countable collection of Borel subsets of K called basic elements. The union of all basic
elements is denoted by X, and τ is the first return time to X, which is constant on each basic
element. The inducing scheme allows us to represent the first return map to X as a countable
(full) Markov shift. Under certain conditions on the potential function, which are proven to
be satisfied by ϕt with t ∈ (t−, t+), t− < 0 < t+ (see (24) for the definition) one can construct
a Gibbs measure in the shift space following [17, 28]. This Gibbs measure is then used to
obtain a unique invariant measure for the original system which minimizes the free energy
among all measures which are liftable to the inducing scheme (i.e. those measures which can
be obtained from symbolic shift invariant measures).

The set of non liftable measures is nonempty. For instance, it contains δQ. To show that
the candidate measure is a unique equilibrium measure, we show that non liftable measures
have smaller free energies. This can be undertaken by showing that our inducing scheme is
efficient, in that any ergodic measure with not too small entropy gives positive weight to X,
and hence is liftable. At this point it is worth noting that to study the Hénon maps it is
usually necessary to exclude points from consideration for which “long stable leaves” cannot
be constructed. Each basic element of the inducing scheme constructed here is a Cantor-like
set, which makes the estimates more involved.

We now move on to geometric and statistical properties. In what follows, let µt denote
the t-conformal measure in Theorem A. We first give a characterization of µtu in terms of
dimension. To give a precise statement let us recall general facts on nonuniformly hyperbolic
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Figure 1. Manifold organization for a = a∗. There exist two hyperbolic fixed
saddles P , Q near (1/2, 0), (−1, 0) correspondingly. In the orientation preserving
case (left), W u(Q) meets W s(Q) tangentially. In the orientation reversing case
(right), W u(P ) meets W s(Q) tangentially. The shaded regions represent the
region R (see Sect.3.1).

systems. For x ∈ K, let

(3) W u(x) =

{
y ∈ R2 : lim

n→∞

1

n
log |f−nx− f−ny| < 0

}
,

which we call the unstable manifold of x. Let Me(f) denote the set of ergodic elements of
M(f). Since any µ ∈ Me(f) has exactly one positive Lyapunov exponent [7], there exists a
set Γ of full µ-measure such that for any x ∈ Γ, W u(x) is an injectively immersed smooth
submanifold of R2 [19, 25]. Let {µux}x∈Γ denote the canonical system of conditional measures
of µ along unstable manifolds [22]: µux is a probability measure supported on W u(x) such that
x 7→ µux(A) is measurable and µ(A) =

∫
µux(A)dµ(x) for any measurable set A. Let dim(µux)

denote the dimension of µux, namely

dim(µux) = inf{HD(X) : X ⊂ W u(x), µux(X) = 1}.
Then, dim(µux) is constant µ-a.e. and this number is denoted by dimu

H(µ). We say µ ∈Me(f)
is a measure of maximal unstable dimension if

dimu
H(µ) = sup{dimu

H(ν) : ν ∈Me(f)}.

Theorem C. µtu is the unique measure of maximal unstable dimension.

Considering the tower associated to the inducing scheme allows us to apply the result of
Young [36] to deduce several statistical properties of µt.

Theorem D. The following holds for (f, µt);

(1) for any η ∈ (0, 1] there exists τ ∈ (0, 1) such that for any Hölder continuous ϕ : K → R
with Hölder exponent η and ψ ∈ L∞(µt), there exists a constant C(ϕ, ψ) such that

|µt((ϕ ◦ fn)ψ)− µt(ϕ)µt(ψ)| ≤ C(ϕ, ψ)τn for every n > 0;

(2) for any Hölder continuous φ : K → R with
∫
φdµt = 0, there exists σ ≥ 0 such that

1√
n

n−1∑
i=0

φ ◦ f i −→ N (0, σ) in distribution,

where N (0, σ) is the normal distribution with mean 0 and variance σ2. In addition,
σ > 0 if and only if φ 6= ψ ◦ g − ψ for any ψ ∈ L2(µt).
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The rest of this paper consists of four sections. In Sect.2 we recall the general thermody-
namical formalism for maps admitting inducing schemes from [21]. In Sect.3 we construct
an inducing scheme and show in Sect.4 that it is efficient in the above sense. In Sect.5 we
define t−, t+ and then check all the conditions on ϕt, t ∈ (t−, t+) necessary for implementing
the theory in Sect.2. This yields an f -invariant measure µt which maximizes the free energy
among all liftable measures. Using the results in Sect.4 we show then that µt is the unique
measure which maximizes the free energy among all measures. This completes the proof of
Theorem A. Other theorems are proven in Sect.6. The proofs of Proposition 3.1 and Lemma
3.3 require ingredients from [30] and are deferred to the Appendix.

2. Equilibrium measures for maps admitting inducing schemes

In this section we recall the construction of equilibrium measures for f associated to ϕ
developed in [21]. The main idea is to use an inducing scheme to relate the induced system
to a countable Markov shift, and construct a Gibbs measure in the shift space associated to
the induced potential following [17, 28]. Gibbs measures with integrable inducing time are
then used to construct an invariant equilibrium probability measures for the original map
associated to the original potential function.

2.1. Equilibrium states for countable Markov shifts. Denote the set of all bi-infinite
sequences over a countable alphabet S by SZ := {a := (. . . , a−1, a0, a1, . . . ) : ai ∈ S, i ∈ Z}
and the (left) full shift by σ : SZ 	 i.e. (σ(a))i = ai+1. The sets [bi, . . . , bj] := {a ∈ SZ : ak =
bk for all i ≤ k ≤ j} are called cylinder sets. Endow SZ with the topology for which the
cylinder sets form a base. The shift σ is continuous with respect to this topology. Denote
by M(σ) the collection of σ-invariant Borel probability measures on SZ. Given a potential
function Φ : SZ → R, let

MΦ(σ) := {ν ∈M(σ) : ν(Φ) > −∞}.

The nthvariation of Φ is defined by

Vn(Φ) := sup
[b−n+1,...,bn−1]

sup
a,a′∈[b−n+1,...,bn−1]

|Φ(a)− Φ(a′)|.

The function Φ has strongly summable variation if

(4)
∑
n≥1

nVn(Φ) <∞.

The Gurevich pressure of Φ is defined by

PG(Φ) := lim
n→∞

1

n
log

∑
σn(a)=a

exp

(
n−1∑
k=0

Φ(σk(a))

)
1[b](a),

where b ∈ S. Since it depends only on the positive side of the sequences, one can prove (as in
[26, Theorem 1]) that PG(Φ) exists and is independent of b whenever the variation

V +
n (Φ) := sup

[b0,...,bn−1]

sup
a,a′∈[b0,...,bn−1]

|Φ(a)− Φ(a′)|

over all positive cylinders is summable:
∑

n≥1 V
+
n (Φ) < ∞. Also PG(Φ) > −∞ holds in this

case.
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We say νΦ ∈ M(σ) is a Gibbs measure for Φ if there exist constants C1 > 0, C2 > 0 such
that for any cylinder set [b0, . . . , bn−1] and any a ∈ [b0, . . . , bn−1] we have

(5) C1 ≤
νΦ([b0, . . . , bn−1])

exp
(
−nPG(Φ) +

∑n−1
k=0 Φ(σk(a))

) ≤ C2.

Note that this definition only involves positive cylinders.
We say νΦ ∈M(σ) is an equilibrium measure for Φ if

(6) hνΦ
(σ) + νΦ(Φ) = sup

ν∈MΦ(σ)

{hν(σ) + ν(Φ)}.

The thermodynamics of the full shift of countable type on the space of two-sided sequences
σ : SZ 	 is described in the following theorem from [21].

Proposition 2.1. [21, Theorem 3.1] Let Φ : SZ → R be a potential function with sup Φ <∞
and strongly summable variation. The following statements hold:

(a) the variational principle holds for Φ: PG(Φ) = supν∈MΦ(σ){hν(σ) + ν(Φ)};
(b) if PG(Φ) <∞ there exists a unique Gibbs measure νΦ for Φ;
(c) if νΦ ∈MΦ(σ) then it is a unique equilibrium measure for Φ.

The main idea is to reduce the problem to the (left) full shift on the set of one-sided infinite
sequences SN by constructing a potential function cohomologous to the given potential Φ
but which only depends on the positive coordinates of any point a ∈ SN. The variational
principle and the existence of a unique Gibbs and equilibrium measure for the one-sided shift
and potential follows from [26, Theorem 3],[28, Theorem 1], [6, Theorem 1.1]. The statements
of Proposition 2.1 follow by considering the natural extension of this one-sided Gibbs and
equilibrium measure.

2.2. Gibbs and equilibrium measures for the induced map. For the rest of this section
we assume M is a compact metric space, and f : M 	 is a continuous map with finite
topological entropy.

Definition 2.2. We say f admits an inducing scheme (S, τ) of hyperbolic type, if there exist a
countable collection S of Borel sets in M called basic elements and an inducing time function
τ : S → N such that the following holds for the inducing domain X :=

⋃
J∈S J and the induced

map F : X 	 defined by F |J = f τ(J)|J for all J ∈ S. There exists a Borel set X0 ⊂ X such
that:

• ν(X0) = 0 for any F -invariant probability measure ν;
• if J1, J2 ∈ S, J1 6= J2 and J1 ∩ J2 6= ∅ then J1 ∩ J2 ⊂ X0;
• the coding map h : SZ → X given by

(7) h(a) :=
⋂
n∈Z

F−n(Jan) where a := (. . . , a−1, a0, a1, . . .) ∈ SZ

is well-defined, and is a measurable bijection between SZ \ h−1(X0) and X \X0.

Remark 2.1. The induced map F is multi-valued on points of intersection between elements
of S. Since no measure gives positive weight to the set of such points, this is not important
for our purpose.
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If f admits an inducing scheme (S, τ) of hyperbolic type, the induced potential ϕ : X → R
associated to a given potential ϕ : M → R is defined by

ϕ :=
τ−1∑
i=0

ϕ ◦ f i

where the inducing time τ is viewed as a function on X in the obvious way. We say the
induced potential ϕ has:

• (strongly) summable variations if Φ := ϕ ◦ h has (strongly) summable variations;
• finite Gurevich pressure if PG(Φ) <∞.

LetM(F ) denote the set of F -invariant Borel probability measures and letMϕ(F ) = {ν ∈
M(F ) : ν(ϕ) > −∞}. An F -invariant probability measure νϕ is a Gibbs measure for ϕ if there
exists an σ-invariant Gibbs measure νΦ for Φ such that νϕ = h∗νΦ. We call νϕ an equilibrium
measure for ϕ if νϕ ∈Mϕ(F ) and

hϕ(F ) + νϕ(ϕ) = sup {ν ∈Mϕ(F ) : hν(F ) + ν(ϕ)} .
By definition, h∗ preserves entropy, the Gibbs property and integrals of potentials. Hence

the next statement is a direct consequence of Proposition 2.1.

Corollary 2.3. Assume f admits an inducing scheme (S, τ) of hyperbolic type and let ϕ :
M → R be a potential with supϕ < ∞, strongly summable variations and finite Gurewich
pressure. Then there exists a unique F -invariant Gibbs measure νϕ for ϕ. If νϕ ∈ Mϕ(F ),
then it is a unique equilibrium measure for ϕ.

2.3. Candidate equilibrium measures for the original map. We now use the Gibbs
measure for the induced map F to construct an equilibrium measure for the original map f .

For ν ∈M(F ) with ν(τ) <∞, the measure given by

L(ν) :=
1

ν(τ)

∞∑
k=0

(fk)∗ν|{τ≤k}

is an f -invariant Borel probability measure. Let

ML(f) := {µ ∈M(f) : µ = L(ν) for some ν ∈M(F )}.
Measures in ML(f) are called liftable measures. Consider a potential ϕ : M → R, and let

(8) PL(ϕ) = sup{hµ(f) + µ(ϕ) : µ ∈ML(f)}.
We say µ ∈ ML(f) is a candidate equilibrium measure for ϕ if Fϕ(µ) = PL(ϕ). Candidate
equilibrium measures are equilibrium measures in the classical sense when PL(ϕ) = P (ϕ).

Abramov’s and Kac’s formulæ [20, Theorem 2.3] relate the entropy of ν and the integral of
a potential against ν to the entropy of L(ν) and the integral of the induced potential against
L(ν). Note that the energy Fϕ(L(ν)) = 1

ν(τ)
Fϕ(ν) and so it is not straightforward that an

equilibrium measure for ϕ lifts to a candidate equilibrium measure for ϕ. However, this is the
case for the equilibrium measure associated to the potential induced by ϕ − PL(ϕ) and the
latter is cohomologous to ϕ. Observe that by [20, Theorem 4.2] |PL(ϕ)| <∞ whenever ϕ has
summable variations and finite Gurevich pressure.

We say ϕ is positive recurrent if there exists ε0 > 0 such that

(9) PG(ϕ− (PL(ϕ)− ε)) <∞ for all 0 ≤ ε ≤ ε0.
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This condition implies positive recurrence condition in the sense of Sarig (e.g [28]). Indeed,

[20, Theorem 4.4] and the continuity of PG(ϕ− (PL(ϕ)− ε)) with respect to ε for positive

recurrent potentials ϕ imply PG(ϕ− PL(ϕ)) = 0. This implies the existence of some N ∈ N
such that

inf
n≥N

{ ∑
Fnx=x

exp

(
n−1∑
i=0

ϕ− PL(ϕ)(F ix)

)}
> 0

which is equivalent to the positive recurrence condition of Sarig (c.f. [28, Theorem 1]).
We obtain the following:

Proposition 2.4. [21, Theorem 4.7](Existence and uniqueness of candidate equilibrium mea-
sures) Assume f admits an inducing scheme (S, τ) of hyperbolic type. Let ϕ : M → R be
such that supϕ <∞ and ϕ has strongly summable variation, finite Gurevich pressure and is
positive recurrent. Then there exists a Gibbs measure ν for ϕ− PL(ϕ). If ν ∈ Mϕ−PL(ϕ)(F )

then it is the unique equilibrium measure for ϕ− PL(ϕ). If ν(τ) <∞ then L(ν) is the unique
candidate equilibrium measure for ϕ.

3. Construction of inducing scheme

In this section we construct an induced system (X,F ) for the Hénon map f . After prelim-
inary geometric considerations in Sect.3.1 we introduce a rectangle Θ and show that the first
return map to it is uniformly hyperbolic with controlled distortion. In Sect.3.2 we construct
two families Γu and Γs of C1 curves in Θ and generate a lattice Λ. The first return map to
Λ is denoted by F . In Sect.3.3 we show the uniform hyperbolicity of F , and that the set of
points in Λ for which F is undefined has small Hausdorff dimension. We define the domain
X of our induced system to be the subset of Λ on which F may be iterated indefinitely. In
Sect.3.4 we show that the induced map F : X 	 is semi-conjugated to the countable Markov
shift.

We deal with positive constants ε, ξ, N , the purpose of which is as follows:

• ε� 1 is the constant in the statements of Theorem and Theorem A. We shall construct
an induced system (X,F ) such that any ergodic measure with entropy ≥ 2ε gives
positive weight to X (cf. Proposition 4.1);
• ξ � 1 determines the rate of approach of points in the lattice Λ to the point of

tangency;
• N is a large integer and controls a lower bound of diameters of gaps of a Cantor set

in the unstable manifold, constructed in Sect.3.

Any generic constant which only depends on the Chebyshev quadratic map (and hence is
independent of ε, ξ, N , b) is simply denoted by C.

3.1. Family of invariant manifolds. Let us from now on assume that f preserves orienta-
tion, as the proofs for the orientation reversing case are identical. Recall that P , Q denote
the fixed saddles near (1/2, 0) and (−1, 0) correspondingly. Let W u = W u(Q). By a rectangle
we mean any closed region bordered by two compact curves in W u and two in the stable
manifolds of P , Q. By an unstable side of a rectangle we mean any of the two boundary
curves in W u. A stable side is defined similarly.

Let R denote the largest possible rectangle determined by W u and W s(Q), as indicated in
Figure 1. One of its unstable sides contains the point of tangency near (0, 0), which we denote
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Figure 2. (α±n ) accumulate on the parabola containing the point of tangency ζ0.

by ζ. Let α+
0 denote the stable side of R which contains fζ. Let α−0 denote the other stable

side of R.
Define a sequence (α̃n)n≥0 of compact curves in W s(P ) ∩ R inductively as follows. First,

let α̃0 be the component of W s(P ) ∩R containing P . Given α̃n−1, define α̃n to be one of the
two components of f−1α̃n−1 ∩R which is at the left of ζ. Observe that α̃n → α−0 as n→∞.

For each n ≥ 0, f−2α̃n ∩ R consists of four curves, two of them at the left of ζ and two at
the right. Let α−n+1 denote the one which is not α̃n+2 and is at the left of ζ. Among the two at
the right of ζ, let α+

n+1 denote the one which is at the left of the other. Then limn→∞ α
−
n (resp.

limn→∞ α
+
n ) accumulates the component of W s(Q)∩R containing ζ from the right (resp. left).

Observe that α̃1 = α−1 and α̃0 = α+
1 . By definition, the curves obey the following diagram

{α−n+1, α
+
n+1}

f2

→ α̃n
f→ α̃n−1

f→ α̃n−2
f→ · · · f→ α̃1 = α−1

f→ α̃0 = α+
1 .

By a C2(b)-curve we mean a closed curve such that the slopes of its tangent directions

are ≤
√
b and the curvature is everywhere ≤

√
b. For a C2(b)-curve γ with endpoints in⋃

n≥1 α
+
n ∪ α−n we define a canonical partition, by intersecting it with the countable family

(α±n ) of pieces of stable manifolds. This is feasible by the fact that each of these pieces
intersect γ exactly one point (See [33, Remark 2.1]).

Let Θ denote the rectangle bordered by α−1 , α+
1 and the unstable sides of R. Any component

γ of Θ ∩W u is a C2(b)-curve [30, Lemma 2.1]. For each n > 1, let γn denote the element of
the canonical partition of γ with endpoints in α+

n , α
+
n−1. We also denote by γn the partition

element with endpoints in α−n−1, α
−
n . Then, for each γn and every 1 ≤ i < n, f iγn ∩ intΘ = ∅,

and fnγn is a C2(b)-curve in Θ with endpoints in α−1 , α
+
1 . Namely, n is the first return time

of γn to Θ.
The next proposition, the proof of which is given in Appendix A1, states that the first

return map to Θ is uniformly hyperbolic with controlled distortions. Let

(10) σ1 = 2− ε and σ2 = 4 + ε.

Proposition 3.1. There exist C > 0 and N > 0 such that for any component γ of Θ ∩W u

and each γn, n > N we have:

(a) for all x ∈ γn, σn1 ≤ ‖Dxf
n|Eu‖ ≤ σn2 ;

(b) for all x, y ∈ γn, log
‖Dxf

n|Eu‖
‖Dyfn|Eu‖

≤ C|fnx− fny|.
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3.2. Construction of families of curves.

Definition 3.2. Let Γu and Γs be two families of C1 curves in Θ such that:

• curves in Γs are pairwise disjoint. At most countably many pairs of curves in Γu can
intersect;
• every γu ∈ Γu meets every γs ∈ Γs in exactly one point;
• there is a minimum angle between γu and γs at the point of intersection;
• endpoints of curves in Γu (resp. Γs) are in the stable (resp. unstable) sides of Θ.

Call the set

Λ = {γu ∩ γs : γu ∈ Γu, γs ∈ Γs}
a lattice.

We now construct two families Γu, Γs of C1 curves in Θ which generate a lattice. Denote
by Γ̃u the collection of C2(b)-curves in W u with endpoints in α−1 , α

+
1 and let

Γu = {γu : γu is the pointwise limit of a sequence in Γ̃u}.

By the C2(b) property, the pointwise convergence is equivalent to the uniform convergence.
Since two distinct curves in Γ̃u do not intersect each other, the uniform convergence is equiv-
alent to the C1 convergence. Hence, each curve in Γu is C1 and the slopes of its tangent
directions are ≤

√
b. Since every γu ∈ Γu is the monotone limit of curves in Γ̃u, there are at

most countably many pairs of curves in Γu that intersect.
We construct Γs as follows. For each n ≥ N , let Θn denote the rectangle bordered by α−n ,

α+
n and the unstable sides of Θ. Let γ̂ denote the lower unstable side of Θ. Let Ω0 = γ̂ \ΘN .

We call γ̂∩ΘN a gap of order 0. Let P̂0 denote the canonical partition of γ̂ and let P0 = P̂0|Ω0.
For n > 0 define

(11) Ωn = {z ∈ γ̂ : fkz /∈ Θξk+N for every 0 ≤ k ≤ n}.

Any component of Ωn−1 \Ωn is called a gap of order n. We set Ω∞ =
⋂
n≥0 Ωn. Observe that

Ω∞ ⊂ K.
We call a vertical C2(b)-curve a curve in Θ with endpoints in the unstable sides of Θ and

of the form

{(x(y), y) : |x′(y)| ≤ C
√
b, |x′′(y)| ≤ C

√
b}.

The next lemma is proven in Appendix A2.

Lemma 3.3. For any z ∈ Ω∞ there exists a vertical C2(b)-curve γs(z) ⊂ Θ through z with
the following properties:

(a) if fnγs(z1) ∩ γs(z2) 6= ∅ for n ≥ 0, then fnγs(z1) ⊂ γs(z2);

(b) |fnx− fny| ≤ (Cb)
n
2 and ‖Dfx ( 1

0 ) ‖ ≤ 2 · ‖Dfy ( 1
0 ) ‖ for all x, y ∈ γs(z) and n ≥ 0;

(c) if z1, z2 ∈ Ω∞ and x1 ∈ γs(z1), x2 ∈ γs(z2), then ∠(u(x1), u(x2)) ≤ C
√
b|x1 − x2|,

where u(xi) denotes any unit vector tangent to γs(zi) at xi, i = 1, 2. In particular, if
z1 6= z2 then γs(z1) ∩ γs(z2) = ∅.

Define

Γs = {γs(z) : z ∈ Ω∞},
where γs(z) is the vertical C2(b)-curve satisfying Lemma 3.3.
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3.3. First return map. Consider the lattice Λ defined by Γu and Γs: Λ = {γu ∩ γs : γu ∈
Γu, γs ∈ Γs}. We study the first return map to Λ. To this end we first study the transversal
structure of Λ. Let

Ws =
⋃
γs∈Γs

γs.

Since Ω∞ ∩ΘN+1 = ∅ we have Ws ∩ΘN+1 = ∅.
For z ∈ K let

τ(z) = inf ({n > 0: fnz ∈ Λ} ∪ {∞}) ,
which is the first return time to Λ.

Proposition 3.4. There exists a collection Q of subsets of Ω∞ such that:

(a)
⋃
ω∈Q ω = {z ∈ Ω∞ : τ(z) <∞};

(b) τ is constant on each ω ∈ Q (denote this value by τ(ω));
(c) for each ω ∈ Q there exists γ ∈ Γ̃u such that f τ(ω)ω = γ ∩Ws.

Proof. We construct Q by induction. Consider ω ∈ P0 and let 1 < n(ω) ≤ N denote the
smallest integer such that fn(ω)ω ⊂ Γ̃u. By construction, n(ω) is the first return time of ω to
Θ. We let f−n(ω)

(
fn(ω)ω ∩Ws

)
∈ Q.

Lemma 3.5. For each ω ∈ P0, f−n(ω)
(
fn(ω)ω ∩Ws

)
⊂ Ω∞.

Proof. By definition, f−n(ω)
(
fn(ω)ω ∩Ws

)
⊂ Ωn(ω) and if z ∈ f−n(ω)

(
fn(ω)ω ∩Ws

)
, then

fn(ω)z ∈ γs(y) for some y ∈ Ω∞. We now show z ∈ Ωn+n(ω) for every n > 0. Observe that

fny /∈ Θξn+N by (11). Then fn+n(ω)z /∈ Θξn+N , as otherwise fnγs(y) would intersect the stable
side of Θξn+N . However, because of contraction along γs and since the stable side of Θξn+N is
contained in W s(P ), this would imply that fnγs(y) ⊂ W s(P ) leading to a contradiction. Then
z ∈ Ωn+n(ω) holds for all n > 0 and since the sets Ωn+n(ω) are nested this implies z ∈ Ω∞. �

Definition 3.6. By a gap of Ws of order n we mean any rectangle bordered by a gap of Ω∞
of order n, a segment in the upper unstable side of Θ, and two long stable leaves joining their
endpoints.

For the next step of the induction, consider a gap G ofWs of order g and let γ ⊂ ω ∈ Q be
such that fn(ω)γ stretches across G. Let ω′ ⊂ γ be the preimage under fn(ω)+g of an element
of the canonical partition such that ω′ contains points of Ω∞. Then fm+g+n(ω)ω′ ∈ Γ̃u, where
m = n(fn(ω)+gω′). Let ω̃ := f−m−g−n(ω)

(
fm+g+n(ω)ω′ ∩Ws

)
.

Lemma 3.7. ω̃ ⊂ Ω∞.

Proof. Since n(ω) is the first return time of ω to Θ, f iω′ ∩ Θ = ∅ for 0 < i < n(ω). We
have fn(ω)ω′ ⊂ G, and so by definition of the gap G of order g, f j(fn(ω)ω′) ∩ Θξj+N = ∅
for 0 ≤ j ≤ g − 1, and f g+n(ω)ω′ ⊂ Θξg+N . Since Θξ(n(ω)+j)+N ⊂ Θξj+N , we in fact get

f j(fn(ω)ω′) ∩ Θξ(j+n(ω))+N = ∅, for 0 ≤ j ≤ g − 1. However, since ω′ ∩ Ω∞ 6= ∅ then

fn(ω)+gω′ ⊂ Θξg+N \Θξ(g+n(ω))+N , and thus ω′ ⊂ Ωg+n(ω).

Since m is the first return time of fn(ω)+gω′ to Θ, for every g + n(ω) < n < m + g + n(ω)
we have fn+n(ω)+gω′ ∩ Θ = ∅, and so ω̃ ⊂ ω′ ⊂ Ωm+g+n(ω)−1. Finally fm+g+n(ω)ω̃ ⊂ Ws and

Ws ∩ΘN+1 = ∅ imply ω̃ ⊂ Ωm+g+n(ω). The argument of Lemma 3.5 shows fn(fm+g+n(ω)ω̃) ∩
Θξn+N = ∅ for every n > 0, and so ω̃ ⊂ Ωn+m+g+n(ω). �



12 SAMUEL SENTI AND HIROKI TAKAHASI

This allows to complete the inductive construction of Q. [30, Lemma 2.2] implies K∩Ws ⊂
Λ, and so τ(z) = inf ({n > 0: fnz ∈ Ws} ∪ {∞}) .
Lemma 3.8. Let G be a gap of order g. Then for 0 ≤ i ≤ g, f iG ∩Ws = ∅.
Proof. Suppose there exists a point x ∈ f iG ∩ Ws 6= ∅ for some 0 ≤ i ≤ g. Then f g−ix /∈
Θξ(g−i)+N . On the other hand, f g−ix ∈ f gG ⊂ Θξg+N ⊂ Θξ(g−i)+N , a contradiction. �

The rest of the proof of Proposition 3.4 follows from the construction and Lemma 3.8. �

Definition 3.9. We say:

• Λ′ ⊂ Λ is a u-sublattice of Λ if there exists Γu′ ⊂ Γu such that Λ′ = {γu ∩ γs : γu ∈
Γu′, γs ∈ Γs}. An s-sublattice of Λ is defined similarly;
• Q ⊂ R2 is the rectangle spanned by Λ′ if Λ′ ⊂ Q and ∂Q is made up of two curves in

Γu′ and two in Γs.

Define Ŝ to be the collection of s-sublattices of Λ whose defining s-families are of the form
{γs(z) : z ∈ ω} for some ω ∈ Q. For I ∈ Ŝ let QI denote the rectangle spanned by I. From

the construction it directly follows that τ is constant on each element of Ŝ. We think of τ as
a function on Ŝ in the obvious way.

Proposition 3.10. The following statements hold:

(P1) (Topological structure) for any I ∈ Ŝ, f τ(I)I is a u-sublattice of Λ;
(P2) (Backward contraction) there exist C > 0 and λ > 1 such that for any γu ∈ Γu, z ∈ γu,

any unit vector v at z and n > 0, ‖Df−nzf
nv‖ ≥ Cλn. In particular, Eu makes sense

on γu and coincides with its tangent directions;
(P3) (Hyperbolicity) for any γ ∈ Γu, I ∈ Ŝ and all z ∈ γ ∩QI ,

σ
τ(I)
1 ≤ ‖Dzf

τ(I)|Eu‖ ≤ σ
τ(I)
2 .

Here, σ1, σ2 are the constants from (10);
(P4) (Distortion control)

(a) for any γ ∈ Γu and x, y ∈ γ ∩QI ,

log
‖Dxf

τ(I)|Eu‖
‖Dyf τ(I)|Eu‖

≤ C|f τ(I)x− f τ(I)y|;

(b) for any γ ∈ Γs and all x, y ∈ γs, n ≥ 1,

‖Dxf
n|Eu‖ ≤ 2 · ‖Dyf

n|Eu‖.

Proof. To show (P1) it suffices to show that for any γ ∈ Γu, f τ(I)(γ ∩ I) ∈ Γu. This follows
from the construction. (P2) follows from the backward contraction on the leaves in Γ̃u (see
[30, Lemma 4.2]) and the fact that any leaf in Γu is a C1-limit of leaves in Γ̃u. Since f τ(J)

is a composition of first return maps to Θ, (P3) and (P4)(a) follow from the estimates in
Proposition 3.1. (P4)(b) follows from Lemma 3.3(b). �

3.4. Symbolic coding. Let
B = {z ∈ K : τ(z) =∞}.

Define an induced map F : Λ \ B → Λ by Fz = f τ(z)z, which is the first return map to Λ.
Observe that Λ ∩B = Λ \

⋃
I∈Ŝ I. Let

E = B ∩ Λ,
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and define the corresponding inducing domain X by

X = Λ \
⋃
n≥0

F−nE.

This is the set of points in Λ for which F may be iterated indefinitely. The corresponding
collection S of basic elements is defined by

S = {I ∩X : I ∈ Ŝ}.
Observe that any basic element is an s-sublattice of Λ, and X =

⋃
S∈J J . The next Markov

property allows us to represent (the natural extension of) the induced system F : X 	 as a
countable two-sided full shift.

Lemma 3.11. For any J ∈ S, FJ is a u-sublattice of X.

Proof. Any J ∈ S has the form J = I \
⋃
n≥0 F

−nE, I ∈ Ŝ. Hence FJ = FI \
⋃
n≥0 F

−nE,
which is a u-sublattice of X. �

The next lemma ensures that the set of points for which the coding is not uniquely defined
carries no invariant probability measure.

Lemma 3.12. If J1, J2 ∈ S, J1 6= J2 and J1 ∩ J2 6= ∅, then J1 ∩ J2 ⊂ W u(P ) \ {P}.

Proof. It is obvious that τ(J1) 6= τ(J2). Without loss of generality we may assume τ(J1) <
τ(J2). By Lemma 3.11, f τ(J1)J1 is an u-sublattice of X, while f τ(J1)J2 is contained in some
gap of Ws, say G. Hence, the intersection is contained in the stable side of the rectangle G,
which is contained in W s(P ) by construction. Hence the desired inclusion holds. �

Define a coding map h : SZ → X by (7). Observe that F ◦ h = h ◦ σ, and no F -invariant
probability measure gives positive weight to X0 := W s(P ) \ {P}. Then Lemma 3.12 and the
next lemma ensure that (S, τ) is an inducing scheme of hyperbolic type.

Lemma 3.13. h defines a measurable bijection between SZ \ h−1X0 and X \X0.

Proof. First we show that h is well-defined. Let a = (an)n ∈ SZ. For every n > 0,
h([a0, . . . , an]) is an s-sublattice of Λ, strictly decreasing in n. By (P2) and Lemma 3.3 (b),
the stable sides of the rectangles spanned by these sublattices converge, in the C1 topology,
to a curve whose tangent direction has large slope. On the other hand, for every n > 0,
h([a−n, . . . , a−1]) is a strictly decreasing u-sublattice of Λ. By (P1) the unstable sides of the
rectangle spanned by these sublattices converge, in the C1 topology, to a C1 curve whose
tangent direction has small slopes. Thus the intersection of the two sets

⋂
n≥0 h([a0, . . . , an])

and
⋂
n>0 h([a−n, . . . , a−1]) are curves, intersecting each other exactly at one point. Hence,

h(a) is well-defined. From the uniform hyperbolicity of F and the fact that the cylinder sets
form a base of the topology in SZ, h is continuous. It is obviously surjective, and from Lemma
3.12 it defines a bijection between SZ \ h−1X0 and X \ X0. By the continuity of h and [30,
Claim 3.3], it is a measurable bijection. �

3.5. Hausdorff dimension of exceptional sets. For γ ∈ Γ̃u, let

Ω∞(γ) = {z ∈ γ : fnz /∈ Θξn+N for every n ≥ 0} .
In particular, Ω∞(γ̂) = Ω∞. Although Ω∞(γ) depends on N , we will not explicitly express
this dependency in the notation (except in the proof of Lemma 4.3).
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Lemma 3.14. for each γ ∈ Γ̃u, HD (Ω∞(γ) ∩B) ≤ ε.

Proof. Given j > 1 and a j-string (k1, . . . , kj) of positive integers, we define collections
Q(k1),Q(k1, k2), . . . ,Q(k1, k2, . . . , kj) of pairwise disjoint curves in γ inductively as follows.
Let

Q(k1) = {ω1 ⊂ γ : fk1ω1 ∈ Γ̃u}.
Given Q(k1, . . . , ki), for each ωi ∈ Q(k1, . . . , ki) let

Q(ωi, ki+1) = {ωi+1 ⊂ ωi : f
k1+···+ki+ki+1ωi+1 ∈ Γ̃u},

and define
Q(k1, . . . , ki+1) =

⋃
ωi∈Q(k1,...,ki)

Q(ωi, ki+1).

For each sufficiently large integer n, let

Qn(k1, . . . , ki) = {ωi ∈ Q(k1, . . . , ki) : sup{τ(z) : z ∈ ωi} ≥ n}.
For each ωi ∈ Qn(k1, . . . , ki), let

Qn(ωi, ki+1) = {ωi+1 ∈ Q(ωi, ki+1) : sup{τ(z) : z ∈ ωi+1} ≥ n}.
Let ω0 = γ and Qn(ω0, k1) = Qn(k1).

Sublemma 3.15. If ξ > 2/3 and N > 2(1 + ξ), then for every n > 6N and for any z ∈ γ
with τ(z) ≥ n there exist an integer 1 ≤ s ≤ n/N , and for each i = 1, . . . , s an integer ki ≥ N
and a curve ωi ∈ Qn(k1, . . . , ki) such that:

(a) k1 + · · ·+ ks ≥ n
3ξ

;

(b) z ∈ ωs ⊂ · · · ⊂ ω1;

(c) `(ωs) ≤ Cσ
−(k1+···+ks)
1 ;

(d) for each i = 0, . . . , s− 1, #Qn(ωi, ki+1) < 2
ki+1
ξ .

Proof. Define a sequence 0 =: t0 < t1 < · · · of return times to Θ inductively as follows: given
ti such that f tiz is in the gap of Ws of order gi, define

ti+1 = min{t ≥ ti + gi + ξgi +N : f tz ∈ Θ}.
Note that (ti) are not the only return times of the orbit of z to Θ. Since gi ≥ 0 we have

(12) ti+1 − ti ≥ N.

Define s = max{i : ti < n}+ 1. (12) gives s ≤ n/N . We also have

(13) ts−1 + gs−1 ≥
n

3ξ
.

For otherwise ts−1 + gs−1 <
n
3ξ
, and so ξ(ts−1 + gs−1) +N < [n/2] and Θ[n/2] ( Θξ(ts−1+gs−1)+N .

The assumption z ∈ Ω∞(γ) gives f ts−1+gs−1z /∈ Θξ(ts−1+gs−1)+N (see (11)), and so f ts−1+gs−1z /∈
Θ[n/2]. On the other hand, since f ts−1z is in a gap of order gs−1 we have f ts−1+gs−1z ∈
Θξgs−1+N . Let r denote the first return time of f ts−1+gs−1z to Θ. Then r ≥ ξgs−1 +N , and so
ts = ts−1 + gs−1 + r. Since r < [n/2] we have ts <

n
3ξ

+ n/2 < n, which is a contradiction.

For each i = 0, . . . , s − 1, define ki+1 = ti+1 − ti. Since k1 + · · · + ks = ts > ts−1 + gs−1,
(a) follows from (13). For each i = 1, . . . , s, let ωi denote the curve in Qn(k1, . . . , ki) which
contains z. Then (b) is straightforward. (c) follows from Proposition 3.1.
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Claim 3.16. For any ωi+1 ∈ Qn(ωi, ki+1), fk1+···+kiωi+1 is contained in a gap of Ws.

Proof. Let z ∈ ωi+1 be such that τ(z) ≥ n, and assume that fk1+···+kiωi+1 is not contained in
the gap containing fk1+···+kiz. Then the interior of fk1+···+kiωi+1 contains a boundary point
of the gap. It follows that fk1+···+ki+ki+1ωi+1 /∈ Γ̃u, a contradiction. �

For (d), observe that for any gap G of Ws we have

(14) #{ωi+1 ∈ Qn(ωi, ki+1) : fk1+···+kiωi+1 ⊂ G} = 0 or = 2,

since gaps are not folded up to their order, and f jG ∩ Θ = ∅ for gi < j < ki+1 − gi by the
definition of ti+1.

Let g0 denote the maximal order of the gap of Ws which contains fk1+···+ki-images of
elements of Qn(ωi, ki+1). If a gap G is of order g0, then f g0G ⊂ Θξg0+N . Hence g0 + ξg0 +
N ≤ ki+1 holds. From (14) and the fact that the number of gaps of order g is ≤ 2g we

obtain #Qn(ωi, ki+1) ≤ 2
∑g0

i=1 2i < 2
ki+1−N

1+ξ
+2 < 2

ki+1
ξ . The last inequality holds provided

N > 2(1 + ξ). �

Returning to the proof of Lemma 3.14, we have

{z ∈ Ω∞(γ) : τ(z) ≥ n} ⊂
[ nN ]⋃
s=1

∞⋃
l=[ n3ξ ]

⋃
k1+···+ks=l

⋃
ωs∈Qn(k1,...,ks)

ωs.

By Sublemma 3.15(a)(c), the lengths of the curves ωs in the union of the right-hand-side are
exponentially small in n. We show that

∑
all relevant ωs

`(ωs)
ε is finite for all n.

Observe that

(15)
∑

ωi+1∈Qn(k1,...,ki+1)

`(ωi+1)ε =
∑

ωi∈Qn(k1,...,ki)

`(ωi)
ε

∑
ωi+1∈Qn(ωi,ki+1)

`(ωi+1)ε

`(ωi)ε
.

On the second sum of the fractions, let ωi+1 ∈ Qn(ωi, ki+1). Since `(fk1+···+ki+1ωi+1) < 2 and

‖Dxf
ki+1|Eu‖ ≥ σ

ki+1

1 for all x ∈ fk1+···+kiωi+1, we have `(fk1+···+kiωi+1) ≤ Cσ
−ki+1

1 . From this
and the bounded distortion in Proposition 3.1,

(16)
`(ωi+1)

`(ωi)
≤ C · `(f

k1+···+kiωi+1)

`(fk1+···+kiωi)
≤ Cσ

−ki+1

1 .

Using (16) and Sublemma 3.15(d),∑
ωi+1∈Qn(ωi,ki+1)

`(ωi+1)ε

`(ωi)ε
≤ #Qn(ωi, ki+1)Cεσ

−εki+1

1 ≤ Cεσ
− ε

2
ki+1

1 .

Plugging this into the right-hand-side of (15) we get

(17)
∑

ωi∈Qn(k1,...,ki+1)

`(ωi+1)ε ≤ Cεσ
−εki+1

1

∑
ωi∈Qn(k1,...,ki)

`(ωi)
ε.

The same arguments as above applied to any ω1 ∈ Qn(k1) yield

(18)
∑

ω1∈Qn(k1)

`(ω1)ε ≤ Cε#Qn(k1)σ−εk1
1 ≤ Cεσ

− ε
2
k1

1 .
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Using (17) inductively and (18) yields∑
ωs∈Qn(k1,...,ks)

`(ωs)
ε ≤ Cεsσ

− ε
2

(k1+···+ks)
1 .

Using this and Stirling’s formula for factorials we have
∞∑

l=[ n3ξ ]

∑
k1+···+ks=l

∑
ωs∈Qn(k1,...,ks)

`(ωs)
ε ≤ Cεs

∞∑
l=[ n3ξ ]

σ−εl1 #

{
(k1, . . . , ks) :

s∑
i=1

ki = l

}

≤ Cεs

∞∑
l=[ n3ξ ]

σ
− ε

2
l

1 βl,

where β → 1 as N →∞. Hence

[ nN ]∑
s=1

∞∑
l=[ n3ξ ]

∑
k1+···+ks=l

∑
ωs∈Qn(k1,...,ks)

`(ωs)
ε ≤ C

εn
N

Cε − 1

∞∑
l=[ n3ξ ]

σ
− ε

2
l

1 βl.

Since N is chosen after ε and ξ, one can choose N large enough so that the expression on
the right-hand-side decays exponentially with n. Consequently the Hausdorff ε-measure of
Ω∞(γ) ∩B is zero. �

3.6. Small growth rate of the number of basic elements. Let

S(n) := #{J ∈ S : τ(J) = n}.

Proposition 3.17. For any ε > 0 there exist ξ and N large such that

lim
n→∞

1

n
logS(n) ≤ ε.

Proof. For each J ∈ S with τ(J) = n, let ωJ denote the unstable side of the rectangle QJ

spanned by J which is contained in γ̂. Observe that there exists 1 ≤ s ≤ n/N and a s-string
(k1, . . . , ks) of positive integers such that k1 + · · ·+ ks = n and ωJ ∈ Qn(k1, . . . , ks). For two
distinct J1, J2 ∈ S with τ(J1) = τ(J2) = n, one has ωJ1 ∩ ωJ2 = ∅. Therefore,

S(n) ≤
n/N∑
s=1

∑
k1+···+ks=n

#Qn(k1, . . . , ks).

Sublemma 3.15(d) implies #Qn(k1, . . . , ks) ≤ 2
k1+···+ks

ξ ≤ 2
n
ξ . Substituting this into the right-

hand-side of the previous inequality we obtain S(n) ≤ n
N
βn2

n
ξ , and thus lim

n→∞
n−1 logS(n) ≤

log β + (1/ξ) log 2, which can be made arbitrarily small by choosing large ξ, N . �

4. Efficiency of the inducing scheme

The purpose of this section is to prove the next

Proposition 4.1. For any µ ∈Me(f) with h(µ) ≥ 2ε, µ(Λ) > 0.

It follows that any ergodic measure with not too small entropy is liftable to the tower
associated with the induced system (X,F ) constructed in Sect.3.
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Corollary 4.2. Any µ ∈Me(f) with h(µ) ≥ 2ε is liftable.

Proof. Proposition 4.1 gives µ(Λ) > 0. Since F is a first return map to Λ, the Poincaré
recurrence gives µ(X) > 0. Since F is the first return map to X as well, Kac’s formula [29,
Theorem 1.6] gives

∫
X
τdµ = 1, and so τ is µ-integrable. By [37], µ is liftable. �

The rest of this section is devoted to the proof of Proposition 4.1. In Sect.4.1 we improve
Lemma 3.14 and give a better control of the dimension of the set of points which do not
return to Λ. In Sect.4.2 we recall some general results on invariant manifolds of nonuniformly
hyperbolic systems which we then use to complete the proof of the proposition.

4.1. Dimension of the set of points not returning to Λ. We show that the set B is
small in terms of Hausdorff dimension.

Lemma 4.3. For any γ ∈ Γ̃u we have HD(γ ∩B) ≤ ε.

Lemma 4.4. For any relatively open curve γ in W u intersecting K there exist a countable set
A ⊂ γ ∩W s(Q), a countable collection {γn}n of curves in γ and a sequence {an} of positive
integers such that:

(a) (γ ∩K) \ A ⊂
⋃
n γn;

(b) fanγn ∈ Γ̃u.

Proof. A successive use of Proposition 3.1 implies that all but countably many points in γ∩K
have arbitrarily small neighborhoods in W u which are mapped by some positive iterates to
curves in Γ̃u. �

The countable stability of Hausdorff dimension additionally yields:

Corollary 4.5. For any relatively open curve γ ⊂ W u, HD(γ ∩B) ≤ ε.

Proof of Lemma 4.3. Choose ξ = ξ(ε)� 1 so that

(19) η := 2σ−εξ1 < 1.

We call l > 0 a close return time of z ∈ γ if l = min{i > 0: f iz ∈ Θξi+N}. Let l1, l2, . . . be
defined inductively as follows: l1 is the first close return time of z; given l1, . . . , lk−1, let lk be
close return time of f l1+···+lk−1z. Obviously lk ≥ ξlk−1 +N and l1 ≥ 1, and so

(20) lk ≥ ξk−1.

If l1, . . . , lk are defined in this way, we say z has k close returns and denote by Ξk the set of
z ∈ γ which have k close returns. Let Ξ∞ =

⋂
k≥1 Ξk.

Sublemma 4.6. HD(Ξ∞) ≤ ε.

Proof. Let Uk denote the collection of components of Ξk. Then for each uk ∈ Uk there exist a
sequence l1 < · · · < lk of positive integers and a nested sequence u1 ⊃ · · · ⊃ uk of curves such
that for each i = 1, . . . , k, f l1+···+liui is a C2(b)-curve stretching across Θξli+N . For uk−1 ∈ Uk−1

and lk > 0 let

R(uk−1, lk) = {uk ∈ Uk : lk is the close return time of points in f l1+···+lk−1uk}.
By definition,

Ξk =
⋃

uk−1∈Uk−1

⋃
lk

⋃
uk∈R(uk−1,lk)

uk,
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where the second union runs over all possible lk. For each uk ∈ R(uk−1, lk), let ûk denote the
curve in uk−1 containing uk such that f l1+···+lk ûk ∈ Γ̃u. Since f l1+···+lk |ûk is a composition of
first return maps to Θ, the distortion is uniformly bounded by Proposition 3.1. Hence

`(uk)

`(uk−1)
≤ `(uk)

`(ûk)
≤ `(f l1+···+lkuk)

`(f l1+···+lk ûk)
≤ Cσ−ξlk1 .

Using #R(uk−1, lk) ≤ 2lk , (20) and then (19) we get∑
lk

∑
uk∈R(uk−1,lk)

`(uk)
ε

`(uk−1)ε
≤ Cε

∑
lk≥ξk−1

2lkσ−εξlk1 ≤ Cεηξ
k−1

.

Hence∑
uk∈Uk

`(uk)
ε =

∑
uk−1∈Uk−1

`(uk−1)ε

∑
lk

∑
uk∈R(uk−1,lk)

`(uk)
ε

`(uk−1)ε

 ≤ Cεηξ
k−1

∑
uk−1∈Uk−1

`(uk−1)ε.

Using this recursively for k we get∑
uk∈Uk

`(uk)
ε ≤ Cε(k−1)η

∑k−1
i=1 ξ

i−1
∑
u1∈U1

`(u1)ε.

The right-hand-side goes to 0 as k →∞, and thus the Hausdorff ε-measure of Ξ∞ is 0. �

Returning to the proof of Lemma 4.3, observe that Ξn\Ξn+1 is decomposed into a countable
collection of preimages of sets of the form ΩM

∞(γ), M ≥ N , γ ∈ Γ̃u (see the definition before
Lemma 3.14). Lemma 3.14 yields HD ((Ξn \ Ξn+1) ∩B) ≤ ε, and also HD ((γ \ Ξ1) ∩B) ≤ ε.
These two estimates and the one in Sublemma 4.6 yields the desired one. �

4.2. Positive measure of the set of points returning to Λ. In order to complete the proof
of Proposition 4.1 we need to recall a few general results on stable and unstable manifolds of
nonuniformly hyperbolic systems from [19, 25] which hold for our system since any µ ∈Me(f)
has one positive and one negative Lyapunov exponent, by [7].

For any µ ∈ Me(f) there exist Borel subsets Γ1 ⊂ Γ2 ⊂ · · · ⊂ K such that supp(µ) =
Γ∞ :=

⋃
Γn and sequences of positive numbers δn � εn, possibly → 0 as n → ∞, such that,

for x ∈ Γn:

(N1) the unstable manifold W u(x) of x (see (3)) is an injectively immersed C2 submanifold
with TxW

u(x) = Eu(x). An analogous statement holds for the stable manifold W s(x).

Let Bu
δ (x) (resp. Bs

δ(x)) denote the ball of radius δ centered at the origin of TxR2 in Eu(x)
(resp. Es(x)) and Bδ(x) := Bu

δ (x) × Bs
δ(x). Let Γn(x) := {y ∈ Γn : |x − y| < εn} and for

y ∈ Γn(x), let W u
x (y) denote the connected component of exp−1

x (W u(y) ∩ expx(Bδn(x))) that
contains exp−1

x y.

(N2) For all y ∈ Γn(x), W u
x (y) is the graph of a function ϕ : Bu

δn
(x)→ Bs

δn
(x) with ‖Dϕ‖ ≤

1
100

, for a conveniently chosen metric. An analogous statement holds for W s
x(y).

(N3) For z ∈
⋃
y∈Γn(x)W

s
x(y), let F s(z) denote the element of {W s

x(y)}y∈Γn(x) which contains

z. Then z 7→ TzF s(z) is Lipschitz continuous.
(N4) The holonomy map π : Σ1 ∩

⋃
y∈Γn(x) W

s
x(y) → Σ2 defined by π(y) = W s

x(y) ∩ Σ2 for

any graph Σi (i = 1, 2) of a C1 function ψi : B
u
δn

(x) → Bs
δn

(x) with ‖Dψi‖ ≤ 1
99

is
bi-Lipschitz continuous. In particular, it preserves Hausdorff dimension.
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Remark 4.1. Since dimEu = 1 the constant α in the bunching condition [11, (19.1.1)] can
be taken to be 1. Then (N3) follows from a slight modification of the proof of [11, Theorem
19.1.6]. (N4) follows from (N3) and the fact that dimEs = 1.

Let x ∈ Γ∞. For each n > 0 consider a countable covering {Γn(zi)}i of Γn ∩W u(x) such
that

⋃
iW

u
loc(zi) = Γn ∩W u(x), where W u

loc(zi) := expziW
u
zi

(zi). Let Bi = W u
loc(zi) ∩B.

Lemma 4.7. HD(Bi) ≤ ε.

Proof. By Katok’s closing lemma [11, Theorem S.4.13], there exists a periodic saddle pi ∈
Γn(zi) such that W u

zi
(pi) is the graph of a function ϕ : Bu

δn
(zi) → Bs

δn
(zi) with ‖Dϕ‖ ≤

1
100

. Since W s(pi) and W u have transverse intersections, the Inclination Lemma implies the
existence of a connected component of exp−1

zi
(W u) ∩ Bδn(zi) that is the graph of a function

ψ : Bu
δn

(zi) → Bs
δn

(zi) with ‖Dψ‖ ≤ 1
99

. Let π be the holonomy map between W u
loc(zi) and

expzi(graph(ψ)).

Claim 4.8. π(x) ∈ B if and only if x ∈ B.

Proof. If x /∈ B then there exist k ≥ 0 and γs ∈ Γs such that fkx ∈ γs. We have fkW s
loc(x) ⊂

W s
loc(f

kx) and γs ⊂ W s(fkx). We have W s
loc(f

kx) ⊂ γs, for otherwise W s
loc(f

kx) contains
points that escape to infinity. Since both x and π(x) belong to W s

loc(x) then fk(π(x)) ∈ Γs so
π(x) /∈ B. The same reasoning yields the converse. �

By Claim 4.8, π(Bi) ⊂ B and Lemma 4.5 gives HD(π(Bi)) ≤ ε. (N4) yields HD(Bi) ≤ ε. �

To complete the proof of Proposition 4.1, observe that since Γn ∩ W u(x) ∩ B ⊂
⋃
iBi,

Lemma 4.7 yields HD(Γn∩W u(x)∩B) ≤ ε for every n > 0, and thus HD(Γ∞∩W u(x)∩B) ≤
ε. Let {µx}x∈Γ∞ denote the canonical system of conditional measures of µ along unstable

manifolds. The dimension formula [12] gives dim(µx) = dimH(µ) = h(µ)∫
log Judµ

> ε, and thus

µx(W
u(x)∩Γ∞∩B) < 1 and µx((W

u(x))c∪Γc∞∪Bc) > 0. Since µx((W
u(x))c) = 0 = µx(Γ

c
∞)

we have µ(Bc) =
∫
x∈Γ∞

µx(B
c)dµ(x) > 0. The f -invariance of µ yields µ(Λ) > 0. �

5. Proofs of the theorems

In this last section we prove the theorems. Prior to Theorem A we prove Theorem B in
Sect.5.1. In Sect.5.2 we show that the induced potential ϕt : X → R has strongly summabe
variations and finite Gurevich pressure. In Sect.5.3 we define two numbers t− < 0 < t+ and
show that ϕt is positive recurrent for any t ∈ (t−, t+). From Proposition 2.4 it follows that for
any t ∈ (t−, t+) there exists a unique measure which minimizes the free energy among measures
which are liftable to the inducing scheme. In Sect.5.4 we complete the proof of Theorem A
by showing that this candidate measure is indeed a t-conformal measure. In Sect.6 we prove
Theorem C and Theorem D.

5.1. Unstable Hausdorff dimension of K. In this subsection we prove Theorem B. To
this end we need a couple of lemmas.

Lemma 5.1. tu ≥ log 2
log 5

.

Proof. Consider the line through the points (0, log 2) and (tu, 0) which are on the pressure
curve {(t, P (t)) : t ∈ R}. The point (−1, (1/tu) log 2 + log 2) lies on this line. Since the
pressure curve is concave up, we have (1/tu) log 2 + log 2 ≤ P (−1). Since ‖Df‖ ≤ log 5 we
have P (−1) ≤ log 2 + log 5, and thus the desired inequality holds. �
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For µ ∈M(f), let

λu(µ) =

∫
log Judµ.

A proof of the next lemma is given in Appendix A3.

Lemma 5.2. inf{λu(µ) : µ ∈Me(f)} ≥ log(2− ε).

Proof of Theorem B. By Lemma 3.3, the tangent directions of the curves in Γs vary in a
Lipschitz continuous way. Then the holonomy map between two curves in Γ̃u along γs-curves
is Lipschitz continuous, and thus the Hausdorff dimension of γ ∩ X is independent of the
choice of γ ∈ Γ̃u. This number is denoted by du(X).

Lemma 5.3. du(X) = tu.

Proof. Fix J0 ∈ S. Consider the covering Un of γ̂ ∩ J0 by n-cylinders. Using the bounded
distortion of the inducing scheme, for some C > 0 we have∑

U∈Un

`(U)t ≤ Ct
∑
x∈γ̂∩J0

Fnx∈γs(x)

exp

(
−t

n−1∑
i=0

log ‖DF |Eu(F ix)‖

)
.

The expression of the right-hand-side has the growth rate PG(ϕt) as n increases. Choose
ε > 0 so that P (t) < 0 holds for all t ∈ I(ε) := (tu, tu + ε). By Lemma 5.8, ϕt has finite
Gurevich pressure for all t ∈ I(ε). It is strongly summable by Proposition 5.7, and hence,
there exists a unique F -invariant Gibbs measure νϕt for ϕt. We also have νϕt(τ) < ∞. The
variational principle and Abramov’s and Kac’s formulæ [20, Theorem 2.3] yield PG(ϕt) < 0.
Hence the Hausdorff t-measure of γ̂∩J0 is 0. Since t ∈ I(ε) is arbitrary, du(X) = HD(γ̂∩J0) =
HD(γ̂ ∩X) ≤ tu.

To show the reverse inequality, pick an ergodic tu-conformal measure, which was proved
to exist in [30, Theorem] and denote it by µtu . The dimension formula gives h(µtu) =
dimH(µtu)λu(µtu). Using the equation Fϕtu (µtu) = 0, ε � 1 and Lemma 5.1 we have
dimH(µtu) = tu > 4ε. From this and Lemma 5.2 we have h(µtu) ≥ 2ε. By Proposition
4.1, µtu is liftable. Let {νx}x denote the canonical system of conditional measures of µtu along
unstable manifolds. Since µtu gives full weight to the set Y :=

⋃
n≥0 f

nX, νx(W
u(x)∩ Y ) = 1

holds for µtu-a.e. x. (P3) gives γu(x) ⊂ W u(x), and thus W u(x) ∩ Y =
⋃
n≥0 f

n(γu(x) ∩X).
Since dimH(ν) = dim(νx) = tu we have HD(γu(x) ∩X) ≥ tu, and therefore du(X) ≥ tu. This
completes the proof of Lemma 5.3. �

Take any relatively open curve γ ⊂ W u intersecting K. We show HD(γ ∩K) = du(X). The
first statement of Theorem B follows from this and Lemma 5.3.

By Lemma 4.4, there exist n ≥ 0 and a curve ω ⊂ γ such that fnω ∈ Γ̃u. Hence we have
du(X) ≤ HD(ω ∩ f−nX) ≤ HD(γ ∩ K). To show the reverse inequality, we use Lemma 4.4
to take a countable collection (γn) of curves in γ, and a sequence (an) of positive integers so
that fanγn ∈ Γ̃u holds. The set (fanγn ∩ K) \ X is decomposed into a countable collection
of sets which are sent by some positive iterates to sets of the form γ ∩ (Λ \ X), γ ∈ Γ̃u.
Lemma 4.3 implies HD((fanγn ∩ K) \ X) ≤ ε, and therefore HD(γn ∩ K) = HD(fanγn ∩
K) ≤ max{ε, du(X)} = du(X). The last inequality follows from Lemma 5.3. This yields
HD(γ ∩K) ≤ du(X).
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To complete the proof of Theorem B it is left to show tu → 1 as b→ 0. Let Sn denote the
open domain bounded by α±n and the unstable sides of R.

Lemma 5.4. For any n > 0 and ε there exists b′ > 0 such that if b < b′ then:

(a) if i ≥ 1, z ∈ γ̂ \ Sn and fz, . . . , f i−1z /∈ Sn, then ‖Df i|Eu(z)‖ ≤ 2 + ε.
(b) If γ ⊂ γ̂ \ Sn is a C2(b)-curve, then fγ is C2(b).

Proof. Immediate from the form of our map (1). �

Let γ0 denote the C2(b)-curve in γ̂ with endpoints in α±1 . Obviously γ̂ ∩ K ⊃ γ0 \⋃∞
i=0 f

−iSn =:
⋂∞
k=0Ek, where E0 = γ0 and Ek = Ek−1 \ f−k+1Sn for k ≥ 1. Observe that⋂∞

k=0Ek is a Cantor set in γ0. For each component of F of Ek−1, either F \ Ek is contained
in the interior of F , or else F is a component of Ek. The next lemma indicates that the latter
case rarely occurs.

Lemma 5.5. Let F (0) ⊃ F (1) ⊃ · · · be a nested sequence of closed curves in γ0 such that F (i)

is a component of Ei (i = 0, 1, . . .). For every k ≥ 1,

{i ∈ [1, k] : F (i−1) = F (i)} ≤ k

n
+ 1.

Proof. It is not hard to see that if F (i−1) = F (i), then F (j−1) 6= F (j) holds for j = i+ 1, . . . , i+
n. �

Lemma 5.6. For every k ≥ 0 and any component F of Ek, `(F ) ≥ (2 + ε)−k−1.

Proof. By Lemma 5.4(b), fkF is a C2(b)-curve. We first treat the case where the endpoints
of fkF are in f(α−n ∪ α+

n ) and α−p , p ≥ 1. Then, `(fkF ) > 1 and so Lemma 5.4(a) yields

`(F ) ≥ (2 + ε)−k.
Next we treat the case where the endpoints of fkF are in f(α−n ∪ α+

n ) and α+
1 . Then the

endpoints of the C2(b)-curve fk+1F are in f 2(α−n ∪α+
n ) ⊂ α̃n−1 and α+

1 , and so `(fk+1F ) > 1.
Hence Lemma 5.4(a) yields `(F ) ≥ (2 + ε)−k−1. �

Let µ be the natural mass distribution on
⋂∞
k=0Ek, so that each of the components of Ek

carry a mass ≤ 2−k(1− 1
n

) by Lemma 5.5. Let U be a small curve in γ0 and k > 0 the large
integer such that

(2 + ε)−k−2 < `(U) ≤ (2 + ε)−k−1 .

By Lemma 5.6, U can intersect at most two of the components of Ek, and so

µ(U) ≤ 2−k(1− 1
n

)+1 = (2 + ε)
−(k(1− 1

n )−1) log 2

log(2+ε) ≤ `(U)
(k(1− 1

n )−1) log 2

(k+2) log(2+ε) ≤ `(U)
log 2

log(2+2ε) ,

where the last inequality holds for a given ε > 0 provided n, k are sufficiently large. The Mass
Distribution Principle [9, p.60] yields HD(

⋂∞
k=0 Ek) ≥

log 2
log(2+ε)

. The right-hand-side can be

made arbitrarily close to 1 by choosing sufficiently small ε > 0 and then choosing sufficiently
small b. Since γ̂ ∩K ⊃

⋂∞
k=0Ek and tu = HD(γ̂ ∩K) from the first statement of Theorem B,

we obtain tu → 1 as b→ 0. �
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5.2. Strong summability and finite Gurewich pressure. Observe that for z ∈ X we

have
∑τ(J)−1

i=0 Ju(f iz) = ‖DF |Eu(z)‖. We now prove that the potential function ϕt(z) :=
−t log ‖DF |Eu(z)‖ has strongly summable variations (i.e. the potential tΦ = ϕt ◦ h has
strongly summable variations).

Lemma 5.7. There exists C > 0 such that for every n > 0, Vn(Φ) ≤ Cbσ−n1 . In particular,
tΦ has strongly summable variations for any t ∈ R.

Proof. Take a, a′ ∈ SZ such that ai = a′i for every −n + 1 ≤ i ≤ n − 1. Let xi = F i(h(a)),
x′i = F i(h(a′)). Let y denote the point of intersection between γu(x−n) and γs(x′−n). We have

|Φ(a)− Φ(a′)| =

∣∣∣∣∣∣
τ(x0)−1∑
i=0

log
Ju(f ix0)

Ju(f ix′0)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
τ(x0)−1∑
i=0

log
Ju(f ix0)

Ju(f i(F ny))

∣∣∣∣∣∣+

∣∣∣∣∣∣
τ(x0)−1∑
i=0

log
Ju(f i(F ny))

Ju(f ix′0)

∣∣∣∣∣∣ .
By the F -invariance of the γs-curves, F i(F ny) ∈ γs(x′i) for 0 ≤ i ≤ n − 1. Hence xi and
F i(F ny) belong to the same basic element for 0 ≤ i ≤ n − 1. By the F -invariance of the
γu-curves, xi and F i(F ny) belong to the same γu-curves for 0 ≤ i ≤ n − 1. Proposition
3.10(P3) implies |x1 − F (F ny)| ≤ σ−n1 . Using this and Proposition 3.10(P4)(a) we have

(21)

∣∣∣∣∣∣
τ(x0)−1∑
i=0

log
Ju(f ix0)

Ju(f i(F ny))

∣∣∣∣∣∣ ≤ C|f τ(x0)x0 − F (F ny)| ≤ Cσ−n1 .

To estimate the second summand, for z ∈ Γu let eu(z) denote the unit vector with a positive
first component which spans Eu(z). From the bounded distortion in (P4)(b) and the proof
of Lemma 3.3 in Appendix A2 we have ‖Df j(z)eu(z)‖ ≥ (1/2)κj for every j ≥ 1, where
κ = 5−(1+ξ)N . Then the angle estimate in [35, Claim 5.3] yields

∠(Df i(F ny)eu(F ny), Df i(x′0)eu(x′0)) ≤ (Cb)
i+n

2 .

From the contraction along the γs-curves we have

‖Df(f i(F ny))−Df(f ix′0)‖ ≤ C|f i(F ny)− f ix′0| ≤ (Cb)
i
2 |F ny − x′0| ≤ (Cb)

i+n
2 .

Hence∣∣∣∣log
Ju(f i(F ny))

Ju(f ix′0)

∣∣∣∣ ≤ Cb−1

∥∥∥∥Df i+1(F ny)eu(F ny)

‖Df i(F ny)eu(F ny)‖
− Df i+1(x′0)eu(x′0)

‖Df i(x′0)eu(x′0)‖

∥∥∥∥
≤ Cb−1

(
‖Df(f i(F ny))−Df(f ix′0)‖+ C∠(Df i(F ny)eu(F ny), Df i(x′0)eu(x′0))

)
≤ (Cb)

i+n
2
−1.

The first inequality follows from the fact that | log(1 +ψ)| ≤ |ψ| for ψ ≥ 0 and Ju ≥ b/5. The
second one follows from the triangle inequality. Then

(22)

τ(x0)−1∑
i=0

∣∣∣∣log
Ju(f i(F ny))

Ju(f ix0)

∣∣∣∣ ≤ τ(x0)−1∑
i=0

(Cb)
i+n

2
−1 ≤ (Cb)

n
2
−1.

(21) (22) yield the desired inequality. �
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We show the finiteness of the Gurewich pressure of the induced potential of a ”shifted”
potential. For t, c ∈ R define

Tt,c =
∑
J∈S

ecτ(J)`(J)t

and

c0(t) =

 t log σ2 − lim
n→∞

(1/n) logS(n) if t < 0;

t log σ1 − lim
n→∞

(1/n) logS(n) if t ≥ 0.

By Proposition 3.10(P3)(P4), for some C > 0 we have

(23) Tt,c ≤

{
C
∑

n≥N S(n)ecnσ−tn2 if t < 0;

C
∑

n≥N e
cnσ−tn1 if t ≥ 0.

Lemma 5.8. If c < c0(t), then Tt,c <∞ and PG (ϕt + c) <∞.

Proof. In the case t ≥ 0, using the second alternative of (23) we have

Tt,c ≤ C
∑
n≥N

exp

(
n

(
c− t log σ1 +

1

n
logS(n)

))
<∞.

The case t < 0 can be handled similarly.
As for the Gurewich pressure, fix J0 ∈ S. Observe that ϕt + c = −t log ‖Df τ |Eu‖+ cτ and

so,

PG (ϕt + c) = lim
n→∞

1

n
log

∑
x∈γ̂∩J0

Fnx∈γs(x)

exp

(
n−1∑
i=0

(ϕt + c)(F ix)

)

≤ lim
n→∞

1

n
log

(∑
J∈S

sup
x∈J

exp (ϕt + c)(x)

)n

≤ lim
n→∞

1

n
log(C · Tt,c)n = log Tt,c <∞,

where C > 0 is a uniform constant. �

5.3. Positive recurrence. We now define

(24) t+ =
tuλu(µtu)

λu(µtu)− log(2− ε) +
√
ε

and t− =
tuλu(µtu)

λu(µtu)− log(4 + ε)−
√
ε
.

Lemma 5.9. λu(µtu)→ log 2 as b→ 0.

Proof. The topological entropy of f is log 2. The relation Fϕut (µtu) = 0 and the variational
principle give λu(µtu) ≤ log 2/tu. On the other hand, Lemma 5.2 gives λu(µtu) ≥ log(2 − ε).
Since tu → 1 as b→ 0 as in Theorem B and ε > 0 can be made arbitrarily small by choosing
small b, we get the claim. �

Lemma 5.9 implies that the definition of t± make sense. It also implies that for any given
ε > 0 one can choose ε and b1 ∈ (0, b0) so that if b < b1 then (−1 + ε, 1/ε) ⊂ (t−, t+).

Proposition 5.10. If t ∈ (t−, t+), then ϕt is positive recurrent.
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Proof. Let ML(f) denote the set of liftable measures to the inducing scheme constructed in
Sect. 3. Let

Pt := sup{Fϕt(µ) : µ ∈ML(f)}.
In view of Lemma 5.8 it suffices to show that one can choose η0 > 0 so that Tt,−(Pt−η) is finite
for all 0 ≤ η ≤ η0. To show this we first estimate Pt from below. In the proof of Theorem B
we have shown that µtu is liftable. Hence

(25) Pt ≥ Fϕt(µtu) = h(µtu)− tλu(µtu) = (tu − t)λu(µtu).

To show the finiteness of Tt,−(Pt−η) we consider the following three cases.

Case I: 0 < tu ≤ t < t+. Using (25) and the fact that σ1 = 2− ε in (10) we have

−Pt − t log σ1 +
1

n
logS(n) ≤ (t− tu)λu(µtu)− t log(2− ε) +

1

n
logS(n).

By the definition of t+ in (24) and Proposition 3.17, the number of the right-hand-side is
strictly negative for all large n. Therefore for sufficiently small η ≥ 0,

Tt,−(Pt−η) ≤ C
∑
n>0

exp

(
n

(
−Pt + η − t log σ1 +

1

n
logS(n)

))
<∞.

Case II: 0 ≤ t < tu. Jensen’s inequality applied to the convex function x→ xt yields

∑
τ(J)=n

`(J)t ≤ S(n)1−t

 ∑
τ(J)=n

`(J)

t

.

Using this and the upper bound of S(n) in Proposition 3.17 we have

e−(Pt−η)n
∑

τ(J)=n

`(J)t ≤ exp

((
η + (t− tu)λ(µtu)− t

2
log σ1

)
n

)

≤ exp

((
η − tuλ(µtu) +

2t

3
log 2

)
n

)
.

Since tu → 1 and λ(µtu) → log 2 as b → 1, the exponent is strictly negative for sufficiently
small η ≥ 0. Therefore Tt,−(Pt−η) <∞ holds.

Case III: t− < t ≤ 0. Using (8) and the fact that σ2 = 4 + ε in (10) we have

−Pt − t log σ2 +
1

n
logS(n) ≤ (t− tu)λu(µtu)− t log(4 + ε) +

1

n
logS(n).

By the definition of t− in (24) and Proposition 3.17, the number of the right-hand-side is
strictly negative for all large n. Therefore for sufficiently small η ≥ 0,

Tt,−(Pt−η) ≤ C
∑
n>0

exp

(
n

(
−(Pt − η)− t log σ2 +

1

n
logS(n)

))
<∞.

This completes the proof of Proposition 5.10. �

Corollary 5.11. For any t ∈ (t−, t+) there exists a unique equilibrium measure for ϕt among
all liftable measures.
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Proof. Choose c < c0(t) so that −c � 1. Then ϕt + c has finite Gurevich pressure, and
is strongly summable by Proposition 5.7. Observe that PL(ϕt + c) = PL(ϕt) + c and so

ϕt + c− PL(ϕt + c) = ϕt − PL(ϕt). Since ϕt is positive recurrent by Lemma 5.10, so is ϕt + c.
By Proposition 2.4, there exists a Gibbs measure νϕt+c. For any J ∈ S and for all x ∈ J ,

νϕt+c(J) ≤ C exp (−PG(ϕt + c) + ϕt + c(x)) ≤ Ce−PG(ϕt+c)ecτ(J) max
(
σ
−tτ(J)
1 , σ

−tτ(J)
2

)
,

and therefore

(26)
∑
J∈S

τ(J)=n

τ(J)νϕ+c(J) ≤ CS(n)e−PG(ϕt+c)ecn max
(
σ−tn1 , σ−tn2

)
.

The right-hand-side has a negative growth rate as n increases. Hence νϕt+c(τ) < ∞ holds.
By Proposition 2.4, there exists a unique equilibrium measure for ϕt + c among all liftable
measures. Since ϕt + c is cohomologous to ϕt, they yield the same equilibrium measures. �

5.4. Uniqueness of t-conformal measures. We finish the proof of Theorem A. We start
with preliminary estimates of t±. Define

λusup := sup{λu(µ) : µ ∈Me(f)} and λuinf := inf{λu(µ) : µ ∈Me(f)}.

Lemma 5.12. We have

t+ <
tuλu(µtu)− 2ε

λu(µtu)− λuinf

and t− >
tuλu(µtu)− 2ε

λu(µtu)− λusup

.

Proof. A direct computation gives

tuλu(µtu)− 2ε

λu(µtu)− λuinf

− t+ =
tuλu(µtu)(λuinf − log(2− ε) +

√
ε)− 2ε(λu(µtu)− log(2− ε) +

√
ε)

(λu(µtu)− λuinf)(λ
u(µtu)− log(2− ε) +

√
ε)

.

The denominator of the fraction of the right-hand-side is positive. Since tu → 1 and λu(µtu)→
log 2 as b→ 0, the first term of the numerator is ≥ (1/2)

√
ε. Hence the numerator is positive.

Hence the first inequality holds. A proof of the second one is analogous. �

Proof of Theorem A. Let t ∈ (t−, t+). In view of Corollary 5.11 we need to consider measures
which do not give positive weight to X. Since

sup{Fϕt(µ) : µ ∈M(f), µ(X) = 0} = sup{Fϕt(µ) : µ ∈Me(f), µ(X) = 0},
we may restrict ourselves to ergodic measures. It suffices to show

(27) sup{Fϕt(µ) : µ ∈Me(f), µ(X) = 0} < Pt.

We argue by contradiction assuming (27) is false. Then, for any δ > 0 there exists µ ∈
Me(f) such that µ(X) = 0 and h(µ)− tλu(µ) ≥ Pt − δ. (8) yields

h(µ) ≥ t (λu(µ)− λu(µtu)) + tuλu(µtu)− δ.
For the rest of the proof we deal with two cases separately.

Case I: t ≥ 0. We have h(µ) ≥ t (λuinf − λu(µtu)) + tuλu(µtu)− δ. Since δ > 0 is arbitrary we
get

(28) h(µ) ≥ t (λuinf − λu(µtu)) + tuλu(µtu).

(28) and the first inequality in Lemma 5.12 yield h(µ) > 2ε. Proposition 4.1 gives µ(X) > 0,
which is a contradiction.
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Case II: t < 0. We have h(µ) ≥ t
(
λusup − λu(µtu)

)
+ tuλu(µtu) − δ. Since δ > 0 is arbitrary

we get

(29) h(µ) ≥ t
(
λusup − λu(µtu)

)
+ tuλu(µtu).

(29) and the second inequality in Lemma 5.12 yield h(µ) > 2ε. Proposition 4.1 gives µ(X) > 0,
which is a contradiction. �

6. Proofs of Theorem C and Theorem D.

We prove Theorem C and Theorem D.

Proof of Theorem C. Let µ ∈ Me(f). If µ(X) > 0, then µ(
⋃
n≥0 f

nX) = 1 holds. Arguing
similarly to the last paragraph in the proof of Theorem B we obtain dimH(µ) ≤ d(X) = tu. If
µ(X) = 0, then Proposition 4.1 gives h(µ) < 2ε, and so dimH(µ) < tu. Since dimH(µtu) = tu,
µtu is a measure of maximal unstable dimension.

As for the uniqueness, let µ be a measure of maximal unstable dimension. Then dimH(µ) =
tu, and so h(µ)−tuλu(µ) = 0, namely µ is a tu-conformal measure. The uniqueness in Theorem
A yields µ = µtu . �

Proof of Theorem D. Let νΦ denote the Gibbs measure on SZ for the strongly summable
potential Φ := ϕ+ c ◦ h, where c is the one in Corollary 5.11. Let ν+

Φ denote the canonical
projection of νΦ on SN, which is a σ+-invariant Gibbs measure on SN.

For any cylinder [a] ⊂ SN the measurable bijection σ+|[a] : [a] → SN is non-singular. [26,
Theorem 8, Lemma 10] gives ν+

Φ = hν, where h is a strongly summable function bounded
away from zero and infinity, and ν is a conformal measure in the sense that ν � ν ◦ σ+ and

dν

dν ◦ σ+
= eΦ−PG(Φ).

Here, define ν ◦ σ+ by (ν ◦ σ+)(A) =
∑

a∈S ν(σ+([a] ∩ A)). Then (ν+
Φ ◦ σ+)|[a]� ν+

Φ |[a] and

d(ν+
Φ ◦ σ+)|[a]

dν+
Φ |[a]

=
d(ν+

Φ ◦ σ+)|[a]

d(ν ◦ σ+)|[a]

d(ν ◦ σ+)|[a]

dν|[a]

dν|[a]

dν+
Φ |[a]

=
h ◦ σ+

eΦ−PG(Φ)h
.

Thus there exist C > 0 and 0 < r < 1 such that for all b, b′ ∈ [a],

log
d(ν+

Φ ◦ σ+)|[a]

dν+
Φ |[a]

(b)− log
d(ν+

Φ ◦ σ+)|[a]

dν+
Φ |[a]

(b′) = log
h ◦ σ+(b)

h ◦ σ+(b′)
− log

h(b)

h(b′)
− (Φ(b)− Φ(b′))

≤ Crmin{i>0: bi 6=b′i}.

By the results in [36], the statistical properties can be deduced from this estimate which shows
the Hölder continuity of the Jacobian, and the exponential tail estimate in (26). �
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Appendix: computational proofs

We refer the reader to [30, Sect.2] for relevant definitions and results used in this appendix.
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A1. Proof of Proposition 3.1. Let ζ denote the critical point [30, Sect.2.2] on γ, and
let p(z) denote the corresponding bound period for z ∈ γn [30, Sect.2.3]. [30, Proposition

2.6(e)] gives ‖Dfp(z)|Eu(z)‖ ≥ (4 − 2ε)
p(z)

2 and slope(Df p(z)|Eu(z)) ≤
√
b. Since p(z) < n,

the derivative estimate in [30, Lemma 2.3(a)] gives ‖Dfn−p(z)|Eu(fp(z)z)‖ ≥ σ
n−p(z)
1 . Hence

‖Dfn|Eu(z)‖ ≥ (4− 2ε)
p(z)

2 σ
n−p(z)
1 ≥ σn1 and (a) holds.

For z ∈ γn, Let eu(z) denote the unit vector with positive first component which spans
Eu(z). Consider the stable foliation F s [30, Sect.2.2], and let F s(fz) denote the leaf through
fz. Let es(fz) denote the unit vector with positive second component which spans TfzF s(fz).
Split Df(z)eu(z) = A(z) ( 1

0 ) +B(z)es(fz). [32, Lemma 2.2] gives

(30) |A(z)| ≈ |ζ − z| and |B(z)| ≤ C
√
b.

Let p = max{p(z) : z ∈ γn}. Split ‖Df p(x)eu(x)−Df p(y)eu(y)‖ ≤ I1 + I2 + I3 + I4, where

I1 = |A(x)− A(y)| · ‖Df p−1(fx) ( 1
0 ) ‖,

I2 = |B(x)−B(y)| · ‖Df p−1(fx)es(fx)‖,
I3 = |B(y)| · ‖Df p−1(fx)es(fx)−Df p−1(fy)es(fy)‖,
I4 = |A(y)| · ‖Df p−1(fx) ( 1

0 )−Df p−1(fy) ( 1
0 ) ‖.

Estimates of I1, I2. Let es(z) =
(
e1(z)
e2(z)

)
, and let π1(z) denote the first component of z. Write

S(z) =

(
1 e1(z)
0 e2(z)

)−1

=

(
1 + ε1 ε2
ε3 1 + ε4

)
and Df(z) =

(
−2a∗π1(z) + α1 α2

α3 α4

)
.

Let R(z) denote the rotation matrix by θ(z) := ∠(eu(z), ( 1
0 )). Then A(z), B(z) are equal

to the (1, 1), (2, 1) entries of the matrix S(z) · Df(z) · R(z)−1 correspondingly. A direct
computation shows that A, B are linear combinations of αi, εi (1 ≤ i ≤ 4), cos θ, sin θ, all of
which are Lipschitz continuous on γn, from (1), property (F3) of F s (see [30, Sect.2.2]) and
the C2(b)-property of γn. Hence A, B are Lipschitz continuous on γn as well, which implies

(31) I1 ≤ C|x− y| · ‖wp(ζ)‖ and I2 ≤ (Cb)p−1|x− y|.

Estimate of I3. We start with an elementary geometric reasoning. Let v1, v2 be nonzero
vectors in R2 such that ‖v1‖ ≤ ‖v2‖, θ � 1 (See FIGURE 3). We have

‖v2 − v1‖ < |‖v2‖ − ‖v1‖ cos θ|+ ‖v1‖ sin θ

= cos θ|‖v2‖ − ‖v1‖|+ (1− cos θ)‖v2‖+ ‖v1‖ sin θ

≤ |‖v2‖ − ‖v1‖|+ 2θ‖v2‖.

We use this to estimate I3. Without loss of generality we may assume ‖Df p−1(y)es(y)‖ ≥
‖Df p−1(x)es(x)‖. The angle between the two vectors involved in I3 is small. The fact that
|B(y)| ≤ C and the above reasoning show

(32) I3 ≤ C‖Df p−1(y)es(y)‖
(∣∣∣∣‖Df p−1(x)es(x)‖
‖Df p−1(y)es(y)‖

− 1

∣∣∣∣+ 3‖es(fpx)− es(fpy)‖
)
.

We have ‖Df p−1(y)es(y)‖ ≤ Cb, and the first term in the parenthesis is ≤ C|fpx− fpy|.
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To estimate the second term in the parenthesis of (32) we argue as follows. The invariance
of the stable foliation F s gives

(33) log
‖Df p−1(x)es(x)‖
‖Df p−1(y)es(y)‖

≤
p−1∑
i=1

log
‖Df(f ix)es(f ix)‖
‖Df(f iy)es(f iy)‖

.

Let es⊥(z) denote any unit vector orthogonal to es(z) and let θ(z) = ∠(Df(z)es(z), Df(z)es⊥(z)).
Then es⊥ and θ are Lipschitz continuous, ‖Dfes⊥‖ > 2 and θ ≈ π/2. Hence log ‖Dfes⊥‖ and
sin θ are Lipschitz continuous, with a Lipschitz constant independent of b. Since1

‖Df(f ix)es(f ix)‖ · ‖Df(f ix)es⊥(f ix)‖ sin θ(f ix) = | detDf(f ix)| = b,

for 1 ≤ i < p we have

log
‖Df(f ix)es(f ix)‖
‖Df(f iy)fes(f iy)‖

= log
‖Df(f iy)(es)⊥(f iy)‖
‖Df(f ix)(es)⊥(f ix)‖

+ log
sin θ(f iy)

sin θ(f ix)
≤ C|f ix− f iy|.

Lemma 6.1.
∑p−1

i=1 |f ix− f iy| ≤ C|fpx− fpy|.

Proof. Let π1, π2 : R2 → R denote the projections to the first and the second coordinate. For

1 ≤ i < p we have |π1(f ix)− π1(f iy)| ≤ σ
−(i−p)
1 |π1(fpx)− π1(fpy)|, and

|π2(f ix)− π2(f iy)| ≤ (Cb)
i−1

2 |π2(fx)− π2(fy)|

≤ (Cb)
i
2 |π1(x)− π1(y)| ≤ (Cb)

i
2 |π1(fpx)− π1(fpy)|,

where the second inequality follows from integrating B(z) in (30) along the path in γn from
x to y. Summing these two inequalities over all 1 ≤ i < p yields the desired one. �

Lemma 6.1 implies that the right-hand-side of (33) is bounded by a constant C > 0 inde-
pendent of b. Since there exists ρ = ρ(C) > 0 such that eψ ≤ 1 + ρψ for 0 ≤ ψ ≤ C, we
have

(34)
‖Dfp−1(x)es(x)‖
‖Df p−1(y)es(y)‖

−1 ≤ ρ

p−1∑
i=1

log
‖Df(f ix)es(f ix)‖
‖Df(f iy)es(f iy)‖

≤ ρC

p−1∑
i=1

|f ix−f iy| ≤ C|fpx−fpy|.

Plugging (34) into (32) we obtain

(35) I3 ≤ C|fpx− fpy|.
Estimate of I4. In the same way as in the proof of (32) we have

I4 ≤ |A(y)| · ‖wp(ζ)‖
(∣∣∣∣‖Df p−1(fx) ( 1

0 ) ‖
‖Df p−1(fy) ( 1

0 ) ‖
− 1

∣∣∣∣+ 2∠(Df p−1(x) ( 1
0 ) , Dfp−1(y) ( 1

0 ))

)
.

From the distortion estimate in the proof of [30, Lemma 2.7] and Lemma 6.1, the first term
in the parenthesis is ≤ C|fpx − fpy|. To estimate the second term in the parenthesis, take
a point r so that the leaf F s(fy) intersects the horizontal through fx at fr. By the angle
estimate in [35, Claim 5.3],

∠(Df p−1(y) ( 1
0 ) , Dfp−1(r) ( 1

0 )) ≤ (Cb)p−1|fy − fr| ≤ (Cb)p−1|x− y| ≤ (Cb)p−1|fpx− fpy|.
1Here we use the fact that the Jacobian of the Hénon map is constant equal to b. Essentially the same

argument remains to hold for Hénon-like maps for which there exists C > 0 independent of b such that
‖D log |detDf |‖ ≤ C (c.f. [18]). Therefore our main theorems hold for Hénon-like maps satisfying this
assumption.
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Figure 3. ‖v1‖ ≤ ‖v2‖, θ � 1

By the C2(b)-property and the definition of r,

∠(Df p−1(x) ( 1
0 ) , Dfp−1(r) ( 1

0 )) ≤
√
b|fpx− fpr| ≤ C

√
b|fpx− fpy|.

Hence we obtain

∠(Df p−1(x) ( 1
0 ) , Dfp−1(y) ( 1

0 )) ≤ C
√
b|fpx− fpy|.

Additionally (30) yields

|A(y)| ≤ C|ζ − y| ≤ C(d(ζ, γn) + `(γn))

where d(·, ·) denotes the minimal distance apart. Finally, from Claim 6.2 below we get

(36) I4 ≤ Cd(ζ, γn)‖wp(ζ)‖ · |fpx− fpy|.

Claim 6.2. `(γn) ≤ Cd(ζ, γn).

Proof. Let M be a large integer such that M � N . Consider the leaf of the stable foliation
F s through fζ which is of the form F s(fζ) = {(x(y), y) : |y| ≤

√
b}. For k > M define

Uk :=
{

(x, y) : Dk ≤ |x− x(y)| < Dk−M(ζ), |y| ≤
√
b
}

where Dk := C
[∑k

i=1
‖ωi‖2
‖ωi+1‖

]−1

for some constant C > 0 and wi := wi(ζ). Let k0 := max{k >
M : Uk ∩ fγn 6= ∅}− 1. By [30, Lemma 2.5(a)], there exist constants 0 < C1 < C2 < 1/2 such
that

(37) C1Dk0−M ≤ Dk0 ≤ C2Dk0−M .

We prove

(38) fγn ⊂ Uk0 ∪ Uk0+1.

(37) (38) imply `(γn) ≤ C
√
Dk0−M ≤ C

√
Dk0 ≤ Cd(γn, ζ), and thus Claim 6.2 holds.

It is left to prove (38). If the inclusion were false, then one could choose a curve δ ⊂ fγn∩Uk0

with endpoints in the two vertical boundaries of Uk0 . Let x denote the endpoint of f 2γn in
α̃n−1. The bounded distortion and the second inequality in [30, Lemma 2.5(b)] give

d(α−0 , f
k0−Mx) ≤ 2Dk0‖wk0−M+1‖ ≤ 2 · 3−MDk0‖wk0‖ ≤ 3−M ,

and
`(fk0−Mδ) ≥ C(Dk0−M −Dk0)‖wk0−M‖ ≥ C(1− C2)Dk0−M‖wk0−M‖ ≥ C.

From these two estimates and choosing large M if necessary we have that the interior of fk−10δ
intersects some α̃i. This yields a contradiction. �
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Overall estimates. Gluing (31) (35) (36) together,

‖Df p(x)eu(x)−Dfp(y)eu(y)‖ ≤ C‖wp(ζ)‖ · |x− y|+ Cd(ζ, γn)‖wp(ζ)‖ · |fpx− fpy|.
Dividing both sides by ‖Df p(z)eu(z)‖ ≈ |ζ − z| · ‖wp(ζ)‖ ≈ d(ζ, γn) · ‖wp(ζ)‖ which follows
from the proof of [30, Proposition 2.6], we obtain for all x, y ∈ γn,

(39) log
‖Df p|Eu(x)‖
‖Df p|Eu(y)‖

≤ C|x− y|
d(ζ, γn)

+ C|fpx− fpy|.

Since fpγn is C2(b) and p < n, we have |fpx− fpy| ≤ |fnx− fny|. (39) and Claim 6.3 below
yield

log
‖Df p|Eu(x)‖
‖Df p|Eu(y)‖

+ log
‖Dfn−p|Eu(fpx)‖
‖Dfn−p|Eu(fpy)‖

≤ C|fnx− fny|,

which proves (b).

Claim 6.3. |x−y|
d(ζ,γn)

≤ C|fnx− fny|.

Proof. The first estimate of (30) implies

(40)
|x− y|
d(ζ, γn)

≤ C|π1(fx)− π1(fy)|
d(ζ, γn)2

.

By the bounded distortion outside of Θ, there exists θ ∈ fγn such that

(41) |π1(fx)− π1(fy)| · ‖Dfn−1(θ) ( 1
0 ) ‖ ≤ C|fnx− fny|.

The bounded distortion outside of Θ and the quadratic behavior near ζ as in (30) imply

`(γn)d(ζ, γn)‖Dfn−1(θ) ( 1
0 ) ‖ ≥ C`(fnγn).

Hence there exists C > 0 such that

(42) d(ζ, γn)2‖Dfn−1(θ) ( 1
0 ) ‖ ≥ C`(γn)d(ζ, γn)‖Dfn−1(θ) ( 1

0 ) ‖ ≥ C`(fnγn) > C.

For the first inequality we have used Claim 6.2. The last inequality is because fnγn is a
C2(b)-curve with endpoints in α±1 . (40) (41) (42) yield

|x− y|
d(ζ, γn)

≤ C|π1(fx)− π1(fy)|
d(ζ, γn)2

≤ C|fnx− fny|
d(ζ, γn)2‖Dfn−1(θ) ( 1

0 ) ‖
≤ C|fnx− fny|. �

A2. Proof of Lemma 3.3. Let κ = 5−(1+ξ)N . For all z ∈ Ω∞ we show ‖Dfn|Eu(z)‖ ≥ κn

for every n ≥ 1. Then (a) (b) follow from the results of [18].
With the terminology in [30, Sect.2.5] we introduce the bound/free structure on the orbit of

z, using ΘN as a critical neighborhood. If fnz is free, then the orbit z, . . . , fnz is decomposed
into alternative bound and free segments. Applying the expansion estimates in [30, Lemma
2.3, Proposition 2.8(e)] alternatively we have ‖Dfn|Eu(z)‖ ≥ κn. If fnz is bound, then
there exists an integer 0 < m < n such that fmz ∈ ΘN and m < n < m + p, where p
is the bound period of fmz. Since fm+pz is free and ‖Df‖ < 5 we have ‖Dfn|Eu(z)‖ ≥
5−(m+p−n)‖Dfm+p|Eu(z)‖ > 5−p, and since z ∈ Ω∞ we have p ≤ ξm + N. If m ≤ N , then
p ≤ (1 + ξ)N and so ‖Dfn|Eu(z)‖ ≥ 5−(1+ξ)N ≥ κn. If m > N , then p ≤ (1 + ξ)m and so
‖Dfn|Eu(z)‖ ≥ 5−(1+ξ)m ≥ κn.

Choose a large integer M � n such that fMz2 is free. Take x1 ∈ fnγs(z1), x2 ∈ γs(z2) which

are connected by a horizontal segment of length b
M
3 . By construction, ‖DfM |Eu(x2)‖ ≥ σM1 .

By the bounded distortion, the fM -iterate of the segment is C2(b) and |fMx1 − fMx2| ≥



EQUILIBRIUM MEASURES FOR THE HÉNON MAP AT THE FIRST BIFURCATION 31

CσM1 |x1 − x2| ≥ CσM1 b
M
3 . If q ∈ fnγs(z1) ∩ γs(z2), then |fMx1 − fMx2| ≤ |fMx1 − fMq| +

|fMq − fMx2| ≤ 2(Cb)
M
2 . These two estimates are incompatible. Hence (c) holds. �

A3. Proof of Lemma 5.2. Let µ ∈Me(f). Take a point ξ ∈ R such that lim
n→∞

(1/n) log ‖Dfnξ |Eu‖ = λu(µ)

and ξ is free. The orbit ξ, fξ, . . . is decomposed into alternative bound and free segments.
Applying the expansion estimates in [30, Lemma 2.3, Proposition 2.8] alternatively we have
‖Dfn|Eu(ξ)‖ ≥ (2− ε)n if fnξ is free. This implies λu(µ) ≥ log(2− ε). �
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[4] Benedicks, M. and Young, L.-S.: Markov extensions and decay of correlations for certain Hénon maps.
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