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REMARK ON ENERGY DENSITY OF BRODY CURVES

MASAKI TSUKAMOTO

Abstract. We introduce several definitions of energy density of Brody curves and show

that they give the same value in an appropriate situation.

1. Introduction.

Let z = x + y
√
−1 ∈ C be the standard coordinate of the complex plane C. Let X

be a compact Hermitian manifold with the Kähler form ω, and let f : C → X be a

holomorphic map. We define the spherical derivative |df |(z) ≥ 0 by

f ∗ω = |df |2dxdy.

We call f a Brody curve (cf. Brody [1]) if it satisfies |df |(z) ≤ 1 for all z ∈ C. Let M(X)

be the space of Brody curves in X. This is equipped with the compact-open topology, and

it becomes a compact metrizable space (possibly infinite dimensional) with the following

natural continuous C-action:

C×M(X) → M(X), (a, f(z)) �→ f(z + a).

For f ∈ M(X), we define the energy density ρ(f) (first introduced in [4]) by

ρ(f) := lim
R→∞

�
1

πR2
sup
a∈C

�

|z−a|<R

|df |2dxdy
�
.

(This limit always exists by Lemma 2.4 in Section 2.) Let N ⊂ M(X) be a C-invariant
closed subset. We define ρ(N ) as the supremum of ρ(f) over all f ∈ N . We sometimes

denote ρ(M(X)) by ρ(X).

The idea of introducing ρ(N ) began in the paper [7]. ([7] uses a different definition.)

It has a close relation to the mean dimension theory (introduced by Gromov [3]). The

paper [4] proves

2(N + 1)ρ(CPN) ≤ dim(M(CPN) : C) ≤ 4Nρ(CPN).

Here CPN is the projective space with the standard Fubini-Study metric, and dim(M(CPN) :

C) is the mean dimension of M(CPN). In particular

dim(M(CP 1) : C) = 4ρ(CP 1).
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2 M. TSUKAMOTO

The purpose of the present paper is to study variants of ρ(N ) and to show that they

give the same value.

Let T (r, f) be the Nevanlinna-Shimizu-Ahlfors characteristic function of f ∈ M(X):

T (r, f) :=

� r

1

��

|z|<t

|df |2dxdy
�

dt

t
(r ≥ 1).

Since |df | ≤ 1 we have T (r, f) ≤ πr2/2. We define ρNSA(f) and ρ
NSA

(f) by

ρNSA(f) := lim sup
r→∞

2

πr2
T (r, f),

ρ
NSA

(f) := lim inf
r→∞

2

πr2
T (r, f).

For a C-invariant closed subset N ⊂ M(X), let ρNSA(N ) and ρ
NSA

(N ) be the supremums

of ρNSA(f) and ρ
NSA

(f) over f ∈ N respectively. It is easy to see ρ
NSA

(f) ≤ ρNSA(f) ≤
ρ(f). Hence ρ

NSA
(N ) ≤ ρNSA(N ) ≤ ρ(N ).

The quantity ρNSA(M(X)) naturally appeared in the study of the upper bound on the

mean dimension [6].

Example 1.1. Consider Z2 = {(x, y)| x, y ∈ Z} ⊂ C. Let an (n ≥ 1) be an increasing

sequence of positive numbers which goes to infinity sufficiently fast. (an = n2 will do.)

Set

Λ := Z2 ∩
� ∞�

n=1

{z ∈ C| |z − an| ≤ n}
�
.

Let c > 0. We define a meromorphic function f(z) by

f(z) :=
�

λ∈Λ

1

(cz − λ)3
.

We can choose c so that f ∈ M(CP 1) and

ρ(f) > 0, ρNSA(f) = ρ
NSA

(f) = 0.

For f ∈ M(X) we denote the closure of the C-orbit of f by C · f . Our main result is

the following:

Theorem 1.2. For any f ∈ M(X) we have

ρ(f) = ρ(C · f) = ρNSA(C · f) = ρ
NSA

(C · f).

Hence for any C-invariant closed subset N ⊂ M(X)

ρ(N ) = ρNSA(N ) = ρ
NSA

(N ).

The technique of the proof of Theorem 1.2 also gives the following:
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Theorem 1.3. For any C-invariant closed subset N ⊂ M(X)

(1) ρ(N ) = lim
R→∞

�
1

πR2
sup
f∈N

�

|z|<R

|df |2dxdy
�
.

The proofs of these theorems will be given in Section 3. The essential ingredients of

the proofs are the standard argument of normal family (i.e. the compactness of M(X))

and a technical result given in Section 2.

2. Technical result.

We fix a positive integer D throughout this section. (Later we will need only the case

D = 2.)

We introduce one notation on Borel measures: Let µ be a Borel measure on RD, and

let a ∈ RD. We define a Borel measure a.µ on RD by (a.µ)(Ω) := µ(a+Ω) where Ω ⊂ RD

and a+ Ω := {a+ x| x ∈ Ω} ⊂ RD.

Let M be a set of Borel measures on RD satisfying the following two conditions:

(a) For any µ ∈ M and a ∈ RD we have a.µ ∈ M.

(b) supµ∈M µ([0, 1]D) < +∞.

Under the condition (a), the condition (b) is equivalent to the condition that for every

bounded Borel subset Ω ⊂ RD we have supµ∈M µ(Ω) < +∞.

Example 2.1. Let ϕ : RD → [0, 1] be a measurable function, and set

µ(Ω) :=

�

Ω

ϕdvol, (Ω ⊂ RD).

Here dvol is the standard volume element of RD. Then the set {a.µ| a ∈ RD} satisfies the

above two conditions.

For a Borel set Ω ⊂ RD we denote its Lebesgue measure by |Ω|. For r > 0 and a ∈ RD

we set Br(a) := {x ∈ RD| |x− a| ≤ r}. We usually denote Br(0) by Br. We introduce the

following two quantities:

ρ := lim
R→∞

�
1

|BR|
sup
µ∈M

µ(BR)

�
,

ρ̃ := lim
r→∞

�
lim
R→∞

�
sup
µ∈M

�
inf

r≤t≤R

µ(Bt)

|Bt|

���
.

The existence of the limit in the definition of ρ follows from Lemma 2.4 below (see the

proof of Lemma 2.5). The quantity

sup
µ∈M

�
inf

r≤t≤R

µ(Bt)

|Bt|

�

is a non-increasing function in R and a non-decreasing function in r. Hence the limits in

the definition of ρ̃ exist.



4 M. TSUKAMOTO

The definition of ρ̃ looks complicated, but it is easy to see ρ̃ ≤ ρ. The following result

is the main technical tool for the proofs of Theorems 1.2 and 1.3.

Theorem 2.2. ρ̃ = ρ.

This result might be known to some specialists in harmonic analysis or ergodic theory.

But I could not find a literature containing this result.

We need two lemmas below. Lemma 2.3 is the well-known finite Vitali covering lemma

(see e.g. Einsiedler-Ward [2, p. 40, Lemma 2.27]). Lemma 2.4 is a special case of Ornstein-

Weiss’s lemma. (This formulation is due to Gromov [3, p. 336]. The original argument

was given in Ornstein-Weiss [5, Chapter I, Sections 2 and 3].)

Lemma 2.3. Let a1, . . . , aK ∈ RD
and r1, . . . , rK > 0. Then we can choose 1 ≤ i(1) <

· · · < i(k) ≤ K such that the balls Bri(1)(ai(1)), . . . , Bri(k)(ai(k)) are disjoint and

K�

j=1

Brj(aj) ⊂
k�

j=1

B3ri(j)(ai(j)).

Before giving the statement of Lemma 2.4 we need to prepare some terminologies. Let

Ω ⊂ RD and r > 0. We define ∂rΩ as the set of points x ∈ RD such that Br(x) has a

non-empty intersection both with Ω and RD \ Ω. A sequence of bounded Borel subsets

{Ωn}n≥1 of RD is called a Følner sequence if for all r > 0

|∂rΩn|/|Ωn| → 0 (n → ∞).

The sequence {Bn}n≥1 is a Følner sequence. The sequence {[0, n]D}n≥1 is also.

Lemma 2.4. Let h be a non-negative function on the set of bounded Borel subsets of RD

satisfying the following three conditions.

(Monotonicity) If Ω1 ⊂ Ω2, then h(Ω1) ≤ h(Ω2).

(Subadditivity) h(Ω1 ∪ Ω2) ≤ h(Ω1) + h(Ω2).

(Invariance) For any a ∈ RD
and any bounded Borel subset Ω ⊂ RD

, we have h(a+Ω) =

h(Ω).

Then for any Følner sequence Ωn (n ≥ 1) in RD
, the limit of the sequence

h(Ωn)/|Ωn| (n ≥ 1)

exists, and its value is independent of the choice of a Følner sequence.

The following is an immediate consequence of Lemma 2.4.

Lemma 2.5. For any ε > 0 there exists N = N(ε) > 0 such that every bounded Borel

subset Ω ⊂ RD
with |∂NΩ|/|Ω| < 1/N satisfies

����
supµ∈M µ(Ω)

|Ω| − ρ

���� < ε.
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Proof. Set h(Ω) := supµ∈M µ(Ω). This satisfies the three conditions in Lemma 2.4. If the

above statement is false, then there exist ε > 0 and a sequence of bounded Borel subsets

Ωn ⊂ RD with |∂nΩn|/|Ωn| < 1/n satisfying
����
h(Ωn)

|Ωn|
− ρ

���� ≥ ε.

But Ωn is a Følner sequence. So

ρ = lim
n→∞

h(Ωn)/|Ωn|.

�
Proof of Theorem 2.2. Assume ρ̃ < ρ − δ for some δ > 0. Set ε := δ/(2 · 3D+1). Let

N = N(ε) be a positive number given by Lemma 2.5. We choose r > 0 sufficiently large

so that every t ≥ r satisfies

(2)
|∂NBt|
|Bt|

<
1

3N
.

We fix R > r so that

sup
µ∈M

�
inf

r≤t≤R

µ(Bt)

|Bt|

�
< ρ− δ.

Let L > R be a large number satisfying

(3) |BL−R| >
|BL|
3

,

�
1

2
− 1

3D+1

�
|BL| > |BR|.

Fix an arbitrary µ ∈ M. For each a ∈ R there is t = t(a) ∈ [r, R] such that

(4)
µ(Bt(a))

|Bt|
=

(a.µ)(Bt)

|Bt|
< ρ− δ.

By the finite Vitali covering lemma (Lemma 2.3), we can choose a1, . . . , aK ∈ BL−R (set

ti := t(ai)) such that Bti(ai) ∩Btj(aj) = ∅ (i �= j) and

BL−R ⊂
K�

i=1

B3ti(ai).

By the first condition of (3)

3−D−1|BL| <
K�

i=1

|Bti(ai)|.

Then we can choose (using the second condition of (3)) 1 ≤ J ≤ K such that

(5) 3−D−1|BL| <
J�

i=1

|Bti(ai)| ≤
|BL|
2

.

By (4)

(6) µ

�
J�

i=1

Bti(ai)

�
< (ρ− δ)

�����

J�

i=1

Bti(ai)

����� .
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Set Ω := BL \
�J

i=1 Bti(ai). |Ω| ≥ |BL|/2. Since ∂NΩ ⊂ ∂NBL ∪
�J

i=1 ∂NBti(ai),

|∂NΩ| ≤ |∂NBL|+
J�

i=1

|∂NBti(ai)|

<
1

3N

�
|BL|+

J�

i=1

|Bti(ai)|
�

(by (2))

≤ |BL|
2N

≤ |Ω|
N

(by (5)).

Hence by Lemma 2.5
µ(Ω)

|Ω| < ρ+ ε.

So by (6)

µ(BL) = µ(Ω) + µ

�
J�

i=1

Bti(ai)

�

< (ρ+ ε)|Ω|+ (ρ− δ)

�����

J�

i=1

Bti(ai)

�����

= ρ|BL|+
�
ε|Ω|− δ

�����

J�

i=1

Bti(ai)

�����

�

� �� �
A

.

By (5) and ε = δ/(2 · 3D+1),

A < ε|BL|− δ · 3−D−1|BL| = −ε|BL|.

Thus
µ(BL)

|BL|
< ρ− ε.

Since µ ∈ M is arbitrary,
1

|BL|
sup
µ∈M

µ(BL) ≤ ρ− ε.

We can let L → +∞. Hence ρ ≤ ρ− ε. This is a contradiction. �

Remark 2.6. In the above proof we have not used the complete additivity of measures

µ ∈ M. We needed only the monotonicity and subadditivity (two conditions given in

Lemma 2.4) of µ ∈ M. So Theorem 2.2 can be also applied to a set of monotone,

subadditive, non-negative functions on the set of bounded Borel subsets of RD satisfying

the conditions (a) and (b) in the beginning of this section. This generalization is not used

in this paper. But it might become useful in some future.

Applying Theorem 2.2 to Example 2.1, we get the following corollary:
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Corollary 2.7. Let ϕ : RD → [0, 1] be a measurable function. Then

lim
R→∞

�
1

|BR|
sup
a∈RD

�

BR(a)

ϕdvol

�
= lim

r→∞

�
lim
R→∞

�
sup
a∈RD

�
inf

r≤t≤R

�
Bt(a)

ϕdvol

|Bt|

���
.

3. Proofs of Theorems 1.2 and 1.3.

Let f : C → X be a Brody curve. We first prove Theorem 1.2.

Step 1. ρ(f) = ρ(C · f).

Proof. It is enough to prove that ρ(g) ≤ ρ(f) for all g ∈ C · f . Take a sequence {an}n≥1 ⊂
C such that f(z + an) converges to g(z) uniformly over every compact subset of C. Let

ε > 0. For any R > 0 and b ∈ C there exists n0 > 0 such that for n ≥ n0

��|df |2(z + an)− |dg|2(z)
�� < ε (|z − b| < R).

Hence for n ≥ n0

1

πR2

�

|z−b|<R

|dg|2dxdy ≤ 1

πR2

�

|z−an−b|<R

|df |2(z)dxdy + ε

≤ 1

πR2
sup
a∈C

�

|z−a|<R

|df |2dxdy + ε.

Taking the supremum with respect to b and R → ∞, we get ρ(g) ≤ ρ(f) + ε. Let ε → 0.

We get ρ(g) ≤ ρ(f). �

Step 2. ρ(f) = ρ
NSA

(C · f) = ρNSA(C · f). (This completes the proof of Theorem 1.2.)

Proof. From Step 1, we get ρ
NSA

(C · f) ≤ ρNSA(C · f) ≤ ρ(C · f) = ρ(f). So it is enough

to prove ρ
NSA

(C · f) ≥ ρ(f). By Corollary 2.7 ρ(f) is equal to

lim
r→∞

�
lim
R→∞

�
sup
a∈C

�
inf

r≤t≤R

�
Bt(a)

|df |2dxdy
πt2

���
.

Let ε > 0 and fix r = r(ε) > 1 satisfying

lim
R→∞

�
sup
a∈C

�
inf

r≤t≤R

�
Bt(a)

|df |2dxdy
πt2

��
> ρ(f)− ε.

Then for any R > r there exists a(R) ∈ C such that

inf
r≤t≤R

1

πt2

�

Bt(a(R))

|df |2(z)dxdy > ρ(f)− ε.

Since M(X) is compact, we can take a sequence r < R1 < R2 < R3 < · · · → ∞ (set

ak := a(Rk)) such that f(z+ ak) converges to some g(z) in M(X). (Then g ∈ C · f .) We

have

inf
r≤t≤Rk

1

πt2

�

Bt

|df |2(z + ak)dxdy > ρ(f)− ε.
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Hence for any t ≥ r we get

1

πt2

�

Bt

|dg|2(z)dxdy ≥ ρ(f)− ε.

Then for s ≥ r (> 1)

T (s, g) ≥
� s

r

��

Bt

|dg|2dxdy
�

dt

t

≥ (ρ(f)− ε)

�
πs2

2
− πr2

2

�
.

Hence for s ≥ r
2

πs2
T (s, g) ≥ (ρ(f)− ε)

�
1− r2

s2

�
.

Taking the limit-inf with respect to s, we get ρ
NSA

(g) ≥ ρ(f)− ε. Thus

ρ
NSA

(C · f) ≥ ρ
NSA

(g) ≥ ρ(f)− ε.

ε > 0 is arbitrary. So ρ
NSA

(C · f) ≥ ρ(f). �

Remark 3.1. By using the above argument, we can also prove that ρ(f) is equal to the

supremum of

lim sup
r→+∞

�
1

πr2

�

|z|<r

|dg|2dxdy
�

over g ∈ C · f . (The limit-sup can be replaced with the limit-inf.) This type of energy

density was introduced and studied in [7].

Proof of Theorem 1.3. Let ρ be the right-hand-side of (1). ρ ≥ ρ(N ) is obvious (by the

C-invariance of N ). For each f ∈ N we define a Borel measure µf on C by µf (Ω) :=�
Ω |df |2dxdy. Consider the set {µf | f ∈ N}. This set satisfies the conditions (a) and (b)

in the beginning of Section 2. Then Theorem 2.2 implies that ρ is equal to

lim
r→∞

�
lim
R→∞

�
sup
f∈N

�
inf

r≤t≤R

�
Bt

|df |2dxdy
πt2

���
.

Then, as in the proof of Step 2, for every ε > 0 we can find rε > 0 and gε ∈ N such that

for all t ≥ rε
1

πt2

�

Bt

|dgε|2dxdy ≥ ρ− ε.

Then ρ(N ) ≥ ρ(gε) ≥ ρ− ε. Since ε > 0 is arbitrary, we get ρ(N ) ≥ ρ. �
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