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GROWTH OF CRITICAL POINTS IN ONE-DIMENSIONAL LATTICE
SYSTEMS

MASAYUKI ASAOKA, TOMOHIRO FUKAYA, KENTARO MITSUI, MASAKI TSUKAMOTO

Abstract. We study the growth of the numbers of critical points in one-dimensional
lattice systems by using (real) algebraic geometry and the theory of homoclinic tangency.

1. Introduction: One-dimensional lattice system

Let M be a compact connected C∞ manifold without boundary. Let f : M × M → R
be a C∞ function. For positive integers n, we define fn : Mn+1 → R by setting

(1) fn(p1, p2, . . . , pn+1) :=
n∑

i=1

f(pi, pi+1).

Bertelson-Gromov [4] proposed the study of this kind of functions. (See also Bertelson

[3].) Let Cr(fn) be the set of critical points of fn. We are interested in the asymptotic

behavior of Cr(fn) as n → ∞. (The paper [7] studies an asymptotic behavior of critical

values of fn.)

Naively speaking, the study of fn is a model of a 1-dimensional crystal (lattice system)

which consists of n + 1 particles. We assume that the manifold M is the configuration

space of each particle and that f(x, y) is the potential function describing the interaction

between two adjacent particles. Then fn is the total potential energy of the system, and

the critical points of fn are its stationary states.

Our view point and methods are motivated by the works of Artin-Mazur [1] and

Kaloshin [12, 13]. They studied the growth of periodic points of diffeomorphisms of

manifolds by using (real) algebraic geometry and the theory of homoclinic tangency. We

develop analogous methods for the study of Cr(fn).

Let C∞(M × M) be the space of real valued C∞ functions in M × M with the C∞

topology. Our first main result is the following theorem. (Recall that a smooth function

on a manifold is called a Morse function if all its critical points are non-degenerate.)

Theorem 1.1. There exists a dense subset D ⊂ C∞(M × M) such that every f ∈ D
satisfies the following two conditions:

(i) For all positive integers n, the functions fn : Mn+1 → R are Morse functions.
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(ii) There exists a positive real number d (which depends on f) such that for all n ≥ 1

#Cr(fn) ≤ dn.

Here #Cr(fn) is the number of the critical points of fn.

From the condition (i) in Theorem 1.1 and the Morse inequality ([17]), we have

#Cr(fn) ≥
∑
k≥0

dim(Hk(Mn+1; Z2)) =

(∑
k≥0

dim Hk(M ; Z2)

)n+1

for all f ∈ D. Hence, from the condition (ii),(∑
k≥0

dim Hk(M ; Z2)

)n+1

≤ #Cr(fn) ≤ dn (f ∈ D, n ≥ 1).

Therefore, if dim M ≥ 1, #Cr(fn) has an exponential growth for every f ∈ D.

Remark 1.2. For each n ≥ 1, the condition that fn is a Morse function is an open

condition for f ∈ C∞(M × M). Therefore Theorem 1.1 (condition (i)) implies that the

set

{f ∈ C∞(M × M)|All fn (n ≥ 1) are Morse functions}
is a residual subset of C∞(M × M). (Recall that a subset of a topological space is said

to be residual if it contains a countable intersection of open dense subsets.) This fact

was already proved in Asaoka-Fukaya-Tsukamoto [2, Theorem 1.2]. The argument in

the present paper is totally different from that in [2]. The argument in [2] is much more

elementary. It uses only elementary results in differential topology. On the other hand, the

argument of the present paper uses two very big theorems: Nash-Tognoli-King’s theorem

in real algebraic geometry ([21], [23], [15]) and Hironaka’s resolution of singularities ([11]).

The important point is that we can achieve the condition (ii) in Theorem 1.1. This is the

new point of the present paper.

By the above remark, the sets Cr(fn) are finite sets for generic (i.e. residual) f :

M × M → R. Theorem 1.1 shows a regular behavior of Cr(fn) for “many” (i.e. dense)

f . Next we will shows that there exists a very wild phenomenon. We concentrate on the

case M = S1 := R/2πZ.

Theorem 1.3. There exists a non-empty open subset U of C∞(S1 ×S1) such that the set{
f ∈ U

∣∣∣∣ lim sup
n→∞

#Cr(fn)

an

≥ 1

}
is residual in U for any given sequence (an)n≥1 of positive integers.

For example, this implies that the set{
f ∈ U

∣∣∣∣ lim sup
n→∞

#Cr(fn)

exp(exp(n))
≥ 1

}
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is residual in the above given open set U . This shows a drastically unstable behavior of

Cr(fn) over f ∈ U . (Note that #Cr(fn) has an exponential growth on a dense subset of

U .)

It is interesting to see that there also exists a “stable region”:

Theorem 1.4. There exist d > 0 and a non-empty open set V ⊂ C∞(S1 × S1) such that

every f ∈ V satisfies the following conditions:

(i) All fn : (S1)n+1 → R (n ≥ 1) are Morse functions.

(ii) For all n ≥ 1, #Cr(fn) = dn+1.

The following question seems interesting.

Problem 1.5. Find a characterization of a function f : M × M → R which admits a

neighborhood W ⊂ C∞(M ×M) such that for every g ∈ W all functions gn : Mn+1 → R
(n ≥ 1) are Morse functions.

Acknowledgement. The authors wish to thank Professor Masahiro Shiota. He kindly

explained the proof of Proposition 2.8 to the authors. M. Asaoka, T. Fukaya and M.

Tsukamoto were supported by Grant-in-Aid for Young Scientists (A) (22684003), (B)

(23740049) and (B) (21740048) respectively from JSPS. K. Mitsui was supported by

Grant-in-Aid for JSPS Fellows (21-1111) from JSPS.

2. Proof of Theorem 1.1

The essential ingredient of the proof of Theorem 1.1 is algebraic geometry. As far as

the authors know, the idea to use Nash’s theorem and algebraic geometry in the study of

C∞ manifolds goes back to Artin-Mazur [1]. (For recent results on the Artin-Mazur type

problem, see Kaloshin [12, 13].)

2.1. Preliminary. Let M be a compact connected C∞ manifold without boundary. The

next proposition will be proved later (Section 2.3).

Proposition 2.1. There exist homogeneous polynomials (of real coefficients) Fi(X0, X1, . . . , Xd)

(1 ≤ i ≤ R) in R[X0, X1, . . . , Xd] satisfying the following three conditions.

(i) The scheme Proj (C[X0, X1, . . . , Xd]/(F1, . . . , FR)) is an equidimensional regular scheme.

(Set dim Proj (C[X0, X1, . . . , Xd]/(F1, . . . , FR)) = d − r.) This implies the following:

Set X := {[X0 : · · · : Xd] ∈ Pd(C)|Fi(X0, . . . , Xd) = 0 (1 ≤ i ≤ R)}. Then X is a

complex submanifold of Pd(C), and the (complex) dimension of every connected component

of X is equal to d − r. Moreover

rank


∂F1

∂X0

∂F1

∂X1
· · · ∂F1

∂Xd
∂F2

∂X0

∂F2

∂X1
· · · ∂F2

∂Xd
...

...
. . .

...
∂FR

∂X0

∂FR

∂X1
· · · ∂FR

∂Xd

 = r on X.



4 M. ASAOKA, T. FUKAYA, K. MITSUI, M. TSUKAMOTO

(ii) X transversally intersects with the hyperplane {X0 = 0} in Pd(C). This implies the

following: Set X∞ := X ∩ {X0 = 0}. Then

rank


1 0 · · · 0

∂F1

∂X0

∂F1

∂X1
· · · ∂F1

∂Xd
∂F2

∂X0

∂F2

∂X1
· · · ∂F2

∂Xd
...

...
. . .

...
∂FR

∂X0

∂FR

∂X1
· · · ∂FR

∂Xd

 = 1 + rank


∂F1

∂X1
· · · ∂F1

∂Xd
∂F2

∂X1
· · · ∂F2

∂Xd
...

. . .
...

∂FR

∂X1
· · · ∂FR

∂Xd

 = 1 + r on X∞.

(iii) Let Rd := {[1 : x1 : x2 : · · · : xd] ∈ Pd(C)|x1, . . . , xd ∈ R}. Then XR := X ∩ Rd is

diffeomorphic to M . Here XR becomes a C∞ submanifold of Rd by the above condition (i).

(We have dimR XR = d − r.) We fix a diffeomorphism between M and XR and identify

them.

Let Cd := {[1 : x1 : · · · : xd] ∈ Pd(C)|x1, . . . , xd ∈ C}, and set X := X ∩ Cd. X is a

complex submanifold of Cd by the condition (i) in Proposition 2.1.

Example 2.2. If M = S1, then R = 1 and F1(X0, X1, X2) = −X2
0 + X2

1 + X2
2 satisfy the

conditions of Proposition 2.1. In this case, we have d = 2 and r = 1.

Lemma 2.3. For any positive integer N , there is a homogeneous polynomial Ψ(X0, X1, . . . , Xd) ∈
C[X0, X1, . . . , Xd] of degree N satisfying the following two conditions.

(i)

rank


∂Ψ
∂X1

· · · ∂Ψ
∂Xd

∂F1

∂X1
· · · ∂F1

∂Xd
...

. . .
...

∂FR

∂X1
· · · ∂FR

∂Xd

 = r + 1 on X∞ = X ∩ {X0 = 0}.

(ii) The holomorphic function ψ : X → C, [1 : x1 : · · · : xd] 7→ Ψ(1, x1, . . . , xd), is a

Morse function, i.e., the Hessians of ψ at the critical points are regular.

Proof. From the conditions (i) and (ii) in Proposition 2.1, X∞ is a complex submanifold

of {X0 = 0} = Pd−1(C) of codimension r. For any N ≥ 1, we can choose a homogeneous

polynomial Ψ0(X1, . . . , Xd) ∈ C[X1, . . . , Xd] of degree N such that the hypersurface {Ψ0 =

0} is non-singular (gradΨ0 ̸= 0 on {Ψ0 = 0}) and transversally intersects with X∞ in

Pd−1(C) (the N -times Segre embeddings and Bertini’s theorem). This implies

rank


∂Ψ0

∂X1
· · · ∂Ψ0

∂Xd
∂F1

∂X1
· · · ∂F1

∂Xd
...

. . .
...

∂FR

∂X1
· · · ∂FR

∂Xd

 = r + 1 on X∞.

For a = (a1, . . . , ad) ∈ Cd, we set Ψa(X0, X1, . . . , Xd) := Ψ0(X1 . . . , Xd) + XN−1
0 (a1X1 +

· · · + adXd). The above condition (i) (of this lemma) is an open condition. Hence if we
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choose a ∈ Cd sufficiently small in the Euclidean norm, then Ψa also satisfies the condition

(i). Set ψa([1 : x1 : · · · : xd]) := Ψa(1, x1, . . . , xd) = Ψ0(1, x1, . . . , xd) + a1x1 + · · · + adxd.

Let X ⊂ X ×Cd be the set of points ([1 : x1 : · · · : xd], a) ∈ X ×Cd such that d(ψa|X) = 0

at [1 : x1 : · · · : xd]. X is a complex submanifold of X × Cd. By Sard’s theorem, we can

choose a sufficiently small a ∈ Cd such that a is a regular value of the projection X → Cd.

Thus we can choose a sufficiently small a ∈ Cd such that Ψa satisfies the conditions (i)

and (ii) of this lemma. ¤

2.2. Proof of Theorem 1.1. Let N be a positive integer, and let VN ⊂ C[x1, . . . , xd, y1, . . . , yd]

be the set of polynomials φ(x1, . . . , xd, y1, · · · , yd) satisfying deg φ ≤ N . Take φ ∈ VN . We

define a homogeneous polynomial Φ(Z,X1, . . . , Xd, Y1, . . . , Yd) ∈ C[Z,X1, . . . , Xd, Y1, . . . , Yd]

by setting

(2) Φ(Z,X1, . . . , Xd, Y1, . . . , Yd) := ZNφ

(
X1

Z
, . . . ,

Xd

Z
,
Y1

Z
, . . . ,

Yd

Z

)
.

For positive integers n, we set

(3)

φn(x1,x2, . . . ,xn+1) :=
n∑

k=1

φ(xk,xk+1), Φn(Z,X1,X2, . . . ,Xn+1) :=
n∑

k=1

Φ(Z,Xk,Xk+1)

where xk = (xk1, xk2, . . . , xkd) and Xk = (Xk1, Xk2, . . . , Xkd).

We define ρn,k(φ)(Z,X1, . . . ,Xn+1) (1 ≤ k ≤ n+1) as the rank of the following matrix:

(4)


∂Φn

∂Xk1
(Z,X1, . . . ,Xn+1)

∂Φn

∂Xk2
(Z,X1, . . . ,Xn+1) · · · ∂Φn

∂Xkd
(Z,X1, . . . ,Xn+1)

∂F1

∂X1
(Z,Xk)

∂F1

∂X2
(Z,Xk) · · · ∂F1

∂Xd
(Z,Xk)

...
...

. . .
...

∂FR

∂X1
(Z,Xk)

∂FR

∂X2
(Z,Xk) · · · ∂FR

∂Xd
(Z,Xk)

 .

Consider the following condition for [Z : X1 : X2 : · · · : Xn+1] ∈ Pd(n+1)(C):

(5) Fi(Z,Xk) = 0, ρn,k(φ)(Z,X1, . . . ,Xn+1) ≤ r (1 ≤ i ≤ R, 1 ≤ k ≤ n + 1).

A point ([1 : x1], [1 : x2], . . . , [1 : xn+1]) ∈ Xn+1 is a critical point of the function

(6) φn|Xn+1 : Xn+1 → C, ([1 : x1], . . . , [1 : xn+1]) 7→ φn(x1, . . . ,xn+1)

if and only if the point [1 : x1 : x2 : · · · : xn+1] ∈ Pd(n+1)(C) satisfies the above condition

(5).

Lemma 2.4. There exists φ ∈ VN satisfying the following (i) and (ii):

(i) For any positive integer n, if a point [Z : X1 : X2 : · · · : Xn+1] ∈ Pd(n+1)(C) satisfies

(5), then Z ̸= 0.

(ii) For all positive integers n, the functions φn|Xn+1 : Xn+1 → C in (6) are Morse

functions.
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Proof. Let Ψ(X0, X1, . . . , Xd) be the homogeneous polynomial of degree N given by

Lemma 2.3. We set φ(x,y) := Ψ(1,x) + Ψ(1,y) (x = (x1, . . . , xd) and y = (y1, . . . , yd)).

The polynomials φn and Φn (defined in (3)) become

φn(x1,x2, . . . ,xn+1) = Ψ(1,x1) + 2 (Ψ(1,x2) + · · · + Ψ(1,xn)) + Ψ(1,xn+1),

Φn(Z,X1,X2, . . . ,Xn+1) = Ψ(Z,X1) + 2 (Ψ(Z,X2) + · · · + Ψ(Z,Xn)) + Ψ(Z,Xn+1).

Then the above conditions (i) and (ii) immediately follow from the conditions (i) and (ii)

of Lemma 2.3. ¤

For n ≥ 1, we define VN,n ⊂ VN as the set of φ ∈ VN satisfying the following: If a point

[Z : X1 : X2 : · · · : Xn+1] ∈ Pd(n+1)(C) satisfies (5), then Z ̸= 0.

Lemma 2.5. The set VN,n is a non-empty Zariski open subset of VN . Here we naturally

identify VN with the affine space C(N+2d
2d ). (Here and in the following in this section, we

use only algebraic (not analytic) Zariski open/closed subsets.)

Proof. From Lemma 2.4, VN,n ̸= ∅. We want to show that this is Zariski open. We define

A ⊂ VN × Pd(n+1)−1(C) by setting

A := {(φ, [X1 : · · · : Xn+1]) ∈ VN × Pd(n+1)−1(C)|φ and [0 : X1 : · · · : Xn+1] satisfy (5)}.

A is a Zariski closed subset of VN ×Pd(n+1)−1(C). Let π : VN ×Pd(n+1)−1(C) → VN be the

natural projection. (Here we consider π as a map in the algebraic category (not in the

analytic category).) Since Pd(n+1)−1(C) is complete (see Mumford [20, p. 55, Theorem

1]), π(A) is Zariski closed in VN . Therefore VN,n = VN \ π(A) is Zariski open. ¤

For n ≥ 1, we define UN,n ⊂ VN,n by

UN,n := {φ ∈ VN,n|φn|Xn+1 : Xn+1 → C is a Morse function}.

Here φn|Xn+1 is the function defined by (3) and (6).

Lemma 2.6. The set UN,n is a non-empty Zariski open subset of VN .

Proof. From Lemma 2.4, we have UN,n ̸= ∅. We define A ⊂ VN,n × Pd(n+1)(C) as the set

of (φ, [Z : X1 : · · · : Xn+1]) ∈ VN,n ×Pd(n+1)(C) satisfying (5). A is a Zariski closed subset

of VN,n × Pd(n+1)(C). Let i : VN,n × (Cd)n+1 ↪→ VN,n × Pd(n+1)(C) be the natural open

immersion defined by (φ, ([1 : x1], . . . , [1 : xn+1])) 7→ (φ, [1 : x1 : · · · : xn+1]). From the

definition of VN,n, we have A ⊂ i(VN,n × Xn+1).

We define B ⊂ VN,n × Xn+1 as the set of (φ, ([1 : x1], . . . , [1 : xn+1])) ∈ VN,n × Xn+1

such that ([1 : x1], . . . , [1 : xn+1]) is a degenerate critical point of φn|Xn+1 : Xn+1 → C.

B is a Zariski closed subset of VN,n × Xn+1. Since i(B) ⊂ A ⊂ i(VN,n × Xn+1), i(B) is a

Zariski closed subset of A. Hence i(B) is Zariski closed in VN,n × Pd(n+1)(C).

Let π : VN,n×Pd(n+1)(C) → VN,n be the natural projection. Since Pd(n+1)(C) is complete

([20, p. 55, Theorem 1]), π(i(B)) is Zariski closed in VN,n. Therefore UN,n = VN,n\π(i(B))

is Zariski open. ¤
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We need the following general (and standard) fact.

Lemma 2.7. Let K be a positive integer, and let U be a non-empty Zariski open subset

of CK. Then U ∩ RK is open dense in RK with respect to the Euclidean topology.

Proof. U∩RK is obviously open. Note the following fact: If f(x1, . . . , xK) ∈ C[x1, . . . , xK ]

vanishes over a non-empty open set (of the Euclidean topology) in RK , then f = 0.

Therefore RK \U cannot have an interior point in RK . Hence U ∩RK is dense in RK . ¤

We set V R
N := VN ∩ R[x1, . . . , xd, y1, . . . , yd] and UR

N,n := UN,n ∩ R[x1, . . . , xd, y1, . . . , yd].

We naturally identify V R
N with the Euclidean space R(N+2d

2d ). From Lemma 2.6 and

Lemma 2.7, UR
N,n is open dense in V R

N with respect to the Euclidean topology. Set

UR
N :=

∩
n≥1 UR

N,n. UR
N is residual (and hence dense) in V R

N with respect to the Euclidean

topology. If φ ∈ UR
N , then for all n ≥ 1 the functions φn|Xn+1 : Xn+1 → C are Morse

functions. Recall that we have identified M with XR = X ∩Rd. Hence the above implies

that for all n ≥ 1 the functions φn|Mn+1 : Mn+1 → R are Morse functions.

Then we can prove Theorem 1.1:

Proof of Theorem 1.1. We define a set D ⊂ C∞(M × M) by

(7) D :=
∪
N≥1

{φ|M×M |φ ∈ UR
N}.

We will shows that D is dense in C∞(M ×M) and that it satisfies the conditions (i) and

(ii) in Theorem 1.1. The condition (i) immediately follows from the above argument.

Let f ∈ C∞(M ×M), and let W be an open neighborhood of f in C∞(M ×M). There

exists a real polynomial ϕ ∈ R[x1, . . . , xd, y1, . . . , yd] such that ϕ|M×M ∈ W (Weierstrass’s

theorem). Set N := max(1, deg ϕ). We have ϕ ∈ V R
N . Since UR

N is dense in V R
N , there

exists φ ∈ UR
N such that φ|M×M ∈ W . This shows that D is dense in C∞(M × M).

Next we want to show that D satisfies the condition (ii). Let φ ∈ UR
N , and let n be

a positive integer. Critical points of φn|Mn+1 : Mn+1 → R are also critical points of

φn|Xn+1 : Xn+1 → C. Hence

(8) #Cr(φn|Mn+1) ≤ #{[Z : X1 : · · · : Xn+1] ∈ Pd(n+1)(C)| the condition (5)}.

From the definition of UR
N , the condition (5) implies Z ̸= 0. Moreover all critical points

of φn|Xn+1 : Xn+1 → C are non-degenerate. Hence the right-hand-side of (8) is finite. We

can evaluate it by using Bézout’s theorem [8, p. 148, Example 8.4.7] (i.e. by counting

the degrees of the equations). The condition ρn,k(Z,X1, . . . ,Xn+1) ≤ r is equivalent

to the condition that all (r + 1)-th sub-determinants of the matrix (4) are zero. Set

A := max(N, deg F1, . . . , deg FR). By Bézout’s theorem, the right-hand-side of (8) is

bounded by (
AR+(r+1)( d

r+1)(
R+1
r+1)

)n+1

.
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(We can directly evaluate #Cr(φn|Mn+1) by [18, Theorem 2] instead of Bézout’s theorem,

although the argument of [18] also uses Bézout’s theorem.) ¤

2.3. Proof of Proposition 2.1. Let M be a compact connected C∞ manifold without

boundary. We will prove Proposition 2.1 in this subsection. We need the following propo-

sition. Professor Masahiro Shiota kindly explained this result to the authors. Probably

Proposition 2.8 and its proof are well-known to some specialists of real algebraic geometry.

For example, Kucharz [16, p. 128] describes the sketch of the proof of almost the same

result.

Proposition 2.8. There exist homogeneous polynomials Gi(X0, X1, . . . , Xe) (1 ≤ i ≤ S)

in R[X0, X1, . . . , Xe] satisfying the following conditions.

(i) The scheme Proj(R[X0, X1, . . . , Xe]/(G1, . . . , GS)) is an integral regular scheme.

(ii) The space

{[X0 : X1 : · · · : Xe] ∈ Pe(R)|Gi(X0, X1, . . . , Xe) = 0 (1 ≤ i ≤ S)}

is diffeomorphic to M .

Proof. The idea of the proof is the same as [16, p. 128]. From Nash-Tognoli-King’s theo-

rem ([15] and [5, Chapter 14, Remark 14.1.12]), there exists a nonsingular real algebraic

set V ⊂ Pp(R) such that V is diffeomorphic to M . (For the meaning of the term “non-

singular real algebraic set”, see [5, Section 3.3].) Since V ∼= M is connected, it is also

Zariski connected. Hence V is irreducible in Zariski topology. (Since V is nonsingular,

irreducible components of V do not intersect with each other. Hence every irreducible

component of V is Zariski open and Zariski closed. See [5, Theorem 2.8.3, Proposition

3.3.10].)

Let I ⊂ R[X0, X1, . . . , Xp] be the homogeneous ideal generated by homogeneous poly-

nomials f ∈ R[X0, X1, . . . , Xp] vanishing on V . Since V is irreducible, I is a prime ideal.

Set X := Proj(R[X0, X1, . . . , Xp]/I). X is an integral scheme over R. From [11, p.

132, Main theorem I], there is a closed subscheme D of X satisfying the following two

conditions (a) and (b):

(a) The set of points of D is equal to the set of singular points of X.

(b) If m : X̃ → X is the monoidal transformation of X with center D, then X̃ is an

integral regular scheme over R.

m|X̃\m−1(D) : X̃ \ m−1(D) → X \ D is (algebraically) isomorphic. For generalities on

monoidal transformation (or blowing-up), see Hironaka [11, pp. 123-130] and Hartshorne

[10, pp. 160-169]. Let X(R) (resp. X̃(R)) be the set of R-morphisms Spec R → X (resp.

Spec R → X̃). The images of all R-morphisms Spec R → X are regular points of X. Hence

X(R) ∩ D = ∅. Therefore the natural map X̃(R) → X(R) is a diffeomorphism. (X(R)

and X̃(R) naturally become C∞ manifolds.) In particular they are both diffeomorphic to

V ∼= M .
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Since X is projective over R, X̃ is also projective over R. Hence there is a homogeneous

ideal J ⊂ R[X0, X1, . . . , Xe] such that X̃ is isomorphic to Proj(R[X0, X1, . . . , Xe]/J) over

R. Let G1, . . . , GS be homogeneous polynomials generating J . Then these polynomials

satisfy the above conditions (i) and (ii). ¤

Set d := (e + 1)2 − 1. Let R[X00, . . . , Xee] be the polynomial ring of the d + 1 variables

Xij (0 ≤ i, j ≤ e). Consider a R-homomorphism from R[X00, . . . , Xee] to R[X0, . . . , Xe]

defined by

X00 7→
e∑

i=0

X2
i , Xij 7→ XiXj ((i, j) ̸= (0, 0)).

Let f : Proj(R[X0, . . . , Xe]) → Proj(R[X00, . . . , Xee]) be the R-morphism defined by the

above homomorphism. The map f is a closed immersion (cf. Segre embedding). Moreover

f satisfies

f(Pe(R)) ⊂ Rd := {[X00 : · · · : Xee] ∈ Pd(R)|X00 ̸= 0}.
(This fact is used in [5, p. 72] to show that real projective spaces are affine varieties.)

From this argument and Proposition 2.8 we get the following:

Corollary 2.9. There exist homogeneous polynomials Fi(X0, X1, . . . , Xd) (1 ≤ i ≤ R) in

R[X0, X1, . . . , Xd] satisfying the following conditions (i) and (ii):

(i) Proj (R[X0, X1, . . . , Xd]/(F1, . . . , FR)) is an integral regular scheme.

(ii) The space

{[X0 : X1 : · · · : Xd] ∈ Pd(R)|Fi(X0, X1, . . . , Xd) = 0 (1 ≤ i ≤ R)}

is diffeomorphic to M . Moreover, if a point [X0 : X1 : · · · : Xd] ∈ Pd(R) satisfies

Fi(X0, . . . , Xd) = 0 (1 ≤ i ≤ R), then X0 ̸= 0.

Proof of Proposition 2.1. Let Fi(X0, X1, . . . , Xd) (1 ≤ i ≤ R) be the polynomials intro-

duced in Corollary 2.9. The condition (i) of Corollary 2.9 implies that the scheme

Proj (C[X0, . . . , Xd]/(F1, . . . , FR)) = Proj (R[X0, . . . , Xd]/(F1, . . . , FR)) ×R C

is an equidimensional regular scheme.

Let X be the complex submanifold of Pd(C) which Fi (1 ≤ i ≤ R) define. From

Bertini’s theorem (Hartshorne [10, p. 179, Theorem 8.18]), there exists a non-empty

Zariski open set U ⊂ Pd(C) such that for any [a0 : a1 : · · · : ad] ∈ U the hyperplane

a0X0 +a1X1 + · · ·+adXd = 0 transversally intersects with X in Pd(C). U ∩Pd(R) is open

dense in Pd(R) with respect to the Euclidean topology. (See Lemma 2.7.)

We have X ∩ Rd = X ∩ Pd(R). Hence X ∩ Rd is compact. Therefore there exists

[a0 : a1 : · · · : ad] ∈ U ∩ Pd(R) such that the hyperplane a0X0 + a1X1 + · · · + adXd = 0

does not intersect with X ∩ Rd. Then, by using a real projective transformation which

transforms a0X0 + a1X1 + · · ·+ adXd = 0 to X0 = 0, we can adjust the polynomials Fi so

that they satisfy the conditions (i), (ii), (iii) in Proposition 2.1. ¤
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3. Proof of Theorem 1.3

In this section, for a C∞ manifold M (not necessarily compact), the space C∞(M) of

real valued C∞ functions on M is endowed with the C∞ compact-open topology.

3.1. Interpretation to a dynamical problem. For a C∞ function H on R2, we denote

the partial derivative of H with respected to the first and the second coordinates by ∂1H

and ∂2H respectively. By p1 and p2, we denote the projection from R2 to the first and

the second coordinate, respectively. We say that a map f from R2 to a set S is (2πZ)2-

periodic if f(p + m) = f(p) for any p ∈ R2 and m ∈ (2πZ)2. Let H be the space of C∞

functions H on R2 such that ∂1∂2H > 0, and both ∂1H − p2 and ∂2H − p1 are (2πZ)2-

periodic. We denote the identity map of R2 by Id and define a diffeomorphism Θ of R2

by Θ(x, y) = (y,−x). Let D be the set of C∞ area-preserving diffeomorphisms F of R2

such that F − Θ is (2πZ)2-periodic and the twist condition

(9) ∂2(p1 ◦ F ) > 0

holds. We endow the C∞ compact-open topology to D.

The following is a classical result known as the correspondence between twist maps and

their generating functions.

Proposition 3.1. There exists a continuous map Φ : H→D which satisfies the following

properties.

(i) (x′, y′) = Φ(H)(x, y) if and only if (y, y′) = (∂1H(x, x′),−∂2H(x, x′)) for any H ∈ H
and (x, y, x′, y′) ∈ R4.

(ii) The map (Φ, ev0) : H→D × R is a homeomorphism, where the map ev0 : H→R is

given by ev0(H) = H(0, 0).

Proof. For H ∈ H, we define two maps ϕH , ψH : R2→R2 by

ϕH(x, x′) = (x, ∂1H(x, x′))

ψH(x, x′) = (x′,−∂2H(x, x′)) .

Put gx(x
′) = ∂1H(x, x′). Since dgx/dx′ = ∂2∂1H > 0 and gx(x

′ + m) = gx(x
′) + m for

any x′ ∈ R and m ∈ 2πZ, the map gx(x
′) = ∂1H(x, x′) is a diffeomorphism of R for

any x ∈ R. Hence, ϕH is a diffeomorphism of R2. Similarly, so is ψH . We define a

diffeomorphism Φ(H) of R2 by Φ(H) = ψH ◦ ϕ−1
H . Since the maps ϕH − Id and ψH − Θ

are (2πZ)2-periodic, Φ(H) − Θ is also (2πZ)2-periodic. By direct computation, we can

see that Φ(H) is area-preserving and satisfies the twist condition (9). Therefore, Φ(H) is

an element of D.

For F ∈ D, we define two maps ϕ̂F , ψ̂F : R2→R2 by

ϕ̂F (x, y) = (x, p1 ◦ F (x, y))

ψ̂F (x′, y′) = (p1 ◦ F−1(x′, y′), x′).
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By the twist condition (9), ϕ̂F is a diffeomorphism. For (x′, y′) = F (x, y), we have

ϕ̂F (x, y) = ψ̂F ◦F (x, y) = (x, x′). Hence, ψ̂F is a diffeomorphism and F = ψ̂−1
F ◦ ϕ̂F . Take

g1, g2 ∈ C∞(R2) such that

ϕ̂−1
F (x, x′) = (x, g1(x, x′))

ψ̂−1
F (x, x′) = (x′,−g2(x, x′)).

By a direct calculation, we obtain that

∂1g2 − ∂2g1 = log det DFϕ̂−1
F (x,x′) = 0,

(∂2g1)
−1 = ∂2(p1 ◦ F )(ϕ̂−1

F (x, x′)) > 0.

The former implies that the one-form g1dx + g2dx′ is closed. By Poincaré’s lemma, there

exists a unique C∞-function HF such that HF (0, 0) = 0 and dHF = g1dx + g2dx′. Since

F−Θ is (2πZ)2-periodic, the maps ϕ̂F −Id and ψ̂F −Θ−1 are (2πZ)2-periodic. This implies

that ϕ̂−1
F − Id and ψ̂−1

F − Θ are (2πZ)2-periodic, and hence, so are g1 − p2 and g2 − p1.

Therefore, HF is an function in H. We define a map Ψ : D×R→H by Ψ(F, c) = HF + c.

Since

F = ψ̂−1
F ◦ ϕ̂F = ψHF

◦ ϕ−1
HF

= Φ(HF ),

Ψ is the inverse of (Φ, ev0). The continuity of Φ and Ψ follows from the constrictions. ¤

Corollary 3.2. For H ∈ H and (x0, . . . , xn) ∈ Rn+1, the following two conditions are

equivalent.

(i) (x0, . . . , xn) is a critical point of Hn : Rn+1 → R where Hn(x0, . . . , xn) :=
∑n−1

i=0 H(xi, xi+1).

(ii) There exists (y0, . . . , yn) ∈ Rn+1 such that y0 = yn = 0 and (xj+1, yj+1) = Φ(H)(xj, yj)

for any j = 0, . . . , n − 1.

Proof. For H ∈ C∞(R2), a point (x0, . . . , xn) ∈ Rn+1 is a critical point of Hn if and

only if ∂1H(x0, x1) = ∂2H(xn−1, xn) = 0 and ∂1H(xj, xj+1) = −∂2H(xj−1, xj) for any

j = 1, . . . , n − 1. Hence, the corollary follows from Proposition 3.1. ¤

Hence, the counting of critical point of Hn is reduced to the counting of points in

Φ(H)−n(R × {0}) ∩ (R × {0}).

3.2. Abundance of recurrence of intervals. Let T2 = (R/2πZ)2 be the two-dimensional

torus. Set M = R2 or T2. By Diffω(M), we denote the set of area-preserving diffeomor-

phisms of M endowed with the C∞ compact-open topology. By Int I, we denote the

interior of an interval I. For embedded intervals I and J in M , let I t J be the set of

transverse intersections of Int I and Int J .

Let us recall some definitions and known facts on dynamical systems. The authors

recommend [14] or [22] for reference. For f ∈ Diffω(M), a fixed point p of fN is called

hyperbolic if no eigenvalues of DfN
p is of absolute value one. Remark that one of the

eigenvalues is of absolute value greater than one and the other is less than one since f is
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area-preserving. A continuation of a hyperbolic fixed point p of fN is a continuous map p̂

from a neighborhood U ⊂ Diffω(M) of f to M such that p̂(f) = p and p̂(g) is a hyperbolic

fixed point of gN for any g ∈ U . It is known that any hyperbolic fixed point admits a

continuation.

Let d be the standard distance on M = R2 or T2. For a hyperbolic fixed point p of fN ,

the stable manifold W s(p; f) and the unstable manifold W u(p; f) are defined by

W s(p; f) = {q ∈ M | d(fn(p), fn(q))→0 (n→ + ∞)} ,

W u(p; f) = {q ∈ M | d(fn(p), fn(q))→0 (n→−∞)} .

By the stable manifold theorem, both W s(p; f) and W u(p; f) are C∞ injectively im-

mersed curves. For L > 0, let W s
L(p; f) and W u

L(p; f) be the compact subintervals of

W s(p; f) and W u(p; f) centered at p whose length is 2L. The set W s
L(p; f) satisfies

fN(W s
L(p; f)) ⊂ W s

L(p; f) and W s(p; f) =
∪

k≥0 f−kNW s
L(p; f). The set W u

L(p; f) also

have similar properties. For a continuation p̂ : U→M of p, it is known that W s
L(p̂(f); f)

and W u
L(p̂(f); f) depends continuously on f as C∞ embedded intervals.

We say that a hyperbolic fixed point p of fN exhibits homoclinic tangency at a point

q ∈ W s(p; f) ∩ W u(p; f) if W s(p; f) and W u(p; f) are tangent at q. We also say that the

homoclinic tangency at q is ∞-flat if the ∞-jets of W s(p; f) and W u(p; f) at q coincide.

The aim of this section is to show the following.

Proposition 3.3. Let J be an interval in T2, f0 a diffeomorphism in Diffω(T2), and

p0 a hyperbolic fixed point of fN
0 for some N ≥ 1. Suppose that p0 exhibits homoclinic

tangency and W σ(p0; f0) t J ̸= ∅ for each σ = s, u. Then, there exists an open subset U∗

of Diffω(T2) such that f0 ∈ U∗ and the set

Un =
∪

m≥n

{f ∈ U∗ | # [fm(J) t J ] ≥ am}

is an open dense subset of U∗ for any given sequence (am)m≥1 of positive integers and any

n ≥ 1.

The first ingredient of the proof is The Inclination Lemma (or The λ-lemma). See e.g.

[22, Theorem V.11.1] for the proof.

Theorem 3.4. Let p be a hyperbolic fixed point of f ∈ Diffω(T2), I and J embedded

compact intervals in T2, and K a closed subset of T2 such that p ∈ I ⊂ W u(p; f),

J t W s(p; f) contains a point z, and K ∩ [I ∪ {fn(z); n ≥ 0}] = ∅. Then, there exists a

sequence (Jk)k≥1 of subintervals of J such that

(i) fn(Jk) ∩ K = ∅ for any n = 0, . . . , k.

(ii) fk(Jk) converges to I as a C∞ embedded interval as k→∞.
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Take a neighborhood U0 ⊂ Diffω(T2) of f0 and a continuation p̂ : U0→T2 of p0. Applying

The Inclination Lemma, we give a criterion to approximation by a diffeomorphism g such

that gm(J) t J contains infinitely many points.

Lemma 3.5. Let J− and J+ be compact intervals in T2, f a diffeomorphism in Diffω(T2),

and p a hyperbolic fixed point of fN with some N ≥ 1. Suppose that there exist L > 0

and q ∈ [W s(p; f) \ W s
L(p; f)] ∩ [W u(p; f) \ W u

L(p; f)] such that J− t W s
L(p; f) ̸= ∅,

J+ t W u
L(p; f) ̸= ∅, and p exhibits ∞-flat homoclinic tangency at q. Then, for any give

neighborhood U of f in Diffω(T2) and any n0 ≥ 1, there exists a diffeomorphism g ∈ U
and n∗ ≥ n0 such that

#
[
gn∗(J−) t J+

]
= ∞.

Proof. We may assume that N is the minimal period of p, i.e., the minimal positive

integer satisfying fN(p) = p. Let m− and m+ be the minimal positive integers such

that f−m−(q) ∈ W u
L(p; f) and fm+(q) ∈ W s

L(p; f). Since q ∈ W s(p; f) ∩ W u(p; f) and

W σ(p; f) ∩ W σ(f j(p); f) = ∅ for σ = s, u if j ̸≡ 0 (mod N), we have m± ≥ N . Take

L′ > L such that f j(q) ̸∈ W u
L′(p; f) ∪ W s

L′(p; f) for any j = −m− + 1, . . . , m+ − 1. We

also take an open neighborhood U of q such that f i(U) ∩ [W u
L′(p; f) ∪W s

L′(p; f)] = ∅ and

f i(U) ∩ f j(U) = ∅ for any i, j = −m− + 1, . . . , m+ − 1 with i ̸= j.

By The Inclination Lemma, there exists a sequence (J−
k )k≥1 of subintervals of J− such

that f iN(J−
k ) ∩

∪m+−1
j=−m−+1 f j(U) = ∅ for any i = 0, . . . , k and fkN(J−

k ) converges to

W u
L′(p; f) as k→∞. Since m± ≥ N , the former implies that f j(J−

k ) ∩ U = ∅ for any

j = 0, . . . , kN + m− − 1. Take an interval Iu in fm−(W u
L′(p; f)) ∩ U such that Int Iu

contains q. Then, there exists a sequence (I−
k )k≥1 of subintervals of J− such that I−

k ⊂ J−
k

for any k ≥ 1 and fkN+m−(I−
k ) converges to Iu as k→∞. It satisfies that f j(I−

k )∩ U = ∅
for any j = 0, . . . , kN + m− − 1 and fkN+m−(I−

k ) converges to Iu as k→∞.

Take an interval Is in f−m+(W s
L′(p; f)) ∩ U such that Int Is contains q. By the same

argument as above, we can take a sequence (I+
k )k≥1 of subintervals J+ such that f−j(I+

k )∩
U = ∅ for any j = 0, . . . , kN + m+ − 1 and f−(kN+m+)(I+

k ) converges to Is as k→∞.

Fix an neighborhood U of f in Diffω(T2) and an integer n0 ≥ 1. Let V be the set

of diffeomorphisms ϕ ∈ Diffω(T2) such that f ◦ ϕ−1 ∈ U and supp(ϕ) ∈ U . Since Is

and Iu are compact intervals in U and they have the same ∞-jets at q, there exists

k∗ ≥ n0 and ϕ1 ∈ V such that the set ϕ1(f
−(k∗N+m+)(I+

k∗
)) ∩ fk∗N+m−(I−

k∗
) contains an

interval. Put n+ = k∗N + m+ and n− = k∗N + m−. Take a small perturbation ϕ2 ∈ V
of ϕ1 such that #

[
ϕ2(f

−n+(I+
k∗

)) t fn−(I−
k∗

)
]

= ∞. Put g = f ◦ ϕ−1
2 ∈ U . It is easy

to check that gn−(I−
k∗

) = fn−(I−
k∗

) and g−n+(I+
k∗

) = ϕ2 ◦ f−n+(I+
k∗

). Therefore, we have

#
[
gn++n−(I−

k∗
)) t I+

k∗

]
= ∞. Since k∗ ≥ n0, we also have n+ + n− ≥ n0. ¤

The other ingredients are the following results on homoclinic tangency.

Theorem 3.6 (Duarte [6]). Let f0 be a diffeomorphism in Diffω(T2), p0 a hyperbolic fixed

point of fN , and p̂ : U0→T2 a continuation of p0 on an open neighborhood U0 of f0. If p0
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exhibits homoclinic tangency, then there exists an open set U ⊂ U0 and a dense subset T
of U such that f0 ∈ U and p̂(f) exhibits homoclinic tangency for any f ∈ T .

Theorem 3.7 (Gonchenko-Turaev-Shilnikov [9]). Let f0 be a diffeomorphism in Diffω(T2)

and p0 a hyperbolic fixed point of fN
0 . If p0 exhibits homoclinic tangency, then any neigh-

borhood of f0 contains a diffeomorphism g such that p0 is a hyperbolic fixed point of gN

and it exhibits ∞-flat homoclinic tangency.

Now, we prove Proposition 3.3. Let J , f0, and p0 be the ones in the assumption of the

proposition. Take L > 0, an open neighborhood U0 of f0 and a continuation p̂ : U0→T2

of p0 such that W s
L(p̂(f); f) t J ̸= ∅ and W u

L(p̂(f); f) t J ̸= ∅ for any f ∈ U0. By the

Kupka-Smale Theorem, W s(p̂(f); f) and W u(p̂(f); f) intersect transversely for generic

f ∈ U0. Hence, there exists an open and dense subset U1 of U0 such that f ∈ U1 and all

intersections of W s
L(p̂(f); f) and W u

L(p̂(f); f) are transverse for any f ∈ U1. For n ≥ 1,

put

Tn = {f ∈ Diffω(T2) | # [fn(J) t J ] = ∞}.

By Theorems 3.6 and 3.7 and Lemma 3.5, we can take an open subset U∗ of U1 such that

f0 ∈ U∗ and the set (
∪

m≥n Tm) ∩ U∗ is dense in U∗ for any n ≥ 1. This implies that the

set Un =
∪

m≥n{f ∈ U∗ | # [fm(J) t J ] ≥ am} is an open and dense subset of U∗ for any

sequence (am)m≥1 and any n ≥ 1.

3.3. Proof of Theorem 1.3. In this subsection, we prove Theorem 1.3. Recall that D
is the set of diffeomorphisms F ∈ Diffω(R2) such that F − Θ is (2πZ)2-periodic and the

twist condition (9) holds, where Θ(x, y) = (y,−x). Let πT : R2→T2 = (R/2πZ)2 be the

natural projection. It induces a map πT∗ : D→Diffω(T2). For a diffeomorphism F ∈ D,

an open subset U of R2, and n ≥ 1, we put

Λn(F, U) =
[
(R × {0}) t F−n(R × {0})

]
∩

n∩
m=0

F−m(U).

First, we “lift” Proposition 3.3 to the set D.

Proposition 3.8. Suppose that a diffeomorphism F0 in D, a hyperbolic fixed point p0 of

FN
0 (N ≥ 1), open subsets U0 and U1 of R2, and open subset U0 of D satisfy the following

four conditions:

(i) p0 ∈ U0 ⊂ U1, U1 ⊂ (−π, π)2, and F0 ∈ U0.

(ii) p0 exhibits homoclinic tangency.

(iii) W σ(p0; F0) t [(R × {0}) ∩ U0] ̸= ∅ for σ = s, u.

(iv) F n(U0) ⊂ U1 for any F ∈ U0 and n ∈ Z.

Then, there exists an open subset U of U0 such that F0 ∈ U and the set∪
m≥n

{F ∈ U | #Λm(F, U1) ≥ am}
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is open and dense in U for any given sequence (am)m≥1 of positive integers and n ≥ 1.

Proof. Put f0 = πT∗(F0), pT = πT (p0), L0 = (R × {0}) ∩ U0, and LT = πT (L0).

The hyperbolic fixed point pT of fN
0 exhibits homoclinic tangency. By assumption,

W σ(pT ; f0) t LT ̸= ∅ for σ = s, u. Applying Proposition 3.3, we obtain an open subset

UT of Diffω(T2) such that f0 ∈ UT and the set

Un =
∪

m≥n

{
f ∈ UT | #

[
LT t f−m(LT )

]
≥ am

}
is open and dense in UT for any sequence (am)m≥1 of positive integers and n ≥ 1.

The set πT∗(D) is an open subset of Diffω(T2), and πT∗ is a covering map onto πT∗(D).

Hence, there exists an open subset U of U0 such that F0 ∈ U , the restriction of πT∗

to U is a homeomorphism onto a open subset of UT . Since L0 = π−1
T (LT ) ∩ U0 and

F n(U0) ⊂ U1 for any F ∈ U and n ∈ Z, we have F n(L0) ⊂ U1. This implies that

L0 t F−n(L0) ⊂
∩n

m=0 F−m(U1), and hence,

#Λn(F, U1) ≥ #
[
L0 t F−n(L0)

]
= #

[
LT t (πT∗(F ))−n(LT )

]
.

Since πT∗ maps U to an open subset of UT homeomorphically, the set∪
m≥n

{F ∈ U | #Λm(F, U1) ≥ am}

is open and dense in U for any given sequence (am)m≥1 of positive integers and any

n ≥ 1. ¤

Next, we see that the existence of a diffeomorphism F0 satisfying Proposition 3.8 implies

Theorem 1.3. Let U0 and U be open subsets of (−π, π)2 and D in Proposition 3.8. Put

UH = Φ−1(U), where (Φ, ev0) : H→D × R is the homeomorphism given in Proposition

3.1. Take a compact interval I ⊂ (−π, π) such that U0 ⊂ I × R. By Corollary 3.2,

#
[
Cr(Hn) ∩ In+1

]
≥ #Λn(Φ(H), U0)

for any H ∈ UH . Fix a sequence (am)m≥1 of positive integers. Then, the set

Un =
∪

m≥n

{
H ∈ UH | #[Cr(Hm) ∩ Im+1] ≥ am

}
contains an open dense subset of UH for any n ≥ 1.

Let C∞(I2) be the set of functions on I2 which extends to a C∞ function on an

open neighborhood of I2. Recall that we identify S1 with R/2πZ. Let rS : C∞(S1 ×
S1)→C∞(I2) and rH : H→C∞(I2) be the maps induced by the restriction of functions.

They are continuous and open. Hence, the set US = r−1
S (rH(UH)) is open in C∞(S1 ×S1)

Moreover, if U ′ is an open dense subset of UH , then r−1
S (rH(U ′)) is also open and dense

in US. Since

#
[
Cr(fn) ∩ In+1

]
= #

[
Cr(Hn) ∩ In+1

]
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for f ∈ US and H ∈ UH with rS(f) = rH(H), the set

U ′
n =

∪
m≥n

{
f ∈ US | #[Cr(fm) ∩ Im+1] ≥ am

}
⊃ r−1

S (rH(Un))

contains an open dense subset of US for any given sequence (am)m≥1 of positive integers

and any n ≥ 1. Therefore, the set{
f ∈ US | lim sup

n→∞

#Cr(fn)

an

≥ 1

}
⊃

∩
n≥1

U ′
n

is residual in US. This is just the statement of Theorem 1.3.

Finally, we construct a diffeomorphism in D which satisfies the assumption of Proposi-

tion 3.8. Put O = (0, 0) and p0 = (1, 0). For r > 0, we define a disk D′(r) and an annulus

A(r) in R2 by

D′(r) = {q ∈ R2 | ∥q − p0∥ ≤ r}

A(r) = {q ∈ R2 | 2 − r ≤ ∥q∥ ≤ 2 + r}.

Here ∥ ·∥ is the Euclidean norm. Fix δ = 1/6 and let G be a (2πZ)2-periodic C∞ function

on R2 such that

G(x, y) =

(x2 + y2)2 for (x, y) ∈ A(δ)

y2 + (x − 1)2 (x − (1 + δ)) for (x, y) ∈ D′(2δ),

and

supp(G) ∩ (−π, π)2 ⊂ A(2δ) ∪ D′(3δ).

Let Ψt be the flow generated by a vector field XG = (∂2G)∂1 − (∂1G)∂2. It is an area-

preserving flow satisfying the following properties for any t > 0:

(i) supp(Ψt) ∩ (−π, π)2 ⊂ A(2δ) ∪ D′(3δ).

(ii) Ψt(r cos θ, r sin θ) = (r cos(θ−4r2t), r sin(θ−4r2t)) for any (r cos θ, r sin θ) ∈ A(δ).

(iii) p0 is a hyperbolic fixed point of Ψt.

(iv) {(x, y) ∈ D′(2δ) | x ≥ 1, y2 +(x−1)2(x−(1+δ)) = 0} is contained in W s(p0; Ψt)∩
W u(p0; Ψt).

Remark that the last item implies that p0 exhibits homoclinic tangency and W σ(p0; Ψt) t
(R × {0}) ̸= ∅ for σ = s, u.

Since D is an open subset of the set of diffeomorphisms F ∈ Diffω(R2) such that F −Θ

is (2πZ)2-periodic, there exists small T > 0 such that Θ ◦ ΨT ∈ D. Put F0 = Θ ◦ ΨT .

Since F 4
0 = ΨT on D′(2δ), p0 is a hyperbolic fixed point of F 4

0 and it exhibits homoclinic

tangency. For (r cos θ, r sin θ) ∈ A(δ), we have

F 4
0 (r cos θ, r sin θ) = Ψ4

T (r cos θ, r sin θ) = (r cos(θ − 16r2T ), r sin(θ − 16r2T )).
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The Kolmogorov-Arnold-Moser Theorem on persistence of invariant circle (see e.g., [19])

implies that there exist a neighborhood U0 of F0 such that any F ∈ U0 admits an F -

invariant circle C(F ) ⊂ A(δ) which winds the annulus once. This implies that open disks

U0 = {q ∈ R2 | ∥q∥ < 2 − δ} and U1 = {q ∈ R2 | ∥q∥ < 2 + δ} satisfy that F n(U0) ⊂ U1

for any F ∈ U0 and n ∈ Z. Therefore, F0 and p0 satisfy the assumption of Proposition

3.8. As we mentioned in the above, it completes the proof of Theorem 1.3.

4. Proof of Theorem 1.4

We denote the natural coordinate of (S1)n+1 = (R/2πZ)n+1 by (x0, x1, . . . , xn). Let

F : (S1)n+1 → R be a smooth function. For x ∈ (S1)n+1, we set

HessxF :=

(
∂2F (x)

∂xi∂xj

)
0≤i,j≤n

.

This is a (n + 1, n + 1)-matrix. We set

M(F )(x) := max
0≤i≤n

∣∣∣∣∂F (x)

∂xi

∣∣∣∣ + inf
u∈Rn+1,∥u∥=1

∥HessxF (u)∥.

F is a Morse function if and only if M(F )(x) > 0 for all x ∈ (S1)n+1. (Here ∥ · ∥ is the

Euclidean norm in Rn+1.)

Let f : S1 × S1 → R be a smooth function. It is easy to check that for any n ≥ 1

(10) sup
0≤i≤n

∣∣∣∣∂fn(x)

∂xi

∣∣∣∣ ≤ 2 ||∇f ||∞ , ∥Hessx(fn)u∥ ≤ 5
∣∣∣∣∇2f

∣∣∣∣
∞ ∥u∥ (u ∈ Rn+1),

where ||∇f ||∞ is the supremum of |∂f(x)/∂xi| over x ∈ S1 × S1 and 0 ≤ i ≤ 1, and

||∇2f ||∞ is the supremum of |∂2f(x)/∂xi∂xj| over x ∈ S1 × S1 and 0 ≤ i, j ≤ 1.

Let h : S1 → R be a Morse function. We define a positive number K by

K := inf
x∈S1

M(h)(x) > 0.

We define g : S1 × S1 → R by g(x, y) := h(x) + h(y). Then gn(x0, x1, . . . , xn) = h(x0) +

2h(x1) + · · · + 2h(xn−1) + h(xn). It is easy to see

#Cr(gn) = (#Cr(h))n+1.

The Hessian Hessx(gn) is the diagonal matrix diag(h′′(x0), 2h
′′(x1), . . . , 2h

′′(xn−1), h
′′(xn)).

Hence

inf
u∈Rn+1,∥u∥=1

∥Hessxgn(u)∥ = min(|h′′(x0)|, 2|h′′(x1)|, . . . , 2|h′′(xn−1)|, |h′′(xn)|).

M(gn)(x) = max(|h′(x0)|, 2|h′(x1)|, . . . , 2|h′(xn−1)|, |h′(xn)|)

+ min(|h′′(x0)|, 2|h′′(x1)|, . . . , 2|h′′(xn−1)|, |h′′(xn)|).



18 M. ASAOKA, T. FUKAYA, K. MITSUI, M. TSUKAMOTO

This is bounded from below by

min(|h′(x0)| + |h′′(x0)|,2|h′(x1)| + 2|h′′(x1)|, . . . ,

2|h′(xn−1)| + 2|h′′(xn−1)|, |h′(xn)| + |h′′(xn)|) ≥ K.

Therefore we get M(gn)(x) ≥ K for all n ≥ 1 and x ∈ (S1)n+1.

We define a open set V ⊂ C∞(S1 × S1) as the set of f ∈ C∞(S1 × S1) satisfying

2 ||∇(f − g)||∞ + 5 ||∇2(f − g)||∞ < K. We will prove that for all f ∈ V and n ≥ 1 the

functions fn : (S1)n+1 → R are Morse functions and

(11) #Cr(fn) = #Cr(gn) = (#Cr(h))n+1.

Let f ∈ V. By using (10) ∣∣∣∣∂fn

∂xi

∣∣∣∣ ≥ ∣∣∣∣∂gn

∂xi

∣∣∣∣ − 2 ||∇(f − g)||∞ .

For any u ∈ Rn+1 with ∥u∥ = 1,

∥Hessx(fn)u∥ ≥ ∥Hessx(gn)u∥ − 5
∣∣∣∣∇2(f − g)

∣∣∣∣
∞ .

Therefore

M(fn)(x) ≥ M(gn)(x) − 2 ||∇(f − g)||∞ − 5
∣∣∣∣∇2(f − g)

∣∣∣∣
∞ > K − K = 0.

Hence M(fn)(x) > 0 for all x ∈ (S1)n+1. This shows that fn is a Morse function.

For all t ∈ [0, 1], the functions tg + (1 − t)f : S1 × S1 → R are contained in V . Since

non-degenerate critical points are persistent, this implies the equation (11).
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