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SHARP LOWER BOUND ON THE CURVATURES OF ASD
CONNECTIONS OVER THE CYLINDER

MASAKI TSUKAMOTO

ABSTRACT. We prove a sharp lower bound on the curvatures of non-flat ASD connections

over the cylinder.

1. INTRODUCTION

The purpose of this note is to calculate explicitly a universal lower bound on the
curvatures of non-flat ASD connections over the cylinder R x S3.

First we fix our conventions. Let S® = {2} 4+ 23 + 23 + 2 = 1} C R* be the 3-
sphere equipped with the Riemannian metric induced by the Euclidean metric on R*. Set
X = R x S3. We give the standard metric on R, and X is equipped with the product
metric.

Let H be the space of quaternions. Consider SU(2) = {x € H||z| = 1} with the
Riemannian metric induced by the Euclidean metric on H. (Hence it is isometric to
S3 above.) We naturally identify su(2) := T;SU(2) with the imaginary part ImH :=
R: + Rj + REk. Here ¢, j and k have length 1.

Let E := X x SU(2) be the product SU(2)-bundle. Let A be a connection on F, and
let F4 be its curvature. Fl is a su(2)-valued 2-form on X. Hence for each point p € X

the curvature F4 can be considered as a linear map
Fa,: A (T,X) — su(2).

We denote by |F4,|op the operator norm of this linear map. The explicit formula is
as follows: Let x, x5, 23, x4 be the normal coordinate system on X centered at p. Let
A =" Aidr;. Each A, is a su(2)-valued function. Then F(A);; := F4(d/dx;,0/dx;) =
0;A; — 0;A; + [Ai, Aj]. Since 0/0z; AN 0/0x; (1 <i < j <4) become a orthonormal basis
of A2 (T'X) at p, the norm |F,lop is equal to

sup{ |ai; € R, Z a?jzl}.

1<i<j<4
Let [Fal,, be the supremum of |Fy p|o, over p € X. The main result is the following.

> aF(A)iy

1<i<j<4
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Theorem 1.1. The minimum of ”FA”Op over non-flat ASD connections A on E is equal

to 1//2.
The above minimum value 1/+/2 is attained by the following BPST instanton ([1]).

Example 1.2. We define a SU(2) instanton A on R* by

Tdx ) .
A:=1Im (W) , (z =21 4 291 + 237 + 24kK).

By the conformal map
R x S% — R*\ {0}, (t,0) > €'0,

the connection A is transformed into an ASD connection A’ on E over R x S3. Then

2v/2
|Ear (,0)lop = (

et + 6—t)2 :

Hence

1
| Farll,p = ok

Theorem 1.1 is a Yang-Mills analogy of the classical result of Lehto [7, Theorem 1] in
complex analysis. (The formulation below is due to Eremenko [4, Theorem 3.2]. See also
Lehto-Virtanen [8, Theorem 1].)

Consider C* := C \ {0} with the length element |dz|/|z|. We give a metric on CP! =
C U {oo} by (naturally) identifying it with the unit 2-sphere {z} + z3 + 22 = 1}. For a
map f : C* — CP! we denote its Lipschitz constant by Lip(f).

Then Lehto [7, Theorem 1] proved that the minimum of Lip(f) over non-constant
holomorphic maps f : C* — CP! is equal to 1. The function f(z) = z attains the
minimum.

Eremenko [4, Section 3] discussed the relation between this Lehto’s result and a quan-
titative homotopy argument of Gromov [6, Chapter 2, 2.12. Proposition]. Our proof of
Theorem 1.1 is inspired by this idea.

2. PRELIMINARIES: CONNECTIONS OVER S®

In this section we study the method of choosing good gauges for some connections over
S3. The argument below is a careful study of [5, pp. 146-148]. Set N := (1,0,0,0) € S®
and S := (—1,0,0,0) € S%. Let P := 5% x SU(2) be the product SU(2)-bundle over
S3. For a connection B on P we define the operator norm | FBl,, in the same way as in
Section 1.

Let vy,v2 € TnS® be two unit tangent vectors at N. (|v1| = |vg| = 1.) Let expy :
TnS? — S® be the exponential map at N. Since |vj| = |vy| = 1, we have expy(7v;) =
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expy(mvy) = 5. We define a loop [ : [0,27] — S? by

IA A
NSRS
2

expy (tvr) 0<t
expy ((2m — t)vy) (m <t

I(t) :=

Lemma 2.1. Let B be a connection on P. Let Holj(B) € SU(2) be the holonomy of B
along the loop . Then

d(Hol;(B),1) < 27| Fpl,, -
Here d(-,-) is the distance on SU(2) defined by the Riemannian metric.

Proof. This follows from the standard fact that curvature is an infinitesimal holonomy [3,
p. 36]. (27 is half the area of the unit 2-sphere.) The explicit proof is as follows: Take
a unit tangent vector vz € TxS® orthogonal to v; such that there is o € [0, 7] satisfying
vy = vy cosa + vzsina. Consider (the spherical polar coordinate of the totally geodesic
S% C S? tangent to vy and v3):

®:[0,a] x [0,7] = S®,  (01,0) — expy{fa(vicos + vssinb)}.

Let @ be the pull-back of the bundle P by ®. Since ®([0,a] x {0}) = {N} and
O([0,a] x {r}) = {9}, @ admits a trivialization under which the pull-back connection
®* B is expressed as ®*B = Bydf, + Byfy with B; =0 on [0,«a] x {0,7}.

We take a smooth map g : [0, a] x [0, 7] — SU(2) satisfying

g(Hl,O) =1 (V@l c [0,0é]), (82 + Bg)g =0.

We have Holy(B) = g(a, ) "1g(0, 7). Then Fg«p(01,02)g = [01 + By, 02 + Bslg = —(02 +
By)(01 + B1)g. Since By =0 on [0,a] x {0,7},

01961, 7)| < / |Fo (01, 05)|ds.
{61}x[0,7]
Then
d(Hol(B), 1) = d(g(0,7), g(a, 7)) < / | Foe (D1, 85)|d61 6.
[0,a]%x[0,7]

Fo«p(01,02) = F(d®(0/06,),d®(0/065)). The vectors d®(0/00;) and d®(0/065) are or-
thogonal to each other, and |d®(0/06,)| = sin 0y and [dP(0/0602)| = 1. Hence |Fp-p5(01,02)| <
| F,, sin Bz, Thus, from 0 < o <,

d(Hol,(B), 1) < | Fa],, / sin 6, d6dd, = 20| i), < 27 |Fll,, -

[0,a]%x[0,7]

O

Let 7 < 1/2. Let B be a connection on P satisfying [Fp|,, < 7. We will construct a

good connection matrix of B.
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Fix v € TyS®. By the parallel translation along the geodesic expy (tv) (0 <t < 7) we
identify the fiber Ps with the fiber Py. Let gy and gg be the exponential gauges (see [5,
p. 146] or [3, p. 54]) centered at N and S respectively:

gn - P|S3\{S} — (53 \ {S}) X PN7 gs : P|SS\{N} — (Sg \ {N}) X Py.
(In the definition of g¢ we identify Pg with Py as in the above.) By Lemma 2.1, for
z € S°\{N, S},
d(gn(x), gs(x)) < 2m | Fpl,, < 277 < 7.
The injectivity radius of SU(2) = S® is 7 (this is a crucial point of the argument). Hence
there uniquely exists u(z) € adPy (= su(2)) satisfying
u(x)] < 27 |Fpl,, . gs(x) = e"Wgn(a).

We take and fix a cut-off function ¢ : S* — [0,1] such that ¢(zy, 29, z3,24) is equal to 0
over {z; > 1/2} and equal to 1 over {z; < —1/2}. We can define a bundle trivialization
g of P all over S® by g := e?“gy Then the connection matrix g(B) satisfies

|g<B)’ < CT HFB“op :

Here C'. is a positive constant depending on 7.

3. PROOF OF THEOREM 1.1

In this section we denote by t the standard coordinate of R. Let A be an ASD connection
on E satisfying | Fal,, < 1/+/2. We will prove that A must be flat. Set 7 := |F lop JV2 <
1/2.

The ASD equation implies that F4 has the following form:

FA = —dt N (*3F(A’{t}><55)) + F(A’{t}xszs),

where A|gyxgs is the restriction of A to {t} x S* and =3 is the Hodge star on {t} x S°.
Hence

|FA’(t:€)’0p = \/i‘F(A|{t}><S3)9|op~
Therefore

1
HF(A|{t}><S3)H0p <7< 5 (\V/t S R)

Thus we can apply the construction of Section 2 to Al ss.
Fix a bundle trivialization of E over R x {N}. (Any choice will do.) Then the con-
struction in Section 2 gives a bundle trivialization g of F over X satisfying

|9<A>|{t}><53| <C- HF(Al{t}xsi")Hop (Vt € R)
Set A" := g(A). We consider the Chern-Simons functional

1
CS(AI) = tl"(A, N FA’ — gAB).
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For R >0

/ |FA|2dV01 :/ CS(A/) _/ | CS(A/)
(1) [—R,R]xS3 {R}x53 [~R}xS3
< const (| F(Alyso), + [FAlCryeso)],) -

HF(A|{iR}X53)”Op are bounded as R — +o0. Thus

/ | F4|*dvol < +o0.
b

This implies that the curvature F4 has an exponential decay at the ends (see [2, Theorem
4.2]). In particular

‘}F(A‘{:I:R}XS?’)H p%O (R—>+OO)

O

/ | F4|?dvol = 0.
X

By the above (1)

This shows F4 = 0. So A is flat.
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