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BRODY CURVES AND MEAN DIMENSION

SHINICHIROH MATSUO AND MASAKI TSUKAMOTO

Abstract. We study the mean dimensions of the spaces of Brody curves. In particular

we give the formula of the mean dimension of the space of Brody curves in the Riemann

sphere. A key notion is a non-degeneracy of Brody curves introduced by Yosida (1934).

We develop a deformation theory of non-degenerate Brody curves and apply it to the

calculation of the mean dimension. Moreover we show that there are sufficiently many

non-degenerate Brody curves.

1. Introduction

1.1. Main results. Let z = x + y
√
−1 ∈ C be the standard coordinate in the complex

plane C. Let f = [f0 : f1 : · · · : fN ] : C → CPN be a holomorphic map (fi: holomorphic

function). We define |df |(z) ≥ 0 by

|df |2(z) := 1

4π
∆ log(|f0|2 + |f1|2 + · · ·+ |fN |2)

�
∆ :=

∂
2

∂x2
+

∂
2

∂y2

�
.

|df |(z) is classically called a spherical derivative. It evaluates the dilatation of the map

f with respect to the Euclidean metric on C and the Fubini-Study metric on CPN . (See

the equation (6) in Section 4.2.)

A holomorphic map f : C → CPN is called a Brody curve ([3]) if it satisfies |df |(z) ≤ 1

for all z ∈ C. Let M(CPN) be the space of Brody curves in CPN . It is endowed with

the compact-open topology (the topology of uniform convergence on compact subsets):

A sequence of Brody curves {fn} ⊂ M(CPN) converges to f ∈ M(CPN) if and only if

for any compact subset K ⊂ C we have supz∈K d(fn(z), f(z)) → 0 as n → ∞. (d(·, ·) is
the distance on CPN with respect to the Fubini-Study metric.) M(CPN) is an infinite

dimensional compact metrizable space, and it admits the following continuous C-action.

M(CPN)× C → M(CPN), (f(z), a) �→ f(z + a).

The main purpose of the paper is to study the mean dimension dim(M(CPN) : C) of this
infinite dimensional dynamical system. (Mean dimension is an invariant of topological

dynamical systems introduced by Gromov [12]. We review its definition in Section 2.1.)
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Let f : C → CPN be a Brody curve. We define an energy density ρ(f) by setting

(1) ρ(f) := lim
R→∞

1

πR2

�
sup
a∈C

�

|z−a|<R

|df |2dxdy
�
.

(This limit always exists. See Section 2.2.) We define the Nevanlinna-Shimizu-Ahlfors

characteristic function T (r, f) (r ≥ 1) by

T (r, f) :=

� r

1

��

|z|<t

|df |2dxdy
�

dt

t
.

From the Brody condition |df | ≤ 1, we have T (r, f) ≤ πr
2
/2. We define ρNSA(f) by

ρNSA(f) := lim sup
r→∞

2

πr2
T (r, f).

It is easy to see ρNSA(f) ≤ ρ(f).

Let ρ(CPN) be the supremum of ρ(f) over f ∈ M(CPN), and let ρNSA(CPN) be the

supremum of ρNSA(f) over f ∈ M(CPN). We know (see Section 2.2)

0 < ρNSA(CPN) ≤ ρ(CPN) < 1.

The main result of this paper is the following:

Theorem 1.1.

2(N + 1)ρ(CPN) ≤ dim(M(CPN) : C) ≤ 4NρNSA(CPN).

Corollary 1.2.

dim(M(CP 1) : C) = 4ρ(CP 1) = 4ρNSA(CP 1).

From Theorem 1.1, 4ρ(CP 1) ≤ dim(M(CP 1) : C) ≤ 4ρNSA(CP 1). Since ρNSA(CP 1) ≤
ρ(CP 1), we get the corollary.

The formula dim(M(CP 1) : C) = 4ρNSA(CP 1) was conjectured in [22, p. 1643, (4)].

This formula is very surprising (at least for the authors) because the definitions of the

left-hand-side and the right-hand-side are totally different.

The upper bound dim(M(CPN) : C) ≤ 4NρNSA(CPN) was already proved in [19,

Theorem 1.5] by using the Nevanlinna theory. (Remark: We used the notation e(f)

for ρNSA(f) in [19].) The purpose of the present paper is to prove the lower bound

dim(M(CPN) : C) ≥ 2(N + 1)ρ(CPN).

1.2. Non-degenerate Brody curves. For a ∈ C and r > 0 we set Dr(a) := {z ∈
C| |z−a| ≤ r}. The following is a key-notion of the paper. This notion was first introduced

by Yosida [23]. (Gromov [12, p. 399] also discussed it in a more general situation. See

also Eremenko [5, Section 4] and Remark 1.4 below.)
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Definition-Lemma 1.3. Let f : C → CPN be a Brody curve. Then the following two

conditions are equivalent.

(i) Any constant curve does not belong to the closure of the C-orbit of f . (In other words,

for any sequence of complex numbers {an}n≥1, the sequence of Brody curves {f(z+an)}n≥1

does not converge to a constant curve.)

(ii) There exist δ > 0 and R > 0 such that for all a ∈ C we have ||df ||L∞(DR(a)) ≥ δ.

f is said to be non-degenerate if it satisfies one of (and hence both) the above conditions.

Proof. The following argument is given in [23]. Suppose that the condition (ii) fails. Then

for any n ≥ 1 there is an ∈ C such that ||df ||L∞(D1(an))
≤ 1/n. Taking a subsequence, we

can assume that the sequence {f(z + an)}n≥1 converges to a Brody curve g(z). Then

||dg||L∞(D1(0))
= 0. This implies that g is a constant curve.

Suppose the condition (ii) holds. Let {an}n≥1 be a sequence of complex numbers. If

{f(z + an)}n≥1 converges to g(z), then ||dg||L∞(DR(0)) ≥ δ. Hence g(z) is not a constant

curve. This proves the condition (i). �

Remark 1.4. The above argument also proves that the conditions in Definition-Lemma

1.3 are equivalent to the following:

(ii’) For any R > 0 there exists δ > 0 such that for all a ∈ C we have ||df ||L∞(DR(a)) ≥ δ.

Yosida [23, Theorem 4] proved (i) ⇔ (ii’) for the case of N = 1. In [23] Brody curves

f : C → CP 1 satisfying (i) are called meromorphic functions of 1st category. In Eremenko

[5, Section 4] Brody curves f : C → CPN satisfying (i) are called binormal curves. Gromov

[12, p. 399] used the terminology “uniformly nondegenerate”.

Example 1.5. f(z) = e
z ∈ M(CP 1) is a degenerate (i.e. not non-degenerate) Brody

curve. A non-constant elliptic function f(z) ∈ M(CP 1) is a non-degenerate Brody curve.

In our viewpoint, non-degenerate Brody curves are “non-singular points” of the space

M(CPN), and they behave very nicely for the calculation of the mean dimension:

Theorem 1.6. Let f : C → CPN
be a non-degenerate Brody curve with ||df ||L∞(C) < 1.

Then

dim(M(CPN) : C) ≥ 2(N + 1)ρ(f).

The following theorem means that there are “sufficiently many” non-degenerate Brody

curves:

Theorem 1.7. Let f : C → CPN
be a holomorphic map with ||df ||L∞(C) < 1. Then for any

ε > 0 there exists a non-degenerate Brody curve g : C → CPN
satisfying ||dg||L∞(C) < 1

and ρ(g) ≥ ρ(f)− ε.

Proof of Theorem 1.1, assuming Theorems 1.6 and 1.7. The upper bound dim(M(CPN) :

C) ≤ 4NρNSA(CPN) was already proved in [19, Theorem 1.5]. Here we prove the lower
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bound. Let f : C → CPN be a Brody curve. Let 0 < c < 1 and set fc(z) = f(cz). Then

|dfc|(z) = c|df |(cz) and ρ(fc) = c
2
ρ(f). Since ||dfc||L∞(C) ≤ c < 1, we can apply Theorem

1.7 to fc. Then for any ε > 0 there exists a non-degenerate Brody curve g : C → CPN

satisfying ||dg||L∞(C) < 1 and ρ(g) ≥ ρ(fc)− ε = c
2
ρ(f)− ε. By Theorem 1.6

dim(M(CPN) : C) ≥ 2(N + 1)ρ(g) ≥ 2(N + 1)(c2ρ(f)− ε).

Let ε → 0 and c → 1. We get dim(M(CPN) : C) ≥ 2(N +1)ρ(f). Taking the supremum

over f ∈ M(CPN), we get dim(M(CPN) : C) ≥ 2(N + 1)ρ(CPN). �

2. Some preliminaries

2.1. Review of mean dimension. In this subsection we review the definition of mean

dimension. For the detail, see Gromov [12] and Lindenstrauss-Weiss [14]. (For some

related works, see also Lindenstrauss [13] and Gournay [7, 8, 9, 10].)

Let (X, d) be a compact metric space, and let Y be a topological space. Let ε > 0. A

continuous map f : X → Y is called an ε-embedding if Diamf
−1(y) ≤ ε for all y ∈ Y . Here

Diamf
−1(y) is the supremum of d(x1, x2) over x1, x2 ∈ f

−1(y). We define Widimε(X, d)

as the minimum integer n ≥ 0 such that there are an n-dimensional polyhedron P and

an ε-embedding f : X → P .

For example, let X = [0, 1] × [0, ε] with the Euclidean distance. Then the projection

π : X → [0, 1] is an ε-embedding, and we have Widimε(X,Euclid) = 1. The following

example is very important in the later argument. This was given by Gromov [12, p. 333].

(For the detailed proof, see Gournay [8, Lemma 2.5] or Tsukamoto [22, Appendix].)

Example 2.1. Let V be a finite dimensional Banach space over R, and set Br(V ) :=

{x ∈ V | ||x|| ≤ r} for r > 0. For 0 < ε < r,

Widimε(Br(V ), ||·||) = dimV.

Here we consider the norm distance on Br(V ).

For a subset Ω ⊂ C and r > 0, we define ∂rΩ as the set of a ∈ C satisfying Dr(a)∩Ω �= ∅
and Dr(a) ∩ (C \ Ω) �= ∅. Let Ωn (n ≥ 1) be a sequence of bounded Borel subsets of C.
It is called a Følner sequence if for all r > 0

Area(∂rΩn)

Area(Ωn)
→ 0 (n → ∞).

For example, the sequence Ωn := Dn(0) is a Følner sequence. The sequence Ωn :=

[0, n] × [0, n] is also Følner. We need the following “Ornstein-Weiss lemma”. (For the

proof, see Gromov [12, pp. 336-338].)

Lemma 2.2. Let h : {bounded Borel subsets of C} → R≥0 be a map satisfying the fol-

lowing three conditions.

(i) If Ω1 ⊂ Ω2, then h(Ω1) ≤ h(Ω2).
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(ii) h(Ω1 ∪ Ω2) ≤ h(Ω1) + h(Ω2).

(iii) For any a ∈ C and any bounded Borel subset Ω ⊂ C, we have h(a+Ω) = h(Ω) where

a+ Ω := {a+ z ∈ C|z ∈ Ω}.
Then for any Følner sequence Ωn (n ≥ 1) in C, the limit of the sequence

h(Ωn)

Area(Ωn)
(n ≥ 1)

exists, and its value is independent of the choice of a Følner sequence.

Suppose that the Lie group C continuously acts on a compact metric space X. Here we

don’t assume that the distance is invariant under the group action. For a subset Ω ⊂ C,
we define a new distance dΩ on X by

dΩ(x, y) := sup
a∈Ω

d(a.x, a.y).

It is easy to see that the map Ω �→ Widimε(X, dΩ) satisfies the three conditions in Lemma

2.2 for each ε > 0. So we define a mean dimension dim(X : C) by

dim(X : C) := lim
ε→+0

�
lim
n→∞

Widimε(X, dΩn)

Area(Ωn)

�

where Ωn (n ≥ 1) is a Følner sequence in C. The value of the mean dimension dim(X : C)
is independent of the choice of a Følner sequence, and it is a topological invariant. (That

is, it is independent of the choice of a distance on X compatible with the topology.) For

example, we have

dim(X : C) = lim
ε→+0

�
lim
R→∞

Widimε(X, dDR(0))

πR2

�

= lim
ε→+0

�
lim
R→∞

Widimε(X, d[0,R]×[0,R])

R2

�
.

(2)

2.2. Energy density. Here we explain some basic properties of the energy density ρ(f)

introduced in (1). Let f : C → CPN be a Brody curve. Then the map

Ω �→ sup
a∈C

�

a+Ω

|df |2dxdy

clearly satisfies the three conditions in Lemma 2.2, where Ω ⊂ C is a bounded Borel

subset. Therefore we can define the energy density ρ(f) by

ρ(f) := lim
n→∞

1

Area(Ωn)

�
sup
a∈C

�

a+Ωn

|df |2dxdy
�
,

where Ωn (n ≥ 1) is a Følner sequence in C. In particular, we have

ρ(f) = lim
R→∞

1

πR2

�
sup
a∈C

�

|z−a|<R

|df |2dxdy
�

= lim
R→∞

1

R2

�
sup
a,b∈R

�

[a,a+R]×[b,b+R]

|df |2dxdy
�
.

(3)



6 S. MATSUO AND M. TSUKAMOTO

From this we get

ρ(f) ≥ lim sup
R→∞

1

πR2

�

|z|<R

|df |2dxdy ≥ lim sup
R→∞

2

πR2
T (R, f) =: ρNSA(f).

If f is elliptic (i.e. there is a lattice Λ ⊂ C such that f(z + λ) = f(z) for all λ ∈ Λ), then

ρ(f) = lim sup
R→∞

1

πR2

�

|z|<R

|df |2dxdy = ρNSA(f) =
1

Area(C/Λ)

�

C/Λ
|df |2dxdy.

In the paper [20] we studied the quantity

lim sup
R→∞

1

πR2

�

|z|<R

|df |2dxdy.

Some methods and results in [20] can be also applied to ρ(f). For example, from [20,

Proposition 2.6, Proposition 3.1] (Proposition 3.1 in [20] follows from a result of Calabi

[4, Thoerem 8],), there exists 0 < c(N) < 1 such that for all Brody curves f : C → CPN

and all a, b ∈ R �

[a,a+1]×[b,b+1]

|df |2dxdy ≤ c(N).

Hence

ρ(CPN) = sup
f∈M(CPN )

ρ(f) ≤ c(N) < 1.

Moreover, from [20, Proposition 5.10], there exists r > 0 such that for all Brody curves

f : C → CP 1 and all a, b ∈ R
1

r2

�

[a,a+r]×[b,b+r]

|df |2dxdy ≤ 1− 10−100
.

Hence we get an explicit (but very rough) bound:

ρ(CP 1) ≤ 1− 10−100
.

In the paper [22, Section 1.2] we constructed an elliptic function f : C → CP 1 such

that f is a Brody curve and

ρ(f) = ρNSA(f) =
2π√
3

�� ∞

1

dx√
x3 − 1

�−2

= 0.6150198678198 . . . .

Hence
2π√
3

�� ∞

1

dx√
x3 − 1

�−2

≤ ρ(CP 1) ≤ 1− 10−100
.

The authors think that it is very wonderful if the first inequality is an equality.

It is very difficult to determine the value of ρ(CPN), but we have the following clear

result on its asymptotic behavior: The sequence ρ(CPN) (N ≥ 1) is a non-decreasing

sequence, and from [20, Theorem 1.5], we have

lim
N→∞

ρ(CPN) = 1.
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Moreover the proof of [20, Theorem 1.5] also shows

lim
N→∞

ρNSA(CPN) = 1.

3. Proof of Theorem 1.6

In this section we prove Theorem 1.6 assuming Propositions 3.1 and 3.2 below. Theorem

1.7 will be proved in Section 6. Let TCPN be the tangent bundle of CPN . It naturally

admits a structure of a holomorphic vector bundle. We consider the Fubini-Study metric

on it. Let f : C → CPN be a Brody curve, and let f
∗
TCPN be the pull-back of

TCPN by f . f ∗
TCPN is a holomorphic vector bundle over the complex plane C, and its

Hermitian metric is given by the pull-back of the Fubini-Study metric. Let Hf be the

space of holomorphic sections u : C → f
∗
TCPN satisfying ||u||L∞(C) < +∞. (Hf , ||·||L∞(C))

is a complex Banach space (possibly infinite dimensional). We set Br(Hf ) := {u ∈
Hf | ||u||L∞(C) ≤ r} for r ≥ 0.

Proposition 3.1. Let f : C → CPN
be a non-degenerate Brody curve with ||df ||L∞(C) < 1.

Then there exist δ > 0 and a map

Bδ(Hf ) → M(CPN), u �→ fu,

satisfying the following two conditions:

(i) f0 = f .

(ii) For all u, v ∈ Bδ(Hf ) and z ∈ C

|d(fu(z), fv(z))− |u(z)− v(z)|| ≤ 1

8
||u− v||L∞(C) .

Here d(·, ·) is the distance on CPN
defined by the Fubini-Study metric, and |u(z)− v(z)|

is the fiberwise norm of f
∗
TCPN

.

Let R > 0 and Λ ⊂ C. Λ is said to be an R-square if Λ = [a, a+R]× [b, b+R] for some

a, b ∈ R.

Proposition 3.2. Let f : C → CPN
be a non-degenerate Brody curve. Then for any

R-square Λ ⊂ C with R > 2 there exists a finite dimensional complex subspace V ⊂ Hf

satisfying the following two conditions:

(i)

dimC V ≥ (N + 1)

�

Λ

|df |2dxdy − CfR.

Here Cf is a positive constant depending only on f (and independent of R, Λ).

(ii) For all u ∈ V we have ||u||L∞(C) ≤ 2 ||u||L∞(Λ).

Propositions 3.1 and 3.2 will be proved later (Sections 4 and 5.) Here we prove Theorem

1.6, assuming them.
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Proof of Theorem 1.6. We define a distance on M(CPN) by

dist(g, h) :=
∞�

n=0

1

10n
sup
|z|≤n

d(g(z), h(z)), (g, h ∈ M(CPN)).

Then |dist(g, h)− d(g(0), h(0))| ≤ (1/9) supz∈C d(g(z), h(z)). Hence for Ω ⊂ C

(4) |distΩ(g, h)− sup
z∈Ω

d(g(z), h(z))| ≤ 1

9
sup
z∈C

d(g(z), h(z)).

Let δ > 0 be the positive constant introduced in Proposition 3.1. Let Λ ⊂ C be an R-

square (R > 2). By Proposition 3.2, there exists V = VΛ ⊂ Hf satisfying the conditions

(i) and (ii) in Proposition 3.2. We investigate the map Bδ(Hf ) → M(CPN), u �→ fu,

(given by Proposition 3.1) and its restriction to Bδ(V ) := V ∩Bδ(Hf ).

From the condition (ii) of Proposition 3.1, for u, v ∈ Bδ(Hf ), we have supz∈C d(fu(z), fv(z)) ≤
(9/8) ||u− v||L∞(C). Hence (Bδ(Hf ), ||·||L∞(C)) → M(CPN) is continuous. For u, v ∈
Bδ(Hf )

����distΛ(fu, fv)− sup
z∈Λ

|u(z)− v(z)|
����

≤
����distΛ(fu, fv)− sup

z∈Λ
d(fu(z), fv(z))

����+
����sup
z∈Λ

d(fu(z), fv(z))− sup
z∈Λ

|u(z)− v(z)|
����

≤ 1

9
sup
z∈C

d(fu(z), fv(z)) +
1

8
||u− v||L∞(C) (by Proposition 3.1 (ii) and (4))

≤ 1

4
||u− v||L∞(C) .

Thus

||u− v||L∞(Λ) ≤ distΛ(fu, fv) +
1

4
||u− v||L∞(C) .

For u, v ∈ Bδ(V ) = V ∩ Bδ(Hf ), we have ||u− v||L∞(C) ≤ 2 ||u− v||L∞(Λ) (Proposition 3.2

(ii)). Hence

||u− v||L∞(C) ≤ 4 distΛ(fu, fv), (u, v ∈ Bδ(V )).

Hence for ε < δ/4,

Widimε(M(CPN), distΛ) ≥ Widim4ε(Bδ(V ), ||·||L∞(C))

= dimR V (by Example 2.1)

≥ 2(N + 1)

�

Λ

|df |2dxdy − 2CfR (by Proposition 3.2 (i)).

Since Widimε(M(CPN), distΛ) = Widimε(M(CPN), dist[0,R]×[0,R]), for ε < δ/4, the quan-

tity Widimε(M(CPN), dist[0,R]×[0,R]) is bounded from below by

2(N + 1)

�
sup
Λ

�

Λ

|df |2dxdy
�
− 2CfR.
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Here Λ runs over all R-squares. Dividing this by R
2 and letting R → ∞, we get

lim
R→∞

�
1

R2
Widimε(M(CPN), dist[0,R]×[0,R])

�
≥ 2(N + 1)ρ(f).

Here we have used (3). Let ε → 0. Then dim(M(CPN) : C) ≥ 2(N + 1)ρ(f) by (2). �

Remark 3.3. The above argument also gives the lower bound on the local mean dimen-

sion dimf (M(CPN) : C). (Local mean dimension is a notion introduced in [16].) The

readers can skip this remark.

Let f : C → CPN be a non-degenerate Brody curve with ||df ||L∞(C) < 1. Let Br(f)C ⊂
M(CPN) (r > 0) be the set of g ∈ M(CPN) satisfying distC(f, g) ≤ r. Since f0 = f ,

if (4/5)r ≤ δ then u ∈ B(4/5)r(Hf ) satisfies fu ∈ Br(f)C. Let Λ ⊂ C be an R-square

(R > 2). As in the above proof, for 4ε < (4/5)r ≤ δ, we get

Widimε(Br(f)C, distΛ) ≥ 2(N + 1)

�

Λ

|df |2dxdy − 2CfR.

Hence

dimf (M(CPN) : C) := lim
r→+0

�
lim
ε→+0

�
lim
R→∞

1

R2
sup

Λ:R-square
Widimε(Br(f)C, distΛ)

��

≥ 2(N + 1)ρ(f).

Then dimloc(M(CPN) : C) := supf∈M(CPN ) dimf (M(CPN) : C) satisfies

2(N + 1)ρ(CPN) ≤ dimloc(M(CPN) : C) ≤ dim(M(CPN) : C) ≤ 4NρNSA(CPN).

The proof is the same as the proof of Theorem 1.1. In particular we get

dimloc(M(CP 1) : C) = dim(M(CP 1) : C).

4. Proof of Proposition 3.1

In this section we prove Proposition 3.1.

4.1. Analytic preliminaries. Let f : C → CPN be a Brody curve. As in Section 3,

let TCPN be the tangent bundle of CPN with the natural holomorphic vector bundle

structure, and let E := f
∗
TCPN be the pull-back of TCPN . E is a holomorphic vector

bundle over the complex plane C. Its Hermitian metric h is given by the pull-back of

the Fubini-Study metric. E is equipped with the unitary connection ∇ defined by the

holomorphic structure and the metric h.

Let 1 < p < ∞ be a real number, and k ≥ 0 be an integer. Let a ∈ L
p
k,loc(Λ

0,i(E))

(i = 0, 1) be a locally L
p
k-section of Λ0,i(E) (the C∞-vector bundle of (0, i)-forms valued

in E). For a subset Ω ⊂ C, we set

||a||Lp
k(Ω) :=

�
k�

n=0

�

Ω

|∇n
a|pdxdy

�1/p

.
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We define the �
∞
L
p
k-norm ||a||�∞Lp

k
by

||a||�∞Lp
k
:= sup

z∈C
||a||Lp

k(D1(z))
.

Let �∞L
p
k(Λ

0,i(E)) be the Banach space of all a ∈ L
p
k,loc(Λ

0,i(E)) satisfying ||a||�∞Lp
k
< +∞.

Lemma 4.1. (i) For a ∈ L
2
2,loc(Λ

0,i(E)),

||a||L∞(C) ≤ const ||a||�∞L2
2
.

(Precisely speaking, if the right-hand-side is finite then the left-hand-side is also finite and

satisfies the inequality.)

(ii) If a ∈ L
p
2,loc(Λ

0,i(E)) with p > 2, then

||a||L∞(C) + ||∇a||L∞(C) ≤ constp ||a||�∞Lp
2
.

Proof. Since M(CPN) is compact, there are δ > 0 and constk > 0 (k ≥ 0) such that

for every z ∈ C there is a trivialization u of the holomorphic vector bundle E over a

neighborhood of Dδ(z) such that u∗h = (hαβ̄)αβ (the Hermitian matrix representing h

under the trivialization u) satisfies
����hαβ̄

����
Ck(Dδ(z))

,

���
���hαβ̄

���
���
Ck(Dδ(z))

≤ constk. (Here (hαβ̄) =

(hαβ̄)
−1.) Then the norms ||a||Lp

k(Dδ(z))
and ||a||L∞(Dδ(z))

are equivalent to ||u ◦ a||Lp
k(Dδ(z))

and

||u ◦ a||L∞(Dδ(z))
uniformly in z ∈ C respectively. (We consider u ◦ a as a CN -valued (0, i)-

form in Dδ(z).) Hence the Sobolev embedding theorem (Gilbarg-Trudinger [6, Chapter

7.7]) implies

||a||L∞(Dδ(z))
≤ const ||a||L2

2(Dδ(z))
.

Here the important point is that const is independent of z ∈ C. Thus ||a||L∞(C) ≤
const ||a||�∞L2

2
. (ii) can be proved in the same way. �

Let ϕ : C → R be a C∞-function satisfying ||ϕ||Ck(C) < +∞ for all k ≥ 0. We set

∂̄
∗
ϕ(a) := e

−ϕ
∂̄
∗(eϕa) for a ∈ Ω0,1(E). Here ∂̄

∗ is the formal adjoint of the Dolbeault

operator ∂̄ : Ω0(E) → Ω0,1(E) with respect to the Hermitian metric h. ∂̄
∗
ϕ is the formal

adjoint of ∂̄ with respect to the metric eϕh. We define the operator �ϕ : Ω0,i(E) → Ω0,i(E)

by setting

�ϕa := ∂̄
∗
ϕ∂̄a (i = 0), �ϕa := ∂̄∂̄

∗
ϕa (i = 1).

Lemma 4.2. For a ∈ �
∞
L
p
k+2(Λ

0,i(E)),

||a||�∞Lp
k+2

≤ constp,k,ϕ
�
||a||�∞Lp + ||�ϕa||�∞Lp

k

�
.

More precisely, if a ∈ L
p
k+2,loc(Λ

0,1(E)) and the right hand side of the above is finite then

a ∈ �
∞
L
p
k+2 and satisfies the above inequality.
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Proof. We use the trivialization u of E introduced in the proof of Lemma 4.1. Since

||ϕ||Cl(C) < +∞ for all l ≥ 0, under the trivialization u, the operator �ϕ is represented as

�ϕ = (−1/2)∆+ A
∂

∂x
+B

∂

∂y
+ C

over a neighborhood of Dδ(z) where the Cl-norms (l ≥ 0) of the matrices A, B, C over

Dδ(z) are bounded uniformly in z ∈ C. Then from the L
p-estimate (Gilbarg-Trudinger

[6, Chapter 9.5])

||a||Lp
k+2(Dδ/2(z))

≤ constp,k,ϕ
�
||a||Lp(Dδ(z))

+ ||�ϕa||Lp
k(Dδ(z))

�
.

The desired estimate follows from this. �

4.2. Perturbation of the Hermitian metric. Here we develop a perturbation tech-

nique of a Hermitian metric (Lemma 4.5 below). Gromov also discussed it in [12, p. 399].

Tsukamoto [22, Section 4.3] studied an easier situation.

Lemma 4.3. Let g : C → R≥0 be a non-negative smooth function with ||g||Ck(C) < +∞
for all k ≥ 0. We suppose that the following non-degeneracy condition holds: There exist

δ > 0 and R > 0 such that for all p ∈ C we have ||g||L∞(DR(p)) ≥ δ. Then there exists a

smooth function ϕ : C → R satisfying

(−∆+ 1)ϕ = −g, ||ϕ||Ck(C) < +∞ (∀k ≥ 0), sup
z∈C

ϕ(z) < 0.

Here ∆ = ∂
2
/∂x

2 + ∂
2
/∂y

2
.

Proof. We need the following sublemma.

Sublemma 4.4. Let ϕ : C → R be a function of class C2 (ϕ ∈ C2
loc). Suppose that the

norms ||ϕ||L∞(C) and ||(−∆+ 1)ϕ||L∞(C) are both finite. Then

||ϕ||L∞(C) ≤ 4 ||(−∆+ 1)ϕ||L∞(C) .

Proof. Take z0 ∈ C such that |ϕ(z0)| ≥ ||ϕ||L∞(C) /2. For simplicity, we suppose z0 = 0.

Moreover we suppose ϕ(0) ≥ 0. (If ϕ(0) < 0 then we apply the following argument to

−ϕ.) We define w : C → R by

w(z) :=
1

2π

� 2π

0

e
(x cos θ+y sin θ)/

√
2
dθ.

w satisfies

(−∆+ 1/2)w = 0, min
z∈C

w(z) = w(0) = 1, w(z) → +∞ (|z| → +∞).

Then (−∆+ 1)w = w/2 ≥ 1/2. For ε > 0, set M := 2 ||(−∆+ 1)ϕ||L∞(C) + ε > 0.

(−∆+1) (Mw − ϕ) ≥ M/2− (−∆+1)ϕ ≥ ||(−∆+ 1)ϕ||L∞(C) + ε/2− (−∆+1)ϕ ≥ ε/2.
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Since the function Mw−ϕ is positive for |z| � 1, the weak minimum principle (Gilbarg-

Trudinger [6, Chapter 3.1, Corollary 3.2]) implies that this function is non-negative ev-

erywhere. Hence

||ϕ||L∞(C) /2 ≤ ϕ(0) ≤ Mw(0) = M = 2 ||(−∆+ 1)ϕ||L∞(C) + ε.

Let ε → 0. We get

||ϕ||L∞(C) ≤ 4 ||(−∆+ 1)ϕ||L∞(C) .

�

Let φn : C → [0, 1] (n ≥ 1) be a cut-off function such that φn = 1 over Dn(0) and

supp(φn) ⊂ Dn+1(0). We want to solve the equation (−∆ + 1)ϕ = −φng. The following

is a standard L
2-argument.

Let L
2
1(C) be the space of L

2-functions ϕ : C → R satisfying ∂ϕ/∂x, ∂ϕ/∂y ∈ L
2

with the inner product �ϕ,ϕ��L2
1
:= �ϕ,ϕ��L2 + �∂ϕ/∂x, ∂ϕ�

/∂x�L2 + �∂ϕ/∂y, ∂ϕ�
/∂y�L2 .

Consider the bounded linear functional:

L
2
1(C) → R, ϕ �→ −�ϕ,φng�L2 .

From the Riesz representation theorem, there uniquely exists ϕn ∈ L
2
1(C) satisfying

�ϕ,ϕn�L2
1
= −�ϕ,φng�L2 for all ϕ ∈ L

2
1(C). This implies (−∆ + 1)ϕn = −φng as a

distribution. From the local elliptic regularity, ϕn is smooth and ||ϕn||L∞(C) < +∞. Then

we can apply Sublemma 4.4 to ϕn and get

||ϕn||L∞(C) ≤ 4 ||φng||L∞(C) ≤ 4 ||g||L∞(C) < +∞.

By the local elliptic regularity, for every compact subset K ⊂ C and k ≥ 0, the sequence

||ϕn||Ck(K) (n ≥ 1) is bounded. Then we can choose a subsequence n1 < n2 < n3 < . . .

such that ϕnk
converges to some ϕ in C∞ over every compact subset of C. ϕ satisfies

(−∆+1)ϕ = −g and ||ϕ||L∞(C) ≤ 4 ||g||L∞(C). By the elliptic regularity, ||ϕ||Ck(C) < +∞ for

all k ≥ 0.

Note that we have not used the non-degeneracy condition of the function g so far. We

need it for the proof of the condition supz∈C ϕ(z) < 0.

Set M := supz∈C ϕ(z). There are zn ∈ C (n ≥ 1) such that ϕ(zn) → M . Set ϕn(z) :=

ϕ(z + zn) and gn(z) := g(z + zn). Then

(−∆+ 1)ϕn = −gn.

The sequences ||ϕn||Ck(C) and ||gn||Ck(C) (n ≥ 1) are bounded for every k ≥ 0. Hence by

choosing a subsequence (denoted also by ϕn and gn), we can assume that ϕn and gn

converge to ϕ∞ and g∞ respectively in C∞ over every compact subset of C. They satisfy

g∞ ≥ 0, (−∆+ 1)ϕ∞ = −g∞ ≤ 0, ϕ∞(z) ≤ ϕ∞(0) = M.

From the non-degeneracy condition of g, the function g∞ is not zero. Hence if ϕ∞ is a

constant, then ϕ∞ = −g∞ is a negative constant function and M < 0. If ϕ∞ is not a



BRODY CURVES AND MEAN DIMENSION 13

constant, then the strong maximum principle [6, Chapter 3.2, Theorem 3.5] implies that

ϕ∞ cannot achieve a non-negative maximum value. HenceM = ϕ∞(0) = maxz∈C ϕ∞(z) <

0. �

Recall that f : C → CPN is a Brody curve and E = f
∗
TCPN . For a ∈ Ω0,1(E) we

have the Weintzenböck formula:

(5) ∂̄∂̄
∗
a =

1

2
∇∗∇a+Θa,

where Θ := [∇∂/∂z,∇∂/∂z̄] is the curvature operator. The crucial fact for the analysis

of this paper is that the holomorphic bisectional curvature of the Fubini-Study metric is

positive. From this, there exists a positive constant c such that

h(Θa, a) ≥ c|df |2|a|2.

This means that the curvature operator is positive where |df | is positive. The non-

degeneracy condition of the map f enters into the argument through this point. (See

the condition (ii) of Definition-Lemma 1.3.) In the next lemma we will prove that if f

is non-degenerate then we can perturb the Hermitian metric h so that the curvature is

uniformly positive:

Lemma 4.5. Let f : C → CPN
be a non-degenerate Brody curve. There is a smooth

function ϕ : C → R with ||ϕ||Ck(C) < +∞ (∀k ≥ 0) satisfying the following. Let Θϕ be the

curvature of the Hermitian metric hϕ := e
ϕ
h. Then there is c

�
> 0 such that

hϕ(Θϕa, a) ≥ c
�|a|2hϕ

for all a ∈ Ω0,1(E).

Proof. We have Θϕa = −∆ϕ
4 a+Θa for a ∈ Ω0,1(E), and hence

hϕ(Θϕa, a) = e
ϕ

�
−∆ϕ

4
|a|2h + h(Θa, a)

�
≥ e

ϕ

�
−∆ϕ

4
+ c|df |2

�
|a|2h.

By the non-degeneracy of f and Lemma 4.3, there is a smooth function ϕ : C → R
satisfying

(−∆+ 1)ϕ = −4c|df |2, ||ϕ||Ck(C) < +∞ (∀k ≥ 0), sup
z∈C

ϕ(z) < 0.

Then

hϕ(Θϕa, a) ≥ e
ϕ(−ϕ/4)|a|2h = (−ϕ/4)|a|2hϕ

≥ (− sup
z∈C

ϕ(z)/4)|a|2hϕ
.

Hence c
� := − supz∈C ϕ(z)/4 > 0 satisfies the statement. �

In our convention, the Fubini-Study metric gij̄ on CPN is given by

gij̄ =
1

2π

∂
2

∂zi∂z̄j
log(1 + |z1|2 + · · ·+ |zN |2)
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over {[1 : z1 : · · · : zN ]} ⊂ CPN . The spherical derivative |df |(z) for a holomorphic curve

f : C → CPN satisfies

(6) f
∗
�√

−1
�

gij̄dzidz̄j

�
= |df |2dxdy.

The Fubini-Study metric gij̄ satisfies the Kähler-Einstein equation

Ricij̄ = − ∂
2

∂zi∂z̄j
log(det(gkl̄)) = 2π(N + 1)gij̄.

From this, the curvature operator Θ = [∇∂/∂z,∇∂/∂z̄] in (5) satisfies

(7)

√
−1

2π
tr(Θ)dzdz̄ = (N + 1)|df |2dxdy

since tr(Θ)dzdz̄ = f
∗(
�

Ricij̄dzidz̄j). The equation (7) will be used in the proof of

Proposition 5.1. Note that the form (
√
−1/2π)tr(Θ)dzdz̄ is the Chern form representing

c1(E) although we have c1(E) = 0 because H
2(C;Z) = 0.

4.3. L
∞-estimate. Let f : C → CPN be a non-degenerate Brody curve, and let ϕ :

C → R be a smooth function introduced in Lemma 4.5. Propositions 4.6 and 4.7 below

essentially use the positivity of the curvature Θϕ.

The following L
∞-estimate was proved in [22, Proposition 4.2].

Proposition 4.6. Let a ∈ Ω0,1(E) be an E-valued (0, 1)-form of class C2
(a ∈ C2

loc). Set

b := �ϕa. If ||a||L∞(C) , ||b||L∞(C) < +∞, then

||a||L∞(C) ≤ constf,ϕ ||b||L∞(C) .

Proof. The proof is similar to the proof of Sublemma 4.4. For the detail, see [22, pp.

1648-1649]. �

Proposition 4.7. Let b ∈ L
2
2,loc(Λ

0,1(E)) and suppose ||b||L∞(C) < +∞. Then there

uniquely exists a ∈ L
2
4,loc(Λ

0,1(E)) satisfying

�ϕa = b, ||a||L∞(C) < +∞.

Moreover ||a||L∞(C) + ||∇a||L∞(C) ≤ constf,ϕ ||b||L∞(C).

Proof. The uniqueness follows from Proposition 4.6. (Note the Sobolev embedding L2
4,loc �→

C2
loc in R2.) So the problem is the existence. We have the Weinzenböck formula: for

a ∈ Ω0,1(E)

�ϕa =
1

2
∇∗

ϕ∇ϕa+Θϕa,

where ∇ϕ is the unitary connection on E with respect to the metric hϕ = e
ϕ
h. Θϕ satisfies

the positivity condition in Lemma 4.5.

Let φn : C → [0, 1] be a cut-off function such that φn = 1 over Dn(0) and supp(φn) ⊂
Dn+1(0). From the positivity of the curvature, as in the proof of Lemma 4.3, a standard

L
2-argument shows that there is an ∈ L

2
1(Λ

0,1(E)) (the space of L2-sections a of Λ0,1(E)
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satisfying ∇ϕa ∈ L
2) satisfying �ϕan = φnb as a distribution. (For the detail, see [22,

Lemma 5.3].) The local elliptic regularity implies an ∈ L
2
4,loc. By Lemmas 4.1 (i) and 4.2,

||an||L∞(C) ≤ const ||an||�∞L2
2
≤ constϕ

�
||an||�∞L2 + ||�ϕan||�∞L2

�

≤ constϕ
�
||an||L2 + ||φnb||L∞(C)

�
< +∞.

By Proposition 4.6 we have ||an||L∞(C) ≤ constf,ϕ ||bn||L∞(C) ≤ constf,ϕ ||b||L∞(C). Then

for any compact set K ⊂ C the sequence ||an||L2
2(K) (n ≥ 1) is bounded. By choosing

a subsequence n1 < n2 < n3 < . . . , the sequence ank
converges to some a weakly in

L
2
2(DR(0)) (and hence strongly in L

∞(DR(0))) for every R > 0. a satisfies �ϕa = b, and

||a||L∞(C) ≤ supn≥1 ||an||L∞(C) ≤ constf,ϕ ||b||L∞(C). By the local elliptic regularity a ∈ L
2
4,loc.

By Lemmas 4.1 (ii) and 4.2

||a||L∞(C) + ||∇a||L∞(C) ≤ const ||a||�∞L3
2
≤ constϕ (||a||�∞L3 + ||b||�∞L3) ≤ constf,ϕ ||b||L∞(C) .

�

4.4. Deformation theory. Let f : C → CPN be a non-degenerate Brody curve with

||df ||L∞(C) < 1. In this subsection we study a deformation of f and prove Proposition 3.1.

Gromov [12, pp. 399-400, Projective interpolation theorem] studied a different kind of

deformation theory. Our argument is a generalization of the deformation theory of elliptic

Brody curves developed in [22].

Consider the following map (see McDuff-Salamon [17, p. 40]):

Φ : �∞L
2
3(E) → �

∞
L
2
2(Λ

0,1(E)), u �→ Pu(∂̄ exp u)⊗ dz̄.

Here exp u = expf(z) u(z) is defined by the exponential map of the Fubini-Study metric,

and

∂̄ exp u :=
1

2

�
∂

∂x
exp u+ J

∂

∂y
exp u

�
(J : complex structure of CPN).

Pu(z) : Texpf(z) u(z)CPN → Tf(z)CPN is the parallel translation along the geodesic expf(z)(tu(z))

(0 ≤ t ≤ 1).

Φ is a smooth map between the Banach spaces. Φ(0) = 0 and the derivative of Φ at

the origin is equal to the Dolbeault operator:

dΦ0 = ∂̄ : �∞L
2
3(E) → �

∞
L
2
2(Λ

0,1(E)).

Proposition 4.8. There is a bounded linear operator Q : �∞L
2
2(Λ

0,1(E)) → �
∞
L
2
3(E)

satisfying ∂̄ ◦Q = 1.

Proof. We will prove that the map

(8) �ϕ = ∂̄∂̄
∗
ϕ : �∞L

2
4(Λ

0,1(E)) → �
∞
L
2
2(Λ

0,1(E))
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is an isomorphism. (ϕ : C → R is a smooth function introduced in Lemma 4.5.) Then

Q := ∂̄
∗
ϕ�−1

ϕ : �∞L
2
2(Λ

0,1(E)) → �
∞
L
2
3(Λ

0,1(E)) becomes a right inverse of ∂̄. The injec-

tivity of the map (8) directly follows from the L
∞-estimate in Proposition 4.6.

On the other hand, by Proposition 4.7, for every b ∈ �
∞
L
2
2(Λ

0,1(E)) there is a ∈
L
∞ ∩ L

2
4,loc(Λ

0,1(E)) satisfying �ϕa = b. By Lemma 4.2, a ∈ �
∞
L
2
4. Thus the map (8) is

surjective. �
Let Hf be the Banach space of all L∞-holomorphic sections of E introduced in Section

3. Hf is equal to the kernel of the map ∂̄ : �∞L
2
3(E) → �

∞
L
2
2(Λ

0,1(E)) by Lemmas 4.1

and 4.2. Moreover the norms ||·||�∞L2
k
(k ≥ 0) are all equivalent to the norm ||·||L∞(C) over

Hf .

From Proposition 4.8 and the implicit function theorem, there are r > 0 and a smooth

map α : {u ∈ Hf | ||u||L∞(C) < r} → ImQ (ImQ ⊂ �
∞
L
2
3(E) is a closed subspace) such that

Φ(u+ α(u)) = 0, α(0) = 0, dα0 = 0.

The first and second conditions imply that fu := expf (u+ α(u)) becomes a holomorphic

curve with f0 = f . The third condition implies that for any ε > 0 there exists 0 <

δ < r such that if u, v ∈ Hf satisfies ||u||L∞(C) , ||v||L∞(C) ≤ δ then ||α(u)− α(v)||L∞(C) ≤
ε ||u− v||L∞(C).

Proof of Proposition 3.1. Since ||df ||L∞(C) < 1, if δ � 1, the holomorphic curves fu (u ∈
Bδ(Hf )) satisfy ||dfu||L∞(C) ≤ 1. We will prove that if 0 < δ < r is sufficiently small then

the map

Bδ(Hf ) � u �→ fu ∈ M(CPN)

satisfies the conditions in Proposition 3.1. The condition (i) (f0 = f) is OK. So we want

to prove the condition (ii).

We choose 0 < δ < r sufficiently small so that all u, v ∈ Bδ(Hf ) satisfy

||α(u)− α(v)||L∞(C) ≤ (1/20) ||u− v||L∞(C) ,

and that if v1, v2 ∈ TpCPN are two tangent vectors satisfying |v1|, |v2| ≤ 2δ then

|d(exp(v1), exp(v2))− |v1 − v2|| ≤ (1/20)|v1 − v2|.

The former condition comes from dα0 = 0, and the latter is just a standard property of

the exponential map. Then all u, v ∈ Bδ(Hf ) satisfy

|d(exp(u+ α(u)), exp(v + α(v)))− |u+ α(u)− v − α(v)|| ≤ (1/20) |u+ α(u)− v − α(v)|

≤ (1/20) ||u− v||L∞(C) + (1/20) ||α(u)− α(v)||L∞(C) ≤ (1/20 + 1/400) ||u− v||L∞(C) ,

and

||u+ α(u)− v − α(v)|− |u− v|| ≤ |α(u)− α(v)| ≤ (1/20) ||u− v||L∞(C) .

These inequalities imply the condition (ii):

|d(exp(u+ α(v)), exp(v + α(v)))− |u− v|| ≤ (1/8) ||u− v||L∞(C) .
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�

5. Study of Hf : proof of Proposition 3.2

In this section we prove Proposition 3.2. Let R > 0, and let Λ = [a1, b1]× [a2, b2] ⊂ C
be an R-square (i.e. b1 = a1 +R and b2 = a2 +R). For 0 < r < R/2, we set

∂rΛ = {([a1, a1 + r) ∪ (b1 − r, b1])× [a2, b2]} ∪ {[a1, b1]× ([a2, a2 + r) ∪ (b2 − r, b2])}.

(This notation is used only in this section. It conflicts with the notation ∂rΩ introduced

in Section 2.1.) The following is a preliminary version of Proposition 3.2.

Proposition 5.1. Let f : C → CPN
be a Brody curve. Let ε > 0, and let Λ ⊂ C be an

R-square with R > 2. Then there exists a finite dimensional complex subspace W ⊂ Ω0(E)

(the space of C∞
-sections of E = f

∗
TCPN

) satisfying the following three conditions.

(i)

dimC W ≥ (N + 1)

�

Λ

|df |2dxdy − CεR,

where Cε is a constant depending only on ε. (The important point is that it is independent

of R.)

(ii) All u ∈ W satisfy u = 0 outside of Λ.

(iii) All u ∈ W satisfy
����∂̄u

����
L∞(C) ≤ ε ||u||L∞(C).

Proof. Set Λ = [a1, b1]× [a2, b2]. Let ϕi : R → R (i = 1, 2) be smooth functions such that

0 ≤ ϕ
�
i ≤ 1, ϕi(x) = x over [ai + 1/2, bi − 1/2], ϕ(x) = ϕ(ai + 1/4) over x ≤ ai + 1/4 and

ϕi(x) = ϕ(bi−1/4) over x ≥ bi−1/4. Moreover we assume that, for k ≥ 1, |ϕ(k)
i | ≤ constk

(depending only on k ≥ 1).

We define a C∞-map f̃ : C → CPN by f̃(x +
√
−1y) := f(ϕ1(x) +

√
−1ϕ2(y)). We

have |df̃ |(z) := maxu∈TzC, |u|=1 |df̃(u)| ≤ 1 for all z ∈ C. Let Ẽ := f̃
∗
TCPN be the pull-

back of TCPN by f̃ . Ẽ is a complex vector bundle over C with the Hermitian metric h̃

(the pull-back of the Fubini-Study metric) and the unitary connection ∇̃ (the pull-back

of the Levi-Civita connection on TCPN). From the definition of f̃ , the connection ∇̃
is flat over ∂1/4Λ. Flat connections over ∂1/4Λ are classified by their holonomy maps

π1(∂1/4Λ) → U(N). Hence there is a bundle trivialization (as a Hermitian vector bundle)

g of Ẽ over ∂1/4Λ such that g(∇̃) = d+ A (A: connection matrix) satisfies

||A||Ck(∂1/4Λ)
≤ constk (k ≥ 0).

Here constk are universal constants depending only on k. (The important point is that

they are independent of R.) Let ψ : Λ → [0, 1] be a cut-off function such that ψ = 1 over

Λ \ ∂1/5Λ, ψ = 0 over ∂1/6Λ, and ||ψ||Ck(Λ) ≤ constk. We define a unitary connection ∇�

on Ẽ over Λ by ∇� := g
−1(d + ψA). (∇� = ∇̃ over Λ \ ∂1/5Λ.) Under the trivialization

g, the metric h̃ and the connection ∇� are equal to the standard metric and the product

connection of ∂1/6Λ× CN over ∂1/6Λ.
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Consider an elliptic curve T := C/(RZ + R
√
−1Z), and let π : C → T be the natural

projection. We define a complex vector bundle E
� over T as follows. E

� = Ẽ over

π(Λ \ ∂1/5Λ) ∼= Λ \ ∂1/5Λ, and E
�|π(∂1/4Λ) is equal to the product bundle π(∂1/4Λ) × CN .

We glue these by the map g. The metric h̃ and the connection ∇� naturally descend to

the metric and connection on E
� (also denoted by h̃ and ∇�).

Let Θ� := [∇�
∂/∂z,∇�

∂/∂z̄] be the curvature of∇�. From the definition, Θ� = [∇∂/∂z,∇∂/∂z̄]

over π(Λ \ ∂1/2Λ) ∼= Λ \ ∂1/2Λ, and |Θ�| ≤ const (a universal constant) all over T. Then

by (7)

(9)

�

T
c1(E

�) =

√
−1

2π

�

T
tr(Θ�)dzdz̄ ≥ (N + 1)

�

Λ

|df |2dxdy − const ·R.

Let ∂̄∇� : Ω0(E �) → Ω0,1(E �) be the Dolbeault operator over T twisted by the unitary

connection ∇� (i.e. the (0, 1)-part of the covariant derivative ∇� : Ω0(E) → Ω1(E)). Let

H
0
∇� be the space of u ∈ Ω0(E �) satisfying ∂̄∇�u = 0. From the Riemann-Roch formula

and the above (9)

(10) dimC H
0
∇� ≥

�

T
c1(E

�) ≥ (N + 1)

�

Λ

|df |2dxdy − const ·R.

Lemma 5.2. For all u ∈ H
0
∇�,

||∇�
u||L∞(T) ≤ K ||u||L∞(T) .

Here K is a universal constant (independent of f , R, Λ).

Proof. The connection ∇� has the following property: There is a universal constant r > 0

such that for every p ∈ T there is a bundle trivialization v of a Hermitian vector bundle

E
� over Dr(p) satisfying v(∇�) = d+ A

� with

||A�||Ck(Dr(p))
≤ constk (k ≥ 0).

Then the result follows from the elliptic regularity. �

Let τ = τ(ε) > 0 be a small number which will be fixed later. We take points

p1, . . . , pM ∈ π(∂1Λ) with M ≤ constτ · R such that for every p ∈ π(∂1Λ) there is pi

satisfying d(p, pi) ≤ τ . We define V ⊂ H
0
∇� as the space of u ∈ H

0
∇� satisfying u(pi) = 0

for all i = 1, . . . ,M . From (10),

(11) dimC V ≥ dimC H
0
∇� − dimC

�
M�

i=1

E
�
pi

�
≥ (N + 1)

�

Λ

|df |2dxdy − CεR.

Let u ∈ V and p ∈ π(∂1Λ). Take pi satisfying d(p, pi) ≤ τ . From u(pi) = 0 and Lemma

5.2,

|u(p)| ≤ τ ||∇�
u||L∞(T) ≤ τK ||u||L∞(T) .

We choose τ > 0 so that τK < 1. Then the maximum of |u| is attained in T \ π(∂1Λ).
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Let φ : C → R be a cut-off such that φ = 1 over Λ \ ∂1Λ, supp(φ) is contained in the

interior of Λ \ ∂1/2Λ, and |dφ| ≤ 10. For u ∈ V , we set u
� := φu. Here we identify the

region Λ \ ∂1/2Λ with π(Λ \ ∂1/2Λ) where we have E � = E, and we consider u� as a section

of E over the plane C. Set W := {u�|u ∈ V }. We have ||u�||L∞(C) = ||u||L∞(T). Hence, by

(11), we get the condition (i):

dimC W = dimC V ≥ (N + 1)

�

Λ

|df |2dxdy − CεR.

The condition (ii) is obviously satisfied. ∂̄u� = ∂̄φ⊗ u is supported in ∂1Λ.

����∂̄u�����
L∞(C) ≤ 10 ||u||L∞(π(∂1Λ))

≤ 10τK ||u||L∞(T) = 10τK ||u�||L∞(C) .

We choose τ > 0 so that 10τK ≤ ε. Then the condition (iii) is satisfied. �

Proof of Proposition 3.2. Let ε > 0 be a small number which will be fixed later. By

Proposition 5.1, for this ε and any R-square Λ (R > 2), there is a finite dimensional

complex subspace W ⊂ Ω0(E) satisfying the conditions (i), (ii), (iii) in Proposition 5.1.

By Proposition 4.7, there is a linear map

W → Ω0,1(E), u �→ a,

such that

∂̄∂̄
∗
ϕa = ∂̄u,

����∂̄∗
ϕa

����
L∞(C) ≤ C

�
f

����∂̄u
����
L∞(C) ≤ C

�
f · ε ||u||L∞(C) .

Set u� := u− ∂̄
∗
ϕa. Then ∂̄u

� = 0 and ||u�||L∞(C) ≥ (1− C
�
fε) ||u||L∞(C). We choose ε > 0 so

that 1− C
�
fε > 0. We set V := {u�|u ∈ W}. Then V ⊂ Hf and

dimC V = dimC W ≥ (N + 1)

�

Λ

|df |2dxdy − CεR.

For u ∈ W (recall supp(u) ⊂ Λ)

||u�||L∞(C) ≤ (1 + C
�
fε) ||u||L∞(C) = (1 + C

�
fε) ||u||L∞(Λ) ,

||u�||L∞(Λ) ≥ (1− C
�
fε) ||u||L∞(Λ) .

Hence

||u�||L∞(C) ≤
1 + C

�
fε

1− C
�
fε

||u�||L∞(Λ) .

We choose ε > 0 so small that
1 + C

�
fε

1− C
�
fε

≤ 2.

�
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6. Infinite gluing: proof of Theorem 1.7

We prove Theorem 1.7 in this section. Our method is gluing: We glue infinitely many

rational curves to a (possibly degenerate) Brody curve f : C → CPN , and construct a

non-degenerate one.

A kind of “infinite gluing construction” is classically used for the proof of Mittag-

Leffler’s theorem. Probably another origin of infinite gluing construction is the shadowing

lemma in dynamical system theory (for example, see Bowen [2, Chapter 3]). Angenent

[1] developed a shadowing lemma for an elliptic PDE. Gromov [12, p. 403] suggested an

idea of gluing infinitely many rational curves to a (pseudo-)holomorphic curve. Macr̀ı-

Nolasco-Ricciardi [15] developed gluing infinitely many selfdual vortices. Gournay [7, 11]

studied an infinite gluing method for pseudo-holomorphic curves. Tsukamoto [18, 21]

studied gluing infinitely many Yang-Mills instantons.

First we establish a result on gluing one rational curve:

Proposition 6.1. There are δ0 > 0, R0 > 0 and K > 0 satisfying the following statement.

Let f : C → CPN
be a Brody curve. If f satisfies ||df ||L∞(DR(p)) < δ0 for some p ∈ C and

R ≥ R0 + 1, then there exists a holomorphic curve g : C → CPN
satisfying the following

three conditions.

(i) δ0 ≤ ||dg||L∞(DR(p)) ≤ 2/3.

(ii) ||dg|(z)− |df |(z)| ≤ K/|z − p|3 over |z − p| > R.

(iii) d(f(z), g(z)) ≤ K/|z − p|3 for z �= p.

Proof. The proof is just a calculation. It may be helpful for some readers to consider the

case of N = 1 by themselves. Let ε > 0 be a sufficiently small number. δ0, R0, K and

ε will be fixed later. Several conditions will be imposed on them through the argument,

but basically they need to satisfy

δ0 �
ε

R0
, R0 � 1, ε � 1

R
4
0

.

Fix a > 0 so that the curve q : C → CPN defined by q(z) := [1 : a/z3 : · · · : a/z3]
satisfies ||dq||L∞(C) = 1/12. Here

|dq|(z) = 3a
√
Nr

2

√
π(r6 +Na2)

(r = |z|).

We can suppose ||dq||L∞(DR0 (0))
= 1/12 since we choose R0 � 1.

From the symmetry we can assume p = 0 and f(0) = [1 : 0 : · · · : 0]. Let f(z) =

[1 : f1(z) : · · · : fN(z)] where fi(z) are meromorphic functions in C. Since |df | ≤ δ0 over

|z| ≤ R with R ≥ R0 + 1, if we choose δ0 sufficiently small (δ0 � ε/R0), we have

(12) |fi(z)| ≤ ε, |f �
i(z)| ≤ ε (|z| ≤ R0).
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Set gi(z) := fi(z)+a/z
3, and we define g : C → CPN by g(z) := [1 : g1(z) : · · · : gN(z)].

We will prove that this map g satisfies the conditions (i), (ii), (iii).

First we study the condition (iii). The Fubini-Study metric is given by

ds
2 =

�N
i=1 |dzi|2 +

�
1≤i<j≤N |zjdzi − zidzj|2

π(1 +
�

|zi|2)2
on {[1 : z1 : · · · : zN ]}.

ds
2 ≤

�
|dzi|2 + 2(

�
|zi|2)(

�
|dzi|2)

π(1 +
�

|zi|2)2
≤ 2(1 +

�
|zi|2)

�
|dzi|2

π(1 +
�

|zi|2)2
≤ 2

π

�
|dzi|2

Hence ds ≤
�

2/π
��N

i=1 |dzi|2. Thus for f(z) = [1 : f1(z) : · · · : fN(z)] and g(z) = [1 :

f1(z) + a/z
3 : · · · : fN(z) + a/z

3] we get

(13) d(f(z), g(z)) ≤
�

2/π

����
N�

i=1

|a/z3|2 =
a
�

2N/π

|z|3 .

Next we study the conditions (i) and (ii). We have

|df |(z) =

��
|f �

i(z)|2 +
�

i<j |f �
i(z)fj(z)− fi(z)f �

j(z)|2
√
π(1 +

�
|fi(z)|2)

,

|dg|(z) =

��
|g�i(z)|2 +

�
i<j |g�i(z)gj(z)− gi(z)g�j(z)|2

√
π(1 +

�
|gi(z)|2)

,

where

g
�
i = f

�
i −

3a

z4
, g

�
igj − gig

�
j = (f �

ifj − fif
�
j) +

3a

z4
(fi − fj) +

a

z3
(f �

i − f
�
j).

Case 1: Suppose r := |z| ≤ R0. We will prove δ0 ≤ ||dg||L∞(DR0 (0))
≤ 2/3. From (12),

|gi(z)| ≤ ε+
a

r3
≤ 2a

r3
, |g�i(z)| ≥

3a

r4
− ε ≥ 3a

2r4
.

Here we have supposed ε ≤ min(a/R3
0, 3a/(2R

4
0)). Then

|dg|(z) ≥
√
N(3a/(2r4))√

π(1 + 4Na2/r6)
=

3a
√
Nr

2

2
√
π(r6 + 4Na2)

≥ 3a
√
Nr

2

8
√
π(r6 +Na2)

=
|dq|(z)

8
.

Hence ||dg||L∞(DR0 (0))
≥ (1/8) ||dq||L∞(DR0 (0))

= 1/96 ≥ δ0. (Here we have supposed δ0 ≤
1/96.) On the other hand,

|dg|(z) =

��
|3az2 − z6f �

i |2 +
�

i<j |z6(f �
ifj − f

�
jfi) + 3az2(fi − fj) + az3(f �

i − f
�
j)|2

√
π(r6 +

�
|a+ z3fi|2)

.

From (12),

|a+ z
3
fi| ≥ a− εR

3
0 ≥

a

2
, (here we suppose εR

3
0 ≤ a/2).

r
6 +

�
|a+ z

3
fi|2 ≥ r

6 +
Na

2

4
≥ r

6 +Na
2

4
.

|3az2 − z
6
f
�
i | ≤ 3ar2 + r

6
ε ≤ r

2(3a+R
4
0ε) ≤ 4ar2, (we suppose R

4
0ε ≤ a).
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|z6(f �
ifj − f

�
jfi) + 3az2(fi − fj) + az

3(f �
i − f

�
j)| ≤ r

2(2ε2R4
0 + 6aε+ 2aεR0) ≤

ar
2

��
N
2

� .

Here we have supposed 2ε2R4
0 + 6aε+ 2aεR0 ≤ a/

��
N
2

�
. Then

|dg|(z) ≤ 4ar2
√
16N + 1√

π(r6 +Na2)
≤ 24ar2

√
N√

π(r6 +Na2)
= 8|dq|(z) ≤ 2

3
, (|dq| ≤ 1/12).

Thus we get δ0 ≤ ||dg||L∞(DR0 (0))
≤ 2/3.

Case 2: Suppose |z| ≥ R0. We will prove ||df |(z)− |dg|(z)| ≤ K/r
3 for an appropriate

K > 0. We have
��|fi|2 − |gi|2

�� ≤ (|fi|+ |gi|) · |fi − gi| ≤ (2|fi|+ a/r
3)(a/r3) ≤ (2|fi|+ a/R

3
0)(a/r

3),

���|fi|2 − |gi|2
�� ≤ a

r3

�
2
�

|fi|+
Na

R
3
0

�
≤ 2a

r3

�
1 +

�
|fi|

�
(we suppose

Na

R
3
0

≤ 2).

If |fi| ≥ a/r
3, then

|gi|2 ≥
�
|fi|− a/r

3
�2 ≥ |fi|2

2
− a

2

r6
≥ |fi|2

2
− a

2

R
6
0

, ((x− y)2 ≥ x
2

2
− y

2).

If |fi| < a/r
3, then

|gi|2 ≥ 0 >
|fi|2

2
− a

2

r6
≥ |fi|2

2
− a

2

R
6
0

.

Therefore we always have |gi|2 ≥ |fi|2/2− a
2
/R

6
0.

1 +
�

|gi|2 ≥
�
1− Na

2

R
6
0

�
+

1

2

�
|fi|2 ≥

1

2

�
1 +

�
|fi|2

�
(we suppose

Na
2

R
6
0

≤ 1

2
).

Hence
����

1

1 +
�

|gi|2
− 1

1 +
�

|fi|2

���� ≤
4a
r3 (1 +

�
|fi|)

(1 +
�

|fi|2)2
≤

4a
√
N + 1

�
1 +

�
|fi|2

r3 (1 +
�

|fi|2)2

=
4a

√
N + 1

r3 (1 +
�

|fi|2)3/2
≤ 4a

√
N + 1

r3(1 +
�

|fi|2)
.

(14)

Then, from g
�
i = f

�
i − 3a/z4 and the above (14),

����
|g�i|

1 +
�

|gk|2
− |f �

i |
1 +

�
|fk|2

���� ≤
����

|g�i|
1 +

�
|gk|2

− |g�i|
1 +

�
|fk|2

����+
����

|g�i|
1 +

�
|fk|2

− |f �
i |

1 +
�

|fk|2

����

≤ 4a
√
N + 1(|f �

i |+ 3a/r4)

r3(1 +
�

|fk|2)
+

3a

r4(1 +
�

|fk|2)
.

From |df | ≤ 1, we have |f �
i |/(1 +

�
|fk|2) ≤

√
π. Hence the above is bounded by

4a
√
N + 1

r3
(
√
π + 3a/r4) + 3a/r4 ≤ 4a

√
N + 1

r3
(
√
π + 3a) +

3a

r3
.
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Here we have supposed r ≥ R0 ≥ 1. Set Ka := 4a
√
N + 1(

√
π + 3a) + 3a. Then

(15)

����
|g�i|

1 +
�

|gk|2
− |f �

i |
1 +

�
|fk|2

���� ≤
Ka

r3
.

From (14), for i < j,
����
|g�igj − g

�
jgi|

1 +
�

|gk|2
−

|f �
ifj − f

�
jfi|

1 +
�

|fk|2

���� ≤
����
|g�igj − g

�
jgi|

1 +
�

|gk|2
−

|g�igj − g
�
jgi|

1 +
�

|fk|2

����+
����
|g�igj − g

�
jgi|

1 +
�

|fk|2
−

|f �
ifj − f

�
jfi|

1 +
�

|fk|2

����

≤
4a

√
N + 1|g�igj − g

�
jgi|

r3(1 +
�

|fk|2)
+

|(g�igj − g
�
jgi)− (f �

ifj − f
�
jfi)|

1 +
�

|fk|2

From g
�
igj − g

�
jgi = (f �

ifj − f
�
jfi) + (3a/z4)(fi − fj) + (a/z3)(f �

i − f
�
j), this is bounded by

4a
√
N + 1

r3

� |f �
ifj − f

�
jfi|

1 +
�

|fk|2
+

3a(|fi|+ |fj|)
r4(1 +

�
|fk|2)

+
a(|f �

i |+ |f �
j|)

r3(1 +
�

|fk|2)

�

+
3a(|fi|+ |fj|)
r4(1 +

�
|fk|2)

+
a(|f �

i |+ |f �
j|)

r3(1 +
�

|fk|2)
.

(16)

From |df | ≤ 1,
|f �

ifj − f
�
jfi|

1 +
�

|fk|2
≤

√
π,

|f �
i |+ |f �

j|
1 +

�
|fk|2

≤ 2
√
π.

Since i < j,
|fi|+ |fj|
1 +

�
|fk|2

≤
√
2
�

|fi|2 + |fj|2
1 +

�
|fk|2

≤
√
2.

Hence the above (16) is bounded by

4a
√
N + 1

r3

�
√
π +

3a
√
2

r4
+

2a
√
π

r3

�
+

3a
√
2

r4
+

2a
√
π

r3

≤ 4a
√
N + 1

r3
(
√
π + 3a

√
2 + 2a

√
π) +

3a
√
2

r3
+

2a
√
π

r3
.

Here r ≥ R0 ≥ 1. Set K �
a := 4a

√
N + 1(

√
π + 3a

√
2 + 2a

√
π) + 3a

√
2 + 2a

√
π. Then

����
|g�igj − g

�
jgi|

1 +
�

|gk|2
−

|f �
ifj − f

�
jfi|

1 +
�

|fk|2

���� ≤
K

�
a

r3
.

From this and (15),

||dg|(z)− |df |(z)| ≤ (1/
√
π)

�

N(Ka/r
3)2 +

�
N

2

�
(K �

a/r
3)2 =

�
NK2

a +
�
N
2

�
(K �

a)
2

√
πr3

.

Here we have used the inequality
����
�

x
2
1 + · · ·+ x

2
l −

�
y
2
1 + · · ·+ y

2
l

���� ≤
�

(x1 − y1)2 + · · ·+ (xl − yl)2.

Set

K := max

�
a

�
2N/π,

�

NK2
a +

�
N

2

�
(K �

a)
2/
√
π

�
.
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(This K satisfies the condition (iii) by (13).) Then

||df |(z)− |dg|(z)| ≤ K

r3
(r ≥ R0).

Thus we have proved the condition (ii).

For R0 ≤ |z| ≤ R,

|dg|(z) ≤ ||df ||L∞(DR(0)) +
K

R
3
0

≤ δ0 +
1

2
≤ 2

3
,

where we have chosen R0 and δ0 so that K/R
3
0 ≤ 1/2 and δ0 ≤ 1/6. In Case 1, we proved

δ0 ≤ ||dg||L∞(DR0 (0))
≤ 2/3. Thus we get the condition (i):

δ0 ≤ ||dg||L∞(DR(0)) ≤ 2/3.

�

Proof of Theorem 1.7. Let ||df ||L∞(C) ≤ 1− τ , (0 < τ ≤ 1). Let δ0, R0, K be the positive

numbers introduced in Proposition 6.1. For ε > 0, we set δ := min(δ0,
√
ε). Let R =

R(ε, τ) ≥ R0 + 1 be a large positive number which will be fixed later.

We index the elements of Z2 by natural numbers: Z2 = {(α1, β1), (α2, β2), (α3, β3), . . . }.
For n ≥ 1, we set pn := 2R(αn +

√
−1βn) and Λn := {x + y

√
−1 ∈ C| |x − 2Rαn| ≤

R, |y − 2Rβn| ≤ R}. The squares Λn (n ≥ 1) give a tiling of the plane C.
We inductively define the sequence of Brody curves fn : C → CPN (n ≥ 0) as follows.

We set f0 := f . Suppose we have defined fn.

(1) If ||df ||L∞(Λn+1)
≥ δ, then we set fn+1 := fn.

(2) If ||df ||L∞(Λn+1)
< δ and ||dfn||L∞(Λn+1)

≥ δ0, then we set fn+1 := fn.

(3) If ||df ||L∞(Λn+1)
< δ and ||dfn||L∞(Λn+1)

< δ0, then we apply Proposition 6.1 to fn

and pn+1 (note DR(pn+1) ⊂ Λn+1) and get a holomorphic map fn+1 : C → CPN

satisfying the following (i), (ii), (iii).

(i) δ0 ≤ ||dfn+1||L∞(DR(pn+1))
≤ 2/3.

(ii) ||dfn+1|(z)− |dfn|(z)| ≤ K/|z − pn+1|3 over |z − pn+1| > R.

(iii) d(fn(z), fn+1(z)) ≤ K/|z − pn+1|3 for z �= pn+1.

For every n ≥ 1, by (i) and (ii)

|dfn|(z) ≤ max(1− τ, 2/3) +
�

k:|z−pk|>R

K

|z − pk|3
≤ max(1− τ, 2/3) +

const ·K
R3

.

Here const is a positive constant independent of n. We choose R so large that the right

hand side is bounded by max(1 − τ/2, 3/4) < 1. Then all fn : C → CPN become

Brody curves, and we can continue the above inductive construction infinitely many times.

Moreover, for all n ≥ 1,

(17) ||dfn||L∞(C) ≤ max(1− τ/2, 3/4).
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For any compact set Ω ⊂ C, by the condition (iii), there exists n(Ω) ≥ 1 such that
�

n≥n(Ω)

sup
z∈Ω

d(fn(z), fn+1(z)) ≤
�

k:d(pk,Ω)≥1

K

d(pk,Ω)3
< +∞.

Hence the sequence fn converges to a holomorphic curve g : C → CPN uniformly over

every compact subset of C. From (17) we have ||dg||L∞(C) ≤ max(1 − τ/2, 3/4) < 1. We

will prove that g is non-degenerate and ρ(g) ≥ ρ(f)− ε.

For proving the non-degeneracy of g, it is enough to show ||dg||L∞(Λn)
≥ δ/2 for all

n ≥ 1. (See the condition (ii) of Definition-Lemma 1.3.)

Case 1: If |df |(z) ≥ δ for some z ∈ Λn, then

|dg|(z) ≥ δ −
�

k:k �=n

K

|z − pk|3
≥ δ − const ·K

R3
.

We can choose R so large that ||dg||L∞(Λn)
≥ δ/2.

Case 2: If |df |(z) < δ for all z ∈ Λn, then for some k ∈ {n− 1, n} and w ∈ Λn we have

|dfk|(w) ≥ δ0. Hence

|dg|(w) ≥ δ0 −
�

l:l �=n

K

|w − pl|3
≥ δ − const ·K

R3
.

We can choose R so large that ||dg||L∞(Λn)
≥ δ/2.

We have proved that g is non-degenerate. Next we will prove ρ(g) ≥ ρ(f)− ε. For this

sake, it is enough to prove that for every n ≥ 1

(18)
1

(2R)2

�

Λn

|dg|2dxdy ≥ 1

(2R)2

�

Λn

|df |2dxdy − ε.

Case 1: If ||df ||L∞(Λn)
≥ δ, then for all z ∈ Λn

��|dg|2(z)− |df |2(z)
�� ≤ 2 ||dg|(z)− |df |(z)| ≤

�

k:k �=n

2K

|z − pk|3
≤ const ·K

R3
≤ ε

for sufficiently large R. Hence (18) holds if we choose R sufficiently large.

Case 2: If ||df ||L∞(Λn)
< δ, then (recall δ = min(δ0,

√
ε))

1

(2R)2

�

Λn

|df |2dxdy ≤ δ
2 ≤ ε.

Hence (18) holds trivially.

Thus we have proved ρ(g) ≥ ρ(f)− ε. �
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