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DECOMPOSITIONS OF POLYHEDRAL PRODUCTS

KOUYEMON IRIYE AND DAISUKE KISHIMOTO

ABSTRACT. In [BBCG], Bahri, Bendersky, Cohen and Gitler posed a conjecture on decomposi-
tions of certain polyhedral products, supported by their own result on suspensions of polyhedral
products and a result of Grbi¢ and Theriault [GT]. We resolve this conjecture affirmatively.

1. INTRODUCTION

In this paper, we resolve a conjecture of Bahri, Bendersky, Cohen and Gitler [BBCG]| on
decompositions of polyhedral products which generalizes a result of Grbi¢ and Theriault [GT].
Throughout the paper, we work in the category of compactly generated weak Hausdorff spaces
with nondegenerate base points and base point preserving maps.

Let us first recall the definition of polyhedral products. Let K be a simplicial complex on
the index set [n] = {1,...,n}, and let (X, A) be a collection of pairs of spaces {(X;, A;)};.
The polyhedral product or the generalized moment-angle complex of (X, A) with respect to K,
denoted by Zx (X, A), is defined as the union of all [[,., Xi x [[;4, A; for o € K. Polyhedral
products first appeared in a work of Porter [P] which defines higher order Whitehead products.
Since then, polyhedral products have been studied in connection with topology, algebra and
combinatorics, and so there are diverse results [B, BBCG, BP, DJ, DO, DS, FT, GT, N].
Among these results, we are particularly interested in decompositions of polyhedral products.
Bahri, Bendersky, Cohen and Gitler [BBCG]| gave decompositions of polyhedral products after
a suspension. Let us illustrate a special example of their result. We set some notation. Let
| K| denote the geometric realization of a simplicial complex K. A subcomplex L of K is called
induced whenever all vertices of a simplex o of K belong to L, ¢ is a simplex of L. We denote
the induced subcomplex of K on the vertex set I C V(K) by Kj, where V(K) is the vertex
set of K. For a collection of spaces {X;}™, and 0 # J C [n], let X7 denote the smash product
/\jeJ X;. For spaces X,Y, let X *xY be the join of X and Y.

Theorem 1.1 (Bahri, Bendersky, Cohen and Gitler [BBCG]). Let K be a simplicial complex
on the index set [n] and let (X, A) be a collection of NDR pairs {(X;, Ai)}iy. If each X; is
contractible, there is a homotopy equivalence
SZp(X A) =%\ K|+ AL
0AICV(K)
There is also a result due to Grbi¢ and Theriault [GT] on decompositions of certain polyhedral

products without a suspension. To state their result, we define special simplicial complexes. A
1
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simplicial complex K is called shifted if there is an order on V(K) whenever v € ¢ € K and
v<weV(K), (6 —v)Uw belongs to K.

Theorem 1.2 (Grbi¢ and Theriault [GT]). Let K be a shifted complex on the index set [n] and
let (D?,S") be a collection of n-copies of (D?,SY). Then Zx(D?, S") has the homotopy type of

a wedge of spheres.

Supported by Theorem 1.1 and 1.2, Bahri, Bendersky, Cohen and Gitler [BBCG]| posed the
following conjecture. For a collection of spaces X = { X}, put (CX, X) ={(CX;, X;)}1;.

Conjecture 1.3 (Bahri, Bendersky, Cohen and Gitler [BBCG]). Let K be a shifted complex on
the index set [n] and let X be a collection of spaces { X;}"_; such that each X; is path-connected.
Then

0£IC[n]

The proof of Theorem 1.2 in [GT] heavily relies on the fact that S* has a classifying space,
and then we must make a different approach to Conjecture 1.3. Our approach is simple and
straightforward compared to that of Grbi¢ and Theriault [GT], and we resolve Conjecture 1.3

together with a certain naturality with respect to K (Theorem 5.2). As its corollary, we obtain:

Theorem 1.4. Let K be a shifted complex on the index set [n| and let X be a collection of

spaces {X;}1_,. Then there is a homotopy equivalence

Zr(CX, X)~ \/ |Ki|*X".
0#IC[n]

Corollary 1.5. Let K and X be as in Theorem 1.4. If ¥X; has the homotopy type of a wedge
of spheres for each i, so does Zx(CX, X).

Proof. By pinching out the star of the maximum vertex, any shifted complex becomes a wedge
of spheres. See Lemma 3.5 below. Then since each induced subcomplex of a shifted complex is

also shifted, the proof is completed by Theorem 1.4. O

2. LEMMAS ON PUSHOUTS

The purpose of this section is to collect some lemmas on pushouts of topological spaces. Let
us first recall two basic properties of pushouts of topological spaces, where we omit the proofs.

We will use these two properties implicitly in what follows.
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Lemma 2.1. Suppose there is a commutative diagram

in which the top and the bottom faces are pushouts and g,h are cofibrations. If fi1, fo, f3 are

homotopy equivalences, so is fy.

Lemma 2.2. If a commutative diagram

O—m

|

Q—n

18 a pushout, so is
AxE——BxE

|

CxFEF——DxE.

We consider a special case that pushouts preserve cofiber sequences.

Lemma 2.3. Suppose there is a commutative diagram

N TN TN
L)
NN N

in which all three side faces are pushouts and f, g are cofibrations. If A; — B; — C; is a cofiber

sequence fori=1,2,3, so is Ay — By — Cy.

Proof. Since colimits commute with colimits, Cy = By/A4 and the map By, — C} is the projec-
tion. Then we show Ay — By is a cofibration. By a result of Lillig [L], the map @) — Bs is a
cofibration, where @ is a pushout of Ay «— A; — B;. Then it follows from [H, Lemma 7.2.15]
that Ay — By is also a cofibration. O
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For spaces X, Y, we put X x Y = X X Y/X x .

Lemma 2.4. Define (Q as a pushout

X1

Ax (BV(C)—— CAx (BVC)

J{lx(l\/*) l

Ax (BVD)———Q,

where i : A — CA is the inclusion. Then there is a homotopy equivalence Q — BV (A x D)V
(XA A C) which is natural with respect to A, B,C, D.

Proof. Apply Lemma 2.3 to a commutative diagram

i

A A CA

| | J

X (1V*) ix1

Ax BV D)™ A% (Bv o)L 0Ax (BVO),

where the vertical arrows are the inclusions into the first factors. Then we get a cofiber sequence
CA— Q3L Q, where Q is defined as a pushout

X1

Ax (BVC)—— CAx (BV(C)

J{lx(l\/*) J{

Ax (BVD)— Q.

Obviously, @ = (CAx B)V (Ax D)V (SAAC) and then the composite of ¢ : Q — Q and the
projection @ — BV (A x D)V (XA A C) is the desired homotopy equivalence. O

3. TOPOLOGY OF SHIFTED COMPLEXES

In this section, we study the topology of shifted complexes. Let K be a shifted complex. If
V(K) is a subset of [n], we assume that K is shifted by the order of [n]. A shifted subcomplex
of K means a subcomplex of K which is shifted by the order of V(K). We give two important
examples of shifted subcomplexes. For a simplicial complex K and its vertex v, let restg(v),
starg (v) and linkg (v) be the induced subcomplex Ky (k)_,, the star and the link of v in K,

respectively.

Example 3.1. Let K be a shifted complex. Any induced subcomplex of K is a shifted sub-

complex of K. In particular, resty(v) is a shifted subcomplex of K.

Example 3.2. Let K be a shifted complex. If v is the maximum vertex, starg(v) is a shifted
subcomplex of K. Then linkg(v) is also a shifted subcomplex of K since it is an induced

subcomplex of starg(v).

Let us first consider the connected components of shifted complexes.
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Proposition 3.3. Let K be a shifted complex on the index set [nx,n| = {ng,nx +1,...,n}
and let Kq be the connected component of K containing the mazimum vertex n. Then V(Kg) =

V(starg(n)) = [nk,,n] for some nk, € [nk,n] and K — Ky is discrete.

Proof. Choose any vertex v of Ky. Then v is adjacent to some vertex w of Ky. If v < w, v
is also adjacent to n, equivalently, v € V(starg(n)). If v > w, w is adjacent to n, implying
v € V(starg(n)). Then we obtain V' (Kj) C V(starg(n)). The converse implication is obvious
and thus the first assertion is proved. We next prove the second assertion. If there are adjacent
vertices v,w of K — Ky with v < w, one sees that v € V (starg(n)) as above, a contradiction.
Then there is no edge in K — Ky, that is, K — K is discrete. O

We next consider the quotient of a shifted complex by the star of the maximum vertex. We
set some notation. Let K be a shifted complex with the maximum vertex v. Let m(K) be the

set of all maximal simplices of K which do not contain v. We put
mo(K) = m(restg(v)) N m(linkg (v)),
my (K) = m(restg(v)) — mo(K),
mg(K) m(hnkK(v)) — mo(K)

Proposition 3.4. For a connected shifted complex K, the dimension of any simplex in m(K)

18 positive.

Proof. By Proposition 3.3, we have V(linkg(v)) = V(restg(v)), implying if o € m(restx(v))

and dimo = 0, o belongs to m(linkx (v)), where v is the maximum vertex of K. O
Let K be a shifted complex with the maximum vertex v. Put
K = |K|/|starg (v)].

For a shifted subcomplex L of K satisfying v € L, let txc 1 : L — K be the induced map from

the inclusion of L into K.
Proposition 3.5. Let K be a shifted complex. Then

K — \/ Sdimo
cem(K)

and v, is a wedge of the identity map of SY™° for o € m(L) Nm(K) and the constant map

on other spheres, where L is a shifted subcomplex of K having the common maximum vertex.

Proof. Any simplex o of K satisfies do € starg (v), where v is the maximum vertex of K. Then

the first assertion follows. The second assertion is obvious. O
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Proposition 3.6. Let K be a shifted complex with the mazimum vertex v. There is an identi-
fication
K — ( \/ Sdima) v/ ( \/ Sdim‘r+1).
oemy (K) Temy(K)
Through this identification, Lk 1, is a wedge of the restriction of Lrest (v)rests, (v) AN Lliink g (v),link, (v)

where L is a shifted subcomplex of K with v € L.

~

Proof. Let w be the second greatest vertex of K. Notice that m(K) = {oc € m(K) | w € o}
and me(K) ={r€ K |w¢7 and TUw € m(K)}. Then the first assertion follows. The second

assertion is clear. O

4. THE SPACE W}

The purpose of this section is to introduce the space W} for a certain shifted complex K and
to show that it is built up inductively by two kinds of pushouts. Hereafter, we fix a collection
of spaces X = {X;}",. We also fix K, L, M to be a shifted complex on the index set [ng,n|,
a shifted subcomplex of K on [ny,n] and a shifted subcomplex of L on [ny, n|, respectively.
4.1. Definition of Wj.. For a shifted complex P on the index set V(P) C [m|, we define

wp=(\/ =EhAX)x [] X
P£ICV (P) J€[m]-V(P)
Then if ng = 1, W} has the homotopy type of the right hand side of the homotopy equivalence

in Theorem 1.4 since A% B~ YA A B and |K;| ~ K;. We also define Wy* = [T'~, X;.
We next define a map Ak : Wi — WJ. Let §; be the composite of maps

SAXX; 5 (SAX X))V (SAxX,) = AV (ZAA X)),

where V is the suspension comultiplication and the second arrow is a wedge of the projections.
Then 9, is a homotopy equivalence. We now define A\ j, as follows. We first apply the projection
Wi = (Vosrepmym SLrAXT) 3 T X)) % T, X and then 6,, 1, 6,, -2, .., 0, in turn
to get a map

wr—=( \/ SLAX™)x ][ X,

0#IC[ng,n] Jj<nk
JC[’VLK,nL—l]

We next apply the product of a wedge of Sug, 1, A1l : SL; A XV — SK;; A X197

and the identity map of [;_,

Ax,p : WL — Wy We also define Ak : W — Wy as the composite
wi 20 TT x5 2w

Jj<ngi

X, to the target of the above map. Then we obtain a map

By definition, we have
)\K7L o )\L,M = >\K,Ma

where M may be (). We will often abbreviate Mg, by A when K, L are clear in the context.
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4.2. Pushouts in W}.. Let us consider two kinds of pushouts by which W} is constructed
inductively. Define Wj2“ as a pushout

X, x Wit zXlC‘X ><1/V"1

link g (n) link ¢ (n)

N

n—1 n,c
k)
X X WrestK(n WK

and a map A%, : Wp© — Wy as the induced map from a commutative diagram

IxA

X, ><VV"1 X, ><)/V”1 > ox, ><VV”1

restr, linky, linky,

JIXA llxk llxk

n—1 IxA n—1 ix1 n—1
X X Wrest X X Wlll’lk CX" X WlinkK

(n)

Proposition 4.1. Suppose K is connected. Then there is a homotopy equivalence h§; : Wi* =
Wi satisfying
h% o )‘(;(,L = Ak, ohf

iof L 1s also connected.

Proof. Put
W= \/ ( \/ usimoaXx)

0£IC[ng,n—1] cem;(Krun)
for ¢ = 0,1,2. Since restg, , (n) = restg(n); and linkg,  (n) = linkg(n); for 0 # I C

[ng,n — 1], it follows from Proposition 3.5 that erstl (WK(O) VWi(1) X [Licn,. X
Wﬁlnk; = (Wk(0) vV Wk(2) x []. jenge Xj A0 Arest g (n) linkgc(n) 18 the product of the identity
map of H i<ny Xj and a wedge of the identity map of Wi (0) and the constant map. Put
We = (Wi(0) V (Wg(1) x X,) V (EWk(2) )< I X;
j<ng

and 75 ; : Wi — Wk to be the induced map from Avest e (n) resty, (n) @0d Alinky () linkg (n)- L €N
it follows from Proposition 3.5 that we can apply Lemma 2.4 to W2 and obtain a homotopy
equivalence

gk WS = Wi
satistying g o A% 1 = 7% © -

For () # I C [ng,n — 1], restg,,.(n) = K;. Then by Proposition 3.5, Wg(0) V Wk (1) =
Vosrcimeny SEAXT. On the other hand, (W (1)AX,)V(EWk(2)AX0) = Virc o met) SE 1o/
X1Un by Proposition 3.6. Then it follows that

Wi = (Wi (0) vV Wi (1) V (Wi (1) A X,,) V (SWi(2 )< I X5
J<nk
Moreover, through this identification, one sees that Mg ; is induced from et (n)resty (n) and

Alink ¢ (n),linky, (n) Py Proposition 3.5 and 3.6. Since K is connected, so is Ky, also by Proposition
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3.3. Then by Proposition 3.4, dimo > 0 for ¢ € m;(Kj,) and hence we can define a map
On @ Xn X Wi (1) = Wg(1) V (X, A Wk(1)) by using the suspension parameter of S for

o € my (K u,). We now define a homotopy equivalence hf. as the composite

C
n,c 9K c
Wy — Wy

= (Wk(0) V (Wgk(1) x Xp,) V (EWk(2) ) X H X,
LoD, (Wi (0) V Wi (1) V (Wi (1) A Xa) V (SWk(2) )< I %
—wr.

Since the suspension parameters used for 7% ; and the above 4, are distinct, it holds that
(Ivd, V1) x1)org, =Agro((1Vd,V1)x1). Then one has

hﬁ(o)\%i:((l\/(sn\/l)Xl)og%o)\%L
=((1Vdé, V1) x1)org ogs
:/\K’LO((l\/an\/1>X1)ng

= Ak, o hy,
completing the proof. O
Define Wi* as a pushout
Wi 2 CX oot X 1 X
k |
Wi ——————— Wit

d d .
When n; = ng, we also define a map A%, : W/ — Wg" as the induced map from a

commutative diagram

W ¢ Wy el CXpp1 X Hj;énL—l X;

P

A incl
Wi A Wy L C X % s X5

Proposition 4.2. There is a homotopy equivalence hd. : W;?d = Wi Snge—1) such that when
np =ng,

hi o XL = AxU(ng—1),u(ns—1) © .
Proof. Let 25\@ be the composite

3
2(Ax X;) TN/ S(A X X,) - SAVEX, V (SAA X)),
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where the second arrow is a wedge of the projections Then gz is a homotopy equivalence. By

applying Sm, gm_l, e (52+2 in turn to XX, A ] , we obtain a homotopy equivalence

Jj= z—i—l
§™(i) 1 ©X; A H X;— /) XM= \/ S{Li}aX"Y
j=i+1 O£IC[i+1,m] PAIC[i+1,m]

where I; is the maximum of I.
Put

Wik=(( 'V ISEKAX) %X VEX,an [[X)x [ X
0#IC[nk,n) JjZnK Jj<nkg-—1
and ri ; : Wi — Wi to be the induced map from Ag,r, where ny = ng. Then by Lemma 2.4
and Proposition 3.5, there is a homotopy equivalence
QK Wnd = WK

satisfying g% o A\ ; = rf ;0 g7. Define hf as the composite of gf- and a homotopy equivalence

Wik=( \ SKAX) %X, avEX, oA [ X)) x [ X

0#IC[nk,n] ji>ng Jj<ng—1
On -1V (ng—1 1 N ~ N ~
D DR (N SR ARY) V(SR V {Tong — 1) A X)) 0 T X,
0£IC[nk,n] j<ng—1
=\ CEAX)YEKgmen AXM D) T X,
0#£IC[nk,n] j<ng—1

= WITQU(TLKflﬁ
where the base point of {Io,ng — 1} is I. Then since gf o A%, = 7% 0 gf and ((6p—1 V
0 (nx — 1)) x 1) o 7 1 = AxUmg—1).20mp—1) © ((Ony—1 V 6™(ny — 1)) X 1), one can see quite

similarly to hf that
hd o )\ﬁl(,L = AKU(ng—1),Lu(ns—1) © BY.

Thus the proof is completed. 0

Let us show further properties of the homotopy equivalence hé.

Proposition 4.3. Define a map px : Wi — In(’d as the induced map from the commutative

diagram

Wy 2 Wy Wi

y o

Wln( A W(? incl CXnK—l % Hj;énK—l Xj-

Then hil( O UK,L = /\Ku(nK—l),L-

Proof. By the definition of hﬁl(, the statement is true for pug k. Since pug x o Ax,r = px ., the

proof is completed. 0
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We put
sk =( \/ S{li} A XU < ] X;.
0£IC[i+1,m) i<k
JC[k,i—1]

Let us define a map 6™(i, k) : CX; x [[;cp s X; — S™(3,k) for 1 < k < i < m. We first
apply the projection C'X; x ng[m] X — (BXGA H] i1 %) x [[,;; X; and then a homotopy
equivalence 0™ () to get a map
cX;x [ X;— sm(.i).
JjE[m]—i

We next apply the projection S™(i,4) — ((Vgrcpiyim 21401} A X191y 5 H;;L X;) x Tl X;
and then 6;_1,d;_2,..., 0, in turn to obtain 0" (i, k).

Let txc(i) : S™(i,nK) — Wi be the product of the identity map of [[,_,, .
SUkisgotlogy N1 E{To, i} A X1V K ogui A X9 for 0 £ T C i+ 1,n),J C [ng,i— 1.

We now define

X, and a wedge of

Ok (i) = 1 (i) 0 6" (i, nk)
for ng <i < n and 0x(n) as the composite
oxix [Tx =% I x5 = wy.
J#i Jj<nk

Let us make a list of properties of the map 0k (i). Let V; : CX; — CX; be the composite
CX, — CX;VEX, 20X,

where the first arrow is the co-action map.

Proposition 4.4. The map 0k (i) has the following properties.

(1) Ok (i) restricts to Ay for ng <i <n.
(2) ‘9[(( ) _)\KLOQL( ) fornL <’L <7’L
(3) If K is connected, the composite

1><V1><1 1X0rcstK(n)(i)

Xo x Wi lW};

rest K

anCXixHX XxCXxHX
J#i,n J#in

is equal to Ok (i) for ng < i < n, where X\ is the composite of the canonical map
Xo X Wiy — Wi and hi.

rest K

(4) The composzte
n hd n
CXper % [T X5 = Wr* =5 Wit
Jj#nk—1

is equal to Oxume—1y(nx — 1), where the first arrow is the canonical map.
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Proof. 1, 2 and 4 follow immediately from the definitions of 0 (i) and the homotopy equivalence
hd.. We prove 3. By the definition of , it is true for O (n) if ng =n — 1. Let nxg <i<n— 1.
Notice that by Proposition 3.3, tx (i) maps S™(i,ng) into (\/; SK; A XT) x [] X; C Wg,

where I ranges over all nonempty subsets of [ng,n| such that K is discrete. It follows from

Jj<ng

Proposition 3.4 that there is a map S"~'(i, ngx) — Wk(0) x [[;_,, X; satisfying a commutative
diagram

S0, nge) 2y S (G ) ——— S (4, 1)

J/LK(Z) l l"restK(n) (Z)

W[n( incl WK(O) % Hj<nk - incl Wn 1

rest K

Then since the restriction of A to X, x (Wx(0) x [Ticn, X5) C X x Wi ! is the composite

rest i (1)
incl

Xo x Wi (0) x T, X; LR Wi (0) x I1;.,, X; — Wk as in the proof of Proposition 4.1,

we get a commutative diagram

1x Lrest e (n) (Z)

Xn X Sn_l(iunK) Xy X W:;Sth (n)

lpmj J,\
K ()

S nge) —2 1 SM(i, ) —— o WP

On the other hand, there is a commutative diagram

1><5"71(Z',1'LK)

Xn X CXi X [Lisin X X X 8" i,ngk)

Tlxvixl J{proj

6" (i,n roj
X, x CX; x H#MX % S™(1,ng) e, S i, ng).
Then since tx(7) is equal to the composite S™ (i, ny) Proj, S0, ng) Indl, S™(i,ng) =), Wi

as above, we obtain the desired result. O

Proposition 4.5. Suppose nx < nr and define a map vk, WZ’d — Wy as the induced map

from a commutative diagram

Wi = Wy 25 C Xyt X T, 1 X

JA JA JQK(NL_I)

Wi — Wpp —————— W,
Then VKL = )\K,LU(anl) o hdL

Proof. By the definition of hf, vy, = hf. Since Ok (n;, — 1) = Ak rom,—1) © Or(n, — 1) by
Proposition 4.4, it holds that vk ; = Ag ru(n,—1) © V1, completing the proof. [
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5. DECOMPOSITION OF Zj

In this section, we introduce the space Z7 and prove its decomposition. As an immediate

corollary, we obtain Theorem 1.4.

5.1. The space Z}.. For a simplicial complex P on the index set V(P) C [m], we define
zp=J(JJex; < I x».
o€P jeo jé[m]—o
Then if ng = 1, Z% = Zx(CX, X). When @ is a subcomplex of P, we denote the inclusion
Zy — ZP by ppg. We also put Zj" = H;”Zl X; and ppy to be the inclusion Zj* — Zp'. Notice
that ppg is a cofibration, where ) may be ). Likewise g, we will often abbreviate pk 1 by

p when K| L are clear.

Proposition 5.1. There are pushouts

n— ix1 n— n incl
Xn X Zlinle(n) — CXp X Zlinkix(n) and 2§ —— CXpem1 X [ 1 X
T
Xn X Z:Z};;lf((n) — Zk Zf ————— ZKUng—1)

where i . X,, — CX,, is the inclusion.

Proof. There is a pushout of simplicial complexes

linkg (n) —— starg (n)

| |

restg(n) — K
resulting a pushout of topological spaces

erilnkK(n) L Zg:ar;{(n)

T

P n
rest i (n) ? ZK'

We have Z% = X,, x Z1! for P = linkg (n), restg(n) and Z7

starg (n

)= CX, x2Z"1 )- Through

link g (n
this identification, we obtain the first pushout. The second pushout is obtained quite similarly.

O

5.2. Main theorem. We now state the main result.

Theorem 5.2. There is a homotopy equivalence e : Z} = Wy such that exopg., = Ak Lo€L,

where L may be ().
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Proof. First of all, we put €y : Zj' — W' to be the identity map of H?Zl X;.

By induction on n, we construct ex satisfying ex o pr . = Ak 0 € and €x o pr; = Ok (7).
We will abbreviate ex by € when K is clear in the context. For n = 1, K must be 1. We put
ex : 2} = C X1 — % = Wi to be the constant map and then it follows that ex o pxg = A goep
and ex o pr1 = Ok (1).

Assume that the theorem holds less than n. Let Ky, Ly be the connected components of
K, L containing the vertex n, respectively. Then by Proposition 3.3, V(K,) = [nk,,n] and
V(Lo) = [ng,, n] for some ng, € [ng,n] and ng, € [ng,n]. Put K(m) = Ko, Ky ), K according
as ng, <m<n,ng <m<ng,, 1 <m < ng. We construct €x(,) by induction on m. By the

hypothesis of induction on n, there is a commutative diagram

n—1 1xp n—1 ix1 n—1
Xn X ZrestKO (n) ¢ X” X ZlinkKO (n) ? CX” x ZlinkKO (n)

JVIXE J'IXE J/IXE

n—1 IxA n—1 ix1 n—1
X” x WrestKO (n) ¢ X" x WlinkKO(n) ? CX" x WlinkKO (n)"

By Proposition 5.1, the pushout of the top row is Z%. . Then we define a homotopy equivalence

€K, - 2R, = ?(06 as the induced map from the above diagram. By the induction hypothesis,

there is also a commutative diagram

n—1 1xp n—1 1x1 n—1
X” X ZrestLO (n) { Xn X ZlinkLO (n) } OX” X ZlinkLO (n)
1xe 1xe 1xe
n—1 1IxA n—1 ix1 n—1
1xp Xn x )/VrestLO (n) e Xn X WlinkLO(n) - CX” X WlinkLO(n)
1xp Ixp
_ 1xp n—1 ix1 n—1
X, x Zh e P X, x Z] — | Z50X, x 2]
t n link n link
restx, (1) L ink g, (n) LA ink g, (n) L
1xe 1xe &
n—1 1xA n—1 ix1 n—1
X” X WrestKO (n) ¢ X" x WlinkKO (n) ’ CX” X VvlinkKO (n)*

Then it holds that €x, o pr,Lo = Ai,1, © €Lo- Let Vi @ Zip — Zi be the restriction of
H?Zl V;: H?=1 CX; — H?:l CX;. Then Vi opk 1 = prro V. By Proposition 4.1, if we put

€K, = N, © €K, © Vi, it holds that

€Ky O PKo,Lo = AKo,Lo © €Lo)
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where L may be (). Moreover, by the induction hypothesis and Proposition 4.4, we have

c _
€Ky © PKo,i = hKo O €K, © VKO © PKo,i

.
= hi, 0 €K, © Pro,i © Vi

X o (]— X (ErestKO(n) o pTEStKO(n)’i)) © VZ
X o (1 X erestKO(n)(i)) ° vl
0

= VKo (2)
for ng, < i < n, where X is the composite of the canonical map X,, x Wr’festh ) K, and
%, as above. We also have
€Ky O PRon = A0 (1 X )\linkKO(n),Q)) oV,
where ) is the composite of the canonical map CX,, x Wﬁrﬁf J(n ) — Wy and hf, . By the
definition of hf , the right hand side is the composite CX,, x[[;_,, X prol, — [ <nrg X; indl, Wi,
implying €g, o pKO, = Ok,(n). Summarizing, we have Constructed a homotopy equivalence

€Ky = €K(n) Z}é(n) = W,”((n) satisfying
€K(n) © PK(n),L(n) = AK(n),L(n) © €L(n) aNd  €x(n) © Pr(n)i = Oxm)(7)

for ng, <i<n.
Put

— _ (Zk K(m+1)’ Zx Km+1) WE (1) ;L((m+1)) ng, <m<n
(Pr(m),Qx(m), Px(m), Qg (m)) = ¢ (2§, CXo X [, X5 Wi, CXopy X [ 12, Xj) e < m <
(25, 25 W5, W) 1<m<ng.

We also put Py(m) = Qp(m) = Py(m) = Qy(m) = [I;_, X;. Then by the hypothesis of

induction on m, there is a commutative diagram

Z i (m+1) L — Pr(m) o Qx(m)

L

>\ — —
K(m+1) & Pr(m) ——

where € : Qx(m) — Qx(m) is defined as €x(m+1), the identity map of CX,, x [1;2, X; and €p
according as ng, < m < n,nxg < m < ng, and 1 <m < nxg. We define a homotopy equivalence
€k (m) as the induced map from the above commutative diagram for ng, <m <mnand 1 <m <
ng. Then exn) = €k,, €x according as ng, < m <n,1 < m < ng. By Proposition 4.2 and
5.1, we also define €, as the composite of the induced map Z}}(m) = K( from the above

commutative diagram and hf((m) for ng < m < ng,. Then by the inductlon hypothesis and
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Proposition 4.4,

€K (m) © PK(m),i = €K(m) © PK(m),K(m+1) © PK(m+1),i
= )\K(m),K(m-i-l) O €K (m+1) © PK(m+1),i
= AK(m),K(m+1) © 9K(m+1)(z)

= 9K<m) (i)

for min{ng,,m + 1} <i < n. By Proposition 4.4, one also has €x () © px(m)m = Ox(m)(m) if
m < Ng,-

Define ¢ : Qr(m) — Qx(m) as px(m+1),L(m+1), Ox(m+1)(m) and the inclusion according as
(Qr(m),Rx(m)) = (Z]1n11)s ZR(men))s (CXm X [Lian Xjs 2R my1y) and otherwise. We also
define ¢ : Q;(m) — Qg (m) similarly using Ag(m+1),L(m+1) and Ogm1)(m). By the hypothesis
of induction on m, there is a commutative diagram

n incl
2L ms1) . Pr(m) Qr(m)
\ n A \— incl \_
p WE(m+1) Jf Pr(m) l¢ Qr(m)
n P P (m) incl Q (m)
K(m+1)\ \ K \ \ K \ 3
n A = incl —
Wi K(m+1) P (m) Qg (m).
Then it follows from Proposition 4.2, 4.3 and 4.5 that
K(m) © PK(m),L(m) = AK(m),L(m) © €L(m)-
Therefore we complete the proof. Il

Proof of Theorem 1.4. Asisnoted above, if ng =1, Zi = Z(CX, X) and Wi = Vg1, [ K]

XI. Then the result follows from Theorem 5.2. 0
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