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DECOMPOSITIONS OF POLYHEDRAL PRODUCTS

KOUYEMON IRIYE AND DAISUKE KISHIMOTO

Abstract. In [BBCG], Bahri, Bendersky, Cohen and Gitler posed a conjecture on decomposi-
tions of certain polyhedral products, supported by their own result on suspensions of polyhedral
products and a result of Grbić and Theriault [GT]. We resolve this conjecture affirmatively.

1. Introduction

In this paper, we resolve a conjecture of Bahri, Bendersky, Cohen and Gitler [BBCG] on

decompositions of polyhedral products which generalizes a result of Grbić and Theriault [GT].

Throughout the paper, we work in the category of compactly generated weak Hausdorff spaces

with nondegenerate base points and base point preserving maps.

Let us first recall the definition of polyhedral products. Let K be a simplicial complex on

the index set [n] = {1, . . . , n}, and let (X,A) be a collection of pairs of spaces {(Xi, Ai)}n
i=1.

The polyhedral product or the generalized moment-angle complex of (X,A) with respect to K,

denoted by ZK(X,A), is defined as the union of all
∏

i∈σ Xi ×
∏

i "∈σ Ai for σ ∈ K. Polyhedral

products first appeared in a work of Porter [P] which defines higher order Whitehead products.

Since then, polyhedral products have been studied in connection with topology, algebra and

combinatorics, and so there are diverse results [B, BBCG, BP, DJ, DO, DS, FT, GT, N].

Among these results, we are particularly interested in decompositions of polyhedral products.

Bahri, Bendersky, Cohen and Gitler [BBCG] gave decompositions of polyhedral products after

a suspension. Let us illustrate a special example of their result. We set some notation. Let

|K| denote the geometric realization of a simplicial complex K. A subcomplex L of K is called

induced whenever all vertices of a simplex σ of K belong to L, σ is a simplex of L. We denote

the induced subcomplex of K on the vertex set I ⊂ V (K) by KI , where V (K) is the vertex

set of K. For a collection of spaces {Xi}n
i=1 and ∅ %= J ⊂ [n], let X̂J denote the smash product

∧
j∈J Xj. For spaces X,Y , let X ∗ Y be the join of X and Y .

Theorem 1.1 (Bahri, Bendersky, Cohen and Gitler [BBCG]). Let K be a simplicial complex

on the index set [n] and let (X,A) be a collection of NDR pairs {(Xi, Ai)}n
i=1. If each Xi is

contractible, there is a homotopy equivalence

ΣZK(X,A) ' Σ
∨

∅"=I⊂V (K)

|KI | ∗ ÂI .

There is also a result due to Grbić and Theriault [GT] on decompositions of certain polyhedral

products without a suspension. To state their result, we define special simplicial complexes. A
1
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simplicial complex K is called shifted if there is an order on V (K) whenever v ∈ σ ∈ K and

v < w ∈ V (K), (σ − v) ∪ w belongs to K.

Theorem 1.2 (Grbić and Theriault [GT]). Let K be a shifted complex on the index set [n] and

let (D2, S1) be a collection of n-copies of (D2, S1). Then ZK(D2, S1) has the homotopy type of

a wedge of spheres.

Supported by Theorem 1.1 and 1.2, Bahri, Bendersky, Cohen and Gitler [BBCG] posed the

following conjecture. For a collection of spaces X = {Xi}n
i=1, put (CX,X) = {(CXi, Xi)}n

i=1.

Conjecture 1.3 (Bahri, Bendersky, Cohen and Gitler [BBCG]). Let K be a shifted complex on

the index set [n] and let X be a collection of spaces {Xi}n
i=1 such that each Xi is path-connected.

Then

ZK(CX,X) '
∨

∅"=I⊂[n]

|KI | ∗ X̂I

The proof of Theorem 1.2 in [GT] heavily relies on the fact that S1 has a classifying space,

and then we must make a different approach to Conjecture 1.3. Our approach is simple and

straightforward compared to that of Grbić and Theriault [GT], and we resolve Conjecture 1.3

together with a certain naturality with respect to K (Theorem 5.2). As its corollary, we obtain:

Theorem 1.4. Let K be a shifted complex on the index set [n] and let X be a collection of

spaces {Xi}n
i=1. Then there is a homotopy equivalence

ZK(CX,X) '
∨

∅"=I⊂[n]

|KI | ∗ X̂I .

Corollary 1.5. Let K and X be as in Theorem 1.4. If ΣXi has the homotopy type of a wedge

of spheres for each i, so does ZK(CX, X).

Proof. By pinching out the star of the maximum vertex, any shifted complex becomes a wedge

of spheres. See Lemma 3.5 below. Then since each induced subcomplex of a shifted complex is

also shifted, the proof is completed by Theorem 1.4. !

2. Lemmas on pushouts

The purpose of this section is to collect some lemmas on pushouts of topological spaces. Let

us first recall two basic properties of pushouts of topological spaces, where we omit the proofs.

We will use these two properties implicitly in what follows.
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Lemma 2.1. Suppose there is a commutative diagram

A !!

f1

""

g

##
!!

!!
!!

! B

f2

""

$$
!!

!!
!!

!!

C !!

f3

""

D

f4

""

E !!

h

##
!!

!!
!!

! F

$$
!!

!!
!!

!!

G !! H

in which the top and the bottom faces are pushouts and g, h are cofibrations. If f1, f2, f3 are

homotopy equivalences, so is f4.

Lemma 2.2. If a commutative diagram

A !!

""

B

""

C !! D

is a pushout, so is

A × E !!

""

B × E

""

C × E !! D × E.

We consider a special case that pushouts preserve cofiber sequences.

Lemma 2.3. Suppose there is a commutative diagram

A1
!!

""

f

$$
""

""
""

""
B1

!!

""

g

$$
""

""
""

""
C1

""

$$
##

##
##

##

A2
!!

""

B2
!!

""

C2

""

A3
!!

$$
""

""
""

""
B3

!!

$$
""

""
""

""
C3

$$
##

##
##

##

A4
!! B4

!! C4

in which all three side faces are pushouts and f, g are cofibrations. If Ai → Bi → Ci is a cofiber

sequence for i = 1, 2, 3, so is A4 → B4 → C4.

Proof. Since colimits commute with colimits, C4 = B4/A4 and the map B4 → C4 is the projec-

tion. Then we show A4 → B4 is a cofibration. By a result of Lillig [L], the map Q → B2 is a

cofibration, where Q is a pushout of A2 ← A1 → B1. Then it follows from [H, Lemma 7.2.15]

that A4 → B4 is also a cofibration. !
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For spaces X,Y , we put X ! Y = X × Y/X × ∗.

Lemma 2.4. Define Q as a pushout

A × (B ∨ C)
i×1

!!

1×(1∨∗)
""

CA × (B ∨ C)

""

A × (B ∨ D) !! Q,

where i : A → CA is the inclusion. Then there is a homotopy equivalence Q
(−→ B ∨ (A ! D) ∨

(ΣA ∧ C) which is natural with respect to A,B,C,D.

Proof. Apply Lemma 2.3 to a commutative diagram

A

""

A
i

!!

""

CA

""

A × (B ∨ D) A × (B ∨ C)
1×(1∨∗)
%%

i×1
!! CA × (B ∨ C),

where the vertical arrows are the inclusions into the first factors. Then we get a cofiber sequence

CA → Q
q−→ Q, where Q is defined as a pushout

A ! (B ∨ C)
i!1

!!

1!(1∨∗)
""

CA ! (B ∨ C)

""

A ! (B ∨ D) !! Q.

Obviously, Q = (CA ! B)∨ (A ! D)∨ (ΣA∧C) and then the composite of q : Q → Q and the

projection Q → B ∨ (A ! D) ∨ (ΣA ∧ C) is the desired homotopy equivalence. !

3. Topology of shifted complexes

In this section, we study the topology of shifted complexes. Let K be a shifted complex. If

V (K) is a subset of [n], we assume that K is shifted by the order of [n]. A shifted subcomplex

of K means a subcomplex of K which is shifted by the order of V (K). We give two important

examples of shifted subcomplexes. For a simplicial complex K and its vertex v, let restK(v),

starK(v) and linkK(v) be the induced subcomplex KV (K)−v, the star and the link of v in K,

respectively.

Example 3.1. Let K be a shifted complex. Any induced subcomplex of K is a shifted sub-

complex of K. In particular, restK(v) is a shifted subcomplex of K.

Example 3.2. Let K be a shifted complex. If v is the maximum vertex, starK(v) is a shifted

subcomplex of K. Then linkK(v) is also a shifted subcomplex of K since it is an induced

subcomplex of starK(v).

Let us first consider the connected components of shifted complexes.
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Proposition 3.3. Let K be a shifted complex on the index set [nK , n] = {nK , nK + 1, . . . , n}
and let K0 be the connected component of K containing the maximum vertex n. Then V (K0) =

V (starK(n)) = [nK0 , n] for some nK0 ∈ [nK , n] and K − K0 is discrete.

Proof. Choose any vertex v of K0. Then v is adjacent to some vertex w of K0. If v < w, v

is also adjacent to n, equivalently, v ∈ V (starK(n)). If v > w, w is adjacent to n, implying

v ∈ V (starK(n)). Then we obtain V (K0) ⊂ V (starK(n)). The converse implication is obvious

and thus the first assertion is proved. We next prove the second assertion. If there are adjacent

vertices v, w of K − K0 with v < w, one sees that v ∈ V (starK(n)) as above, a contradiction.

Then there is no edge in K − K0, that is, K − K0 is discrete. !

We next consider the quotient of a shifted complex by the star of the maximum vertex. We

set some notation. Let K be a shifted complex with the maximum vertex v. Let m(K) be the

set of all maximal simplices of K which do not contain v. We put

m0(K) = m(restK(v)) ∩ m(linkK(v)),

m1(K) = m(restK(v)) − m0(K),

m2(K) = m(linkK(v)) − m0(K).

Proposition 3.4. For a connected shifted complex K, the dimension of any simplex in m1(K)

is positive.

Proof. By Proposition 3.3, we have V (linkK(v)) = V (restK(v)), implying if σ ∈ m(restK(v))

and dim σ = 0, σ belongs to m(linkK(v)), where v is the maximum vertex of K. !

Let K be a shifted complex with the maximum vertex v. Put

K = |K|/|starK(v)|.

For a shifted subcomplex L of K satisfying v ∈ L, let ιK,L : L → K be the induced map from

the inclusion of L into K.

Proposition 3.5. Let K be a shifted complex. Then

K =
∨

σ∈m(K)

Sdim σ

and ιK,L is a wedge of the identity map of Sdim σ for σ ∈ m(L) ∩ m(K) and the constant map

on other spheres, where L is a shifted subcomplex of K having the common maximum vertex.

Proof. Any simplex σ of K satisfies ∂σ ∈ starK(v), where v is the maximum vertex of K. Then

the first assertion follows. The second assertion is obvious. !
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Proposition 3.6. Let K be a shifted complex with the maximum vertex v. There is an identi-

fication

K = (
∨

σ∈m1(K)

Sdim σ) ∨ (
∨

τ∈m2(K)

Sdim τ+1).

Through this identification, ιK,L is a wedge of the restriction of ιrestK(v),restL(v) and ΣιlinkK(v),linkL(v),

where L is a shifted subcomplex of K with v ∈ L.

Proof. Let w be the second greatest vertex of K. Notice that m1(K) = {σ ∈ m(K) | w %∈ σ}
and m2(K) = {τ ∈ K | w %∈ τ and τ ∪w ∈ m(K)}. Then the first assertion follows. The second

assertion is clear. !

4. The space Wn
K

The purpose of this section is to introduce the space Wn
K for a certain shifted complex K and

to show that it is built up inductively by two kinds of pushouts. Hereafter, we fix a collection

of spaces X = {Xi}n
i=1. We also fix K,L,M to be a shifted complex on the index set [nK , n],

a shifted subcomplex of K on [nL, n] and a shifted subcomplex of L on [nM , n], respectively.

4.1. Definition of Wn
K. For a shifted complex P on the index set V (P ) ⊂ [m], we define

Wm
P = (

∨

∅"=I⊂V (P )

ΣPI ∧ X̂I) ×
∏

j∈[m]−V (P )

Xj.

Then if nK = 1, Wn
K has the homotopy type of the right hand side of the homotopy equivalence

in Theorem 1.4 since A ∗ B ' ΣA ∧ B and |KI | ' KI . We also define Wm
∅ =

∏m
j=1 Xj.

We next define a map λK,L : Wn
L → Wn

K . Let δi be the composite of maps

ΣA " Xi
∇−→ (ΣA " Xi) ∨ (ΣA " Xi) → ΣA ∨ (ΣA ∧ Xi),

where ∇ is the suspension comultiplication and the second arrow is a wedge of the projections.

Then δi is a homotopy equivalence. We now define λK,L as follows. We first apply the projection

Wn
L → ((

∨
∅"=I⊂[nL,n] ΣLI ∧ X̂I)"

∏nL−1
j=nK

Xj)×
∏

j<nK
Xj and then δnL−1, δnL−2, . . . , δnK in turn

to get a map

Wn
L → (

∨

∅"=I⊂[nL,n]
J⊂[nK ,nL−1]

ΣLI ∧ X̂I∪J) ×
∏

j<nK

Xj.

We next apply the product of a wedge of ΣιKI∪J ,LI ∧ 1 : ΣLI ∧ X̂I∪J → ΣKI∪J ∧ X̂I∪J

and the identity map of
∏

j<nK
Xj to the target of the above map. Then we obtain a map

λK,L : Wn
L → Wn

K . We also define λK,∅ : Wn
∅ → Wn

K as the composite

Wn
∅

proj−−→
∏

j<nK

Xj
incl−−→ Wn

K .

By definition, we have

λK,L ◦ λL,M = λK,M ,

where M may be ∅. We will often abbreviate λK,L by λ when K,L are clear in the context.
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4.2. Pushouts in Wn
K. Let us consider two kinds of pushouts by which Wn

K is constructed

inductively. Define Wn,c
K as a pushout

Xn ×Wn−1
linkK(n)

i×1
!!

1×λ
""

CXn ×Wn−1
linkK(n)

""

Xn ×Wn−1
restK(n)

!! Wn,c
K

and a map λc
K,L : Wn,c

L → Wn,c
K as the induced map from a commutative diagram

Xn ×Wn−1
restL(n)

1×λ
""

Xn ×Wn−1
linkL(n)

1×λ
%%

1×λ
""

i×1
!! CXn ×Wn−1

linkL(n)

1×λ
""

Xn ×Wn−1
restK(n) Xn ×Wn−1

linkK(n)
1×λ

%%
i×1

!! CXn ×Wn−1
linkK(n).

Proposition 4.1. Suppose K is connected. Then there is a homotopy equivalence hc
K : Wn,c

K
(−→

Wn
K satisfying

hc
K ◦ λc

K,L = λK,L ◦ hc
L

if L is also connected.

Proof. Put

WK(i) =
∨

∅"=I⊂[nK ,n−1]

(
∨

σ∈mi(KI∪n)

ΣSdim σ ∧ X̂I)

for i = 0, 1, 2. Since restKI∪n(n) = restK(n)I and linkKI∪n(n) = linkK(n)I for ∅ %= I ⊂
[nK , n − 1], it follows from Proposition 3.5 that Wn−1

restK(n) = (WK(0) ∨ WK(1)) ×
∏

j<nK
Xj,

Wn−1
linkK(n) = (WK(0) ∨ WK(2)) ×

∏
j<nK

Xj and λrestK(n),linkK(n) is the product of the identity

map of
∏

j<nK
Xj and a wedge of the identity map of WK(0) and the constant map. Put

W c
K = (WK(0) ∨ (WK(1) " Xn) ∨ (ΣWK(2) ∧ Xn)) ×

∏

j<nK

Xj

and rc
K,L : W c

L → W c
K to be the induced map from λrestK(n),restL(n) and λlinkK(n),linkK(n). Then

it follows from Proposition 3.5 that we can apply Lemma 2.4 to Wn,c
K and obtain a homotopy

equivalence

gc
K : Wn,c

K
(−→ W c

K

satisfying gc
K ◦ λc

K,L = rc
K,L ◦ gc

L.

For ∅ %= I ⊂ [nK , n − 1], restKI∪n(n) = KI . Then by Proposition 3.5, WK(0) ∨ WK(1) =
∨

∅"=I⊂[nK ,n−1] ΣKI∧X̂I . On the other hand, (WK(1)∧Xn)∨(ΣWK(2)∧Xn) =
∨

∅"=I⊂[nK ,n−1] ΣKI∪n∧
X̂I∪n by Proposition 3.6. Then it follows that

Wn
K = (WK(0) ∨ WK(1) ∨ (WK(1) ∧ Xn) ∨ (ΣWK(2) ∧ Xn)) ×

∏

j<nK

Xj.

Moreover, through this identification, one sees that λK,L is induced from λrestK(n),restL(n) and

λlinkK(n),linkL(n) by Proposition 3.5 and 3.6. Since K is connected, so is KI∪n also by Proposition



8 KOUYEMON IRIYE AND DAISUKE KISHIMOTO

3.3. Then by Proposition 3.4, dim σ > 0 for σ ∈ m1(KI∪n) and hence we can define a map

δn : Xn ! WK(1)
(−→ WK(1) ∨ (Xn ∧ WK(1)) by using the suspension parameter of Sdim σ for

σ ∈ m1(KI∪n). We now define a homotopy equivalence hc
K as the composite

Wn,c
K

gc
K−→ W c

K

= (WK(0) ∨ (WK(1) " Xn) ∨ (ΣWK(2) ∧ Xn)) ×
∏

j<nK

Xj

(1∨δn∨1)×1−−−−−−−→ (WK(0) ∨ WK(1) ∨ (WK(1) ∧ Xn) ∨ (ΣWK(2) ∧ Xn)) ×
∏

j<nK

Xj

= Wn
K .

Since the suspension parameters used for rc
K,L and the above δn are distinct, it holds that

((1 ∨ δn ∨ 1) × 1) ◦ rc
K,L = λK,L ◦ ((1 ∨ δn ∨ 1) × 1). Then one has

hc
K ◦ λc

K,L = ((1 ∨ δn ∨ 1) × 1) ◦ gc
K ◦ λc

K,L

= ((1 ∨ δn ∨ 1) × 1) ◦ rc
K,L ◦ gc

L

= λK,L ◦ ((1 ∨ δn ∨ 1) × 1) ◦ gc
L

= λK,L ◦ hc
L,

completing the proof. !

Define Wn,d
K as a pushout

Wn
∅

incl
!!

λ

""

CXnK−1 ×
∏

j "=nK−1 Xj

""

Wn
K

!! Wn,d
K .

When nL = nK , we also define a map λd
K,L : Wn,d

L → Wn,d
K as the induced map from a

commutative diagram

Wn
L

λ
""

Wn
∅

λ
%%

incl
!! CXnL−1 ×

∏
j "=nL−1 Xj

Wn
K Wn

∅
λ

%%
incl

!! CXnK−1 ×
∏

j "=nK−1 Xj.

Proposition 4.2. There is a homotopy equivalence hd
K : Wn,d

K
(−→ Wn

K∪(nK−1) such that when

nL = nK,

hd
K ◦ λd

K,L = λK∪(nK−1),L∪(nL−1) ◦ hd
L.

Proof. Let δ̂i be the composite

Σ(A × Xi)
(1∨∇)◦∇−−−−−→

3∨
Σ(A × Xi) → ΣA ∨ ΣXi ∨ (ΣA ∧ Xi),
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where the second arrow is a wedge of the projections. Then δ̂i is a homotopy equivalence. By

applying δ̂m, δ̂m−1, . . . , δ̂i+2 in turn to ΣXi ∧
∏m

j=i+1 Xj, we obtain a homotopy equivalence

δm(i) : ΣXi ∧
m∏

j=i+1

Xj →
∨

∅"=I⊂[i+1,m]

ΣX̂I∪i =
∨

∅"=I⊂[i+1,m]

Σ{I0, i} ∧ X̂I∪i,

where I0 is the maximum of I.

Put

W d
K = ((

∨

∅"=I⊂[nK ,n]

ΣKI ∧ X̂I) " XnK−1 ∨ (ΣXnK−1 ∧
∏

j≥nK

Xj)) ×
∏

j<nK−1

Xj

and rd
K,L : W d

L → W d
K to be the induced map from λK,L, where nL = nK . Then by Lemma 2.4

and Proposition 3.5, there is a homotopy equivalence

gd
K : Wn,d

K
(−→ W d

K

satisfying gd
K ◦λd

K,L = rd
K,L ◦ gd

L. Define hd
K as the composite of gd

K and a homotopy equivalence

W d
K = ((

∨

∅"=I⊂[nK ,n]

ΣKI ∧ X̂I) " XnK−1 ∨ (ΣXnK−1 ∧
∏

j≥nK

Xj)) ×
∏

j<nK−1

Xj

(δnK−1∨δn(nK−1))×1
−−−−−−−−−−−−−→ (

∨

∅"=I⊂[nK ,n]

(ΣKI ∧ X̂I) ∨ (Σ(KI ∨ {I0, nK − 1}) ∧ X̂I∪(nK−1))) ×
∏

j<nK−1

Xj

= (
∨

∅"=I⊂[nK ,n]

(ΣKI ∧ X̂I) ∨ (ΣKI∪(nK−1) ∧ X̂I∪(nK−1)) ×
∏

j<nK−1

Xj

= Wn
K∪(nK−1),

where the base point of {I0, nK − 1} is I0. Then since gd
K ◦ λd

K,L = rd
K,L ◦ gd

L and ((δnK−1 ∨
δn(nK − 1)) × 1) ◦ rd

K,L = λK∪(nK−1),L∪(nL−1) ◦ ((δnL−1 ∨ δn(nL − 1)) × 1), one can see quite

similarly to hc
K that

hd
K ◦ λd

K,L = λK∪(nK−1),L∪(nL−1) ◦ hd
L.

Thus the proof is completed. !

Let us show further properties of the homotopy equivalence hd
K .

Proposition 4.3. Define a map µK,L : Wn
L → Wn,d

K as the induced map from the commutative

diagram

Wn
L

λ
""

Wn
∅

λ
%% Wn

∅

incl
""

Wn
K Wn

∅
λ

%%
incl

!! CXnK−1 ×
∏

j "=nK−1 Xj.

Then hd
K ◦ µK,L = λK∪(nK−1),L.

Proof. By the definition of hd
K , the statement is true for µK,K . Since µK,K ◦ λK,L = µK,L, the

proof is completed. !
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We put

Sm(i, k) = (
∨

∅"=I⊂[i+1,m]
J⊂[k,i−1]

Σ{I0, i} ∧ X̂I∪J∪i) ×
∏

j<k

Xj.

Let us define a map δm(i, k) : CXi ×
∏

j∈[m]−i Xj → Sm(i, k) for 1 ≤ k ≤ i < m. We first

apply the projection CXi ×
∏

j "∈[m]−i Xj → (ΣXi ∧
∏m

j=i+1 Xj)×
∏

j<i Xj and then a homotopy

equivalence δm(i) to get a map

CXi ×
∏

j∈[m]−i

Xj → Sm(i, i).

We next apply the projection Sm(i, i) → ((
∨

∅"=I⊂[i+1,m] Σ{I0, i} ∧ X̂I∪i) "
∏i−1

j=k Xj)×
∏

j<k Xj

and then δi−1, δi−2, . . . , δk in turn to obtain δm(i, k).

Let ιK(i) : Sn(i, nK) → Wn
K be the product of the identity map of

∏
j<nK

Xj and a wedge of

ΣιKI∪J∪i,{I0,i} ∧ 1 : Σ{I0, i} ∧ X̂I∪J∪i → ΣKI∪J∪i ∧ X̂I∪J∪i for ∅ %= I ⊂ [i + 1, n], J ⊂ [nK , i− 1].

We now define

θK(i) = ιK(i) ◦ δn(i, nK)

for nK ≤ i < n and θK(n) as the composite

CXi ×
∏

j "=i

Xj
proj−−→

∏

j<nK

Xj
incl−−→ Wn

K .

Let us make a list of properties of the map θK(i). Let ∇i : CXi → CXi be the composite

CXi → CXi ∨ ΣXi
proj−−→ CXi,

where the first arrow is the co-action map.

Proposition 4.4. The map θK(i) has the following properties.

(1) θK(i) restricts to λK,∅ for nK ≤ i ≤ n.

(2) θK(i) = λK,L ◦ θL(i) for nL ≤ i ≤ n.

(3) If K is connected, the composite

Xn × CXi ×
∏

j "=i,n

Xj
1×∇i×1−−−−→ Xn × CXi ×

∏

j "=i,n

Xj

1×θrestK (n)(i)−−−−−−−−→ Xn ×Wn−1
restK(n)

λ−→ Wn
K

is equal to θK(i) for nK ≤ i < n, where λ is the composite of the canonical map

Xn ×Wn−1
restK(n) → Wn,c

K and hc
K.

(4) The composite

CXnK−1 ×
∏

j "=nK−1

Xj → Wn,d
K

hd
K−→ Wn

K∪(nK−1)

is equal to θK∪(nK−1)(nK − 1), where the first arrow is the canonical map.
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Proof. 1, 2 and 4 follow immediately from the definitions of θK(i) and the homotopy equivalence

hd
K . We prove 3. By the definition of λ, it is true for θK(n) if nK = n− 1. Let nK ≤ i < n− 1.

Notice that by Proposition 3.3, ιK(i) maps Sn(i, nK) into (
∨

I ΣKI ∧ X̂I) ×
∏

j<nK
Xj ⊂ Wn

K ,

where I ranges over all nonempty subsets of [nK , n] such that KI is discrete. It follows from

Proposition 3.4 that there is a map Sn−1(i, nK) → WK(0)×
∏

j<nk
Xj satisfying a commutative

diagram

Sn(i, nK)
proj

!!

ιK(i)

""

Sn−1(i, nK)

""

Sn−1(i, nK)

ιrestK (n)(i)
""

Wn
K WK(0) ×

∏
j<nk

Xj
incl

%%
incl

!! Wn−1
restK(n).

Then since the restriction of λ to Xn × (WK(0)×
∏

j<nK
Xj) ⊂ Xn ×Wn−1

restK(n) is the composite

Xn × WK(0) ×
∏

j<nk
Xj

proj−−→ WK(0) ×
∏

j<nk
Xj

incl−−→ Wn
K as in the proof of Proposition 4.1,

we get a commutative diagram

Xn × Sn−1(i, nK)
1×ιrestK (n)(i)

!!

proj

""

Xn ×Wn−1
restK(n)

λ
""

Sn−1(i, nK)
incl

!! Sn(i, nK)
ιK(i)

!! Wn
K .

On the other hand, there is a commutative diagram

Xn × CXi ×
∏

j "=i,n Xj
1×δn−1(i,nK)

!! Xn × Sn−1(i, nK)

proj

""

Xn × CXi ×
∏

j "=i,n Xj
δn(i,nK)

!!

1×∇i×1

&&

Sn(i, nK)
proj

!! Sn−1(i, nK).

Then since ιK(i) is equal to the composite Sn(i, nK)
proj−−→ Sn−1(i, nK)

incl−−→ Sn(i, nK)
ιK(i)−−−→ Wn

K

as above, we obtain the desired result. !

Proposition 4.5. Suppose nK < nL and define a map νK,L : Wn,d
L → Wn

K as the induced map

from a commutative diagram

Wn
L

λ
""

Wn
∅

λ
""

incl
!!

λ
%% CXnL−1 ×

∏
j "=nL−1 Xj

θK(nL−1)

""

Wn
K Wn

K Wn
K .

Then νK,L = λK,L∪(nL−1) ◦ hd
L.

Proof. By the definition of hd
L, νL,L = hd

L. Since θK(nL − 1) = λK,L∪(nL−1) ◦ θL(nL − 1) by

Proposition 4.4, it holds that νK,L = λK,L∪(nL−1) ◦ νL,L, completing the proof. !
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5. Decomposition of Zn
K

In this section, we introduce the space Zn
K and prove its decomposition. As an immediate

corollary, we obtain Theorem 1.4.

5.1. The space Zn
K. For a simplicial complex P on the index set V (P ) ⊂ [m], we define

Zm
P =

⋃

σ∈P

(
∏

j∈σ

CXj ×
∏

j "∈[m]−σ

Xj).

Then if nK = 1, Zn
K = ZK(CX,X). When Q is a subcomplex of P , we denote the inclusion

Zm
Q → Zm

P by ρP,Q. We also put Zm
∅ =

∏m
j=1 Xj and ρP,∅ to be the inclusion Zm

∅ → Zm
P . Notice

that ρP,Q is a cofibration, where Q may be ∅. Likewise λK,L, we will often abbreviate ρK,L by

ρ when K,L are clear.

Proposition 5.1. There are pushouts

Xn × Zn−1
linkK(n)

i×1
!!

1×ρ
""

CXn × Zn−1
linkK(n)

""

Xn × Zn−1
restK(n)

!! Zn
K

and Zn
∅

incl
!!

ρ

""

CXnK−1 ×
∏

j "=nK−1 Xj

""

Zn
K

!! Zn
K∪(nK−1),

where i : Xn → CXn is the inclusion.

Proof. There is a pushout of simplicial complexes

linkK(n) !!

""

starK(n)

""

restK(n) !! K

resulting a pushout of topological spaces

Zn
linkK(n)

ρ
!!

ρ

""

Zn
starK(n)

ρ

""

Zn
restK(n)

ρ
!! Zn

K .

We have Zn
P = Xn×Zn−1

P for P = linkK(n), restK(n) and Zn
starK(n) = CXn×Zn−1

linkK(n). Through

this identification, we obtain the first pushout. The second pushout is obtained quite similarly.

!

5.2. Main theorem. We now state the main result.

Theorem 5.2. There is a homotopy equivalence εK : Zn
K

(−→ Wn
K such that εK ◦ρK,L = λK,L◦εL,

where L may be ∅.
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Proof. First of all, we put ε∅ : Zn
∅ → Wn

∅ to be the identity map of
∏n

j=1 Xj.

By induction on n, we construct εK satisfying εK ◦ ρK,L = λK,L ◦ εL and εK ◦ ρK,i = θK(i).

We will abbreviate εK by ε when K is clear in the context. For n = 1, K must be 1. We put

εK : Z1
K = CX1 → ∗ = W1

K to be the constant map and then it follows that εK ◦ρK,∅ = λK,∅ ◦ε∅

and εK ◦ ρK,1 = θK(1).

Assume that the theorem holds less than n. Let K0, L0 be the connected components of

K,L containing the vertex n, respectively. Then by Proposition 3.3, V (K0) = [nK0 , n] and

V (L0) = [nL0 , n] for some nK0 ∈ [nK , n] and nL0 ∈ [nL, n]. Put K(m) = K0, K[m,n], K according

as nK0 ≤ m ≤ n, nK ≤ m < nK0 , 1 ≤ m < nK . We construct εK(m) by induction on m. By the

hypothesis of induction on n, there is a commutative diagram

Xn × Zn−1
restK0 (n)

1×ε
""

Xn × Zn−1
linkK0 (n)

1×ρ
%%

i×1
!!

1×ε
""

CXn × Zn−1
linkK0 (n)

1×ε
""

Xn ×Wn−1
restK0(n) Xn ×Wn−1

linkK0 (n)
1×λ

%%
i×1

!! CXn ×Wn−1
linkK0(n).

By Proposition 5.1, the pushout of the top row is Zn
K0

. Then we define a homotopy equivalence

εK0 : Zn
K0

(−→ Wn,c
K0

as the induced map from the above diagram. By the induction hypothesis,

there is also a commutative diagram

Xn × Zn−1
restL0 (n)

1×ρ

""

1×ε

''$$$$$$$$$
Xn × Zn−1

linkL0 (n)
1×ρ

%%
i×1

!!

1×ρ
""

1×ε

''$$$$$$$$$
CXn × Zn−1

linkL0 (n)

1×ρ
""

1×ε

''$$$$$$$$$

Xn ×Wn−1
restL0 (n)

1×λ

""

Xn ×Wn−1
linkL0 (n)

1×λ
%%

i×1
!!

1×λ

""

CXn ×Wn−1
linkL0 (n)

1×λ

""

Xn × Zn−1
restK0 (n)

1×ε

''$$$$$$$$$
Xn × Zn−1

linkK0 (n)
1×ρ

%%
i×1

!!

1×ε

''$$$$$$$$$
CXn × Zn−1

linkK0 (n)

1×ε

''$$$$$$$$$

Xn ×Wn−1
restK0 (n) Xn ×Wn−1

linkK0 (n)
1×λ

%%
i×1

!! CXn ×Wn−1
linkK0 (n).

Then it holds that εK0 ◦ ρK0,L0 = λc
K0,L0

◦ εL0 . Let ∇K : Zn
K → Zn

K be the restriction of
∏n

j=1 ∇j :
∏n

j=1 CXj →
∏n

j=1 CXj. Then ∇K ◦ ρK,L = ρK,L ◦∇L. By Proposition 4.1, if we put

εK0 = hc
K0

◦ εK0 ◦ ∇K0 , it holds that

εK0 ◦ ρK0,L0 = λK0,L0 ◦ εL0 ,
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where L may be ∅. Moreover, by the induction hypothesis and Proposition 4.4, we have

εK0 ◦ ρK0,i = hc
K0

◦ εK0 ◦ ∇K0 ◦ ρK0,i

= hc
K0

◦ εK0 ◦ ρK0,i ◦ ∇i

= λ ◦ (1 × (εrestK0 (n) ◦ ρrestK0 (n),i)) ◦ ∇i

= λ ◦ (1 × θrestK0 (n)(i)) ◦ ∇i

= θK0(i)

for nK0 ≤ i < n, where λ is the composite of the canonical map Xn ×Wn−1
restK0 (n) → Wn,c

K0
and

hc
K0

as above. We also have

εK0 ◦ ρK0,n = λ̂ ◦ (1 × λlinkK0 (n),∅) ◦ ∇n,

where λ̂ is the composite of the canonical map CXn × Wn−1
linkK0 (n) → Wn,c

K0
and hc

K0
. By the

definition of hc
K0

, the right hand side is the composite CXn×
∏

j<n Xj
proj−−→

∏
j<nK0

Xj
incl−−→ Wn

K0
,

implying εK0 ◦ ρK0, = θK0(n). Summarizing, we have constructed a homotopy equivalence

εK0 = εK(n) : Zn
K(n)

(−→ Wn
K(n) satisfying

εK(n) ◦ ρK(n),L(n) = λK(n),L(n) ◦ εL(n) and εK(n) ◦ ρK(n),i = θK(n)(i)

for nK0 ≤ i ≤ n.

Put

(PK(m), QK(m), PK(m), QK(m)) =






(Zn
K(m+1),Zn

K(m+1),Wn
K(m+1),Wn

K(m+1)) nK0 ≤ m < n

(Zn
∅ , CXm ×

∏
j "=m Xj,Wn

∅ , CXm ×
∏

j "=m Xj) nK ≤ m < nK0

(Zn
∅ ,Zn

∅ ,Wn
∅ ,Wn

∅ ) 1 ≤ m < nK .

We also put P∅(m) = Q∅(m) = P ∅(m) = Q∅(m) =
∏n

j=1 Xj. Then by the hypothesis of

induction on m, there is a commutative diagram

Zn
K(m+1)

ε
""

PK(m)
ρ

%%

ε
""

incl
!! QK(m)

ε̂
""

Wn
K(m+1) PK(m)

λ
%%

incl
!! QK(m),

where ε̂ : QK(m) → QK(m) is defined as εK(m+1), the identity map of CXn ×
∏

j "=n Xj and ε∅

according as nK0 ≤ m < n, nK ≤ m < nK0 and 1 ≤ m < nK . We define a homotopy equivalence

εK(m) as the induced map from the above commutative diagram for nK0 ≤ m < n and 1 ≤ m <

nK . Then εK(m) = εK0 , εK according as nK0 ≤ m < n, 1 ≤ m < nK . By Proposition 4.2 and

5.1, we also define εK(m) as the composite of the induced map Zn
K(m)

(−→ Wn,d
K(m) from the above

commutative diagram and hd
K(m) for nK ≤ m < nK0 . Then by the induction hypothesis and
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Proposition 4.4,

εK(m) ◦ ρK(m),i = εK(m) ◦ ρK(m),K(m+1) ◦ ρK(m+1),i

= λK(m),K(m+1) ◦ εK(m+1) ◦ ρK(m+1),i

= λK(m),K(m+1) ◦ θK(m+1)(i)

= θK(m)(i)

for min{nK0 ,m + 1} ≤ i ≤ n. By Proposition 4.4, one also has εK(m) ◦ ρK(m),m = θK(m)(m) if

m < nK0 .

Define φ : QL(m) → QK(m) as ρK(m+1),L(m+1), θK(m+1)(m) and the inclusion according as

(QL(m), QK(m)) = (Zn
L(m+1),Zn

K(m+1)), (CXm ×
∏

j "=m Xj,Zn
K(m+1)) and otherwise. We also

define φ : QL(m) → QK(m) similarly using λK(m+1),L(m+1) and θK(m+1)(m). By the hypothesis

of induction on m, there is a commutative diagram

Zn
L(m+1)

ρ

""

ε

((%%%%%%%%%%
PL(m)

ρ

""

incl
!!

ρ
%%

ε

''$$$$$$$$$
QL(m)

ε̂

(($$$$$$$$$$

φ

""

Wn
L(m+1)

λ

""

PL(m)

λ

""

incl
!!

λ
%% QL(m)

φ

""

Zn
K(m+1)

ε

((%%%%%%%%%%
PK(m)

incl
!!

ρ
%%

ε

''$$$$$$$$$
QK(m)

ε̂

(($$$$$$$$$$

Wn
K(m+1) PK(m)

incl
!!

λ
%% QK(m).

Then it follows from Proposition 4.2, 4.3 and 4.5 that

εK(m) ◦ ρK(m),L(m) = λK(m),L(m) ◦ εL(m).

Therefore we complete the proof. !

Proof of Theorem 1.4. As is noted above, if nK = 1, Zn
K = ZK(CX,X) and Wn

K '
∨

∅"=I⊂[n] |KI |∗
X̂I . Then the result follows from Theorem 5.2. !
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