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Abstract

Let L1, L2 be compact special Lagrangian submanifolds of a Calabi–Yau man-
ifold, and suppose L1, L2 intersect transversally at a point p. One can construct
another special Lagrangian submanifold M by gluing a Lawlor neck [8] into L1∪L2

at p; see Butscher [2], D. Lee [9], Y. Lee [10], and Joyce [6]. By construction, M is
close to the Lawlor neck near p and to L1 ∪ L2 away from p. The main result of
this paper is a uniqueness theorem for special Lagrangian submanifolds which are
close to the Lawlor neck near p and to L1 ∪ L2 away from p; see Theorem 1.1.

1. Introduction

Let (W,Ω) be a Calabi–Yau manifold of complex dimension m, i.e., a Kähler
manifold W with a holomorphic m-form Ω such that |Ω| = 2m/2. We call Ω a
complex volume form. Let M be an oriented submanifold of W . We call M a
special Lagrangian submanifold of (W,Ω) if Ω|M is the volume form of M . If M is
a special Lagrangian submanifold, then M is minimal and Lagrangian; see Harvey
and Lawson [4, Corollary 1.11, Chapter III].

Let (z1, . . . , zm) be the complex coordinates on Cm, and set

Ω� = dz1 ∧ · · · ∧ dzm.

Ω� is a complex volume form on (Cm, g�). Set

L�
1 = Rm = {(r1, . . . , rm) ∈ Cm|r1, . . . , rm ∈ R}.

L�
1 is a special Lagrangian submanifold with respect to Ω�. Let θ1, . . . , θm ∈ (0,π)

with θ1 + · · ·+ θm = π, and set

L�
2 = {(r1eiθ1 , . . . , rmeiθm) ∈ Cm|r1, . . . , rm ∈ R}.

L�
2 is a special Lagrangian submanifold with respect to Ω�. Let K be a Lawlor

neck [8], i.e., a special Lagrangian submanifold of (Cm,Ω�) which is asymptotic to
L�
1∪L�

2 at ∞ and diffeomorphic to R×Sm−1, where Sm−1 is the sphere of dimension
m− 1.

Let L1, L2 be compact special Lagrangian submanifolds of (W,Ω), and suppose
L1, L2 intersect only at a point p. Let J be the complex structure of the Kähler
manifold W , and g the Kähler metric of W . Let {Js}s>0 be a smooth family of
complex structures on W converging to J as s → +0. Let gs be a smooth family
of Kähler metrics with respect to Js converging to g as s → +0, and Ωs a smooth
family of complex volume forms with respect to gs converging to Ω as s → +0. Let
0 < as < bs, and suppose

(1.1) as = Rs, bs = O(sβ) for some R > 0, 0 < β < 1,
1
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where O(sβ) is an infinitesimal of order sβ . Let ωs be the symplectic form gs(Js•, •),
and ω� the standard symplectic form on Cm. Let fs be a smooth family of Darboux
charts centered at p in (W,ωs), i.e.,

p ∈ U ⊂ W, fs : U → Cm, fs(p) = 0, f∗
s ω

� = ωs.

Suppose dfs maps TpL1, TpL2 ⊂ TpW onto L�
1, L

�
2 ⊂ Cm respectively. Suppose Fs

is a smooth family of diffeomorphisms of W such that Fs converges to the identity
as s → +0, and F ∗

s ωs = ω, where ω = g(J•, •). Consider a compact special
Lagrangian submanifold Ms of (W,Ωs) satisfying:

(B1) there exist a�s > as and a normal vector field us on Ms ∩ B(as) in (W, gs)
such that Ms ∩B(as) is contained in the graph of us on f−1

s (sK) ∩B(a�s),
and �us�C1 = o(s);

(B2) there exist b�s < bs and a normal vector field vs on Fs(L1 ∪ L2) \ B(b�s) in
(W, gs) such that Ms\B(bs) is contained in the graph of vs on Fs(L1∪L2)\
B(b�s), such that �vs�C1 = o(sβ), and such that vs�ωs is an exact 1-form
on Fs(L1 ∪ L2) \B(b�s);

here B(r) is the metric ball of radius r > 0 centered at p in (W, gs), and o(s), o(sβ)
are infinitesimals of order higher than s, sβ respectively. For the gluing construction
of Ms, see D. Lee [9, Theorem 1] or Joyce [6, Theorem 9.10]. The main result of
this paper is a uniqueness theorem for Ms. Suppose m > 2.

Theorem 1.1 (The Main Result). There exists at most one compact special La-

grangian submanifold Ms of (W,Ωs) satisfying (B1) and (B2) whenever s > 0 is

sufficiently small and R > 0 is sufficiently large.

Here, R > 0 is as in (1.1).
(B1) and (B2) are assumptions on M ∩ B(as) and M \ B(bs) respectively. We

do not make any assumption on

(1.2) Ms ∩ (B(bs) \B(as)).

We shall give the idea of the proof of the main result of this paper. Let Ms be
as in Theorem 1.1. We prove that (1.2) is close to

(1.3) (TpL1 ∪ TpL2) ∩ (B(bs) \B(as)).

Once this has been done, we can prove Theorem 1.1 by the maximum principle as
in Thomas and Yau [15, Lemma 4.2].

We shall explain how we prove that (1.2) is close to (1.3). We do it in a way
similar to the proof of Simon’s theorem [13, Theorem 5, p563]. It is a uniqueness
theorem for smooth tangent cones of minimal submanifolds with isolated singular
points. Consider a minimal submanifold Y with an isolated singular point. It is
important in the proof of Simon’s theorem that Y satisfies a monotonicity formula
on balls centered at the singular point. On the other hand, (1.2) does not satisfy
the same monotonicity formula as Y since (1.2) is not contained in any ball centered
at p. We prove a different monotonicity formula for (1.2). Suppose for simplicity
that M is a special Lagrangian submanifold of (Cm,Ω�), and M is a closed subset
of B(b) \ B(a), where B(b), B(a) are the balls of radii b > a centered at 0 ∈ Cm.
We prove that

(1.4)

�

M∩∂B(c)
r1−m∂r�Ω� ≤

�

M∩∂B(d)
r1−m∂r�Ω�,
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for almost every c, d with a < c < d < b, where r is the Euclidean distance
from 0, and ∂r is the vector field ∂/∂r. This is a higher-dimensional analogue
of Hofer’s energy estimate for pseudo-holomorphic curves in symplectizations of
contact manifolds [5, pp534–539]. Actually, (1.4) holds only for the Euclidean
metric. For a general metric, we prove a monotonicity formula with an error term.

In Simon’s theorem, it is assumed that the minimal submanifold Y has a smooth
tangent cone

(1.5) [0,∞)×X/{0}×X,

where X is a compact smooth manifold. It is important in the proof of Simon’s
theorem that the distance of Y from (1.5) satisfies an a-priori C1-estimate. We
replace (1.5) by (as, bs)×X since we consider (1.3). We prove that the distance of
(1.2) from (1.3) satisfies a similar a-priori C1-estimate.

Using the monotonicity formula and the a-priori estimate, we prove that (1.2) is
close to (1.3). This is the key step to the proof of Theorem 1.1.

We begin with the statement of the key step to the proof of Theorem 1.1; see
Section 2. In Section 3 we prove the monotonicity formula for special Lagrangian
submanifolds of annuli. In Section 4 we prove the a-priori estimate similar to that
of Simon. In Section 5 we complete the proof of the main result of this paper.
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2. Statement of the Key Step

In this section we state the key step to the proof of the main result of this paper;
see Theorem 2.2.

We begin with a review of calibrated geometry [4]. Let W be a Riemannian
manifold. An m-form φ on W is said to be of comass ≤ 1 if φ(v1, . . . , vm) ≤ 1 for
every orthonormal vector fields v1, . . . , vm on W . A closed m-form of comass ≤ 1
on W is called a calibration of degree m on W . Let φ be a calibration of degree
m on W . Let M be an oriented submanifold of W . We call M a φ-submanifold
of W if φ|M is the volume form of M . By a theorem of Harvey and Lawson [4],
φ-submanifolds of W are minimal submanifolds of W .

We shall set up the notation which we use in the statement of Theorem 2.2
below. Let g� be the Euclidean metric on Rn, i.e.,

g� = dy1 ⊗ dy1 + · · ·+ dyn ⊗ dyn

in the coordinates (y1, . . . , yn) on Rn. Let φ� be a calibration of degree m on
(Rn, g�). Suppose φ� is parallel, i.e.,

φ� = φ�
i1...imdyi1 ∧ · · · ∧ dyim

for some φ�
i1...im ∈ R. Let r be the radial coordinate | • | on (Rn \ {0}, g�). Set

(2.1) ψ� = (∂r�φ�) |Sn−1 ,

where ∂r is the vector field ∂/∂r, � is the interior product of vector fields with
differential forms, and Sn−1 is the unit sphere of (Rn, g�). For every orthonormal
vector fields v1, . . . , vm−1 on Sn−1, we have

(2.2) ψ�(v1, . . . , vm−1) = φ�(∂r, v1, . . . , vm−1) ≤ 1
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since ∂r, v1, . . . , vm−1 are orthonormal. Therefore, ψ� is an (m−1)-form of comass ≤
1 on Sn−1. Let X be a oriented submanifold of Sn−1. We call X a ψ�-submanifold
if ψ�|X is the volume form of X.

Proposition 2.1. ψ�
-submanifolds of Sn−1

are minimal submanifolds of Sn−1
.

Proof. Let X be a ψ�-submanifold of Sn−1. Set

CX = {rx ∈ Rn|r ∈ (0,∞), x ∈ X}.
Then, by (2.2), CX is a φ�-submanifold of (Rn, g�). Therefore, CX is a minimal
submanifold of (Rn, g�). Therefore, X is a minimal submanifold of Sn−1. �

Let I be an open interval of (0,∞), and X a submanifold of Sn−1. We embed
I × Sn−1 into Rn by (r, y) �→ ry. Let ν be a normal vector field on I × X in
(I × Sn−1, g�). Set

�ν�C0
cyl

= sup
I×X

|ν|/r, �ν�C1
cyl

= sup
I×X

�
|ν|/r + |Dν|

�
,

where Dν is the covariant derivative of ν. These are induced by the cylindrical
metric g�/r2 on (0,∞)× Sn−1. Set

Gcyl(ν) =
� r�

r2 + |ν(rx)|2
�
rx+ ν(rx)

� ��� r ∈ I, x ∈ X
�
.

The key step to the proof of the main result of this paper is the following

Theorem 2.2. Let φ�
be a parallel calibration of degree m on the Euclidean space

(Rn, g�), and ψ�
the (m−1)-form (2.1) on the unit sphere Sn−1

of (Rn, g�). Let X be

a compact ψ�
-submanifold of Sn−1

. Let 0 < l < 1. Then, there exist �0, η0, C0, c0 >
0 depending only on l,m, n,X,φ�

such that if:

(A0) 0 < � < �0;
(A1) 0 < a0 < b0 < a1 < b1, a0/b0 = a1/b1 = l;
(A2) g is a Riemannian metric on Bn(b1) with

�g − g��C1(Bn(b1)) ≤ �, �g − g��C2(Bn(b1)) ≤ 1

with respect to g�, and Bn(b1) is the ball of radius b1 centered at 0 in (Rn, g�);
(A3) φ is a calibration on (Bn(b1), g) with

(1 + log
b1
a0

) sup
Bn(b1)

|φ− φ�| ≤ �,

where | • | is with respect to g�, and Bn(b1) is the ball of radius b1 centered

at 0 in (Rn, g�);
(A4) M is a closed subset of (a0, b1) × Sn−1

, and M is a φ-submanifold with

respect to g;
(A5) there exists a normal vector field νi on (ai, bi)×X in ((ai, bi)×Sn−1, g�/r2),

where i = 0, 1, such that

M ∩ ((ai, bi)× Sn−1) = Gcyl(νi) with �νi�C1
cyl

≤ �,

then there exists a normal vector field ν on (a0, b1)×X in ((a0, b1)× Sn−1, g�/r2)
such that

(2.3) M = Gcyl(ν) with �ν�C1
cyl

≤ C0�
c0 .

We prove Theorem 2.2 in Section 5.
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3. A Monotonicity Formula

In this section we prove a monotonicity formula for calibrated submanifolds
of annuli; see Proposition 3.4. This is a higher-dimensional analogue of an energy
estimate of Hofer [5, pp534–539] for pseudo-holomorphic curves in symplectizations
of contact manifolds.

Let g be a Riemannian metric on Rn, and φ a calibration of degree m on (Rn, g).

Proposition 3.1. Let M be a φ-submanifold of (Rn, g). If ν is a normal vector

field on M in (Rn, g), then we have

(ν�φ)|M = 0.

Proof. It suffices to prove that for every point p ∈ M and orthonormal vectors
v1, . . . , vm−1 ∈ TpM , we have

(3.1) φp(νp, v1, . . . , vm−1) = 0.

Choose v ∈ TpM so that φp(v, v1, . . . , vm−1) = 1. Consider

t �→ φp((sin t)νp + (cos t)v, v1, . . . , vm−1).

By the definition of calibration, this attains maximum 1 at t = 0. Differentiating
it at t = 0, we have (3.1). �

Let g� be the Euclidean metric on Rn. Let r be the radial coordinate on the
Euclidean space (Rn, g�), and ∂r the vector field ∂/∂r. In the same way as Harvey
and Lawson [4, Lemma 5.11, II.5], we shall prove the following

Proposition 3.2. Let M be a φ-submanifold of (Rn, g). Then, we have

(3.2) �−−→TM, ∂r�dr ∧ φ� = |prTM⊥∂r|2,

where �•, •� is the canonical pairing of poly-vector fields and differential forms,
−−→
TM

is the m-vector field on M dual to φ|M , r = | • | is with respect to the Euclidean

metric g�, and prTM⊥ is the projection of Rn
onto the normal bundle of M in

(Rn, g).

Proof. By Proposition 3.1, we have

�ν ∧ −−→
TM, dr ∧ φ� = �ν, dr��−−→TM,φ�, where ν = prTM⊥∂r.

This proves (3.2). �
Set

(3.3) ψ =
m

rm

� r

0
(∂r�φ)dr.

Proposition 3.3. ψ is an (m− 1)-form on Rn \ {0} such that

(3.4) φ = d

�
rm

m
ψ

�
.

Proof. Set χ = ∂r�φ, and ω = ∂r�dr ∧ φ. Then, we have

(3.5) φ = dr ∧ χ+ ω.

Since ∂r�χ = ∂r�ω = 0, we may regard χ and ω as smooth families of differential
forms on Sn−1. By the definition of calibration, dφ = 0. Therefore, we have

(3.6) dSn−1χ = ∂rω,
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where dSn−1 is the exterior differentiation on Sn−1. By (3.5) and (3.6), we have

φ = d

�� r

0
χdr

�
= d

�� r

0
(∂r�φ)dr

�
.

By (3.3), this proves (3.4). �

Let φ� a parallel calibration of degree m on the Euclidean space (Rn, g�), Set

(3.7) ψ� = r1−m∂r�φ�.

Then, (3.3) holds with φ�,ψ� in place of φ,ψ respectively.
We shall prove a monotonicity formula with an error term. When φ = φ�, it has

no error term.

Proposition 3.4. There exists Cm,n > 0 depending only on m,n such that

(3.8)
��m−1dψ − r−m∂r�dr ∧ φ

��
cyl

≤ Cm,n sup |φ− φ�|,

where | • |cyl is with respect to the metric g�/r2.

Proof. By (3.4) and (3.7), we have

(3.9) m−1dψ − r−m∂r�dr ∧ φ = dr/r ∧ (r1−m∂r�φ− r1−m∂r�φ� + ψ� − ψ).

By (3.3) and (3.7), we have

|r1−m∂r�φ− r1−m∂r�φ�|cyl ≤ c sup |φ− φ�|,
|ψ − ψ�|cyl ≤ c sup |φ− φ�|

for some c > 0 depending only on m,n. Therefore, by (3.9), we have (3.8). �

We shall prove a proposition which we use in the proof of Lemma 3.6 below. We
also use it in the key step to proof of the main result of this paper.

Proposition 3.5. Let M be a φ-submanifold of (Rn, g), and suppose M is a closed

subset of (a, b) × Sn−1
, where (a, b) × Sn−1

is embedded into Rn
by (r, y) �→ ry.

There exist �m,n, C �
m,n > 0 depending only on m,n such that if

(1 +m log
b

a
) sup
(a,b)×Sn−1

|φ− φ�| ≤ �m,n, sup
(a,b)×Sn−1

|g − g�| ≤ 1,(3.10)

then we have

Vol(M, g/r2) ≤ C �
m,n log

b

a
lim sup

r→b

�����

�

M∩{r}×Sn−1

ψ

�����

+ C �
m,n(1 +m log

b

a
)

�

M
|prTM⊥∂r|2 dVol(M, g/r2).

(3.11)

Proof. By (3.4), we have

Vol(M, g/r2) =

�

M
φ/rm =

�

M
(dr/r) ∧ ψ +m−1

�

M
dψ.

By (3.8), we have

m−1

�

M
dψ ≤

�

M
|prTM⊥∂r|2 dVol(M, g/r2) + Cm,n sup |φ− φ�|Vol(M, g�/r2).
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By (3.8) and (3.2), we have
�

M
(dr/r) ∧ ψ ≤ log

b

a
lim sup

r→b

�����

�

M∩{r}×Sn−1

ψ +

�

M∩([a,r]×Sn−1)
dψ

�����

≤ m log
b

a
lim sup

r→b

�����

�

M∩{r}×Sn−1

m−1ψ

�����+
�

M
|prTM⊥∂r|2 dVol(M, g�/r2)

+mCm,n log
b

a
sup |φ− φ�|Vol(M, g�/r2).

Thus, we have

Vol(M, g/r2)

≤ m log
b

a
lim sup

r→b

�����

�

M∩{r}×Sn−1

ψ

�����+ (1 +m log
b

a
)

�

M
|prTM⊥∂r|2 dVol(M, g/r2)

+ Cm,n(1 +m log
b

a
) sup |φ− φ�|Vol(M, g�/r2).

By (3.10), we have

Cm,n(1 +m log
b

a
) sup |φ− φ�|Vol(M, g�/r2) ≤ (1/2)Vol(M, g/r2).

Thus, we have (3.11). �
We shall prove a lemma which we use in the key step to the proof of the main

result of this paper. It is similar to a lemma of Simon [13, Lemma 3, p561]. We
however use the monotonicity formula for φ-submanifolds of annuli.

Lemma 3.6. Let φ�
be a parallel calibration of degree m on the Euclidean space

(Rn, g�), and let ψ�
be as in (3.7). Let X be a compact ψ�

-submanifold of Sn−1
. Let

� > 0, and 0 < λ < λ�� < λ� < 1. Then, there exists δ > 0 such that if:

(P1) g is a Riemannian metric on Bn(1) with �g−g��C1(Bn(1)) ≤ δ, where �•�C1

is with respect to g�, and Bn(1) is the unit ball of (Rn, g�);
(P2) φ is a calibration on (Bn(1), g) with supBn(1) |φ−φ�| ≤ δ, where | • | is with

respect to g�, and Bn(1) is the unit ball of (Rn, g�);
(P3) M is a φ-submanifold of (Rn, g), and M is a closed subset of (λ, 1)×Sn−1

,

where (λ, 1)× Sn−1
is embedded into Rn

by (r, y) �→ ry;
(P4) there exists a normal vector field ν on (λ�, 1)×X in ((λ�, 1)× Sn−1, g�/r2)

such that

M ∩ ((λ�, 1)× Sn−1) = Gcyl(ν) with �ν�C1
cyl

≤ δ

in the notation of Section 2;
(P5)

�
M |prTM⊥∂r|2 dVol(M, g/r2) ≤ δ,

then there exists a normal vector field ν� on (λ, 1)× Sn−1
in ((λ, 1)× Sn−1, g�/r2)

such that

M = Gcyl(ν
�) with �ν�|(λ��,λ�)×Sn−1�

C1,1/2
cyl

≤ �,

where C1,1/2
cyl is the Hölder space with respect to the metric g�/r2 on (λ, 1)× Sn−1

.

Proof. Suppose there does not exist such δ. Then, for every j = 2, 3, 4, . . . , there
exist gj ,φj ,Mj such that (P1), (P2), (P3), (P4) and (P5) hold with δ = 1/j, and
the following holds:
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(P6) there does not exist any normal vector field ν�j on (λ��,λ�)×X in ((λ��,λ�)×
Sn−1, g�/r2) such that

Mj = Gcyl(ν
�
j) with �ν�j�C1,1/2

cyl
≤ �.

By (P1), (P2) and (P3), we may apply Proposition 3.5. Therefore, by (3.11), (P4)
and (P5), we have

(3.12) sup
j=2,3,4,...

Vol(Mj , gj/r
2) < ∞.

Therefore, by (P1), we have

sup
j=2,3,4,...

Vol(Mj , g
�) < ∞.

By (P1) and (P3), we have

(3.13) lim
j→∞

�
the mean curvature of Mj in ((λ, 1)× Sn−1, g�)

�
= 0

in the C0-topology. Thus, by Allard’s compactness theorem [1, Theorem 5.6], there
exists a subsequence Mjk converging as varifolds to some rectifiable varifold M∞
in ((λ, 1)× Sn−1, g�).

Let �M∞� be the Radon measure on ((λ, 1) × Sn−1, g�) induced by M∞. We
shall prove

(3.14) am�M∞�(a−1E) = �M∞�(E)

for every a > 0, E ⊂ (λ, 1)× Sn−1 with aE ⊂ (λ, 1)× Sn−1. It suffices to prove

(3.15)
d

da
am

�

(λ,1)×Sn−1

f(ar)hd�M∞� = 0

for every smooth functions h : Sn−1 → [0,∞) and f : (λ, 1) → [0,∞) with
a(suppf) ⊂ (λ, 1). By (3.8), (P2), (P5) and (3.12), we have

lim
j→∞

�

Mj

dψj → 0,

where ψj is as in (3.3) with φj in place of φ. Therefore, by (P3) and (3.4), we have

the left-hand side of (3.15) =
d

da
lim
k→∞

am
�

Mjk

f(ar)hd(
rm

m
ψjk)

= lim
k→∞

�

Mjk

d

da
((ar)mf(ar))

dr

r
∧ hψjk

= lim
k→∞

�

Mjk

a−1 d

dr
((ar)mf(ar))dr ∧ hψjk

= lim
k→∞

−
�

Mjk

a−1(ar)mf(ar)dh ∧ ψjk .

Therefore, by (3.7), (P2) and (3.12), we have

the left-hand side of (3.15) = lim
k→∞

−
�

Mjk

a−1(ar)mf(ar)r1−m∂r�(dh ∧ φjk).

By Proposition 3.1, we have
�

Mjk

r−m∂r�(dh ∧ φjk) =

�

Mjk

�prTM⊥
jk
∂r, dh� dVol(Mjk , gjk/r

2).
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This converges to 0 by (P5) and (3.12). Thus, we have (3.15). This proves (3.14).
By (P4), the restriction of M∞ to (λ�, 1)×Sn−1 is equal to (λ�, 1)×X as varifolds

in ((λ�, 1)× Sn−1, g�). Therefore, by (3.14), we have

M∞ = (λ, 1)×X as varifolds in ((λ, 1)× Sn−1, g�).

Therefore, Mjk converges to (λ, 1)×X as varifolds in ((λ, 1)×Sn−1, g�). Therefore,
by (3.13) and Allard’s regularity theorem [1, Theorem 8.19], Mjk converges to
(λ, 1) × X in the local C1,1/2-topology in (λ, 1) × Sn−1. This contradicts (P6),
which completes the proof of Lemma 3.6. �

4. A-Priori Estimate

In this section we prove an a-priori estimate similar to that of Simon [13] for an
evolution equation (4.5) below.

LetX be a compact smooth Riemannian manifold, V a smooth real vector bundle
on X with a fibre metric and a metric connection. Let C∞

x be the space of smooth
sections of V → X. Let E : C∞

x → R satisfy

(4.1) Ev =

�

X
F (x, v,Dxv)dx

for every v ∈ C∞
x , where Dxv is the covariant derivative of v, and F = F (x, v, p) is

a R-valued smooth function of x ∈ X, v ∈ V |x, p ∈ T ∗
xX⊗V |x. Suppose F satisfies

the following conditions:

(C1) (v, p) �→ F (x, v, p) is a real-analytic function on the vector space V |x ⊕
(T ∗

xX ⊗ V |x) for every x ∈ X;
(C2) there exists c > 0 such that for every x ∈ X, ξ ∈ T ∗

xX, v ∈ V |x,

d2

dh2
F (x, 0, h2ξ ⊗ v)

���
h=0

> c|ξ|2|v|2.

By (C1), one can use the �Lojasiewicz estimate [11]. This is important in the proof
of a result of Simon; for the statement, see Proposition 4.1 below. (C2) is called the
Legendre–Hadamard condition. Let − gradE : C∞

x → C∞
x be the Euler–Lagrange

operator of E, i.e.,

�
gradE(v), v�

�
L2

x
=

d

dh
E(v + hv�)

���
h=0

for every v, v� ∈ C∞
x , where

(4.2) (v��, v�)L2
x
=

�

X

�
v��(x), v�(x)

�
dx;

here
�
v��(x), v�(x)

�
is the inner product on the fibre V |x at x ∈ X. Suppose

(4.3) gradE(0) = 0, where 0 ∈ C∞
x .

Let t0 < t∞. Let C∞
t,x(t0, t∞) be the space of all smooth sections u = u(t, x) with

u(t, x) ∈ V |x for every (t, x) ∈ (t0, t∞)×X. Let Ck,µ
t,x (t0, t∞) be the Hölder spaces

with respect to the product metric on (t0, t∞) × X. Set u(t) = u(t, •) ∈ C∞
x for

every u = u(t, x) ∈ C∞
t,x(t0, t∞).

We shall state a result of Simon which we use in the proof of Lemma 4.3 below.
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Proposition 4.1 (Simon [13, Lemma 1, p542]). There exist δ0, θ > 0 depending

only on X, V , E such that if t0 < t3 < t4 < t∞, u ∈ C∞
t,x(t0, t∞), δ > 0 and if

�u�
C2,1/2

t,x (t3,t4)
≤ δ0,

sup
t∈[t3,t4]

�
E(0)− E

�
u(t)

��
≤ δ,

�∂tu(t) + gradE
�
u(t)

�
�L2

x
≤ (3/4)�∂tu(t)�L2

x
for every t ∈ [t3, t4],

(4.4)

then we have
� t4

t3

�∂tu(t)�L2
x
dt ≤ (4/θ)

���E
�
u(t3)

�
− E(0)

��θ + δθ
�
.

Here, � •� L2
x
is with respect to (4.2).

Consider u = u(t, x) ∈ C∞
t,x(t0, t∞) satisfying

(4.5) ∂2
t u− ∂tu− gradE(u) +R(u, ∂tu, ∂

2
t u) = f

as in Simon [13], where f ∈ C∞
t,x(t0, t∞) satisfies

(4.6) �∂k
t f(t)�C2

x
≤ Cfe

−2(t−t0) for every t ∈ (t0, t∞), k = 0, 1, 2

for some Cf > 0, and R : C∞
x × C∞

x × C∞
x → C∞

x satisfies

R(v, v(1), v(2)) =A(x, v,Dxv, v
(1)) ·D2

xv ⊗ v(1)

+
�

(k,l)=(0,1),(1,1),(0,2)

Bkl(x, v,Dxv, v
(1)) ·Dl

xv
(k)(4.7)

for every v, v(1), v(2) ∈ C∞
x , where A = A(x, v, p, q), Bkl = Bkl(x, v, p, q) are smooth

functions of x ∈ X, v ∈ V |x, p ∈ T ∗
xX ⊗ V |x, q ∈ V |x with A(x, v, p, q) ∈

Hom(
�2 T ∗

xX ⊗ V |x ⊗ V |x, V |x), Bkl(x, v, p, q) ∈ Hom(
�l T ∗

xX ⊗ V |x, V |x) and
Bkl(x, 0, 0, 0) = 0 for every x ∈ X, (k, l) = (1, 0), (1, 1), (2, 0). Then, for every
C �

2 > 0, there exists δ4 = δ4(X,V,E,R,C �
2) > 0 such that if �u�

C1,1/2
t,x (t0,t∞)

≤ δ4,

then we have

(4.8) |R(u(t), ∂tu(t), ∂
2
t u(t))| ≤ C �

2(|∂tu(t)|+ |Dx∂tu(t)|+ |∂2
t u(t)|).

Let H : C∞
x → C∞

x be the linearized operator of gradE at 0 ∈ C∞
x . Then, (4.5) is

of the form

(4.9) ∂2
t u− ∂tu−Hu =

�

0≤k+l≤2

akl(x, u,Dxu, ∂tu) ·Dl
x∂

k
t u+ f,

where akl = akl(x, u, p, q) are smooth functions of x ∈ X, v ∈ V |x, p ∈ T ∗
xX ⊗ V |x,

q ∈ V |x with akl(x, v, p, q) ∈ Hom(
�l T ∗

xX ⊗ V |x, V |x), akl(x, 0, 0, 0) = 0 for every
x ∈ X, 0 ≤ k + l ≤ 2. Therefore, there exists δ2 = δ2(X,V,E,R) > 0 such that if
u ∈ C∞

t,x(t0, t∞) with �u�
C1,1/2

t,x (t0,t∞)
≤ δ2, then we have

(4.10) max
0≤k+l≤2

�akl(x, u,Dxu, ∂tu)�C0,1/2
t,x (t0,t∞)

≤ δ1,

where δ1 = δ1(X,V,E) > 0 is given below. By the Legendre–Hadamard condi-
tion (C2), ∂2

t − ∂t − H is elliptic on C∞
t,x(t0, t∞). Therefore, there exists δ1 =

δ1(X,V,E) > 0 such that if T > 0, if w, g ∈ C∞
t,x(−T/3, T/3) and if

(4.11) ∂2
tw − ∂tw −Hw =

�

0≤k+l≤2

bkl(t, x) ·Dl
x∂

k
t w + g
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with max0≤k+l≤2 �bkl�C0,1/2
t,x (−T/3,T/3)

≤ δ1, then we have

(4.12) �w�
C2,1/2

t,x (−T/5,T/5)
≤ C1�w�L2

t,x(−T/4,T/4) + C1�g�C0,1/2
t,x (−T/4,T/4)

for some C1 = C1(X,V,E;T ) > 0; here L2
t,x(t

�, t��) is with respect to the product
metric on (t�, t��)×X. (4.12) is a Schauder estimate for elliptic systems; see Douglis–
Nirenberg [3] and Morrey [12].

We shall state a proposition which we use in the proof of Lemma 4.3 below. One
can prove it in the same way as a result of Simon; see [13, Lemma 2, p549] or [14,
Lemma 3.3, Part II].

Proposition 4.2. There exist h, T3, δ3 > 0 depending only on X, V , E such that

if T > T3, if w, g ∈ C∞
t,x(0, 3T ) satisfy (4.11) with �bkl�C0

t,x(0,3T ) ≤ δ3, and if

�g�L2
t,x(0,3T ) ≤ δ3

1/3�w�L2
t,x(T,2T ) with �w�L2

t,x(0,3T ) < ∞,

then we have

�w�L2
t,x(2T,3T ) ≤ e−hT �w�L2

t,x(T,2T ) =⇒ �w�L2
t,x(T,2T ) ≤ e−hT �w�L2

t,x(0,T ),

�w�L2
t,x(T,2T ) ≥ ehT �w�L2

t,x(0,T ) =⇒ �w�L2
t,x(2T,3T ) ≥ ehT �w�L2

t,x(T,2T ),

�w�L2
t,x(T,2T ) ≥ e−hT �w�L2

t,x(0,T ) and �w�L2
t,x(2T,3T ) ≤ ehT �w�L2

t,x(T,2T )

=⇒ �w(t)�L2
x
≤ (3/2)�w(t�)�L2

x
for every t, t� ∈ (T, 2T )

and �∂tw(t)�L2
x
≤ (1/2)�w(t)�L2

x
for every t ∈ (T, 2T ).

We shall prove a lemma which we use in the key step to the main result of this
paper. It is similar to a result of Simon [13, Theorem 1, p534]. Simon’s result is
an a-priori estimate on (0,∞)×X. We however consider (t0, t∞)×X with (t0, t∞)
bounded. We prove the lemma for completeness.

Lemma 4.3. Let X,V,E,R be as above. Let t0 < t∞, and f ∈ C∞
t,x(t0, t∞)

with (4.6) for some Cf > 0. Then, there exist θ, δ∗, C∗ > 0 depending only on

X,V,E,R,Cf such that if t∗ ∈ (t0, t∞), if u ∈ C∞
t,x(t0, t∗) satisfies (4.5) and if

�u�
C1,1/2

t,x (t0,t∗)
≤ δ∗,(4.13)

lim sup
t→t0

�u(t)�L2
x
≤ δ,(4.14)

sup
t∈(t0,t∗)

�
E(0)− E

�
u(t)

��
≤ δ,(4.15)

�∂tu�L2
t,x(t0,t∗)

≤
√
δ(4.16)

for some 0 < δ < min{1, δ∗}, then we have

(4.17) sup
t∈(t0,t∗)

�u(t)�L2
x
< C∗δ

θ.

Proof. By (4.14), it suffices to prove

(4.18)

� t∗

t0

�∂tu(t)�L2
x
dt < C∗δ

θ.

By the Schwartz inequality and (4.16), for every (t�, t��) ⊂ (t0, t∗), we have
� t��

t�
�∂tu(t)�L2

x
dt ≤

√
t�� − t��∂tu�L2

t,x(t
�,t��) ≤

�
(t�� − t�)δ.(4.19)
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Let T > 0 be a sufficiently large constant; in the proof of Lemma 4.3 a constant
means a real number depending only on X,V,E,R,Cf . If t∗ − t0 < 8T , then by
(4.19), we have (4.18); we may therefore assume t∗−t0 ≥ 8T . Choose t1, t6 ∈ (t0, t∗)
so that T ≤ t1− t0 ≤ 2T , T ≤ t∗− t6 ≤ 2T and t6− t1 = jT for some integer j ≥ 4.
Then, by (4.19), we have

� t1

t0

�∂tu(t)�L2
t,x

≤
√
T δ,

� t∗

t6

�∂tu(t)�L2
t,x

≤
√
T δ.(4.20)

By (4.13), u satisfies (4.9) with (4.10). Therefore, u satisfies the Schauder esti-
mate (4.12). Therefore, by (4.13) and (4.6), we have

�u�
C2,1/2

t,x (t1,t6)
≤ C �

1δ∗ + C ��
1 e

−2T

for some constants C �
1, C

��
1 > 0. We may therefore assume that

(4.21) �u�
C2,1/2

t,x (t1,t6)
is sufficiently small.

Differentiating (4.5) with respect to t and using (4.21), we have:

(4.22) w = ∂tu, g = ∂tf satisfy (4.11) with �bkl�C0,1/2
t,x (t1,t6)

sufficiently small.

We may therefore apply Proposition 4.2 to ∂tu repeatedly on (t1, t6) since t6− t1 ≥
4T is assumed to be sufficiently large. Therefore, there exist constants h, δ3, c3 > 0
and integers i1, i2 with 1 ≤ i1 ≤ i2 ≤ j − 1 such that: if 1 < i1, then we have

either �∂tu�L2
t,x(t1+iT,t1+(i+1)T ) ≤ e−hT �∂tu�L2

t,x(t1+(i−1)T,t1+iT )

or δ3
1/3�∂tu�L2

t,x(t1+iT,t1+(i+1)T ) ≤ �Cfe
−2(t−t0)�L2

t,x(t1+(i−1)T,∞)

(4.23)

for every i ∈ {1, . . . , i1 − 1}; if i1 < i2, then we have

(4.24) c3e
−2(t−t0) ≤ �∂tu(t)�L2

x
≤ (3/2)�∂tu(t�)�L2

x

for every t, t� ∈ (t1 + i1T, t1 + i2T ) with |t� − t| ≤ T and we have

(4.25) �∂2
t u(t)�L2

x
≤ (1/2)�∂tu(t)�L2

x

for every t ∈ (t1 + i1T, t1 + i2T ); if i2 < j − 1, then we have

(4.26) �∂tu�L2
t,x(t1+(i−1)T,t1+iT ) ≤ e−hT �∂tu�L2

t,x(t1+iT,t1+(i+1)T )

for every i ∈ {i2 + 1, . . . , j − 1}. Set t5 = t1 + i2T . Then, by (4.26) and (4.19), we
have

� t6

t5

�∂tu(t)�L2
x
dt ≤

j�

i=i2

√
T�∂tu�L2

t,x(t1+iT,t1+(i+1)T )

≤
√
T (1− e−hT )−1

√
δ.

(4.27)

In a similar way, by (4.23), there exists a constant CT,h > 0 such that

(4.28)

� t2

t1

�∂tu(t)�L2
x
dt ≤ CT,h

√
δ.
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If i1 = i2, then by (4.20) and (4.28), we have (4.18); we may therefore assume
i1 < i2. Set t3 = t2 + T/3, t4 = t5 − T/3. Then, by (4.19), we have

� t3

t2

�∂tu(t)�L2
x
dt ≤

�
(T/3)δ,

� t5

t4

�∂tu(t)�L2
x
dt ≤

�
(T/3)δ,(4.29)

� t3+T/4

t2

�∂tu(t)�L2
x
dt ≤

�
(7T/12)δ.(4.30)

By (4.22), we may apply the Schauder estimate (4.12) to w = ∂tu, g = ∂tf .
Therefore, by (4.6) and (4.24), there exists a constant C2 > 0 such that for every
t ∈ [t3, t4], we have

�Dx∂tu(t)�L2
x
≤ C2�∂tu(t)�L2

x
.(4.31)

By (4.21), u satisfies (4.5) with R satisfying (4.8). Therefore, by (4.25) and (4.31),
for every t ∈ [t3, t4], we have

�∂tu(t) + gradE
�
u(t)

�
�L2

x
= �∂2

t u(t) +R�L2
x
≤ (3/4)�∂tu(t)�L2

x
.

Therefore, by (4.21) and (4.15), we have (4.4). Therefore, by Proposition 4.1, we
have

(4.32)

� t4

t3

�∂tu(t)�L2
x
dt ≤ (4/θ)

����E
�
u(t3)

�
− E(0)

���
θ
+ δθ

�

for some constant θ > 0. Since E satisfies (4.1) with (4.3) and u satisfies the
Schauder estimate (4.12), there exist constants C �

3, C3 > 0 such that
��E

�
u(t3)

�
− E(0)

�� ≤ C �
3�u(t3)�2C1

x

≤ C3

�
sup

t∈(t3−T/4,t3+T/4)
�u(t)�L2

x
+ e−2(t3−t0)

�2

.
(4.33)

By (4.14), (4.20), (4.28) and (4.30), there exists a constant C4 > 0 such that

sup
t∈(t3−T/4,t3+T/4)

�u(t)�L2
x
≤ lim sup

t→t0
�u(t)�L2

x
+

� t3+T/4

t0

�∂tu(t)�L2
x
dt ≤ C4

√
δ.

By (4.24) and (4.19), there exists a constant C5 > 0 such that

e−2(t3−t0) ≤ C5

√
δ.

Thus, (4.33) is bounded by C6δθ for some constant C6 > 0. Therefore, (4.32) is
bounded by C7δθ for some constant C7 > 0. Therefore, by (4.20), (4.27), (4.28)
and (4.29), we have (4.18). This completes the proof of Lemma 4.3. �

5. Completion of the Proof

In this section we complete the proof of the main result of this paper.
We shall first prove Theorem 2.2.

Proof of Theorem 2.2. Let φ� be a parallel calibration of degree m on the Euclidean
space (Rn, g�), and let ψ� be as in (2.1) in Section 2, or equivalently as in (3.7) in
Section 3. Let X be a compact ψ�-submanifold of Sn−1. Let 0 < l < 1. Suppose:

(S0) � > 0 is sufficiently small;
(S1) 0 < a0 < b0 < a1 < b1, a0/b0 = a1/b1 = l;
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(S2) g is a Riemannian metric on Bn(b1) with

�g − g��C1 ≤ �, �g − g��C2 ≤ 1

with respect to g�, and Bn(b1) is the ball of radius b1 centered at 0 in
(Rn, g�);

(S3) φ is a calibration of degree m on (Bn(b1), g) with

(1 + log
b1
a0

) sup
Bn(b1)

|φ− φ�| ≤ �

where | • | is with respect to g�, and Bn(b1) is the ball of radius b1 centered
at 0 in (Rn, g�);

(S4) M is a φ-submanifold of (Rn, g), and M is a closed subset of (a0, b1)×Sn−1,
where (a0, b1)× Sn−1 is embedded into Rn by (r, y) �→ ry;

(S5) there exists a normal vector field νi on (ai, bi)×X in ((ai, bi)× Sn−1, g�),
where i = 0, 1, such that

M ∩ ((ai, bi)× Sn−1) = Gcyl(νi) with �νi�C1
cyl

≤ �

in the notation of Section 2.

Let ψ be as in (3.3) in Section 3. Then, by (S3) and (S5), we have

(5.1) sup
r∈(a0,b0)∪(a1,b1)

�����

�

M∩{r}×Sn−1

ψ −Vol(X)

����� ≤ C�

for some constant C > 0; in the proof of Theorem 2.2 a constant means a real
number depending only on l,m, n,X and φ�.

By Proposition 3.4, the Stokes Theorem and (5.1), we have

(5.2)

�

M
|prTM⊥∂r|2 dVol(M, g/r2) ≤ (2C/m)�+ Cm,n sup |φ− φ�|Vol(M, g�/r2).

Therefore, by Proposition 3.5 and (5.1), we have

Vol(M, g�/r2) ≤ C � log
b1
a0

+ C �(1 +m log
b1
a0

)
�
�+ sup |φ− φ�|Vol(M, g�/r2)

�

for some constant C � > 0. Therefore, by (S3), we have

(5.3) Vol(M, g�/r2) ≤ C �� log
b1
a0

for some constant C �� > 0. Therefore, by (5.2), we have

(5.4)

�

M
|prTM⊥∂r|2 dVol(M, g/r2) ≤ C ����

for some constant C ��� > 0. Choose a constant �∗ > 0 so that if I is an open
interval of (0,∞), and if ν is a normal vector field on I ×X in (I × Sn−1, g�) with
�ν�C0

cyl
≤ �∗, then Gcyl(ν) is contained in a tubular neighbourhood of I × X in

(I × Sn−1, g�). Here, Gcyl(ν) is as in Section 2. If �∗ is sufficiently small, then we
have

|r∂r(ν/r)|2 ≤ 2|prTM⊥∂r|2,
as in [13, (7.13), p561] or [14, 3.2, Part I]. Therefore, by (5.4), we have

(5.5)

�

M∩(I×Sn−1)
|r∂r(ν/r)|2 dVol(M, g/r2) ≤ 2C ����.



A UNIQUENESS THEOREM FOR GLUING SPECIAL LAGRANGIAN SUBMANIFOLDS 15

Choose 0 < λ < λ�� < λ� < 1 so that lλ� < λ < λ�� < l < λ�. By (5.4), we may
apply Lemma 3.6 to M ∩ ((λb1, b1))×Sn−1. Therefore, there exists a normal vector
field ν on (λb1, b1)×X in ((λb1, b1)× Sn−1, g�/r2) such that

M ∩ ((λb1, b1)× Sn−1) = Gcyl(ν) with �ν|(λ��b1,λ�b1)×X�
C1,1/2

cyl
≤ �∗.(5.6)

Let S∗ be the set of all b∗ ∈ [λ�a0/λ, a1) such that there exists a normal vector field
ν on (b∗, a1)×X in ((b∗, a1)× Sn−1, g�/r2) such that

M ∩ ((b∗, b1)× Sn−1) = Gcyl(ν) with �ν|(b∗,a1)×X�
C1,1/2

cyl
≤ �∗.(5.7)

S∗ is non-empty since λ��b1 ∈ S∗ by (5.6).

Proposition 5.1. Suppose b∗ ∈ S∗ ∩ [λa0/λ�, b1), and let ν be as in (5.7). Then,

there exist constants c10, C10 > 0 such that

�ν|(b∗,b1)×X�C1
cyl

≤ C10�
c10 .

Proof. By Proposition 2.1, X is a minimal submanifold of Sn−1. By (S4), M is a
minimal submanifold of ((a0, b1) × Sn−1, g) with �g − g��C2(B(b1)) ≤ 1 as in (S2).
Set

u(t, x) = et/mν(e−t/mx), t0 = −m log b1, t∗ = −m log b∗.

Then, by a result of Simon [14, Remark 3.3, Part I], u satisfies (4.5) for some E,R, f
depending only on m,n,X. We shall apply Lemma 4.3 to u. By (5.7), we have

(5.8) �ν|(b∗,a1)×X�
C1,1/2

cyl
= �u�

C1,1/2
t,x (−m log a1,t∗)

≤ �∗.

Therefore, we have (4.13). By (S5), we have (4.14). By (5.5), (5.8) and (S2), there
exists a constant C11 > 0 such that

�∂tu�2L2
t,x(t0,t∗)

=

�

(b∗,b1)×X
|r∂r(ν/r)|2dr/r dVol(X) ≤ C11�.

Therefore, we have (4.16). It suffices therefore to prove (4.15). In a way similar to
(5.1), by (5.7), we have

sup
b∈(b∗,b1)

Vol(X)−Vol
�
M ∩ {b}× Sn−1, g�/r2

�

≤ sup
b∈(b∗,b1),b�∈(a1,b1)

�

M∩{b�}×Sn−1

ψ −
�

M∩{b}×Sn−1

ψ + C12�

for some constant C12 > 0. By Proposition 3.4, (5.4), (5.3) and (S3), we have

sup
b∈(b∗,b1),b�∈(a1,b1)

�

M∩{b�}×Sn−1

ψ −
�

M∩{b}×Sn−1

ψ ≤ C13�

for some constant C13 > 0. Thus, there exists a constant C14 > 0 such that

sup
b∈(b∗,b1)

Vol(X)−Vol
�
M ∩ {b}× Sn−1, g�/r2

�
≤ C14�.

Therefore, we have (4.15). We may now apply Lemma 4.3 to u. Therefore, as in
(4.17), we have

sup
t∈(t0,t∗)

�u�L2
x
≤ C15�

c15

for some constants c15, C15 > 0. Therefore, by interpolation and (5.8), we have

�ν|(b∗,a1)×X�C1
cyl

= �u�C1
t,x(−m log a1,t∗) ≤ C10�

c10
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for some constants C10, c10 > 0. By (S5), this proves Proposition 5.1. �

Suppose b∗ ∈ S∗. Then, by Proposition 5.1, we may apply Lemma 3.6 to M ∩
((λb∗/λ�, b∗/λ�)×Sn−1). Therefore, λ��b∗/λ� ∈ S∗. Therefore, b∗ is an interior point
in S∗. S∗ is thus an open subset of [λ�a0/λ, a1).

By definition, S∗ is a closed subset of [λ�a0/λ, a1). S∗ is thus a non-empty open
closed subset of [λ�a0/λ, a1). Therefore, S∗ = [λ�a0/λ, a1). Therefore, λ�a0/λ ∈ S∗.
Therefore, by (5.7) and Proposition 5.1, we have

M ∩ ((λ�a0/λ, b1)× Sn−1) = Gcyl(ν) with �ν|(λ�a0/λ,b1)×X�C1
cyl

≤ C10�
c10 .

Therefore, by (S5), we have (2.3). This completes the proof of Theorem 2.2. �

We shall prove the main result of this paper.

Proof of Theorem 1.1. Let W be a Calabi–Yau manifold of complex dimension m
with Kähler metric g, and fs : (U,ωs) → (Cm,ω�) a smooth family of Darboux
charts centered at p as in Section 1. Choose a normal chart f � : U → Cm centered
at p in (W, g) with df � = dfs at p. For every s > 0 sufficiently small, choose
a0, b0, a1, b1 so that

(a0, b0)× S2m−1 ⊂ f �(B(as) \B(as/2)), (a1, b1)× S2m−1 ⊂ f �(B(2bs) \B(bs)),

where (a, b)×S2m−1 are embedded into Cm by (r, y) �→ ry. Suppose there exists a
compact special Lagrangian submanifold Ms satisfying (B1) and (B2) in Section 1.
Set

(5.9) M = f �(Ms ∩ U) ∩ ((a0, b1)× S2m−1).

We shall prove (A1), (A2), (A3), (A4) and (A5) of Theorem 2.2. It is easy to see
(A1) and (A4). We have (A2) since f � is a normal chart. We have (A3) since
as = O(s), bs = O(sβ) by assumption. It suffices therefore to prove (A5). Let K
be a Lawlor neck as in Section 1. As in Butscher [2, Theorem 6], K satisfies:

f � ◦ f−1
s (sK) ∩ ((a0, b0)× S2m−1) is sufficiently close to (a0, b0)×X

in the C1
cyl-topology whenever s > 0 is sufficiently small and R is sufficiently large.

Here, C1
cyl is as in Section 2. Since Ms satisfies (B1) as in Section 1, we have:

f � ◦ f−1
s (sK) ∩ ((a0, b0)× S2m−1) is sufficiently close to M ∩ ((a0, b0)× S2m−1)

in the C1
cyl-topology whenever s > 0 is sufficiently small. Thus, we have:

(5.10) M ∩ ((a0, b0)× S2m−1) is sufficiently close to (a0, b0)×X

in the C1
cyl-topology. Since Ms satisfies (B2) as in Section 1, we have:

(5.11) M ∩ ((a1, b1)× S2m−1) is sufficiently close to (a1, b1)×X

in the C1
cyl-topology whenever s > 0 is sufficiently small. By (5.10) and (5.11),

we have (A5). We may now apply Theorem 2.2 to M . Therefore, as in (2.3), M
is the graph of some normal vector field on (a0, b1) × X in (a0, b1) × S2m−1 with
C1

cyl-norm converging to 0 as s → +0.
By using a partition of unity, choose a compact Lagrangian submanifold Ns of

(W,ωs) such that

Ns ∩B(as) = f−1
s (sK) ∩B(as), Ns \B(bs) = Fs(L1 ∪ L2),
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and f �(Ns ∩ U) ∩ ((a0, b1) × S2m−1) is sufficiently close to (a0, b1) × X in the
C1

cyl-topology whenever s > 0 is sufficiently small; see Y. Lee [10, 3. Approximate
submanifolds] or Joyce [7, Definition 6.2]. Then, for every s > 0 sufficiently small,
there exists c0 ∈ (a0, b0) such thatM∩((b0, a1)×S2m−1) is contained in the graph of
some normal vector field on f �(Ns∩U)∩(c0, a1)×S2m−1 in ((c0, a1)×S2m−1, f �

∗gs)
with C1-norm converging to 0 as s → +0. Therefore, since Ms satisfies (B1) and
(B2) as in Section 1, Ms is the graph of some normal vector field x on Ns in (W, gs)
whenever s > 0 is sufficiently small.

x�ωs is a 1-form on Ms since Ms is Lagrangian with respect to ωs. Since K is
diffeomorphic to R × Sm−1 with m > 2, the restriction of x�ωs to Ms ∩ B(as) is
an exact 1-form. By assumption, the restriction of x�ωs to Ms \B(bs) is an exact
1-form; see (B2) in Section 1. By assumption, Fs(L1) \ B(bs) and Fs(L2) \ B(bs)
do not intersect. Thus, x�ωs = dh for some smooth function h : Ns → R.

Ms is thus the graph of dh on Ns. In the same way, if M �
s is another special

Lagrangian submanifold as in Theorem 1.1, M �
s is the graph of dh� on Ns for some

smooth function h� : Ns → R. Therefore, M �
s is a time-independent Hamiltonian

deformation of Ms. Therefore, by a result of Thomas and Yau [15, Lemma 4.2],
M �

s = Ms. This completes the proof of Theorem 1.1, the main result of this
paper. �
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