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ON THE ACC FOR LENGTHS OF EXTREMAL RAYS

OSAMU FUJINO AND YASUHIRO ISHITSUKA

Abstract. We discuss the ascending chain condition for lengths
of extremal rays. We prove that the lengths of extremal rays of
n-dimensional Q-factorial toric Fano varieties with Picard number
one, which are sometimes called fake weighted projective spaces,
satisfy the ascending chain condition.
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1. Introduction

We discuss the ascending chain condition (ACC, for short) for (min-
imal) lengths of extremal rays.

First, let us recall the definition of Q-Fano varieties. Note that our
definition is more restrictive than the usual one.

Definition 1.1 (Q-Fano varieties). Let X be an n-dimensional normal
projective variety with only log canonical singularities. Assume that
X is Q-factorial, −KX is ample, and ρ(X) = 1. In this case, we call X
a Q-Fano variety.

From now on, we want to discuss the following conjecture. It seems
to be the first time that the ascending chain condition for lengths of
extremal rays of Q-Fano varieties is discussed in the literature.
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Conjecture 1.2 (ACC for lengths of extremal rays). We put

Ln := {l(X) |X is an n-dimensional Q-Fano variety}
such that

l(X) := min
C

(−KX · C)

where C is an integral curve on X. For every n, the set Ln satisfies
the ascending chain condition.

We note that l(X) ≤ 2 dim X (see, for example, [Fj3, Theorem 18.2]).
Although, for inductive treatments, it may be better to consider the

ascending chain condition for lengths of extremal rays of log Fano pairs
(X, D) such that the coefficients of D are contained in a set satisfying
the descending chain condition, we only discuss the case when D = 0
for simplicity. In this paper, we are mainly interested in toric Q-Fano
varieties. So, we define

Ltoric
n := {l(X) |X is an n-dimensional toric Q-Fano variety} .

In the literature, the toric Q-Fano varieties are sometimes called fake
weighted projective spaces.

Let X be an n-dimensional fake weighted projective space. Then
we have l(X) ≤ n + 1. Furthermore, l(X) ≤ n if X #$ Pn (cf. [Fj1,
Proposition 2.9]). We can easily check that X $ P(1, 1, 2, · · · , 2) if and
only if l(X) = n (cf. [Fj1, Section 2], [Fj2, Proposition 2.1], and [Fj4]).

The following result is the main theorem of this paper, which sup-
ports Conjecture 1.2.

Theorem 1.3 (Main theorem). For every n, Ltoric
n satisfies the ascend-

ing chain condition.

In 2003, Professor Vyacheslav Shokurov explained his ideas on mini-
mal log discrepancies, log canonical thresholds, and lengths of extremal
rays to the first author at his office. He pointed out some analogies
among them and asked the ascending chain condition for lengths of
extremal rays. It is a starting point of this paper.

We close this section with examples. Example 1.4 shows that the
Ltoric

n does not satisfy the descending chain condition. Example 1.5
implies that the ascending chain condition does not necessarily hold
for minimal lengths of extremal rays of birational type.

Example 1.4. We consider Xk = P(1, k − 1, k) with k ≥ 2. Then

l(Xk) =
2

k − 1
.

Therefore, l(Xk) → 0 when k → ∞.
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Example 1.5. We fix N = Z2 and let {e1, e2} be the standard basis
of N . We consider the cone σ = 〈e1, e2〉 in N ′ = N + Ze3, where
e3 = 1

b (1, a). Here, a and b are positive integers such that gcd(a, b) = 1.
We put Y = X(σ) is the associated affine toric surface which has only
one singular point P . We take a weighted blow-up of Y at P with the
weight 1

b (1, a). This means that we divide σ by e3 and obtain a fan ∆
of N ′

R. We define X = X(∆). It is obvious that X is Q-factorial and
ρ(X/Y ) = 1. We can easily obtain

KX = f ∗KY +

(
1 + a

b
− 1

)
E,

where E = V (e3) $ P1 is the exceptional curve of f , and

−KX · E = 1 − b − 1

a
.

We note that

−KX · E = min
C

(−KX · C)

where C is a curve on X such that f(C) is a point because NE(X/Y ) =
NE(X/Y ) is spanned by E. In the above construction, we put a = k2

and b = mk + 1 for any positive integers k, m. Then it is obvious that
gcd(a, b) = 1. Thus we obtain

−KX · E = 1 − m

k
.

Therefore, the minimal lengths of KX-negative extremal rays do not
satisfy the ascending chain condition in this local setting. More pre-
cisely, the minimal lengths of KX-negative extremal rays can take any
values in Q ∩ (0, 1) in this example.

We note that the minimal length of a KX-negative extremal toric
birational contraction morphism f : X → Y is bounded by dim X − 1
(cf. [Fj4]).

For estimates of lengths of extremal rays of toric varieties and related
topics, see [Fj1], [Fj2], and [Fj4].
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agement.
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2. Preliminaries

In this section, we prepare various definitions and notation. We
recommend the reader to see [Fj1, Section 2] for basic calculations.

2.1. Let N $ Zn be a lattice of rank n. A toric variety X(∆) is
associated to a fan ∆, a collection of convex cones σ ⊂ NR = N ⊗Z R
satisfying:

(i) Each convex cone σ is a rational polyhedral in the sense there
are finitely many v1, · · · , vs ∈ N ⊂ NR such that

σ = {r1v1 + · · · + rsvs; ri ≥ 0} =: 〈v1, · · · , vs〉,
and it is strongly convex in the sense

σ ∩ −σ = {0}.
(ii) Each face τ of a convex cone σ ∈ ∆ is again an element in ∆.
(iii) The intersection of two cones in ∆ is a face of each.

Definition 2.2. The dimension dim σ of σ is the dimension of the
linear space R · σ = σ + (−σ) spanned by σ.

We define the sublattice Nσ of N generated (as a subgroup) by σ∩N
as follows:

Nσ := σ ∩ N + (−σ ∩ N).

If σ is a k-dimensional simplicial cone, and v1, · · · , vk are the first
lattice points along the edges of σ, the multiplicity of σ is defined to
be the index of the lattice generated by the {vi} in the lattice Nσ;

mult(σ) := [Nσ : Zv1 + · · · + Zvk].

We note that X(σ) is non-singular if and only if mult(σ) = 1.

Let us recall a well-known fact. See, for example, [M, Lemma 14-1-1].

Lemma 2.3. A toric variety X(∆) is Q-factorial if and only if each
cone σ ∈ ∆ is simplicial.

2.4. The star of a cone τ can be defined abstractly as the set of cones
σ in ∆ that contain τ as a face. Such cones σ are determined by their
images in N(τ) := N/Nτ , that is, by

σ = σ + (Nτ )R/(Nτ )R ⊂ N(τ)R.

These cones {σ; τ ≺ σ} form a fan in N(τ), and we denote this fan by
Star(τ). We set V (τ) = X(Star(τ)). It is well-known that V (τ) is an
(n− k)-dimensional closed toric subvariety of X(∆), where dim τ = k.
If dim V (τ) = 1 (resp. n−1), then we call V (τ) a torus invariant curve
(resp. torus invariant divisor). For the details about the correspon-
dence between τ and V (τ), see [Fl, 3.1 Orbits].
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2.5 (Intersection Theory). Assume that ∆ is simplicial. If σ, τ ∈ ∆
span γ with dim γ = dim σ + dim τ , then

V (σ) · V (τ) =
mult(σ) · mult(τ)

mult(γ)
V (γ)

in the Chow group A∗(X)Q. For the details, see [Fl, 5.1 Chow groups].
If σ and τ are contained in no cone of ∆, then V (σ) · V (τ) = 0.

2.6 (Toric Q-Fano varieties). Now we fix N $ Zn. Let {v1, · · · , vn+1}
be a set of primitive vectors such that NR =

∑
i R≥0vi. We define

n-dimensional cones

σi := 〈v1, · · · , vi−1, vi+1, · · · , vn+1〉
for 1 ≤ i ≤ n + 1. Let ∆ be the complete fan generated by n-
dimensional cones σi and their faces for every i. Then we obtain a
complete toric variety X = X(∆) with Picard number ρ(X) = 1.
We call it a Q-factorial toric Fano variety with Picard number one or
simply a toric Q-Fano variety. It is sometimes called a fake weighted
projective space. We define (n − 1)-dimensional cones µi,j = σi ∩ σj

for i #= j. We can write
∑

i aivi = 0, where ai ∈ Z>0 for every i and
gcd(a1, · · · , an+1) = 1. Then we obtain

0 < V (vl) · V (µk,l) =
mult(µk,l)

mult(σk)
,

V (vi) · V (µk,l) =
ai

al
· mult(µk,l)

mult(σk)
,

and

−KX · V (µk,l) =
n+1∑

i=1

V (vi) · V (µk,l)

=
1

al
(
n+1∑

i=1

ai)
mult(µk,l)

mult(σk)
.

For the procedure to compute intersection numbers, see 2.5 or [Fl,
p.100].

Let us recall the following easy lemma, which will play crucial roles
in the proof of our main theorem: Theorem 1.3. The proof of Lemma
2.7 is obvious by the description in 2.6.

Lemma 2.7. We use the notations in 2.6. We consider the sublat-
tice N ′ of N spanned by {v1, · · · , vn+1}. Then the natural inclusion
N ′ → N induces a finite toric morphism f : X ′ → X from a weighted
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projective space X ′ such that f is étale in codimension one. In partic-
ular, X(∆) is a weighted projective space if and only if {v1, · · · , vn+1}
generates N .

For a toric description of weighted projective spaces, see [Fj1, Section
2].

2.8. In Lemma 2.7, we consider C = V (µk,l) $ P1 ⊂ X and the unique
torus invariant curve C ′ ⊂ X ′ such that f(C ′) = C. We put

mk,l := deg(f |C′ : C ′ → C) ∈ Z>0

for every (k, l). Then we can check that

mk,l = |N(µk,l)/N
′(µk,l)|

by definitions, where N ′(µk,l) = N ′/N ′
µk,l

and N(µk,l) = N/Nµk,l
. Let

D be a Cartier divisor on X. Then we obtain

C · D =
1

mk,l
(C ′ · f ∗D)

by the projection formula. Therefore, we have

C · V (vk) = V (µk,l) · V (vk)

=
mult(µk,l)

mult(σl)
=

gcd(ak, al)

mk,lal
.

2.9 (Lemma on the ACC). We close this section with an easy lemma
for the ascending chain condition.

Lemma 2.10. We have the following elementary properties.

(1) If A satisfies the ascending chain condition, then any subset B
of A satisfies the ascending chain condition.

(2) If A and B satisfy the ascending chain condition, then so does

A + B = {a + b | a ∈ A, b ∈ B}.

(3) If there exists a real number t0 such that

A ⊂ {x ∈ R |x ≥ t0}

and A ∩ {x ∈ R | x > t} is a finite set for any t > t0, then A
satisfies the ascending chain condition.

All the statements in Lemma 2.10 directly follow from definitions.
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3. Proof of the main theorem

In this section, we prove the main theorem of this paper: Theorem
1.3. We will freely use the notation in Section 2.

Proof of Theorem 1.3. Without loss of generality, we may assume that

mult(µ1,2)

a1mult(σ2)
≤ mult(µk,l)

akmult(σl)

for every (k, l). We note that

mult(µk,l)

akmult(σl)
=

mult(µk,l)

almult(σk)

for every k #= l. In our notation,

l(X) =
mult(µ1,2)

a1mult(σ2)

n+1∑

i=1

ai.

Therefore, we can write

Ltoric
n =

{
mult(µ1,2)

a1mult(σ2)

n+1∑

i=1

ai

∣∣∣∣
mult(µ1,2)

a1mult(σ2)
≤ mult(µk,l)

akmult(σl)
for every (k, l)

}
.

It is sufficient to prove that

Mi =

{
mult(µ1,2)

a1mult(σ2)
ai

∣∣∣∣
mult(µ1,2)

a1mult(σ2)
≤ mult(µk,l)

akmult(σl)
for every (k, l)

}

satisfies the ascending chain condition. It is because Ltoric
n is contained

in {
mult(µ1,2)

mult(σ2)

}
+

{
mult(µ1,2)

mult(σ1)

}
+ M3 + · · · + Mn+1.

We note that
{

mult(µ1,2)

mult(σ2)

}
,

{
mult(µ1,2)

mult(σ1)

}
⊂

{
1

m

∣∣∣∣ m ∈ Z>0

}
.

Therefore, it is sufficient to prove the following proposition by Lemma
2.10.

Proposition 3.1. For 3 ≤ i ≤ n + 1, Mi ∩ {x ∈ R |x > ε} is a finite
set for every ε > 0.

From now on, we fix i with 3 ≤ i ≤ n + 1. Since

Mi =

{
mult(µ1,2)

a1mult(σ2)
ai

∣∣∣∣
mult(µ1,2)

a1mult(σ2)
≤ mult(µk,l)

akmult(σl)
for every (k, l)

}
,
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we have

ε <
mult(µ1,2)

a1mult(σ2)
ai

=
mult(µ1,2)

a1mult(σ2)
· aimult(σj)

mult(µi,j)
· mult(µi,j)

mult(σj)

≤ mult(µi,j)

mult(σj)

for every 1 ≤ j #= i ≤ n + 1. Therefore, we obtain

mult(σj)

mult(µi,j)
≤ !ε−1"

for every 1 ≤ j #= i ≤ n + 1, where !ε−1" is the integer satisfying
ε−1 − 1 < !ε−1" ≤ ε−1. We put

Z(i, j) = Zv1 + · · ·+ Zvi−1 + Zvi+1 + · · ·+ Zvj−1 + Zvj+1 + · · ·+ Zvn+1

for j #= i and

Z(j) = Zv1 + · · · + Zvj−1 + Zvj+1 + · · · + Zvn+1.

We consider the following diagram.

0

!!

0

!!

0

!!
0 "" Z(i, j)

!!

"" Z(j)

!!

"" Z

!!

"" 0

0 "" Nµi,j

!!

"" N

π

!!

"" N/Nµi,j

!!

"" 0

0 "" Nµi,j/Z(i, j)

!!

"" N/Z(j)
p

""

!!

Aj
(i,j)

""

!!

0

0 0 0

We note that ∣∣∣Aj
(i,j)

∣∣∣ =
mult(σj)

mult(µi,j)
≤ !ε−1".

Therefore, for any v ∈ N ,

p ◦ π
(
(!ε−1")!v

)
= 0

in Aj
(i,j). Thus,

π
(
(!ε−1")!v

)
∈ Nµi,j/Z(i, j).
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This holds for every 1 ≤ j #= i ≤ n + 1. So we have

(!ε−1")!v ∈ Z(i) = Zv1 + · · · + Zvi−1 + Zvi+1 + · · · + Zvn+1.

Note that ⋂

j %=i

(
Nµi,j/Z(i, j)

)
= {0} ⊂ N/Z(i).

Therefore, we obtain

1 ≤ m1,2 ≤ (!ε−1")!.

Moreover,

ε <
mult(µ1,i)

mult(σ1)
=

gcd(a1, ai)

m1,ia1
≤ gcd(a1, ai)

a1
.

By the same way, we obtain

ε <
gcd(a2, ai)

a2
.

We note the following obvious inequality

mult(µ1,2)

a1mult(σ2)
ai ≤

mult(µ1,2)

a1mult(σ2)
· aimult(σ2)

mult(µ2,i)
≤ 1.

Lemma 3.2.

gcd(l, ai) =
gcd(a1, ai) · gcd(a2, ai)

gcd(d, ai)

where d := gcd(a1, a2) and
a1a2

d
= lcm(a1, a2) =: l.

Proof of Lemma 3.2. It can be checked easily by direct calculations.
#

Therefore, we obtain

gcd(l, ai)

l
=

gcd(a1, ai)

a1
· gcd(a2, ai)

a2
· d

gcd(d, ai)
> ε2 d

gcd(d, ai)
≥ ε2.

This means that
l

gcd(l, ai)
≤ ε−2.

Thus, we have

1 ≥ mult(µ1,2)

a1mult(σ2)
ai =

ai

m1,2l
=

gcd(l, ai)

l
· ai

m1,2 gcd(l, ai)

≥ ε2 ai

m1,2 gcd(l, ai)
.
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So, we obtain
ai

gcd(l, ai)
< ε−2m1,2 ≤ ε−2(!ε−1")!.

On the other hand,
mult(µ1,2)

a1mult(σ2)
ai =

ai

m1,2l
.

We note that
ai

m1,2l
=

ai
gcd(l,ai)

m1,2
l

gcd(l,ai)

.

This implies that Mi ∩ {x ∈ R |x > ε} is a finite set. It is because

ai

gcd(l, ai)
,

l

gcd(l, ai)
, and m1,2

are positive integers and

ai

gcd(l, ai)
≤ ε−2(!ε−1")!,

l

gcd(l, ai)
≤ ε−2, and m1,2 ≤ (!ε−1")!.

Therefore, Ltoric
n satisfies the ascending chain condition. #
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