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EQUILIBRIUM MEASURES FOR THE HENON MAP AT THE FIRST
BIFURCATION: UNIQUENESS AND GEOMETRIC/STATISTICAL
PROPERTIES

SAMUEL SENTI AND HIROKI TAKAHASI

ABSTRACT. For strongly dissipative Hénon maps at the first bifurcation where the uniform
hyperbolicity is destroyed by the formation of tangencies, we establish a thermodynamic
formalism, i.e., prove the existence and uniqueness of an invariant probability measure which
minimizes the free energy associated with a non continuous geometric potential —tlog J*,
where t € R is in a certain large interval and J* is the Jacobian in the unstable direction. We
obtain geometric and statistical properties of these measures.

1. INTRODUCTION
In this paper we study the first bifurcation of the Hénon family
(1) far (2,y) = (1 — ax® + Vby, +Vbz), 0<b< 1.

There exists a parameter a* near 2 such that the non-wandering set of f, is a uniformly
hyperbolic horseshoe for a > a*, and (f,,) generically unfolds a quadratic tangency at a = a* [1,
2, 8]. We study the dynamics of f,- from the viewpoint of ergodic theory and thermodynamic
formalism.
Write f for f,«. Let
K ={z € R?: {f"z},ez is bounded}.
This set is a compact set and it coincides with the transitive non-wandering set [7]. Let M(f)
denote the space of all f-invariant Borel probability measures endowed with the topology of
weak convergence. For a potential function ¢ : K — R the associated free energy function
Fy: M(f) — R is given by
Fo(p) = h(p) + u(e),

where h(p) denotes the entropy of p and u(p) = [ pdu. An equilibrium measure associated
to the potential ¢ is a measure p, € M(f) which maximizes F, i.e.

Fy(pg) = sup{F,(p): p € M(f)}.

The main example of potential functions to which our theory applies is the family of potential
functions
oy = —tlogJ* teR,

where J" denotes the Jacobian along the unstable direction that is defined as follows. At a
point z € R? let £“(z) denote the one-dimensional subspace such that

— 1
(2) lim —log ||Df™"|E“(2)| < 0.
n—o0 N,
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Since f~! expands area, F“(z) is unique when it makes sense. We call E* an unstable direction.
Let J“(z) = || Df|E"(2)|| and ¢; = —tlog J*.

This family of potentials was studied in [30] where it is proved [30, Proposition 4.1] that
E" is well-defined and is measurable on a Borel set with total probability, and it is continuous
except at the fixed saddle @ near (—1,0). The particular equilibrium measure for the potential
@ is called a t-conformal measure. We are concerned with the existence and uniqueness of
t-conformal measures, and their geometric and statistical properties.

Define

P(t) := sup{Fy,(n): p € M(f)}.

The pressure function t — P(t) is convex, and so is continuous. Let
to := inf{t € R: P(s) > —(s/3)log(4 —¢) for any s < t}.
Considering the two fixed saddles (see FIGURE 1) we have 1 < t5 < oc.

Theorem. [30, Theorem| For any small € > 0 there exists by > 0 such that if b < by and
t < tg, then there exists a t-conformal measure.

The uniqueness of ¢-conformal measures does not follow from the argument in [30]. In
addition, the range of positive ¢ for which ¢-conformal measures exist is far from optimal.
We show the existence and uniqueness of t-conformal measure with ¢ in a certain interval
containing much larger positive ¢.

Theorem A. For any e > 0 there exists by € (0,by) such that if b < by, then there exists a
unique t-conformal measure for allt € (—1+€,1/¢).

Since entropies of invariant probability measures are written as linear combinations of the
entropies of the ergodic components, and the same property holds for unstable Lyapunov
exponents, all the t-conformal measures in the statement of Theorem A are ergodic. In
addition, it follows from our construction and from transitivity that any ¢-conformal measure
is supported on K, i.e. it gives positive weight to any open set intersecting K.

Our construction used in the proof of Theorem A leads to a version of Manning & Mec-
Clusky’s formula [16] (see [15, 34] for related results), which evaluates how substantial the set
K is in terms of Hausdorff dimension. Given a C! one-dimensional submanifold v of R? and
p € (0, 1], the Hausdorff p-measure of a set A C + is given by

where ¢ denotes the length and the infimum is taken over all coverings U of A by open sets in
v with diameter < 0. The Hausdorff dimension of A on 7, simply denoted by HD(A), is the
unique number such that

HD(A) = sup{p: m,(A) = oo} = inf{p: m,(A) = 0}.

One has P(0) > 0, and Ruelle’s inequality [23] gives P(1) < 0. Since f has no SRB measure
[33], P(1) < 0 holds. Hence the equation P(t) = 0 has a unique solution in (0, 1), which we
denote by t“.

Theorem B. For any relatively open curve v in the unstable manifold of the fized saddle such
that v N K # 0, one has HD(y N K) = t*. In addition, t* — 1 as b — 0.
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Let us here mention results of Leplaideur and Rios [14, 15] closely related to ours, in which
a thermodynamical formalism for certain horseshoes with three branches and a single orbit of
tangency was established. See [13] for a related result. However, their specific assumptions
on the map, including the linearity and the balance between expansion/contraction rates, do
not hold for the Hénon map f. Our argument is novel but exploits the well known line for
the study of Hénon-like systems [3, 4, 18, 35].

A powerful approach in ergodic theory of dynamical systems is to “code” orbits of a system
into symbolic sequences, by following their histories on a partition of the phase space. If this
defines a nice shift system, then the construction of interesting invariant measures and the
study of their properties can be carried out on the symbolic level. For uniformly hyperbolic
systems, Markov partitions are used to code orbits with symbolic sequences with finite sym-
bols. The existence and uniqueness of equilibrium measures for Holder continuous potentials
was established in [5, 24, 31].

However, at the first bifurcation the Hénon map f lacks such a nice partition. Indeed
the natural partition of K into the “left” and the “right” of the point of tangency near the
origin, constructed in [30] to prove the existence of equilibrium measures including ¢-conformal
measures, only defines a semi-conjugacy between f|K and the full shift on two symbols. In
order to avoid the discontinuity of ¢; at (), we must consider a (non-compact) subset of K
which does not contain ). We code the dynamics on this subset with a countable alphabet
to establish the uniqueness (countable partitions were also constructed in [10, 15] albeit for
other purposes/maps).

Our strategy for proving the uniqueness of the equilibrium measures is to construct an
invariant measure as a candidate, and then show that it is indeed a unique measure which
minimizes the free energy. The main step is to build an inducing scheme (S, 7). Here S is
a countable collection of Borel subsets of K called basic elements. The union of all basic
elements is denoted by X, and 7 is the first return time to X, which is constant on each basic
element. The inducing scheme allows us to represent the first return map to X as a countable
(full) Markov shift. Under certain conditions on the potential function, which are proven to
be satisfied by ¢; with t € (t_,t;), t- < 0 < t, (see (24) for the definition) one can construct
a Gibbs measure in the shift space following [17, 28]. This Gibbs measure is then used to
obtain a unique invariant measure for the original system which minimizes the free energy
among all measures which are liftable to the inducing scheme (i.e. those measures which can
be obtained from symbolic shift invariant measures).

The set of non liftable measures is nonempty. For instance, it contains dg. To show that
the candidate measure is a unique equilibrium measure, we show that non liftable measures
have smaller free energies. This can be undertaken by showing that our inducing scheme is
efficient, in that any ergodic measure with not too small entropy gives positive weight to X,
and hence is liftable. At this point it is worth noting that to study the Hénon maps it is
usually necessary to exclude points from consideration for which “long stable leaves” cannot
be constructed. Each basic element of the inducing scheme constructed here is a Cantor-like
set, which makes the estimates more involved.

We now move on to geometric and statistical properties. In what follows, let u; denote
the t-conformal measure in Theorem A. We first give a characterization of . in terms of
dimension. To give a precise statement let us recall general facts on nonuniformly hyperbolic
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C-— -

F1GURE 1. Manifold organization for a = a*. There exist two hyperbolic fixed
saddles P, @ near (1/2,0), (—1,0) correspondingly. In the orientation preserving
case (left), W*(Q) meets W*(Q) tangentially. In the orientation reversing case
(right), W*(P) meets W*(Q) tangentially. The shaded regions represent the
region R (see Sect.3.1).

systems. For x € K, let
— 1

(3) W*(z) = {y € R*: lim glog f"e— fMy| < 0} ,
n—o0

which we call the unstable manifold of x. Let M¢(f) denote the set of ergodic elements of
M(f). Since any u € M®(f) has exactly one positive Lyapunov exponent [7], there exists a
set I' of full p-measure such that for any = € I', W¥(z) is an injectively immersed smooth
submanifold of R? [19, 25]. Let {u“}.er denote the canonical system of conditional measures
of i along unstable manifolds [22] u is a probability measure supported on W*(x) such that
z — p¥(A) is measurable and pu(A) = [ p“(A ) for any measurable set A. Let dim(uY)
denote the dimension of u¥, namely
dim(py) = inf{HD(X): X C W*(z), ps(X) = 1}.

Then, dim(pY) is constant p-a.e. and this number is denoted by dim}, (). We say p € Me(f)
is a measure of maximal unstable dimension if

dim% (p) = sup{dim}y(v): v € M°(f)}.
Theorem C. pyu is the unique measure of maximal unstable dimension.

Considering the tower associated to the inducing scheme allows us to apply the result of
Young [36] to deduce several statistical properties of p.

Theorem D. The following holds for (f, ju);

(1) for anyn € (0,1] there exists T € (0,1) such that for any Hélder continuous ¢: K — R
with Hélder exponent n and ¥ € L*(u), there ezists a constant C(p, ) such that

(@ o [*)) — @) ()] < Clo, )™ for every n > 0;
(2) for any Hoélder continuous ¢: K — R with [ ¢du, = 0, there exists o > 0 such that

n—1

\/— Z pof — N(0,0) in distribution,

where N'(0,0) is the normal distribution with mean 0 and variance o*. In addition,

o >0 if and only if ¢ #pog—1) for any ¢ € L?(uy).
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The rest of this paper consists of four sections. In Sect.2 we recall the general thermody-
namical formalism for maps admitting inducing schemes from [21]. In Sect.3 we construct
an inducing scheme and show in Sect.4 that it is efficient in the above sense. In Sect.5 we
define t_, t* and then check all the conditions on ¢y, ¢t € (t_, ¢, ) necessary for implementing
the theory in Sect.2. This yields an f-invariant measure p; which maximizes the free energy
among all liftable measures. Using the results in Sect.4 we show then that p; is the unique
measure which maximizes the free energy among all measures. This completes the proof of
Theorem A. Other theorems are proven in Sect.6. The proofs of Proposition 3.1 and Lemma
3.3 require ingredients from [30] and are deferred to the Appendix.

2. EQUILIBRIUM MEASURES FOR MAPS ADMITTING INDUCING SCHEMES

In this section we recall the construction of equilibrium measures for f associated to ¢
developed in [21]. The main idea is to use an inducing scheme to relate the induced system
to a countable Markov shift, and construct a Gibbs measure in the shift space associated to
the induced potential following [17, 28]. Gibbs measures with integrable inducing time are
then used to construct an invariant equilibrium probability measures for the original map
associated to the original potential function.

2.1. Equilibrium states for countable Markov shifts. Denote the set of all bi-infinite
sequences over a countable alphabet S by S% := {a := (...,a_y,a9,a1,...): a; € S, i € Z}
and the (left) full shift by o : SZ O i.e. (0(a)); = aiy1. The sets [b;,...,b;] :=={a € S%: a), =
by for all i < k < j} are called cylinder sets. Endow SZ with the topology for which the
cylinder sets form a base. The shift ¢ is continuous with respect to this topology. Denote
by M(o) the collection of o-invariant Borel probability measures on SZ. Given a potential
function ® : S — R, let

Mo(0) = {v € M(0): v(®) > —oo}.
The n*variation of ® is defined by
Vo(®):=  sup sup |[©(a) — @(a')].

b—n+tiybn—1] a,a’ €b—nti1,...;bn—1] B
The function ® has strongly summable variation if
(4) D nVu(@) < oo
n>1

The Gurevich pressure of ® is defined by

Pal@) = lim _ log 2 o (Z‘P )hbl(@%

on(a)=

where b € S. Since it depends only on the positive side of the sequences, one can prove (as in
[26, Theorem 1]) that P;(®) exists and is independent of b whenever the variation

VH®):= sup sup |®(a) — P(d)]

[b07~-'7bn—1} Qvg/e[b07"'7bn—l]

over all positive cylinders is summable: > ., V,F(®) < oo. Also P(®) > —o0 holds in this
case.
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We say ve € M(0) is a Gibbs measure for @ if there exist constants C; > 0, Cy > 0 such
that for any cylinder set [by,...,b,_1] and any a € [by, ..., b,_1] we have

(5) c < vollbo, - bns) <,
exp (—nPa(®) + Yy B(c*(a)))

Note that this definition only involves positive cylinders.
We say vg € M(0) is an equilibrium measure for ® if

(6) hyy(0) +ve(®) = sup {h,(o)+v(P)}.
veMg (o)

The thermodynamics of the full shift of countable type on the space of two-sided sequences
o : S% O is described in the following theorem from [21].

Proposition 2.1. [21, Theorem 3.1] Let ® : SZ — R be a potential function with sup ® < oo
and strongly summable variation. The following statements hold:

(a) the variational principle holds for ®: Pg(®) = sup,e vy o) 1hv(0) + v(®)};
(b) if Pa(P) < oo there exists a unique Gibbs measure ve for ®;
(c) if v € Mo(o) then it is a unique equilibrium measure for ®.

The main idea is to reduce the problem to the (left) full shift on the set of one-sided infinite
sequences SN by constructing a potential function cohomologous to the given potential &
but which only depends on the positive coordinates of any point a € SY. The variational
principle and the existence of a unique Gibbs and equilibrium measure for the one-sided shift
and potential follows from [26, Theorem 3],[28, Theorem 1|, [6, Theorem 1.1]. The statements
of Proposition 2.1 follow by considering the natural extension of this one-sided Gibbs and
equilibrium measure.

2.2. Gibbs and equilibrium measures for the induced map. For the rest of this section
we assume M is a compact metric space, and f : M (O is a continuous map with finite
topological entropy.

Definition 2.2. We say f admits an inducing scheme (S, ) of hyperbolic type, if there exist a
countable collection S of Borel sets in M called basic elements and an inducing time function
7 : S — N such that the following holds for the inducing domain X :=J .4 J and the induced
map F : X O defined by F|J = f7)|J for all J € S. There exists a Borel set Xy C X such
that:

e v(Xy) = 0 for any F-invariant probability measure v;
° ile,JQ GS, Jl#g]g and JlﬂJg#@then Ji N Jy CXO;
e the coding map h: SZ — X given by

(7) h(a) := ﬂ F™(J,,) where a:=(...,a_1,ap,ay,...) € S”
ne”Z
is well-defined, and is a measurable bijection between SZ\ h~1(Xj) and X \ X,.
Remark 2.1. The induced map F' is multi-valued on points of intersection between elements

of S. Since no measure gives positive weight to the set of such points, this is not important
for our purpose.
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If f admits an inducing scheme (.S, 7) of hyperbolic type, the induced potential : X — R
associated to a given potential p: M — R is defined by

T—1
7= oo f
1=0

where the inducing time 7 is viewed as a function on X in the obvious way. We say the
induced potential ¥ has:

e (strongly) summable variations if ® := @ o h has (strongly) summable variations;
e finite Gurevich pressure if Pg(P) < oo.

Let M(F') denote the set of F-invariant Borel probability measures and let Mg(F) = {v €
M(F): v(p) > —oo}. An F-invariant probability measure v is a Gibbs measure for @ if there
exists an o-invariant Gibbs measure vg for ® such that vz = h.ve. We call v an equilibrium
measure for @ if v; € M5(F) and

ha(F) + v5(%) = sup {v € Mo(F): h,(F) + 1(7)}

By definition, h, preserves entropy, the Gibbs property and integrals of potentials. Hence
the next statement is a direct consequence of Proposition 2.1.

Corollary 2.3. Assume [ admits an inducing scheme (S,7) of hyperbolic type and let ¢ :
M — R be a potential with supp < oo, strongly summable variations and finite Gurewich
pressure. Then there exists a unique F-invariant Gibbs measure vy for @. If vz € Mg(F),
then it is a unique equilibrium measure for @.

2.3. Candidate equilibrium measures for the original map. We now use the Gibbs
measure for the induced map F' to construct an equilibrium measure for the original map f.
For v € M(F) with v(7) < 0o, the measure given by

L(v) = % D () evlrery
k=0

is an f-invariant Borel probability measure. Let
Mp(f):={pe M(f): n=L(v) for some v € M(F)}.
Measures in M (f) are called liftable measures. Consider a potential ¢: M — R, and let

(8) Pr(p) = sup{h,(f) + p(p): p € Mp(f)}.

We say u € ML(f) is a candidate equilibrium measure for ¢ if F,(u) = Pr(p). Candidate
equilibrium measures are equilibrium measures in the classical sense when Py (@) = P(p).

Abramov’s and Kac’s formulee [20, Theorem 2.3] relate the entropy of v and the integral of
a potential against v to the entropy of £(r) and the integral of the induced potential against
L(v). Note that the energy F,(L(v)) = #ﬂFE(V) and so it is not straightforward that an
equilibrium measure for P lifts to a candidate equilibrium measure for ¢. However, this is the
case for the equilibrium measure associated to the potential induced by ¢ — Pp(¢) and the
latter is cohomologous to ¢. Observe that by [20, Theorem 4.2] |P.(¢)| < oo whenever ¢ has
summable variations and finite Gurevich pressure.

We say @ is positive recurrent if there exists g > 0 such that

9) Pa(p— (Pr(p) —¢)) < oo forall 0 <e < ey.
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This condition implies positive recurrence condition in the sense of Sarig (e.g [28]). Indeed,
[20, Theorem 4.4] and the continuity of Pg(¢ — (Pr(p) — ¢)) with respect to € for positive
recurrent potentials @ imply Pg(¢ — Pr(¢)) = 0. This implies the existence of some N € N

such that §
nlngv{ > exp (Zm(?w)) } >0

Freg=x 1=0
which is equivalent to the positive recurrence condition of Sarig (c.f. [28, Theorem 1]).
We obtain the following:

Proposition 2.4. [21, Theorem 4.7](Existence and uniqueness of candidate equilibrium mea-
sures) Assume f admits an inducing scheme (S,7) of hyperbolic type. Let ¢ : M — R be
such that sup® < oo and @ has strongly summable variation, finite Gurevich pressure and is

positive recurrent. Then there exists a Gibbs measure v for ¢ — Pr(p). If v € Mm(F)

then it is the unique equilibrium measure for ¢ — P(p). If v(1) < 0o then L(v) is the unique
candidate equilibrium measure for .

3. CONSTRUCTION OF INDUCING SCHEME

In this section we construct an induced system (X, F') for the Hénon map f. After prelim-
inary geometric considerations in Sect.3.1 we introduce a rectangle © and show that the first
return map to it is uniformly hyperbolic with controlled distortion. In Sect.3.2 we construct
two families I'* and I'* of C! curves in © and generate a lattice A. The first return map to
A is denoted by F. In Sect.3.3 we show the uniform hyperbolicity of F', and that the set of
points in A for which F' is undefined has small Hausdorff dimension. We define the domain
X of our induced system to be the subset of A on which F' may be iterated indefinitely. In
Sect.3.4 we show that the induced map F': X O is semi-conjugated to the countable Markov
shift.

We deal with positive constants €, £, N, the purpose of which is as follows:

e ¢ < 1is the constant in the statements of Theorem and Theorem A. We shall construct
an induced system (X, F') such that any ergodic measure with entropy > 2¢ gives
positive weight to X (cf. Proposition 4.1);

e £ > 1 determines the rate of approach of points in the lattice A to the point of
tangency;

e N is a large integer and controls a lower bound of diameters of gaps of a Cantor set
in the unstable manifold, constructed in Sect.3.

Any generic constant which only depends on the Chebyshev quadratic map (and hence is
independent of €, £, N, b) is simply denoted by C.

3.1. Family of invariant manifolds. Let us from now on assume that f preserves orienta-
tion, as the proofs for the orientation reversing case are identical. Recall that P, ) denote
the fixed saddles near (1/2,0) and (—1,0) correspondingly. Let W* = W*(Q). By a rectangle
we mean any closed region bordered by two compact curves in W* and two in the stable
manifolds of P, (). By an unstable side of a rectangle we mean any of the two boundary
curves in W". A stable side is defined similarly.

Let R denote the largest possible rectangle determined by W* and W*(Q), as indicated in
Figure 1. One of its unstable sides contains the point of tangency near (0,0), which we denote
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FIGURE 2. (o) accumulate on the parabola containing the point of tangency (.
by (. Let ag denote the stable side of R which contains f¢. Let o denote the other stable
side of R.

Define a sequence (&,),>0 of compact curves in W#(P) N R inductively as follows. First,
let &g be the component of W*(P) N R containing P. Given &,_1, define &, to be one of the
two components of f~'&,_; N R which is at the left of (. Observe that &, — o as n — co.

For each n > 0, f~2a, N R consists of four curves, two of them at the left of ¢ and two at
the right. Let «,,, denote the one which is not a, 1o and is at the left of (. Among the two at
the right of ¢, let a;’,; denote the one which is at the left of the other. Then lim,, ,« o, (resp.
lim,, 0 o;F) accumulates the component of W*(Q)N R containing ¢ from the right (resp. left).
Observe that a; = a] and &y = o . By definition, the curves obey the following diagram

{orat 56, S any Bansd - ba=ar 5 ao=atf

By a C?(b)-curve we mean a closed curve such that the slopes of its tangent directions
are < Vb and the curvature is everywhere < Vb. For a C’Z(b)—curve ~v with endpoints in
U,>1 @F U a;, we define a canonical partition, by intersecting it with the countable family
(o) of pieces of stable manifolds. This is feasible by the fact that each of these pieces
intersect v exactly one point (See [33, Remark 2.1]).

Let © denote the rectangle bordered by a7 , o and the unstable sides of R. Any component
v of © N W is a C?(b)-curve [30, Lemma 2.1]. For each n > 1, let ~,, denote the element of

the canonical partition of v with endpoints in o;f, o' ;. We also denote by 7, the partition

n’ —n—1
element with endpoints in a;,_;,a; . Then, for each 7, and every 1 < i < n, f'y, Nint® = (),
and f™y, is a C?(b)-curve in © with endpoints in o, af. Namely, n is the first return time
of v, to ©.
The next proposition, the proof of which is given in Appendix Al, states that the first

return map to © is uniformly hyperbolic with controlled distortions. Let
(10) op=2—¢ and oy =4+c¢.

Proposition 3.1. There exist C' > 0 and N > 0 such that for any component v of © N W*
and each v,, n > N we have:

(a) for all v € 7, of < || Dof"|E"|| < 03

D, f"E" n n
1D B _ oy o

(b) for all z,y € v, log T—=———— <
| Dy fr| £
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3.2. Construction of families of curves.

Definition 3.2. Let I'* and I'* be two families of C'! curves in © such that:
e curves in ['® are pairwise disjoint. At most countably many pairs of curves in I'* can
intersect;
e every 7* € ' meets every v € I'¥ in exactly one point;
e there is a minimum angle between v* and +° at the point of intersection;
e endpoints of curves in T (resp. I'*) are in the stable (resp. unstable) sides of ©.
Call the set
A={y"NA°: 4% e y* eI’}
a lattice.

We now construct two families I'*, T'* of C! curves in © which generate a lattice. Denote
by I'* the collection of C?(b)-curves in W* with endpoints in o], o] and let

I = {y": 4% is the pointwise limit of a sequence in I'*}.

By the C?(b) property, the pointwise convergence is equivalent to the uniform convergence.
Since two distinct curves in I'* do not intersect each other, the uniform convergence is equiv-
alent to the C! convergence. Hence, each curve in I'* is C! and the slopes of its tangent
directions are < v/b. Since every 4% € I'* is the monotone limit of curves in ', there are at
most countably many pairs of curves in I'* that intersect.

We construct I'® as follows. For each n > N, let ©,, denote the rectangle bordered by «,,
o, and the unstable sides of ©. Let 7 denote the lower unstable side of ©. Let Q) =7\ Oy.
We call yNOy a gap of order 0. Let P, denote the canonical partition of 5 and let Py = 750]90.
For n > 0 define

(11) Q. ={z€7: fF2 ¢ Ogyn for every 0 < k < n}.

Any component of Q,,_; \ 2, is called a gap of order n. We set Qs = ()50 2. Observe that
Oy C K. B

We call a vertical C*(b)-curve a curve in © with endpoints in the unstable sides of © and
of the form

{(z(y),9): |2'(y)| < CVb,|2"(y)] < CVb}.

The next lemma is proven in Appendix A2.

Lemma 3.3. For any z € Q. there exists a vertical C*(b)-curve v*(z) C © through z with
the following properties:

(a) if f"7°(z21) Ny*(22) # 0 forn >0, then f"y*(z1) C 7*(22);

(b) [frz — fmyl < (Cb)* and ||Dfs () || <2- Hny( )| for all z, y € v*(2) and n > 0;

(¢) if 21,20 € Qoo and 71 € V*(21), T2 € V¥(22), then L(u(zy),u(z2)) < CVb|zy — 24),
where u(x;) denotes any unit vector tangent to =y (zz) at x;, i = 1,2. In particular, if
21 # 2z then v (z1) Ny (22) = 0.

Define
I ={v(2): z € Qo },
where v%(z) is the vertical C?(b)-curve satisfying Lemma 3.3.
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3.3. First return map. Consider the lattice A defined by I'* and I's: A = {y* N~*: y* €
' ~* € I'*}. We study the first return map to A. To this end we first study the transversal
structure of A. Let

W? = U e,

rySEFS
Since Qo N O, = 0 we have W N Oy = 0.
For z € K let
T(z) =inf ({n > 0: f"2 € A} U{o0}),
which is the first return time to A.

Proposition 3.4. There exists a collection Q of subsets of Qs such that:
(a) Uwegw ={z€ Qyp: 7(2) < 0},
(b) 7 is constant on each w € Q (denote this value by 7(w));
(c) for each w € Q there exists v € T such that fT“w =~y NW".

Proof. We construct @ by induction. Consider w € Py and let 1 < n(w) < N denote the
smallest integer such that f*“w C I'*. By construction, n(w) is the first return time of w to

0. We let f~) (f”(w)w N WS) € Q.
Lemma 3.5. For each w € Py, f~"«) (f"(“)w N Ws) C Qoo

Proof. By definition, f~—") (f"(”)w N WS) C Q) and if z € [ (f"(“)w N WS), then
fi@)z € 43(y) for some y € Q. We now show z € Qi) for every n > 0. Observe that
"y & Ognin by (11). Then fr7@) 2 ¢ O, v, as otherwise f"v*(y) would intersect the stable
side of O, n. However, because of contraction along v and since the stable side of O¢,yx is
contained in W?*(P), this would imply that f"v*(y) C W#(P) leading to a contradiction. Then
2 € Qpyn(w) holds for all n > 0 and since the sets €2, (. are nested this implies 2z € Q. U

Definition 3.6. By a gap of W* of order n we mean any rectangle bordered by a gap of {2,
of order n, a segment in the upper unstable side of ©, and two long stable leaves joining their
endpoints.

For the next step of the induction, consider a gap G of W?* of order g and let v C w € Q be
such that f™“)~y stretches across G. Let w’ C « be the preimage under f*“)+9 of an element

of the canonical partition such that w’ contains points of Qu. Then fm9+7®)y/ e I, where
m = n(frO90). Let @ = f-m-o-n(e) (prbatnt),s o e,

Lemma 3.7. © C Q.

Proof. Since n(w) is the first return time of w to O, fiw' N O = () for 0 < i < n(w). We
have f*@w’ C @, and so by definition of the gap G of order g, f7(f"“w’) N Ogjyy = 0
for 0 < j < g—1, and f9@w C Ogpin. Since Oginiwyijyrn C Ogjrn, Wwe in fact get
PP W) N Ogijsngysny = 0, for 0 < j < g — 1. However, since ' N Qs # 0 then
frwtay Ocgin \ Ot(gtn(w)+N, and thus w' C Qgin).

Since m is the first return time of f*“*+9u/' to O, for every g + n(w) < n < m+ g+ n(w)
we have frt @9,/ MO =, and so @ C W' C Qintgin(w)—1. Finally frtetn@g ¢ We and
WM Ony1 =0 imply ©@ C Qi gin(e). The argument of Lemma 3.5 shows f(fmHo+n@g) n
O¢nin = 0 for every n > 0, and s0 @ C QL ymtgin(w)- O



12 SAMUEL SENTI AND HIROKI TAKAHASI

This allows to complete the inductive construction of Q. [30, Lemma 2.2] implies K NW?* C
A, and so 7(z) =inf ({n > 0: f"2 e W} U {o0}).

Lemma 3.8. Let G be a gap of order g. Then for 0 <i < g, fiGNW* = 0.

Proof. Suppose there exists a point x € f{GNW?* # () for some 0 < i < g. Then f97'z ¢
O¢(g—i)+n- On the other hand, f97'z € fIG C O¢gyn C Og(y—i+n, a contradiction. O

The rest of the proof of Proposition 3.4 follows from the construction and Lemma 3.8. [

Definition 3.9. We say:
o N C Ais a u-sublattice of A if there exists I'* C I'* such that A’ = {y* N~A%: " €
I ~* e T} An s-sublattice of A is defined similarly;

e () C R? is the rectangle spanned by A’ if A’ C @ and 9Q is made up of two curves in
' and two in I'®.

Define S to be the collection of s-sublattices of A whose defining s-families are of the form
{v*(2): z € w} for some w € Q. For I € S let Q; denote the rectangle spanned by I. From
the construction it directly follows that 7 is constant on each element of S. We think of 7 as
a function on S in the obvious way.

Proposition 3.10. The following statements hold:

(P1) (Topological structure) for any I € S, 7D is a u-sublattice of A;

(P2) (Backward contraction) there exist C' > 0 and X\ > 1 such that for any y* € T'*, z € y*,
any unit vector v at z and n > 0, ||Dy-n, f"0| > CA". In particular, E* makes sense
on v* and coincides with its tangent directions;

(P3) (Hyperbolicity) for any v € T*, I € S and all z € v N Qy,

ol < ||D.fTDIEY| < o3P,

Here, 01,09 are the constants from (10);
(P4) (Distortion control)
(a) for any v € T" and z,y € YN Qy,

1D: f7 DB (1 (D),].
8D, OB < OlfTDz — [T Dy];
(b) for any v € I'* and all z,y € v°, n > 1,
Do [T B < 2+ | Dy f"1E]].
Proof. To show (P1) it suffices to show that for any v € T%, fT0)(yNI) € T* This follows
from the construction. (P2) follows from the backward contraction on the leaves in I'* (sce
30, Lemma 4.2]) and the fact that any leaf in I'* is a C'-limit of leaves in ['*. Since f7(”)

is a composition of first return maps to ©, (P3) and (P4)(a) follow from the estimates in
Proposition 3.1. (P4)(b) follows from Lemma 3.3(b). O

3.4. Symbolic coding. Let

B={z€ K:7(2) = o0}.
Define an induced map F: A\ B — A by Fz = f7*)z, which is the first return map to A.
Observe that AN B = A\ J;eg . Let

E=DBnA,
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and define the corresponding inducing domain X by

X=A\|JFE
n>0
This is the set of points in A for which F' may be iterated indefinitely. The corresponding
collection S of basic elements is defined by

S={InX:IeS}

Observe that any basic element is an s-sublattice of A, and X = (Jg.,J. The next Markov
property allows us to represent (the natural extension of) the induced system F': X O as a
countable two-sided full shift.

Lemma 3.11. For any J € S, FJ is a u-sublattice of X.

Proof. Any J € S has the form J =1\,  F "E, I € S. Hence F.J = FI\U,so F"E,
which is a u-sublattice of X. - - U

The next lemma ensures that the set of points for which the coding is not uniquely defined
carries no invariant probability measure.

Lemma 3.12. ]f Ji,Js € S, Ji 7’é Jo and Jy N Jy 7§ @, then J1 N Jy C WH(P) \ {P}

Proof. 1t is obvious that 7(J;) # 7(J2). Without loss of generality we may assume 7(J;) <
7(J2). By Lemma 3.11, f7/1)J; is an u-sublattice of X, while f7(/1).J, is contained in some
gap of W? say GG. Hence, the intersection is contained in the stable side of the rectangle G,
which is contained in W?*(P) by construction. Hence the desired inclusion holds. U

Define a coding map h: SZ — X by (7). Observe that FF'oh = h o o, and no F-invariant
probability measure gives positive weight to Xy := W?*(P) \ {P}. Then Lemma 3.12 and the
next lemma ensure that (5, 7) is an inducing scheme of hyperbolic type.

Lemma 3.13. h defines a measurable bijection between SZ\ h=1X, and X \ X,.

Proof. First we show that h is well-defined. Let a = (a,), € SZ For every n > 0,
h(|ag, ..., ay]) is an s-sublattice of A, strictly decreasing in n. By (P2) and Lemma 3.3 (b),
the stable sides of the rectangles spanned by these sublattices converge, in the C'! topology,
to a curve whose tangent direction has large slope. On the other hand, for every n > 0,
h([a_p,...,a_1]) is a strictly decreasing u-sublattice of A. By (P1) the unstable sides of the
rectangle spanned by these sublattices converge, in the C' topology, to a C' curve whose
tangent direction has small slopes. Thus the intersection of the two sets (,~, h([ao, - - ., an])
and (,-q h([a—n,...,a_1]) are curves, intersecting each other exactly at one point. Hence,
h(a) is well-defined. From the uniform hyperbolicity of F' and the fact that the cylinder sets
form a base of the topology in SZ, h is continuous. It is obviously surjective, and from Lemma
3.12 it defines a bijection between S\ h™'X, and X \ X,. By the continuity of h and [30,
Claim 3.3], it is a measurable bijection. O

3.5. Hausdorff dimension of exceptional sets. For v € T+, let
Quo(7) ={2€7: ["2 ¢ Ogyn for every n > 0}.

In particular, Qo (7) = Q. Although Q. (y) depends on N, we will not explicitly express
this dependency in the notation (except in the proof of Lemma 4.3).
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Lemma 3.14. for each v € I'*, HD (Q4(y) N B) < e.

Proof. Given j > 1 and a j-string (ki,...,k;) of positive integers, we define collections
Q(k1), Ok, ka), ..., Q(k1, ko, ..., k;) of pairwise disjoint curves in 7 inductively as follows.
Let

Q(k1) = {wi C y: ffw €TV}
Given Q(ky, ..., k;), for each w; € Q(ky, ..., k;) let
Qwi, ki) = {wip1 C wye frrthithinng, e T},
and define
Qlkr,.- ki) = | Qi kin).
wi €9Q(k1,.eey k;)
For each sufficiently large integer n, let

Qn(ky, ... ki) ={w; € Qlky,... ki): sup{7(2): z € w;} > n}.
For each w; € Q,(k1,...,k;), let

On(wi, kiv1) = {wip1 € Qws, kip1): sup{7(2): z € w1} > n}.
Let wy = v and Q,,(wo, k1) = Q,(k1).
Sublemma 3.15. If £ > 2/3 and N > 2(1 + &), then for every n > 6N and for any z € v

with 7(z) > n there exist an integer 1 < s <n/N, and for each i =1,...,s an integer k; > N
and a curve w; € Qu(ky, ..., k;) such that:
k1++k52 :;n_g;
ZEewg C - Cwy;
{w) < Oy 1),
Fit1

foreachi=0,...;8s =1, #Qu(w;, kit1) < 27¢

(a
(b
(c
(d

~— — ~— ~—

Proof. Define a sequence 0 =: tg < t; < --- of return times to © inductively as follows: given
t; such that f'z is in the gap of W* of order g;, define

tipn =min{t > t;+ g, + g + N: f'2 € O}.
Note that (¢;) are not the only return times of the orbit of z to ©. Since g; > 0 we have
(12) tign—t; > N.
Define s = max{i: t; < n} + 1. (12) gives s < n/N. We also have
n
13 ts—1+gs—1 > —.
(13) 1T Gs—1 3¢
For otherwise t,_1 + gs_1 < 3%, and s0 £(ts—1 4+ gs—1) + N < [n/2] and Op, 2] € O¢(r, 149, 1)+N-
The assumption z € Qoo (7) gives ff 1912 ¢ Ogy,  4g. )+ (see (11)), and so fro119-12 ¢
On/2). On the other hand, since f'*-'z is in a gap of order g,_; we have fls-1%9:-12 ¢
O¢g. ,+n- Let r denote the first return time of f'—1%9-12 to ©. Then r > {gs_1 + N, and so
ts =ts-1+ gs—1 + 7. Since r < [n/2] we have ¢, < gt + n/2 < n, which is a contradiction.
For each i = 0,...,s — 1, define k;; 1 = t;11 —t;. Since ky + -+ ky =ty > to1 + gs_1,
(a) follows from (13). For each i = 1,...,s, let w; denote the curve in Q,(ky,...,k;) which
contains z. Then (b) is straightforward. (c) follows from Proposition 3.1.



EQUILIBRIUM MEASURES FOR THE HENON MAP AT THE FIRST BIFURCATION 15
Claim 3.16. For any w11 € Qn(wi, kit1), ffrT*w, 1 is contained in a gap of W2.

Proof. Let z € w;y1 be such that 7(z) > n, and assume that f¥* %, ; is not contained in
the gap containing f** %z Then the interior of f** *%w; , contains a boundary point
of the gap. It follows that frit—+kithiviy, | ¢ T a contradiction. O

For (d), observe that for any gap G of W* we have
(14) #{wit1 € Qu(wi, kia): fA7  Hiw G =0o0r =2,

since gaps are not folded up to their order, and f/GNO = for g; < j < kix1 — g; by the
definition of #;,4.

Let gy denote the maximal order of the gap of W* which contains f¥+*ki_images of
elements of Q,(w;, ki+1). If a gap G is of order gy, then f%G C Oy yn. Hence gy + £go +
N < kiyq holds. From (14) and the fact that the number of gaps of order g is < 29 we

ki1 -N kit1
obtain #9,(w;, kit1) < 239,28 < 2 e 2 < 27% . The last inequality holds provided
N>2(1+¢). O

Returning to the proof of Lemma 3.14, we have

(%] o
n} C L:J1 U U U Ws.

:[%] ki+-+ks=l WSEQ’VL(kla"'7kS)

{z € Qx(7): 7(2)

\Y

By Sublemma 3.15(a)(c), the lengths of the curves w; in the union of the right-hand-side are
exponentially small in n. We show that ) {(ws)® is finite for all n.
Observe that

(15) DR D SN D M

Wit+1€Qn (K1, kit1) w; €Qn(k1,...,k;) Wit+1€Qn(wi,kiy1)

all relevant wsg

On the second sum of the fractions, let w;y1 € Q,(w;, ki1). Since £(fFrFFiriy, 1) < 2 and
| Dy fri+1 | EY|| > o for all & € fAtthig, 1 we have £(fF1 Thiw, 1) < Cop ™. From this
and the bounded distortion in Proposition 3.1,

U(wit1) O(fP i) —k;
< . < i+l
lw;) — ¢ O(flatthi,) — Con

Using (16) and Sublemma 3.15(d),

(16)

Hwi1)® e _—€kit1 e _—5kit1
Z ﬁg#gn(wukﬁl)c 01 it < Coy o

Plugging this into the right-hand-side of (15) we get
(17) > Uwin)T <C0 YT w)

Wi €Q9n (k1,...kit1) Wi €Qn (k1,...,k;)

Wit+1€Qn (wi,kit1)

The same arguments as above applied to any w; € Q, (k1) yield

(18) N lw) < CHQu (ko < Oy P

w1E€Qn (k1)
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Using (17) inductively and (18) yields
Z O(wy)® < Cas(j;%(kl+"'+ks).

ws€Qn (kl ----- ks)

Using this and Stirling’s formula for factorials we have

Z Z Z €<w8>5 < OFs Z 0151#{(k1,...,k55)3 Z/{,‘Z :l}

]kl—l- Fks=lws€Qy (ki,....ks) l:[é‘l&]
S e
< Cc*® Z (71_5 515
=[]

where f — 1 as N — oco. Hence

S Z Z wy)® < cx f: Jfglﬁl
s = CE 1 1 '
1 l:[gﬂ] kit tks=l ws€Qn (k1,....ks) l:[?%]

2|3

WE

S

s

Since N is chosen after ¢ and &, one can choose N large enough so that the expression on
the right-hand-side decays exponentially with n. Consequently the Hausdorff e-measure of
Qo (y) N B is zero. O

3.6. Small growth rate of the number of basic elements. Let
S(n) :=#{J € S:7(J) =n}.
Proposition 3.17. For any € > 0 there em’st & and N large such that

lim — log S(n) <

n—oo 1,

Proof. For each J € S with 7(J) = n, let w; denote the unstable side of the rectangle @,
spanned by J which is contained in 7. Observe that there exists 1 < s < n/N and a s-string
(k1,...,ks) of positive integers such that ky + -+ + ks =n and wy € Q,(ky, ..., ks). For two
distinet Jp, Jp € S with 7(J;) = 7(J2) = n, one has wy, Nwy, = 0. Therefore,

n/N

n) <> > #Qu(ky, . k).

s=1 ki+-+ks=n

Sublemma 3.15(d) implies #Q,,(k1, ..., ks) < o e < 2¢. Substituting this into the right-
hand-side of the previous inequality we obtain S(n) < %5"2%, and thus nli_)_n;on’1 log S(n) <
log B+ (1/&)log 2, which can be made arbitrarily small by choosing large &, V. O
4. EFFICIENCY OF THE INDUCING SCHEME
The purpose of this section is to prove the next
Proposition 4.1. For any p € M°(f) with h(p) > 2e, p(A) > 0.

It follows that any ergodic measure with not too small entropy is liftable to the tower
associated with the induced system (X, F') constructed in Sect.3.
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Corollary 4.2. Any p € ME(f) with h(p) > 2¢ is liftable.

Proof. Proposition 4.1 gives p(A) > 0. Since F is a first return map to A, the Poincaré
recurrence gives (X ) > 0. Since F' is the first return map to X as well, Kac’s formula [29,
Theorem 1.6] gives [, 7du =1, and so 7 is p-integrable. By [37], u is liftable. O

The rest of this section is devoted to the proof of Proposition 4.1. In Sect.4.1 we improve
Lemma 3.14 and give a better control of the dimension of the set of points which do not
return to A. In Sect.4.2 we recall some general results on invariant manifolds of nonuniformly
hyperbolic systems which we then use to complete the proof of the proposition.

4.1. Dimension of the set of points not returning to A. We show that the set B is
small in terms of Hausdorff dimension.

Lemma 4.3. For any v € I'* we have HD(y N B) < ¢.

Lemma 4.4. For any relatively open curve v in W intersecting K there exist a countable set
A CynNW*(Q), a countable collection {y,}n of curves in v and a sequence {a,} of positive
integers such that:

() (v K)\ A € Uy
(b) forry, € T

Proof. A successive use of Proposition 3.1 implies that all but countably many points in yN K
have arbitrarily small neighborhoods in W* which are mapped by some positive iterates to
curves in ['. U

The countable stability of Hausdorff dimension additionally yields:
Corollary 4.5. For any relatively open curve v C W*, HD(yN B) < e.
Proof of Lemma 4.3. Choose & = £(g) > 1 so that

(19) n =20, < 1.

We call [ > 0 a close return time of z € v if | = min{i > 0: f'2 € Ogin}. Let ly,la,... be
defined inductively as follows: [y is the first close return time of z; given [y, ..., l;_1, let [ be
close return time of fi+*h-12 Obviously l, > €l,_; + N and [; > 1, and so
(20) Iy > ¢
If [1,...,l; are defined in this way, we say z has k close returns and denote by =, the set of

z € v which have k close returns. Let =, = ﬂk21 =k
Sublemma 4.6. HD(Z,,) < e.

Proof. Let U, denote the collection of components of =;. Then for each u; € U there exist a
sequence [; < --- < [, of positive integers and a nested sequence u; O - -+ D wuy of curves such
that for each i = 1,..., k, fat+liy, is a C?(b)-curve stretching across O¢,4n. Forup_1 € Uy
and I > 0 let

R(up—1,lx) = {ur € Uy: I is the close return time of points in /17 FHe-1g 1,

- UU U =

up_1€Ur_1 i up€R(uk—1,lk)

By definition,
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where the second union runs over all possible lj. For each uy € R(u_1,(x), let Uy denote the
curve in u;_; containing uy such that fi+-+g, € T* Since fi+ -+ |7, is a composition of
first return maps to ©, the distortion is uniformly bounded by Proposition 3.1. Hence
Iyl
((uy) < f(gk) < e ”Ek) < Corth
Clug—r) = C(ug) — L(fHrthuy)
Using #R (ug_1,lx) < 2%, (20) and then (19) we get

é( )E € —€ g, £F1
Y Y qmipsc X atieont

Iy up€R(up—1,lk) lp>¢gk—1
Hence
15 €<uk)€ e Ekfl €
2 M= 3 Mu) (D D, g | <O ) fu)
up €U Uk —1€UK—1 Ik up€R(uk—1,lk) k=l Uk —1€UK 1

Using this recursively for k we get

Z E(uk)a < Ce(k—l)an;léhi*l Z g(ul)e

up €Uy, u1 €U

The right-hand-side goes to 0 as k — oo, and thus the Hausdorff e-measure of =, is 0. U

Returning to the proof of Lemma 4.3, observe that =, \ Z,,11 is decomposed into a countable
collection of preimages of sets of the form QY (y), M > N, v € T* (see the definition before
Lemma 3.14). Lemma 3.14 yields HD ((Z, \ Z,4+1) N B) < ¢, and also HD ((y\ Z1) N B) < e.
These two estimates and the one in Sublemma 4.6 yields the desired one. U

4.2. Positive measure of the set of points returning to A. In order to complete the proof
of Proposition 4.1 we need to recall a few general results on stable and unstable manifolds of
nonuniformly hyperbolic systems from [19, 25] which hold for our system since any p € M*(f)
has one positive and one negative Lyapunov exponent, by [7].

For any p € M°(f) there exist Borel subsets Iy C I'y C --- C K such that supp(u) =
I'w := U, and sequences of positive numbers 6,, > ¢€,, possibly — 0 as n — oo, such that,
for x € I',:

(N1) the unstable manifold W*(z) of z (see (3)) is an injectively immersed C? submanifold

with T,W*(z) = E"(x). An analogous statement holds for the stable manifold W*(zx).

Let B¥(x) (resp. Bi(x)) denote the ball of radius § centered at the origin of T,R? in E*(x)
(resp. E*(z)) and Bj(z) := Bj(x) x Bj(z). Let I'y(x) := {y € I',,;: |x —y| < €,} and for
y € ['y(z), let W¥(y) denote the connected component of exp, ' (W*(y) Nexp,(Bs,(x))) that
contains exp, ' y.

(N2) For all y € I';,(x), W3 (y) is the graph of a function ¢: Bf (r) — Bj (x) with |[Del| <
100, for a conveniently chosen metric. An analogous statement holds for W2 (y).

(N3) For z € Uer, (o) Wa (y), let F*(2) denote the element of {W7(y)}yer, z) which contains
z. Then z +— T,F*(z) is Lipschitz continuous.

(N4) The holonomy map m: X1 N U,er, () Wa (y) — 22 defined by 7(y) = W7 (y) N X, for
any graph %; (i = 1,2) of a C* function Vi By (x) — Bj () with ||[Dyy]| < & is
bi-Lipschitz continuous. In particular, it preserves Hausdorff dimension.
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Remark 4.1. Since dim E* = 1 the constant « in the bunching condition [11, (19.1.1)] can
be taken to be 1. Then (N3) follows from a slight modification of the proof of [11, Theorem
19.1.6]. (N4) follows from (N3) and the fact that dim E* = 1.

Let x € I'. For each n > 0 consider a countable covering {I',(z;)}; of I';, N W*(x) such
that (J, Wit (z) = Iy N W*(x), where Wt (2;) := exp, W (2). Let By = Wi (2) N B.

Lemma 4.7. HD(B;) < e.

Proof. By Katok’s closing lemma [11, Theorem S.4.13], there exists a periodic saddle p; €
['n(z;) such that W (p;) is the graph of a function ¢: BY (2;) — Bj (2) with [[Del| <
1—(1)0. Since W*(p;) and W" have transverse intersections, the Inclination Lemma implies the
existence of a connected component of exp,'(W") N By, (%) that is the graph of a function
¢: B (z) — Bj (%) with [|[Dy]| < g5. Let m be the holonomy map between W (z;) and
exp., (graph(1))).

Claim 4.8. 7(x) € B if and only if x € B.

Proof. If z ¢ B then there exist k > 0 and v* € I'* such that f*z € v*. We have f*W¢ _(z) C
Wi (ffz) and v* € We(fFz). We have W _(f*z) C ~*, for otherwise W (f*z) contains
points that escape to infinity. Since both x and 7(x) belong to Wy () then f*(r(z)) € T'* so
7(x) ¢ B. The same reasoning yields the converse. U

By Claim 4.8, 7(B;) C B and Lemma 4.5 gives HD(7(B;)) < . (N4) yields HD(B;) <e. O

To complete the proof of Proposition 4.1, observe that since I', N W*(z) N B C |, B;,
Lemma 4.7 yields HD(I',, nW*(z) N B) < ¢ for every n > 0, and thus HD(I'owe N W*(2) N B) <
e. Let {i;}rer,, denote the canonical system of conditional measures of p along unstable

manifolds. The dimension formula [12] gives dim(u,) = dimy () = flo};(lﬂ 7 > € and thus
(W (x)NTwNB) < 1 and p, (W*(x))cUl'S, UB) > 0. Since p, (W*(x))¢) =0 = u,(I'S)
we have j(B°) = [, . p1z(B°)dp(x) > 0. The f-invariance of p yields u(A) > 0. O

5. PROOFS OF THE THEOREMS

In this last section we prove the theorems. Prior to Theorem A we prove Theorem B in
Sect.5.1. In Sect.5.2 we show that the induced potential ©;: X — R has strongly summabe
variations and finite Gurevich pressure. In Sect.5.3 we define two numbers ¢t < 0 < ¢, and
show that @y is positive recurrent for any ¢ € (t_,t, ). From Proposition 2.4 it follows that for
any t € (t_,t,) there exists a unique measure which minimizes the free energy among measures
which are liftable to the inducing scheme. In Sect.5.4 we complete the proof of Theorem A
by showing that this candidate measure is indeed a t-conformal measure. In Sect.6 we prove
Theorem C and Theorem D.

5.1. Unstable Hausdorff dimension of K. In this subsection we prove Theorem B. To
this end we need a couple of lemmas.

Lemma 5.1. ¢* > 103;2.
ogh

Proof. Consider the line through the points (0,1log2) and (¢*,0) which are on the pressure
curve {(t,P(t)): t € R}. The point (—1,(1/t*)log2 + log2) lies on this line. Since the
pressure curve is concave up, we have (1/t*)log2 + log2 < P(—1). Since ||Df| < logh we
have P(—1) <log2 + log5, and thus the desired inequality holds. O
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For pn € M(f), let
A (p) = /log J4dp.
A proof of the next lemma is given in Appendix A3.
Lemma 5.2. inf{\"(u): p € M(f)} > log(2 —¢).

Proof of Theorem B. By Lemma 3.3, the tangent directions of the curves in I'* vary in a
Lipschitz continuous way. Then the holonomy map between two curves in ['* along ~5-curves
is Lipschitz continuous, and thus the Hausdorff dimension of v N X is independent of the
choice of v € T™. This number is denoted by d*(X).

Lemma 5.3. d“(X) = t".

Proof. Fix Jy € S. Consider the covering U,, of ¥ N Jy by n-cylinders. Using the bounded
distortion of the inducing scheme, for some C' > 0 we have

YUy <ct Y exp (—tZlog ||DF|Eu(Fim)||> .

Ueldn zEFNJY i=0
Frgeys(x)

The expression of the right-hand-side has the growth rate Pg(®;) as n increases. Choose
e > 0 so that P(t) < 0 holds for all t € I(e) := (t*,t* 4+ €¢). By Lemma 5.8, ; has finite
Gurevich pressure for all ¢ € I(e). It is strongly summable by Proposition 5.7, and hence,
there exists a unique F-invariant Gibbs measure v for @;. We also have vz (1) < co. The
variational principle and Abramov’s and Kac’s formulae [20, Theorem 2.3] yield P (%) < 0.
Hence the Hausdorff t-measure of 7N .Jy is 0. Since t € I(e) is arbitrary, d“(X) = HD(yNJy) =
HD(HF N X) <t

To show the reverse inequality, pick an ergodic t"“-conformal measure, which was proved
to exist in [30, Theorem| and denote it by pw. The dimension formula gives h(p.) =
dim g (pree )A"(pee).  Using the equation Fy,, () = 0, ¢ < 1 and Lemma 5.1 we have
dimpg(p) = t* > 4e. From this and Lemma 5.2 we have h(uw) > 2e. By Proposition
4.1, py is liftable. Let {1, }, denote the canonical system of conditional measures of j. along
unstable manifolds. Since p. gives full weight to the set Y := |, o, /"X, vo (W"(2)NY) =1
holds for prpu-a.e. z. (P3) gives v(z) C W¥(z), and thus W¥(z) NY =, -, f*(v*(z) N X).
Since dimy (v) = dim(v,) = t* we have HD(y%(z) N X) > t*, and therefore d*(X) > t*. This
completes the proof of Lemma 5.3. U

Take any relatively open curve v C W* intersecting K. We show HD(yN K) = d*(X). The
first statement of Theorem B follows from this and Lemma 5.3. .

By Lemma 4.4, there exist n > 0 and a curve w C 7 such that f"w € I'*. Hence we have
d“(X) < HD(w N fX) < HD(y N K). To show the reverse inequality, we use Lemma 4.4
to take a countable collection (,) of curves in 7, and a sequence (a,,) of positive integers so
that fo~, € I'* holds. The set (f*~, N K)\ X is decomposed into a countable collection
of sets which are sent by some positive iterates to sets of the form v N (A \ X), v € T
Lemma 4.3 implies HD((f* v, N K) \ X) < ¢, and therefore HD(y, N K) = HD(f*~, N
K) < max{e,d"(X)} = d*(X). The last inequality follows from Lemma 5.3. This yields
HD(y N K) < d“(X).
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To complete the proof of Theorem B it is left to show t* — 1 as b — 0. Let S,, denote the
open domain bounded by a and the unstable sides of R.

Lemma 5.4. For anyn > 0 and € there exists b’ > 0 such that if b <V then:

(a) ifi>1,2€7\S, and fz,..., [z ¢ S,, then | DfI|E*(2)| <2 +e.
(b) If y CH\ S, is a C*(b)-curve, then fv is C*(b).
Proof. Immediate from the form of our map (1). O
Let 7o denote the C?(b)-curve in A with endpoints in af. Obviously 7 N K D 7 \
Uiso f75Sn =t Npey Bk, where Ey = 49 and Ej, = Ej_; \ f"7S, for k > 1. Observe that
Mo Ex is a Cantor set in 7. For each component of F' of Ej_;, either F'\ Ej, is contained

in the interior of F, or else F'is a component of E). The next lemma indicates that the latter
case rarely occurs.

Lemma 5.5. Let F©© 5 F() 5 ... be a nested sequence of closed curves in 7y such that F®
is a component of E; (i =0,1,...). For every k > 1,

) ) k
{ie[l,k]: FO-U = FO}y < Z 4 1.
n

Proof. Tt is not hard to see that if F¢~Y = F@ then FU—D £ FU) holds for j =i+1,...,i+
n. U

Lemma 5.6. For every k > 0 and any component F of Ey, ((F) > (24 ¢)7% L.

Proof. By Lemma 5.4(b), f*F is a C?(b)-curve. We first treat the case where the endpoints
of fFF are in f(o, Ue;l) and a;, p > 1. Then, {(f*F) > 1 and so Lemma 5.4(a) yields
UF) > (24¢)7"

Next we treat the case where the endpoints of f*F are in f(a,; Uc,") and of. Then the
endpoints of the C?(b)-curve f*1F are in (o, Ua;) C &, and «f , and so £(f*1F) > 1.
Hence Lemma 5.4(a) yields ((F) > (2 +¢)7 %L O

Let p be the natural mass distribution on (;, Ej, so that each of the components of Ej

carry a mass < 9—k(1-3) by Lemma 5.5. Let U be a small curve in 75 and £ > 0 the large
integer such that

2+e) P <U) <2+
By Lemma 5.6, U can intersect at most two of the components of Ej, and so

—(k(1=1)-1)1og 2 (k(1—1)-1)log2 log 2

p(U) < 27K+ = (2 4 o)™ Twzre < ((U) G2 totre) < ((U)oaeie)

where the last inequality holds for a given € > 0 provided n, k are sufficiently large. The Mass

Distribution Principle [9, p.60] yields HD((,—, Ex) > loé((’gie). The right-hand-side can be

made arbitrarily close to 1 by choosing sufficiently small € > 0 and then choosing sufficiently
small b. Since ¥ N K D (), E) and t* = HD(y N K) from the first statement of Theorem B,

we obtain t* — 1 as b — 0. O
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5.2. Strong summability and finite Gurewich pressure. Observe that for z € X we
have Zg‘é)_l JU(f'z) = ||DF|E*“(z)||. We now prove that the potential function p;(z) :=
—tlog ||DF|E*(z)|| has strongly summable variations (i.e. the potential t® = ©; o h has
strongly summable variations).

Lemma 5.7. There exists C' > 0 such that for every n > 0, V,(®) < Cbo;". In particular,
t® has strongly summable variations for any t € R.

Proof Take a,a’ € S% such that a; = a} for every —n +1 < i <n —1. Let T = F'(h(a)),
zi = F'(h(d)). Let y denote the point of intersection between v (x_y,) and y*(z",,). We have

7(20)—1 T(z0)—1 7(x0)—1

JU(f'xo) JU(f*x0) JUf ()
)= RI=] 2o | < | R E|T| & |

By the F-invariance of the y*-curves, F'(F"y) € ~*(z}) for 0 < i < n — 1. Hence z; and
F’(F”y) belong to the same basic element for 0 < ¢ < n — 1. By the F-invariance of the
yi-curves, z; and F'(F"y) belong to the same v“-curves for 0 < i < n — 1. Proposition
3.10(P3) implies |21 — F(F"y)| < o;". Using this and Proposition 3.10(P4)(a) we have

7(x0)—1

Ju(fixo) m(xo) . " n
(21) ZO o8 i (Fng) < C|fT)gy — F(F™y)| < Coy™

To estimate the second summand, for z € T let ¢“(z) denote the unit vector with a positive
first component which spans E"(z). From the bounded distortion in (P4)(b) and the proof
of Lemma 3.3 in Appendix A2 we have ||[Df7(2)e“(z)|| > (1/2)x? for every j > 1, where
Kk = 5"UFON Then the angle estimate in [35, Claim 5.3] yields

L(DF(F y)e"(F"y), Dfi(xf)e" (xh)) < (Cb)'F"

From the contraction along the vy*-curves we have

IDF(FI(F™y)) — DF(fixp)| < CIF (F™y) — fiap] < (Cb)2|F™y — ap] < (Cb)F
Hence
TH(fi(Fy))

Je(fixp)

Df ™ (Fry)e(Fy) D™ (ap)e (ap)

1D E e (Ery)ll - |Df (p)et (zp)l] |

<Cb! (IIDf (f'(F™y)) = Df(flap)|| + CL(Df (FMy)e" (F y), D f*(xg)e" (x()))
< (Cb)2"~

The first inequality follows from the fact that |log(1+)| < |[¢| for ¢» > 0 and J* > b/5. The
second one follows from the triangle inequality. Then

'log ‘ < Cp!

7(x0)—1

Ju fZ(Fn )) iy itn_q n_q
ox T <5 on < emi

(21) (22) yield the desired inequality. O

(22)

*M
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We show the finiteness of the Gurewich pressure of the induced potential of a ”shifted”
potential. For t,c € R define
_ E eCT(J)

Jes
and

tlogoy — lim (1/n)log S(n) if t <O0;
n—oo

t) = it
(?) tlogo, — Tim (1/n)log S(n) if ¢ > 0.
n—oo

By Proposition 3.10(P3)(P4), for some C' > 0 we have

CY sy S(n)emoy™ if t < 0;

23 T, <
(23) e = {CZ@N@C”JIW ift > 0.

Lemma 5.8. If ¢ < ¢y(t), then T}, < 0o and Pg (¢ + ¢) < 00.

Proof. In the case t > 0, using the second alternative of (23) we have

Tic < CZexp (n <c—tlog01 + — L log S(n ))) < 0.

n>N

The case t < 0 can be handled similarly.
As for the Gurewich pressure, fix Jy € S. Observe that ¢, + ¢ = —tlog||Df7|E"|| + ¢7 and
S0,

n—1
- 1
PG(SOt+C):7}I—>H;oﬁlOg Z exp(zo e+ ¢)( )

z€FNJg
Frgeys(xz)

1 - n
< lim —log (Z sup exp (¢¢ +c)(x)> < lim —log(C' Ti)" =logT, . < oo,

n—oo M Tes xeJ n—oo 1

where C' > 0 is a uniform constant. OJ

5.3. Positive recurrence. We now define
tA" (pa) and £ — EN (g
X (pe) — log(2 — &) + v/ T M) —log(A+2) — 7

Lemma 5.9. \“(uw) — log2 as b — 0.

(24) ty =

Proof. The topological entropy of f is log2. The relation Fu(pw) = 0 and the variational
principle give A*(uu) < log2/t". On the other hand, Lemma 5.2 gives A*(pyu) > log(2 — ¢).
Since t* — 1 as b — 0 as in Theorem B and € > 0 can be made arbitrarily small by choosing
small b, we get the claim. O

Lemma 5.9 implies that the definition of ¢+ make sense. It also implies that for any given
€ > 0 one can choose ¢ and by € (0,by) so that if b < by then (—1+4¢€,1/¢) C (t_,15).

Proposition 5.10. Ift € (t_,t), then @y is positive recurrent.
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Proof. Let Mp(f) denote the set of liftable measures to the inducing scheme constructed in
Sect. 3. Let

P, = sup{Fy,,(n): p € Mp(f)}.
In view of Lemma 5.8 it suffices to show that one can choose 79 > 0 so that T; _(p,_,) is finite

for all 0 < n < ny. To show this we first estimate P; from below. In the proof of Theorem B
we have shown that p. is liftable. Hence

(25) Py = Fp, () = h(pgn) — tA" (pge) = (8 = O)X" (pag).-
To show the finiteness of T, _(p,_,) we consider the following three cases.

Case I: 0 < t* < t < t,. Using (25) and the fact that o; =2 — ¢ in (10) we have
1 1
—P, —tlogo; + —log S(n) < (t — t“)\*(up) — tlog(2 — ) + —log S(n).
n n

By the definition of ¢, in (24) and Proposition 3.17, the number of the right-hand-side is
strictly negative for all large n. Therefore for sufficiently small n > 0,

1
T (Prn) < OZexp (n <—B +n—tlogo; + - log S(n))) < 00.

n>0

Case 1I: 0 < t < t“. Jensen’s inequality applied to the convex function z — z! yields
t

DU ST Y )
7(J)=n 7(J)=n
Using this and the upper bound of S(n) in Proposition 3.17 we have

e N () < exp ((n + (t — )N () — %log 0—1) n)

7(J)=n
2t
< exp ((n — "N ) + 3 log 2> n) .

Since t* — 1 and A(pw) — log2 as b — 1, the exponent is strictly negative for sufficiently
small > 0. Therefore T; _(p,_,) < oo holds.

Case III: t_ <t < 0. Using (8) and the fact that 0o = 4 + ¢ in (10) we have
1 1
—P, —tlog o, + - logS(n) < (t —t“)\"(pp) — tlog(4d+¢) + - log S(n).

By the definition of ¢_ in (24) and Proposition 3.17, the number of the right-hand-side is
strictly negative for all large n. Therefore for sufficiently small n > 0,

1
T (pin) < CY_exp (n (—(Pt — 1) — tlogoy + —log S(”))) < 0.

n>0

This completes the proof of Proposition 5.10. U

Corollary 5.11. For anyt € (t_,ty) there exists a unique equilibrium measure for ¢, among
all liftable measures.
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Proof. Choose ¢ < c¢y(t) so that —¢ > 1. Then ¢; + ¢ has finite Gurevich pressure, and
is strongly summable by Proposition 5.7. Observe that Pr(¢; + ¢) = Pr(p:) + ¢ and so
ot + ¢ — Pr(ee + ¢) = ¢y — Pr(p;). Since ¢y is positive recurrent by Lemma 5.10, so is ¢; + c.
By Proposition 2.4, there exists a Gibbs measure v; . For any J € S and for all z € J,

VarrelJ) < Cexp (—Pa(f ) + P ¥ ole)) < Ce o@D ma (o7 ™), 07

and therefore

(26) Z T(S)vee(J) < C'S(n)e PePiFoeen max (o7, 05™).
Jes
7(J)=n

The right-hand-side has a negative growth rate as n increases. Hence v 4-(7) < oo holds.
By Proposition 2.4, there exists a unique equilibrium measure for ¢; + ¢ among all liftable
measures. Since @; + ¢ is cohomologous to ¢y, they yield the same equilibrium measures. [

5.4. Uniqueness of t-conformal measures. We finish the proof of Theorem A. We start
with preliminary estimates of 4. Define

Adup 1= sup{A“(p): p € MO(f)} and A, = inf{A\"(p): p € M(f)}.

Lemma 5.12. We have
N (g ) — 2 TN (ppu ) — 2

+ < (i) ug and t_ > (i) =
AU (:utu) - )\inf )‘u(:ut“> - )‘gup

Proof. A direct computation gives
PN () =26 1N (e )Ny — 108(2 — ) + V&) — 2e(A*(pup) — log(2 — €) + VE)
AU () — A i (A(ptee) = Mg ) (N (pge) — log(2 — €) + V/€)

The denominator of the fraction of the right-hand-side is positive. Since t* — 1 and A\*(up) —

log 2 as b — 0, the first term of the numerator is > (1/2)+/2. Hence the numerator is positive.
Hence the first inequality holds. A proof of the second one is analogous. 0

t

Proof of Theorem A. Let t € (t_,t,). In view of Corollary 5.11 we need to consider measures
which do not give positive weight to X. Since

sup{Fy, (pn): p € M(f), W(X) =0} = sup{F,, (n): p € M(f), u(X) =0},
we may restrict ourselves to ergodic measures. It suffices to show
(27) sup{F,, (1n): p € M(f), p(X) =0} < P.

We argue by contradiction assuming (27) is false. Then, for any § > 0 there exists u €
ME(f) such that u(X) =0 and h(u) — tA"(u) > P, — 0. (8) yields

h(p) 2 ¢ (A (1) = A*(pagee)) + E“X (pgn) — 0.
For the rest of the proof we deal with two cases separately.
Case I: t > 0. We have h(u) >t (Al — A (pen)) + t“AN(pn) — 6. Since § > 0 is arbitrary we
get
(28) h(p) =t (Aye = A (peee)) + N (g
(28) and the first inequality in Lemma 5.12 yield h(u) > 2e. Proposition 4.1 gives u(X) > 0,
which is a contradiction.
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Case II: t < 0. We have h(u) >t (A4, — A(pgn)) + t“N*(py) — 6. Since § > 0 is arbitrary
we get

(29) h(p) >t (A — A (e )) + X ().
(29) and the second inequality in Lemma 5.12 yield h(p) > 2¢. Proposition 4.1 gives u(X) > 0,
which is a contradiction. U

6. PROOFS OF THEOREM C AND THEOREM D.

We prove Theorem C and Theorem D.

Proof of Theorem C. Let p € Me(f). If n(X) > 0, then p(|J, >, f"X) = 1 holds. Arguing
similarly to the last paragraph in the proof of Theorem B we obtain dimg (u) < d(X) = t*. If
u(X) =0, then Proposition 4.1 gives h(u) < 2, and so dimpy(p) < t“. Since dimpg (pu) = t*,
Mpe is @ measure of maximal unstable dimension.

As for the uniqueness, let 11 be a measure of maximal unstable dimension. Then dimg () =
t*, and so h(p)—t“A*(u) = 0, namely p is a t"-conformal measure. The uniqueness in Theorem
A yields p = pgpu. O

Proof of Theorem D. Let vg denote the Gibbs measure on S% for the strongly summable
potential ® := ¢ + ¢ o h, where ¢ is the one in Corollary 5.11. Let vg denote the canonical
projection of vg on SV, which is a o*-invariant Gibbs measure on SV,

For any cylinder [a] C SN the measurable bijection o*|[a]: [a] — SY is non-singular. [26,
Theorem 8, Lemma 10] gives v = hv, where h is a strongly summable function bounded
away from zero and infinity, and v is a conformal measure in the sense that v < v oot and

- dv = o ®—Po(®)
Here, define vo ot by (voo™)(A) =3 ,cqv(ct([a) N A)). Then (vf oo™)|[a] < v{|[a] and
d(vg o o™)|[d] _ d(vs o o™)|[a] d(voo™)|[a] dv|[a] _ hoot
WZld] dweonld A gl EER

Thus there exist C' > 0 and 0 < r < 1 such that for all b,V € [al,

d(vg 0 ™)][a] d(vg 0 o™)|[a] hoot(b) \  h(b) o
d]/;; [a] dvg\[a] hoot(b) g h(b) (2(b) — 2(b))

< Crmin{i>0 s bi#bl}

log

(b) — log (/) = log

By the results in [36], the statistical properties can be deduced from this estimate which shows
the Holder continuity of the Jacobian, and the exponential tail estimate in (26). 0
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APPENDIX: COMPUTATIONAL PROOFS

We refer the reader to [30, Sect.2] for relevant definitions and results used in this appendix.
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A1l. Proof of Proposition 3.1. Let ¢ denote the critical point [30, Sect.2.2] on 7, and
let p(z) denote the corresponding bound pem’od for z € 4, [30, Sect.2.3]. [30, Proposition

2.6(e)] gives | DfPA|E(2)| > (4 — 2¢) 5 and slope(D fP ]Eu( )) < Vb. Since p(z) < n
the derivative estimate in [30, Lemma 2.3(a)] gives ||D P& |E*(fP®2)| > o7 ). Hence
D E(2)|| > (4 — 26)"5 0" ") > 57 and (a) holds.

For z € ~,, Let e%(z) denote the unit vector with positive first component which spans
E"(z). Consider the stable foliation F* 30, Sect.2.2], and let F*(fz) denote the leaf through
fz. Let e*(fz) denote the unit vector with positive second component which spans Ty, F*(fz).
Split Df(z)e"(z) = A(z) (§) + B(2)e*(fz). [32, Lemma 2.2] gives
(30) |A(2)| = |¢ — 2| and |B(z)| < CVb.

Let p = max{p(z): z € v, }. Split || D fP(x)e*(z) — DfP(y)e*(y)|| < Iy + Iy + I3 + I, where

= |A(@) = AWl 1D (f2) () I

I = |B(z) = By)| - | D~ (fz)e (f2)ll,
=Byl - | D~ (fr)e*(fz) — D~ (fy)e (fy)ll,
= AW - 1D (f2) (6) = D" (fy) (5) Il

Estimates of I, Is. Let €°(2) = (Z;Ejg ), and let 7 (2) denote the first component of z. Write

(1 e(z) - (1+a € [ 2am(2) oy
5(2) = (O 62(2)) e 14e and Df(z) = Qs ag)’
Let R(z) denote the rotation matrix by 0(z) := Z(e“(z),(})). Then A(z), B(z) are equal
to the (1,1), (2,1) entries of the matrix S(z) - Df(z) - R(z)™! correspondingly. A direct
computation shows that A, B are linear combinations of a;,€; (1 < i < 4), cosé, sin6, all of

which are Lipschitz continuous on 7,, from (1), property (F3) of F* (see [30, Sect.2.2]) and
the C?(b)-property of 7,. Hence A, B are Lipschitz continuous on 1, as well, which implies

(31) I < Cle =yl wy(Q)] and  Ir < (CHP o —y.
Estimate of I3. We start with an elementary geometric reasoning. Let vy, vs be nonzero
vectors in R? such that [jvi]] < ||va||, @ < 1 (See FIGURE 3). We have
[va = or| < [flvzll = [lva][ cos 8] + [Jvs [| sin 6
= cost|[|val| = [Joa]l] + (1 = cos O) [|va|| + [v1[] sin 0
< [llozfl = llva I + 26]|v2]-
We use this to estimate I3. Without loss of generality we may assume ||DfP~!(y)e*(y)| >

|DfP~(x)e*(x)||. The angle between the two vectors involved in I3 is small. The fact that
|B(y)| < C and the above reasoning show

@) fsclor el (|ESOSE -1 s - el )

We have || D fP~1(y)e®(y)|| < Cb, and the first term in the parenthesis is < C|fPx — fPyl.
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To estimate the second term in the parenthesis of (32) we argue as follows. The invariance
of the stable foliation F* gives

DS~ (x)e(x) |Df(f' )es(fix)H
5 log —
1D P~ 1 68 () || N SID(Fwe (Fy)l
Let e*1(2) denote any unit vector orthogonal to e*(z) and let (2) = Z(Df(2)e*(z), Df(z)e*t(2)).

Then e+ and 6 are Lipschitz continuous, || D fes*|| > 2 and § ~ 7/2. Hence log || D fes*|| and
sin @ are Lipschitz continuous, with a Lipschitz constant independent of b. Since’

IDF(frz)es (fie)| - (1D f(frx)e(fix)||sin6(fx) = |det Df(f'z)| = b,
for 1 <i < p we have

log IDf(f'x)e’(fa)]] ~log IDf(fy) () (fy)ll 4 log sin 0(f'y)
SIDF(F fe(Fyll ~  FIDf(fix)(e) (fia)| sin O( fix) ~
Lemma 6.1. Y07 | fiz — fiy| < C|frz — fry|.

(33) log

Proof. Let 7, mo: R? — R denote the pI‘OJeCtIOIlS to the first and the second coordinate. For
1 <i < pwe have |m(flo) — mi(fly)| < a_(Z P) | (fPx) — w1 (fPy)], and

[ma(fix) — ma( )] < (CH)'F |ma(fz) — ma(fy)]

< (Ch)z|mi(w) = mi(y)] < (CB)2|mi(fPx) = m(f7y)],

where the second inequality follows from integrating B(z) in (30) along the path in =, from
x to y. Summing these two inequalities over all 1 < i < p yields the desired one. U

Lemma 6.1 implies that the right-hand-side of (33) is bounded by a constant C' > 0 inde-
pendent of b. Since there exists p = p(C) > 0 such that e¥ < 1+ py for 0 < ¢ < C, we
have

—_— =

|Df*~H (x)e? IDf(fiz)e(fiz)| =t
34 1 : < oC i il < O fP— P
(34) | D fr=1(y)es pZOgHDf (19)"_p ;V:p fy| < Ol fPx— fPy|
Plugging (34) into (32) we obtain
(35) Iy < C|fPx — fPyl.

FEstimate of 1. In the same way as in the proof of (32) we have

IDfP~ (fx) ( )|l ‘ 11 18 (1 )

< . _ P p .
From the distortion estimate in the proof of [30, Lemma 2.7] and Lemma 6.1, the first term
in the parenthesis is < C|fPz — fPy|. To estimate the second term in the parenthesis, take
a point r so that the leaf F*(fy) intersects the horizontal through fx at fr. By the angle
estimate in [35, Claim 5.3],

ZDfPHy) (6), DFP7Hr) (3)) < (COPHfy — frl < (CO)P o —y| < (COP|fPx — fryl.

'Here we use the fact that the Jacobian of the Hénon map is constant equal to b. Essentially the same
argument remains to hold for Hénon-like maps for which there exists C' > 0 independent of b such that
[Dlog|det Df||| < C (c.f. [18]). Therefore our main theorems hold for Hénon-like maps satisfying this
assumption.
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FIGURE 3. |lv1] < [Jv2]], 0 < 1

By the C?(b)-property and the definition of r,
Z(Df () (5), D7) (3)) < VOIfPz = fr| < CVBIfPz = f7y).
Hence we obtain
LD x) (5), DI (y) (5)) < OVl fPx — fPyl.
Additionally (30) yields
[A(y)] < C[¢ =yl < (¢, 7n) + (7))
where d(-, ) denotes the minimal distance apart. Finally, from Claim 6.2 below we get
(36) Ly < Cd(C ) lwp (O - 1Pz = fPyl.
Claim 6.2. /(v,) < Cd({,vn)-
Proof. Let M be a large integer such that M < N. Consider the leaf of the stable foliation
F* through f¢ which is of the form F*(f¢) = {(x(y),%): |y| < Vb}. For k > M define

Uri={(,9): Di < |z = a(y)| < Diea (). Iyl < Vb

-1
where Dy, := C [Zk M] for some constant C' > 0 and w; := w;(¢). Let kg := max{k >

=1 flwiga ]
M: U0 fy, # 0} — 1. By [30, Lemma 2.5(a)], there exist constants 0 < C; < Cy < 1/2 such
that

(37) C1Dyy—m < Dyy < CoDpy— -
We prove
(38) ff}/n C Uk‘o U Uko+1-

(37) (38) imply £(7,) < C\/Dyy_n < Cr/ Dy, < Cd(7n, ), and thus Claim 6.2 holds.

It is left to prove (38). If the inclusion were false, then one could choose a curve 6 C f,, Uy,
with endpoints in the two vertical boundaries of Uy,. Let x denote the endpoint of f2y, in
&p—1. The bounded distortion and the second inequality in [30, Lemma 2.5(b)] give

d(aaﬂ ka_Mx) < 2Dk0Hwko—M+1|| <2 3_MDk0||wk0H < 3_M7

and
g(ka_M(S) Z C(Dko—M - Dko)Hwk’o—MH Z O(l - CQ)DkO_MHka_MH Z C.

From these two estimates and choosing large M if necessary we have that the interior of =108
intersects some ;. This yields a contradiction. 0
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Overall estimates. Gluing (31) (35) (36) together,

1D fP(x)e"(x) = DI (y)e" (W)l < Cllwp (O - [ =yl + Cd(C, ) [[wp (O] - [f72 = fPyl.
Dividing both sides by [|Df?(z)e" ()| ~ [¢ = z| - wp ()]l = d(¢; ) - [[wp(C)]| which follows
from the proof of [30, Proposition 2.6], we obtain for all z,y € ~,,
IDFfPIE(2)] _ Clz —y]
IDfPIE“ W)l — d(¢,vm)
Since [P, is C*(b) and p < n, we have | fPz — fPy| < |f"z — f™y|. (39) and Claim 6.3 below
yield

(39) log + C|fPx — fPy|.

IDFAE @) |\ D E ) o
e B ) <O

log

which proves (b).

Claim 6.3. ;=4 < C|f"z — f"y.

Proof. The first estimate of (30) implies
e~y _ Clm(fo) — m(fy)

(40)

d(C,m) ~ (¢, yn)?
By the bounded distortion outside of ©, there exists 6 € f~, such that
(41) mi(fa) = m(fy)l - ID7HO) (5) | < Clf"e — [yl

The bounded distortion outside of © and the quadratic behavior near ¢ as in (30) imply

) d(C ) IDFHO) (§) || = CUfym).
Hence there exists C' > 0 such that

(42)  d(C, ) IDF"HO) (§) | = CLUA)AC )P O) () | = CUf"m) > C-

For the first inequality we have used Claim 6.2. The last inequality is because f"7, is a
C2(b)-curve with endpoints in ai. (40) (41) (42) yield

[z =yl _ Clm(fz) —m(fy)l _ Clf"e — [yl
d(Cy) = d(G)? —dGmPIDfHO) ()

A2. Proof of Lemma 3.3. Let x = 5~ ()N For all z € Q. we show ||Df"|E%(z)|| > k"
for every n > 1. Then (a) (b) follow from the results of [18].

With the terminology in [30, Sect.2.5] we introduce the bound/free structure on the orbit of
z, using O as a critical neighborhood. If "z is free, then the orbit z, ..., f"z is decomposed
into alternative bound and free segments. Applying the expansion estimates in [30, Lemma
2.3, Proposition 2.8(e)] alternatively we have ||Df"|E"(z)|| > ™. If f"z is bound, then
there exists an integer 0 < m < n such that f"z € Oy and m < n < m + p, where p
is the bound period of f™z. Since f™*Pz is free and ||Df| < 5 we have ||Df"|E"(2)| >
5= (mtp=n)|| D fmHP| B4 (2)|| > 57P, and since z € Qo we have p < &m + N. If m < N, then
p < (14+ &N and so |Df*E*(2)|| > 5 0+ON > g7 If m > N, then p < (1 + &)m and so
IDfE(2)]] = 5~ 1™ > g,

Choose a large integer M > n such that fM 2, is free. Take 1 € f"v*(z1), 2 € 7°(22) which
are connected by a horizontal segment of length b3 . By construction, | DfM|E(zq)|| > oM.
By the bounded distortion, the f™-iterate of the segment is C?(b) and |fMz; — fMay| >

< Clf'z— f"yl. 0
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CoMlxy — 25| > Cof‘/lbf. If g € f"%(21) NY*(22), then | Moy — fMay| < |fMay — fMg| +
|fMq — fMa,y| < 2(Cb)=. These two estimates are incompatible. Hence (c) holds. O

A3. Proof of Lemma 5.2. Let u € M*(f). Takea point { € Rsuch that lim (1/n)log |Df&|E"|| = X*(p)
n—oo

and £ is free. The orbit &, f&, ... is decomposed into alternative bound and free segments.
Applying the expansion estimates in [30, Lemma 2.3, Proposition 2.8] alternatively we have
| DfE“(&)|| > (2 —¢)™ if f7¢ is free. This implies A\*(u) > log(2 — ¢). O
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